Welcome to mirror list, hosted at ThFree Co, Russian Federation.

cygwin.com/git/newlib-cygwin.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'winsup/mingw/mingwex/stdio/pformat.c')
-rw-r--r--winsup/mingw/mingwex/stdio/pformat.c2537
1 files changed, 0 insertions, 2537 deletions
diff --git a/winsup/mingw/mingwex/stdio/pformat.c b/winsup/mingw/mingwex/stdio/pformat.c
deleted file mode 100644
index 55972fc45..000000000
--- a/winsup/mingw/mingwex/stdio/pformat.c
+++ /dev/null
@@ -1,2537 +0,0 @@
-/* FIXME: to be removed one day; for now we explicitly are not
- * prepared to support the POSIX-XSI additions to the C99 standard.
- */
-#undef WITH_XSI_FEATURES
-
-/* pformat.c
- *
- * $Id$
- *
- * Provides a core implementation of the formatting capabilities
- * common to the entire `printf()' family of functions; it conforms
- * generally to C99 and SUSv3/POSIX specifications, with extensions
- * to support Microsoft's non-standard format specifications.
- *
- * Written by Keith Marshall <keithmarshall@users.sourceforge.net>
- *
- * This is free software. You may redistribute and/or modify it as you
- * see fit, without restriction of copyright.
- *
- * This software is provided "as is", in the hope that it may be useful,
- * but WITHOUT WARRANTY OF ANY KIND, not even any implied warranty of
- * MERCHANTABILITY, nor of FITNESS FOR ANY PARTICULAR PURPOSE. At no
- * time will the author accept any form of liability for any damages,
- * however caused, resulting from the use of this software.
- *
- * The elements of this implementation which deal with the formatting
- * of floating point numbers, (i.e. the `%e', `%E', `%f', `%F', `%g'
- * and `%G' format specifiers, but excluding the hexadecimal floating
- * point `%a' and `%A' specifiers), make use of the `__gdtoa' function
- * written by David M. Gay, and are modelled on his sample code, which
- * has been deployed under its accompanying terms of use:--
- *
- ******************************************************************
- * Copyright (C) 1997, 1999, 2001 Lucent Technologies
- * All Rights Reserved
- *
- * Permission to use, copy, modify, and distribute this software and
- * its documentation for any purpose and without fee is hereby
- * granted, provided that the above copyright notice appear in all
- * copies and that both that the copyright notice and this
- * permission notice and warranty disclaimer appear in supporting
- * documentation, and that the name of Lucent or any of its entities
- * not be used in advertising or publicity pertaining to
- * distribution of the software without specific, written prior
- * permission.
- *
- * LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
- * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
- * IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
- * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
- * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
- * ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
- * THIS SOFTWARE.
- ******************************************************************
- *
- */
-#include <stdio.h>
-#include <stdarg.h>
-#include <stddef.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-#include <limits.h>
-#include <locale.h>
-#include <wchar.h>
-#include <math.h>
-
-/* FIXME: The following belongs in values.h, but current MinGW
- * has nothing useful there! OTOH, values.h is not a standard
- * header, and it's use may be considered obsolete; perhaps it
- * is better to just keep these definitions here.
- */
-#ifndef _VALUES_H
-/*
- * values.h
- *
- */
-#define _VALUES_H
-
-#include <limits.h>
-
-#define _TYPEBITS(type) (sizeof(type) * CHAR_BIT)
-
-#define LLONGBITS _TYPEBITS(long long)
-
-#endif /* !defined _VALUES_H -- end of file */
-
-#include "pformat.h"
-
-/* Bit-map constants, defining the internal format control
- * states, which propagate through the flags.
- */
-#define PFORMAT_HASHED 0x0800
-#define PFORMAT_LJUSTIFY 0x0400
-#define PFORMAT_ZEROFILL 0x0200
-
-#define PFORMAT_JUSTIFY (PFORMAT_LJUSTIFY | PFORMAT_ZEROFILL)
-#define PFORMAT_IGNORE -1
-
-#define PFORMAT_SIGNED 0x01C0
-#define PFORMAT_POSITIVE 0x0100
-#define PFORMAT_NEGATIVE 0x0080
-#define PFORMAT_ADDSPACE 0x0040
-
-#define PFORMAT_XCASE 0x0020
-
-#define PFORMAT_LDOUBLE 0x0004
-
-/* `%o' format digit extraction mask, and shift count...
- * (These are constant, and do not propagate through the flags).
- */
-#define PFORMAT_OMASK 0x0007
-#define PFORMAT_OSHIFT 0x0003
-
-/* `%x' and `%X' format digit extraction mask, and shift count...
- * (These are constant, and do not propagate through the flags).
- */
-#define PFORMAT_XMASK 0x000F
-#define PFORMAT_XSHIFT 0x0004
-
-/* The radix point character, used in floating point formats, is
- * localised on the basis of the active LC_NUMERIC locale category.
- * It is stored locally, as a `wchar_t' entity, which is converted
- * to a (possibly multibyte) character on output. Initialisation
- * of the stored `wchar_t' entity, together with a record of its
- * effective multibyte character length, is required each time
- * `__pformat()' is entered, (static storage would not be thread
- * safe), but this initialisation is deferred until it is actually
- * needed; on entry, the effective character length is first set to
- * the following value, (and the `wchar_t' entity is zeroed), to
- * indicate that a call of `localeconv()' is needed, to complete
- * the initialisation.
- */
-#define PFORMAT_RPINIT -3
-
-/* The floating point format handlers return the following value
- * for the radix point position index, when the argument value is
- * infinite, or not a number.
- */
-#define PFORMAT_INFNAN -32768
-
-#ifdef _WIN32
-/*
- * The Microsoft standard for printing `%e' format exponents is
- * with a minimum of three digits, unless explicitly set otherwise,
- * by a prior invocation of the `_set_output_format()' function.
- *
- * The following macro allows us to replicate this behaviour.
- */
-# define PFORMAT_MINEXP __pformat_exponent_digits()
- /*
- * However, this feature is unsupported for versions of the
- * MSVC runtime library prior to msvcr80.dll, and by default,
- * MinGW uses an earlier version, (equivalent to msvcr60.dll),
- * for which `_TWO_DIGIT_EXPONENT' will be undefined.
- */
-# ifndef _TWO_DIGIT_EXPONENT
- /*
- * This hack works around the lack of the `_set_output_format()'
- * feature, when supporting versions of the MSVC runtime library
- * prior to msvcr80.dll; it simply enforces Microsoft's original
- * convention, for all cases where the feature is unsupported.
- */
-# define _get_output_format() 0
-# define _TWO_DIGIT_EXPONENT 1
-# endif
-/*
- * Irrespective of the MSVCRT version supported, *we* will add
- * an additional capability, through the following inline function,
- * which will allow the user to choose his own preferred default
- * for `PRINTF_EXPONENT_DIGITS', through the simple expedient
- * of defining it as an environment variable.
- */
-static __inline__ __attribute__((__always_inline__))
-int __pformat_exponent_digits( void )
-{
- char *exponent_digits = getenv( "PRINTF_EXPONENT_DIGITS" );
- return ((exponent_digits != NULL) && ((unsigned)(*exponent_digits - '0') < 3))
- || (_get_output_format() & _TWO_DIGIT_EXPONENT)
- ? 2
- : 3
- ;
-}
-#else
-/*
- * When we don't care to mimic Microsoft's standard behaviour,
- * we adopt the C99/POSIX standard of two digit exponents.
- */
-# define PFORMAT_MINEXP 2
-#endif
-
-typedef union
-{
- /* A data type agnostic representation,
- * for printf arguments of any integral data type...
- */
- signed long __pformat_long_t;
- signed long long __pformat_llong_t;
- unsigned long __pformat_ulong_t;
- unsigned long long __pformat_ullong_t;
- unsigned short __pformat_ushort_t;
- unsigned char __pformat_uchar_t;
- signed short __pformat_short_t;
- signed char __pformat_char_t;
- void * __pformat_ptr_t;
-} __pformat_intarg_t;
-
-typedef enum
-{
- /* Format interpreter state indices...
- * (used to identify the active phase of format string parsing).
- */
- PFORMAT_INIT = 0,
- PFORMAT_SET_WIDTH,
- PFORMAT_GET_PRECISION,
- PFORMAT_SET_PRECISION,
- PFORMAT_END
-} __pformat_state_t;
-
-typedef enum
-{
- /* Argument length classification indices...
- * (used for arguments representing integer data types).
- */
- PFORMAT_LENGTH_INT = 0,
- PFORMAT_LENGTH_SHORT,
- PFORMAT_LENGTH_LONG,
- PFORMAT_LENGTH_LLONG,
- PFORMAT_LENGTH_CHAR
-} __pformat_length_t;
-/*
- * And a macro to map any arbitrary data type to an appropriate
- * matching index, selected from those above; the compiler should
- * collapse this to a simple assignment.
- */
-#define __pformat_arg_length( type ) \
- sizeof( type ) == sizeof( long long ) ? PFORMAT_LENGTH_LLONG : \
- sizeof( type ) == sizeof( long ) ? PFORMAT_LENGTH_LONG : \
- sizeof( type ) == sizeof( short ) ? PFORMAT_LENGTH_SHORT : \
- sizeof( type ) == sizeof( char ) ? PFORMAT_LENGTH_CHAR : \
- /* should never need this default */ PFORMAT_LENGTH_INT
-
-typedef struct
-{
- /* Formatting and output control data...
- * An instance of this control block is created, (on the stack),
- * for each call to `__pformat()', and is passed by reference to
- * each of the output handlers, as required.
- */
- void * dest;
- int flags;
- int width;
- int precision;
- int rplen;
- wchar_t rpchr;
- int count;
- int quota;
- int expmin;
-} __pformat_t;
-
-static
-void __pformat_putc( int c, __pformat_t *stream )
-{
- /* Place a single character into the `__pformat()' output queue,
- * provided any specified output quota has not been exceeded.
- */
- if( (stream->flags & PFORMAT_NOLIMIT) || (stream->quota > stream->count) )
- {
- /* Either there was no quota specified,
- * or the active quota has not yet been reached.
- */
- if( stream->flags & PFORMAT_TO_FILE )
- /*
- * This is single character output to a FILE stream...
- */
- fputc( c, (FILE *)(stream->dest) );
-
- else
- /* Whereas, this is to an internal memory buffer...
- */
- ((char *)(stream->dest))[stream->count] = c;
- }
- ++stream->count;
-}
-
-static
-void __pformat_putchars( const char *s, int count, __pformat_t *stream )
-{
- /* Handler for `%c' and (indirectly) `%s' conversion specifications.
- *
- * Transfer characters from the string buffer at `s', character by
- * character, up to the number of characters specified by `count', or
- * if `precision' has been explicitly set to a value less than `count',
- * stopping after the number of characters specified for `precision',
- * to the `__pformat()' output stream.
- *
- * Characters to be emitted are passed through `__pformat_putc()', to
- * ensure that any specified output quota is honoured.
- */
- if( (stream->precision >= 0) && (count > stream->precision) )
- /*
- * Ensure that the maximum number of characters transferred doesn't
- * exceed any explicitly set `precision' specification.
- */
- count = stream->precision;
-
- /* Establish the width of any field padding required...
- */
- if( stream->width > count )
- /*
- * as the number of spaces equivalent to the number of characters
- * by which those to be emitted is fewer than the field width...
- */
- stream->width -= count;
-
- else
- /* ignoring any width specification which is insufficient.
- */
- stream->width = PFORMAT_IGNORE;
-
- if( (stream->width > 0) && ((stream->flags & PFORMAT_LJUSTIFY) == 0) )
- /*
- * When not doing flush left justification, (i.e. the `-' flag
- * is not set), any residual unreserved field width must appear
- * as blank padding, to the left of the output string.
- */
- while( stream->width-- )
- __pformat_putc( '\x20', stream );
-
- /* Emit the data...
- */
- while( count-- )
- /*
- * copying the requisite number of characters from the input.
- */
- __pformat_putc( *s++, stream );
-
- /* If we still haven't consumed the entire specified field width,
- * we must be doing flush left justification; any residual width
- * must be filled with blanks, to the right of the output value.
- */
- while( stream->width-- > 0 )
- __pformat_putc( '\x20', stream );
-}
-
-static __inline__
-void __pformat_puts( const char *s, __pformat_t *stream )
-{
- /* Handler for `%s' conversion specifications.
- *
- * Transfer a NUL terminated character string, character by character,
- * stopping when the end of the string is encountered, or if `precision'
- * has been explicitly set, when the specified number of characters has
- * been emitted, if that is less than the length of the input string,
- * to the `__pformat()' output stream.
- *
- * This is implemented as a trivial call to `__pformat_putchars()',
- * passing the length of the input string as the character count,
- * (after first verifying that the input pointer is not NULL).
- */
- if( s == NULL ) s = "(null)";
- __pformat_putchars( s, strlen( s ), stream );
-}
-
-static
-void __pformat_wputchars( const wchar_t *s, int count, __pformat_t *stream )
-{
- /* Handler for `%C'(`%lc') and `%S'(`%ls') conversion specifications;
- * (this is a wide character variant of `__pformat_putchars()').
- *
- * Each multibyte character sequence to be emitted is passed, byte
- * by byte, through `__pformat_putc()', to ensure that any specified
- * output quota is honoured.
- */
- char buf[16]; mbstate_t state; int len = wcrtomb( buf, L'\0', &state );
-
- if( (stream->precision >= 0) && (count > stream->precision) )
- /*
- * Ensure that the maximum number of characters transferred doesn't
- * exceed any explicitly set `precision' specification.
- */
- count = stream->precision;
-
- /* Establish the width of any field padding required...
- */
- if( stream->width > count )
- /*
- * as the number of spaces equivalent to the number of characters
- * by which those to be emitted is fewer than the field width...
- */
- stream->width -= count;
-
- else
- /* ignoring any width specification which is insufficient.
- */
- stream->width = PFORMAT_IGNORE;
-
- if( (stream->width > 0) && ((stream->flags & PFORMAT_LJUSTIFY) == 0) )
- /*
- * When not doing flush left justification, (i.e. the `-' flag
- * is not set), any residual unreserved field width must appear
- * as blank padding, to the left of the output string.
- */
- while( stream->width-- )
- __pformat_putc( '\x20', stream );
-
- /* Emit the data, converting each character from the wide
- * to the multibyte domain as we go...
- */
- while( (count-- > 0) && ((len = wcrtomb( buf, *s++, &state )) > 0) )
- {
- char *p = buf;
- while( len-- > 0 )
- __pformat_putc( *p++, stream );
- }
-
- /* If we still haven't consumed the entire specified field width,
- * we must be doing flush left justification; any residual width
- * must be filled with blanks, to the right of the output value.
- */
- while( stream->width-- > 0 )
- __pformat_putc( '\x20', stream );
-}
-
-static __inline__ __attribute__((__always_inline__))
-void __pformat_wcputs( const wchar_t *s, __pformat_t *stream )
-{
- /* Handler for `%S' (`%ls') conversion specifications.
- *
- * Transfer a NUL terminated wide character string, character by
- * character, converting to its equivalent multibyte representation
- * on output, and stopping when the end of the string is encountered,
- * or if `precision' has been explicitly set, when the specified number
- * of characters has been emitted, if that is less than the length of
- * the input string, to the `__pformat()' output stream.
- *
- * This is implemented as a trivial call to `__pformat_wputchars()',
- * passing the length of the input string as the character count,
- * (after first verifying that the input pointer is not NULL).
- */
- if( s == NULL ) s = L"(null)";
- __pformat_wputchars( s, wcslen( s ), stream );
-}
-
-static __inline__
-int __pformat_int_bufsiz( int bias, int size, __pformat_t *stream )
-{
- /* Helper to establish the size of the internal buffer, which
- * is required to queue the ASCII decomposition of an integral
- * data value, prior to transfer to the output stream.
- */
- size = ((size - 1 + LLONGBITS) / size) + bias;
- size += (stream->precision > 0) ? stream->precision : 0;
- return (size > stream->width) ? size : stream->width;
-}
-
-static
-void __pformat_int( __pformat_intarg_t value, __pformat_t *stream )
-{
- /* Handler for `%d', `%i' and `%u' conversion specifications.
- *
- * Transfer the ASCII representation of an integer value parameter,
- * formatted as a decimal number, to the `__pformat()' output queue;
- * output will be truncated, if any specified quota is exceeded.
- */
- char buf[__pformat_int_bufsiz(1, PFORMAT_OSHIFT, stream)];
- char *p = buf; int precision;
-
- if( stream->flags & PFORMAT_NEGATIVE )
- {
- /* The input value might be negative, (i.e. it is a signed value)...
- */
- if( value.__pformat_llong_t < 0LL )
- /*
- * It IS negative, but we want to encode it as unsigned,
- * displayed with a leading minus sign, so convert it...
- */
- value.__pformat_llong_t = -value.__pformat_llong_t;
-
- else
- /* It is unequivocally a POSITIVE value, so turn off the
- * request to prefix it with a minus sign...
- */
- stream->flags &= ~PFORMAT_NEGATIVE;
- }
-
- /* Encode the input value for display...
- */
- while( value.__pformat_ullong_t )
- {
- /* decomposing it into its constituent decimal digits,
- * in order from least significant to most significant, using
- * the local buffer as a LIFO queue in which to store them.
- */
- *p++ = '0' + (unsigned char)(value.__pformat_ullong_t % 10LL);
- value.__pformat_ullong_t /= 10LL;
- }
-
- if( (stream->precision > 0)
- && ((precision = stream->precision - (p - buf)) > 0) )
- /*
- * We have not yet queued sufficient digits to fill the field width
- * specified for minimum `precision'; pad with zeros to achieve this.
- */
- while( precision-- > 0 )
- *p++ = '0';
-
- if( (p == buf) && (stream->precision != 0) )
- /*
- * Input value was zero; make sure we print at least one digit,
- * unless the precision is also explicitly zero.
- */
- *p++ = '0';
-
- if( (stream->width > 0) && ((stream->width -= p - buf) > 0) )
- {
- /* We have now queued sufficient characters to display the input value,
- * at the desired precision, but this will not fill the output field...
- */
- if( stream->flags & PFORMAT_SIGNED )
- /*
- * We will fill one additional space with a sign...
- */
- stream->width--;
-
- if( (stream->precision < 0)
- && ((stream->flags & PFORMAT_JUSTIFY) == PFORMAT_ZEROFILL) )
- /*
- * and the `0' flag is in effect, so we pad the remaining spaces,
- * to the left of the displayed value, with zeros.
- */
- while( stream->width-- > 0 )
- *p++ = '0';
-
- else if( (stream->flags & PFORMAT_LJUSTIFY) == 0 )
- /*
- * the `0' flag is not in effect, and neither is the `-' flag,
- * so we pad to the left of the displayed value with spaces, so that
- * the value appears right justified within the output field.
- */
- while( stream->width-- > 0 )
- __pformat_putc( '\x20', stream );
- }
-
- if( stream->flags & PFORMAT_NEGATIVE )
- /*
- * A negative value needs a sign...
- */
- *p++ = '-';
-
- else if( stream->flags & PFORMAT_POSITIVE )
- /*
- * A positive value may have an optionally displayed sign...
- */
- *p++ = '+';
-
- else if( stream->flags & PFORMAT_ADDSPACE )
- /*
- * Space was reserved for displaying a sign, but none was emitted...
- */
- *p++ = '\x20';
-
- while( p > buf )
- /*
- * Emit the accumulated constituent digits,
- * in order from most significant to least significant...
- */
- __pformat_putc( *--p, stream );
-
- while( stream->width-- > 0 )
- /*
- * The specified output field has not yet been completely filled;
- * the `-' flag must be in effect, resulting in a displayed value which
- * appears left justified within the output field; we must pad the field
- * to the right of the displayed value, by emitting additional spaces,
- * until we reach the rightmost field boundary.
- */
- __pformat_putc( '\x20', stream );
-}
-
-static
-void __pformat_xint( int fmt, __pformat_intarg_t value, __pformat_t *stream )
-{
- /* Handler for `%o', `%p', `%x' and `%X' conversions.
- *
- * These can be implemented using a simple `mask and shift' strategy;
- * set up the mask and shift values appropriate to the conversion format,
- * and allocate a suitably sized local buffer, in which to queue encoded
- * digits of the formatted value, in preparation for output.
- */
- int width;
- int mask = (fmt == 'o') ? PFORMAT_OMASK : PFORMAT_XMASK;
- int shift = (fmt == 'o') ? PFORMAT_OSHIFT : PFORMAT_XSHIFT;
- char buf[__pformat_int_bufsiz(2, shift, stream)];
- char *p = buf;
-
- while( value.__pformat_ullong_t )
- {
- /* Encode the specified non-zero input value as a sequence of digits,
- * in the appropriate `base' encoding and in reverse digit order, each
- * encoded in its printable ASCII form, with no leading zeros, using
- * the local buffer as a LIFO queue in which to store them.
- */
- char *q;
- if( (*(q = p++) = '0' + (value.__pformat_ullong_t & mask)) > '9' )
- *q = (*q + 'A' - '9' - 1) | (fmt & PFORMAT_XCASE);
- value.__pformat_ullong_t >>= shift;
- }
-
- if( p == buf )
- /*
- * Nothing was queued; input value must be zero, which should never be
- * emitted in the `alternative' PFORMAT_HASHED style.
- */
- stream->flags &= ~PFORMAT_HASHED;
-
- if( ((width = stream->precision) > 0) && ((width -= p - buf) > 0) )
- /*
- * We have not yet queued sufficient digits to fill the field width
- * specified for minimum `precision'; pad with zeros to achieve this.
- */
- while( width-- > 0 )
- *p++ = '0';
-
- else if( (fmt == 'o') && (stream->flags & PFORMAT_HASHED) )
- /*
- * The field width specified for minimum `precision' has already
- * been filled, but the `alternative' PFORMAT_HASHED style for octal
- * output requires at least one initial zero; that will not have
- * been queued, so add it now.
- */
- *p++ = '0';
-
- if( (p == buf) && (stream->precision != 0) )
- /*
- * Still nothing queued for output, but the `precision' has not been
- * explicitly specified as zero, (which is necessary if no output for
- * an input value of zero is desired); queue exactly one zero digit.
- */
- *p++ = '0';
-
- if( stream->width > (width = p - buf) )
- /*
- * Specified field width exceeds the minimum required...
- * Adjust so that we retain only the additional padding width.
- */
- stream->width -= width;
-
- else
- /* Ignore any width specification which is insufficient.
- */
- stream->width = PFORMAT_IGNORE;
-
- if( ((width = stream->width) > 0)
- && (fmt != 'o') && (stream->flags & PFORMAT_HASHED) )
- /*
- * For `%#x' or `%#X' formats, (which have the `#' flag set),
- * further reduce the padding width to accommodate the radix
- * indicating prefix.
- */
- width -= 2;
-
- if( (width > 0) && (stream->precision < 0)
- && ((stream->flags & PFORMAT_JUSTIFY) == PFORMAT_ZEROFILL) )
- /*
- * When the `0' flag is set, and not overridden by the `-' flag,
- * or by a specified precision, add sufficient leading zeros to
- * consume the remaining field width.
- */
- while( width-- > 0 )
- *p++ = '0';
-
- if( (fmt != 'o') && (stream->flags & PFORMAT_HASHED) )
- {
- /* For formats other than octal, the PFORMAT_HASHED output style
- * requires the addition of a two character radix indicator, as a
- * prefix to the actual encoded numeric value.
- */
- *p++ = fmt;
- *p++ = '0';
- }
-
- if( (width > 0) && ((stream->flags & PFORMAT_LJUSTIFY) == 0) )
- /*
- * When not doing flush left justification, (i.e. the `-' flag
- * is not set), any residual unreserved field width must appear
- * as blank padding, to the left of the output value.
- */
- while( width-- > 0 )
- __pformat_putc( '\x20', stream );
-
- while( p > buf )
- /*
- * Move the queued output from the local buffer to the ultimate
- * destination, in LIFO order.
- */
- __pformat_putc( *--p, stream );
-
- /* If we still haven't consumed the entire specified field width,
- * we must be doing flush left justification; any residual width
- * must be filled with blanks, to the right of the output value.
- */
- while( width-- > 0 )
- __pformat_putc( '\x20', stream );
-}
-
-typedef union
-{
- /* A multifaceted representation of an IEEE extended precision,
- * (80-bit), floating point number, facilitating access to its
- * component parts.
- */
- double __pformat_fpreg_double_t;
- long double __pformat_fpreg_ldouble_t;
- struct
- { unsigned long long __pformat_fpreg_mantissa;
- signed short __pformat_fpreg_exponent;
- };
- unsigned short __pformat_fpreg_bitmap[5];
- unsigned long __pformat_fpreg_bits;
-} __pformat_fpreg_t;
-
-#ifdef _WIN32
-/* TODO: make this unconditional in final release...
- * (see note at head of associated `#else' block.
- */
-#include "gdtoa.h"
-
-static
-char *__pformat_cvt( int mode, __pformat_fpreg_t x, int nd, int *dp, int *sign )
-{
- /* Helper function, derived from David M. Gay's `g_xfmt()', calling
- * his `__gdtoa()' function in a manner to provide extended precision
- * replacements for `ecvt()' and `fcvt()'.
- */
- int k; unsigned int e = 0; char *ep;
- static FPI fpi = { 64, 1-16383-64+1, 32766-16383-64+1, FPI_Round_near, 0 };
-
- /* Classify the argument into an appropriate `__gdtoa()' category...
- */
- if( (k = __fpclassifyl( x.__pformat_fpreg_ldouble_t )) & FP_NAN )
- /*
- * identifying infinities or not-a-number...
- */
- k = (k & FP_NORMAL) ? STRTOG_Infinite : STRTOG_NaN;
-
- else if( k & FP_NORMAL )
- {
- /* normal and near-zero `denormals'...
- */
- if( k & FP_ZERO )
- {
- /* with appropriate exponent adjustment for a `denormal'...
- */
- k = STRTOG_Denormal;
- e = 1 - 0x3FFF - 63;
- }
- else
- {
- /* or with `normal' exponent adjustment...
- */
- k = STRTOG_Normal;
- e = (x.__pformat_fpreg_exponent & 0x7FFF) - 0x3FFF - 63;
- }
- }
-
- else
- /* or, if none of the above, it's a zero, (positive or negative).
- */
- k = STRTOG_Zero;
-
- /* Check for negative values, always treating NaN as unsigned...
- * (return value is zero for positive/unsigned; non-zero for negative).
- */
- *sign = (k == STRTOG_NaN) ? 0 : x.__pformat_fpreg_exponent & 0x8000;
-
- /* Finally, get the raw digit string, and radix point position index.
- */
- return __gdtoa( &fpi, e, &x.__pformat_fpreg_bits, &k, mode, nd, dp, &ep );
-}
-
-static __inline__ __attribute__((__always_inline__))
-char *__pformat_ecvt( long double x, int precision, int *dp, int *sign )
-{
- /* A convenience wrapper for the above...
- * it emulates `ecvt()', but takes a `long double' argument.
- */
- __pformat_fpreg_t z; z.__pformat_fpreg_ldouble_t = x;
- return __pformat_cvt( 2, z, precision, dp, sign );
-}
-
-static __inline__ __attribute__((__always_inline__))
-char *__pformat_fcvt( long double x, int precision, int *dp, int *sign )
-{
- /* A convenience wrapper for the above...
- * it emulates `fcvt()', but takes a `long double' argument.
- */
- __pformat_fpreg_t z; z.__pformat_fpreg_ldouble_t = x;
- return __pformat_cvt( 3, z, precision, dp, sign );
-}
-
-/* The following are required, to clean up the `__gdtoa()' memory pool,
- * after processing the data returned by the above.
- */
-#define __pformat_ecvt_release( value ) __freedtoa( value )
-#define __pformat_fcvt_release( value ) __freedtoa( value )
-
-#else
-/*
- * TODO: remove this before final release; it is included here as a
- * convenience for testing, without requiring a working `__gdtoa()'.
- */
-static __inline__
-char *__pformat_ecvt( long double x, int precision, int *dp, int *sign )
-{
- /* Define in terms of `ecvt()'...
- */
- char *retval = ecvt( (double)(x), precision, dp, sign );
- if( isinf( x ) || isnan( x ) )
- {
- /* emulating `__gdtoa()' reporting for infinities and NaN.
- */
- *dp = PFORMAT_INFNAN;
- if( *retval == '-' )
- {
- /* Need to force the `sign' flag, (particularly for NaN).
- */
- ++retval; *sign = 1;
- }
- }
- return retval;
-}
-
-static __inline__
-char *__pformat_fcvt( long double x, int precision, int *dp, int *sign )
-{
- /* Define in terms of `fcvt()'...
- */
- char *retval = fcvt( (double)(x), precision, dp, sign );
- if( isinf( x ) || isnan( x ) )
- {
- /* emulating `__gdtoa()' reporting for infinities and NaN.
- */
- *dp = PFORMAT_INFNAN;
- if( *retval == '-' )
- {
- /* Need to force the `sign' flag, (particularly for NaN).
- */
- ++retval; *sign = 1;
- }
- }
- return retval;
-}
-
-/* No memory pool clean up needed, for these emulated cases...
- */
-#define __pformat_ecvt_release( value ) /* nothing to be done */
-#define __pformat_fcvt_release( value ) /* nothing to be done */
-
-/* TODO: end of conditional to be removed. */
-#endif
-
-static __inline__
-void __pformat_emit_radix_point( __pformat_t *stream )
-{
- /* Helper to place a localised representation of the radix point
- * character at the ultimate destination, when formatting fixed or
- * floating point numbers.
- */
- if( stream->rplen == PFORMAT_RPINIT )
- {
- /* Radix point initialisation not yet completed;
- * establish a multibyte to `wchar_t' converter...
- */
- int len; wchar_t rpchr; mbstate_t state;
-
- /* Initialise the conversion state...
- */
- memset( &state, 0, sizeof( state ) );
-
- /* Fetch and convert the localised radix point representation...
- */
- if( (len = mbrtowc( &rpchr, localeconv()->decimal_point, 16, &state )) > 0 )
- /*
- * and store it, if valid.
- */
- stream->rpchr = rpchr;
-
- /* In any case, store the reported effective multibyte length,
- * (or the error flag), marking initialisation as `done'.
- */
- stream->rplen = len;
- }
-
- if( stream->rpchr != (wchar_t)(0) )
- {
- /* We have a localised radix point mark;
- * establish a converter to make it a multibyte character...
- */
- int len; char buf[len = stream->rplen]; mbstate_t state;
-
- /* Initialise the conversion state...
- */
- memset( &state, 0, sizeof( state ) );
-
- /* Convert the `wchar_t' representation to multibyte...
- */
- if( (len = wcrtomb( buf, stream->rpchr, &state )) > 0 )
- {
- /* and copy to the output destination, when valid...
- */
- char *p = buf;
- while( len-- > 0 )
- __pformat_putc( *p++, stream );
- }
-
- else
- /* otherwise fall back to plain ASCII '.'...
- */
- __pformat_putc( '.', stream );
- }
-
- else
- /* No localisation: just use ASCII '.'...
- */
- __pformat_putc( '.', stream );
-}
-
-static __inline__ __attribute__((__always_inline__))
-void __pformat_emit_numeric_value( int c, __pformat_t *stream )
-{
- /* Convenience helper to transfer numeric data from an internal
- * formatting buffer to the ultimate destination...
- */
- if( c == '.' )
- /*
- * converting this internal representation of the the radix
- * point to the appropriately localised representation...
- */
- __pformat_emit_radix_point( stream );
-
- else
- /* and passing all other characters through, unmodified.
- */
- __pformat_putc( c, stream );
-}
-
-static
-void __pformat_emit_inf_or_nan( int sign, char *value, __pformat_t *stream )
-{
- /* Helper to emit INF or NAN where a floating point value
- * resolves to one of these special states.
- */
- int i;
- char buf[4];
- char *p = buf;
-
- /* We use the string formatting helper to display INF/NAN,
- * but we don't want truncation if the precision set for the
- * original floating point output request was insufficient;
- * ignore it!
- */
- stream->precision = PFORMAT_IGNORE;
-
- if( sign )
- /*
- * Negative infinity: emit the sign...
- */
- *p++ = '-';
-
- else if( stream->flags & PFORMAT_POSITIVE )
- /*
- * Not negative infinity, but '+' flag is in effect;
- * thus, we emit a positive sign...
- */
- *p++ = '+';
-
- else if( stream->flags & PFORMAT_ADDSPACE )
- /*
- * No sign required, but space was reserved for it...
- */
- *p++ = '\x20';
-
- /* Copy the appropriate status indicator, up to a maximum of
- * three characters, transforming to the case corresponding to
- * the format specification...
- */
- for( i = 3; i > 0; --i )
- *p++ = (*value++ & ~PFORMAT_XCASE) | (stream->flags & PFORMAT_XCASE);
-
- /* and emit the result.
- */
- __pformat_putchars( buf, p - buf, stream );
-}
-
-static
-void __pformat_emit_float( int sign, char *value, int len, __pformat_t *stream )
-{
- /* Helper to emit a fixed point representation of numeric data,
- * as encoded by a prior call to `ecvt()' or `fcvt()'; (this does
- * NOT include the exponent, for floating point format).
- */
- if( len > 0 )
- {
- /* The magnitude of `x' is greater than or equal to 1.0...
- * reserve space in the output field, for the required number of
- * decimal digits to be placed before the decimal point...
- */
- if( stream->width > len )
- /*
- * adjusting as appropriate, when width is sufficient...
- */
- stream->width -= len;
-
- else
- /* or simply ignoring the width specification, if not.
- */
- stream->width = PFORMAT_IGNORE;
- }
-
- else if( stream->width > 0 )
- /*
- * The magnitude of `x' is less than 1.0...
- * reserve space for exactly one zero before the decimal point.
- */
- stream->width--;
-
- /* Reserve additional space for the digits which will follow the
- * decimal point...
- */
- if( (stream->width >= 0) && (stream->width > stream->precision) )
- /*
- * adjusting appropriately, when sufficient width remains...
- * (note that we must check both of these conditions, because
- * precision may be more negative than width, as a result of
- * adjustment to provide extra padding when trailing zeros
- * are to be discarded from "%g" format conversion with a
- * specified field width, but if width itself is negative,
- * then there is explicitly to be no padding anyway).
- */
- stream->width -= stream->precision;
-
- else
- /* or again, ignoring the width specification, if not.
- */
- stream->width = PFORMAT_IGNORE;
-
- /* Reserve space in the output field, for display of the decimal point,
- * unless the precision is explicity zero, with the `#' flag not set.
- */
- if( (stream->width > 0)
- && ((stream->precision > 0) || (stream->flags & PFORMAT_HASHED)) )
- stream->width--;
-
- /* Reserve space in the output field, for display of the sign of the
- * formatted value, if required; (i.e. if the value is negative, or if
- * either the `space' or `+' formatting flags are set).
- */
- if( (stream->width > 0) && (sign || (stream->flags & PFORMAT_SIGNED)) )
- stream->width--;
-
- /* Emit any padding space, as required to correctly right justify
- * the output within the alloted field width.
- */
- if( (stream->width > 0) && ((stream->flags & PFORMAT_JUSTIFY) == 0) )
- while( stream->width-- > 0 )
- __pformat_putc( '\x20', stream );
-
- /* Emit the sign indicator, as appropriate...
- */
- if( sign )
- /*
- * mandatory, for negative values...
- */
- __pformat_putc( '-', stream );
-
- else if( stream->flags & PFORMAT_POSITIVE )
- /*
- * optional, for positive values...
- */
- __pformat_putc( '+', stream );
-
- else if( stream->flags & PFORMAT_ADDSPACE )
- /*
- * or just fill reserved space, when the space flag is in effect.
- */
- __pformat_putc( '\x20', stream );
-
- /* If the `0' flag is in effect, and not overridden by the `-' flag,
- * then zero padding, to fill out the field, goes here...
- */
- if( (stream->width > 0)
- && ((stream->flags & PFORMAT_JUSTIFY) == PFORMAT_ZEROFILL) )
- while( stream->width-- > 0 )
- __pformat_putc( '0', stream );
-
- /* Emit the digits of the encoded numeric value...
- */
- if( len > 0 )
- /*
- * ...beginning with those which precede the radix point,
- * and appending any necessary significant trailing zeros.
- */
- do __pformat_putc( *value ? *value++ : '0', stream );
- while( --len > 0 );
-
- else
- /* The magnitude of the encoded value is less than 1.0, so no
- * digits precede the radix point; we emit a mandatory initial
- * zero, followed immediately by the radix point.
- */
- __pformat_putc( '0', stream );
-
- /* Unless the encoded value is integral, AND the radix point
- * is not expressly demanded by the `#' flag, we must insert
- * the appropriately localised radix point mark here...
- */
- if( (stream->precision > 0) || (stream->flags & PFORMAT_HASHED) )
- __pformat_emit_radix_point( stream );
-
- /* When the radix point offset, `len', is negative, this implies
- * that additional zeros must appear, following the radix point,
- * and preceding the first significant digit...
- */
- if( len < 0 )
- {
- /* To accommodate these, we adjust the precision, (reducing it
- * by adding a negative value), and then we emit as many zeros
- * as are required.
- */
- stream->precision += len;
- do __pformat_putc( '0', stream );
- while( ++len < 0 );
- }
-
- /* Now we emit any remaining significant digits, or trailing zeros,
- * until the required precision has been achieved.
- */
- while( stream->precision-- > 0 )
- __pformat_putc( *value ? *value++ : '0', stream );
-}
-
-static
-void __pformat_emit_efloat( int sign, char *value, int e, __pformat_t *stream )
-{
- /* Helper to emit a floating point representation of numeric data,
- * as encoded by a prior call to `ecvt()' or `fcvt()'; (this DOES
- * include the following exponent).
- */
- int exp_width = 1;
- __pformat_intarg_t exponent; exponent.__pformat_llong_t = e -= 1;
-
- /* Determine how many digit positions are required for the exponent.
- */
- while( (e /= 10) != 0 )
- exp_width++;
-
- /* Ensure that this is at least as many as the standard requirement.
- */
- if( exp_width < stream->expmin )
- exp_width = stream->expmin;
-
- /* Adjust the residual field width allocation, to allow for the
- * number of exponent digits to be emitted, together with a sign
- * and exponent separator...
- */
- if( stream->width > (exp_width += 2) )
- stream->width -= exp_width;
-
- else
- /* ignoring the field width specification, if insufficient.
- */
- stream->width = PFORMAT_IGNORE;
-
- /* Emit the significand, as a fixed point value with one digit
- * preceding the radix point.
- */
- __pformat_emit_float( sign, value, 1, stream );
-
- /* Reset precision, to ensure the mandatory minimum number of
- * exponent digits will be emitted, and set the flags to ensure
- * the sign is displayed.
- */
- stream->precision = stream->expmin;
- stream->flags |= PFORMAT_SIGNED;
-
- /* Emit the exponent separator.
- */
- __pformat_putc( ('E' | (stream->flags & PFORMAT_XCASE)), stream );
-
- /* Readjust the field width setting, such that it again allows
- * for the digits of the exponent, (which had been discounted when
- * computing any left side padding requirement), so that they are
- * correctly included in the computation of any right side padding
- * requirement, (but here we exclude the exponent separator, which
- * has been emitted, and so counted already).
- */
- stream->width += exp_width - 1;
-
- /* And finally, emit the exponent itself, as a signed integer,
- * with any padding required to achieve flush left justification,
- * (which will be added automatically, by `__pformat_int()').
- */
- __pformat_int( exponent, stream );
-}
-
-static
-void __pformat_float( long double x, __pformat_t *stream )
-{
- /* Handler for `%f' and `%F' format specifiers.
- *
- * This wraps calls to `__pformat_cvt()', `__pformat_emit_float()'
- * and `__pformat_emit_inf_or_nan()', as appropriate, to achieve
- * output in fixed point format.
- */
- int sign, intlen; char *value;
-
- /* Establish the precision for the displayed value, defaulting to six
- * digits following the decimal point, if not explicitly specified.
- */
- if( stream->precision < 0 )
- stream->precision = 6;
-
- /* Encode the input value as ASCII, for display...
- */
- value = __pformat_fcvt( x, stream->precision, &intlen, &sign );
-
- if( intlen == PFORMAT_INFNAN )
- /*
- * handle cases of `infinity' or `not-a-number'...
- */
- __pformat_emit_inf_or_nan( sign, value, stream );
-
- else
- { /* or otherwise, emit the formatted result.
- */
- __pformat_emit_float( sign, value, intlen, stream );
-
- /* and, if there is any residual field width as yet unfilled,
- * then we must be doing flush left justification, so pad out to
- * the right hand field boundary.
- */
- while( stream->width-- > 0 )
- __pformat_putc( '\x20', stream );
- }
-
- /* Clean up `__pformat_fcvt()' memory allocation for `value'...
- */
- __pformat_fcvt_release( value );
-}
-
-static
-void __pformat_efloat( long double x, __pformat_t *stream )
-{
- /* Handler for `%e' and `%E' format specifiers.
- *
- * This wraps calls to `__pformat_cvt()', `__pformat_emit_efloat()'
- * and `__pformat_emit_inf_or_nan()', as appropriate, to achieve
- * output in floating point format.
- */
- int sign, intlen; char *value;
-
- /* Establish the precision for the displayed value, defaulting to six
- * digits following the decimal point, if not explicitly specified.
- */
- if( stream->precision < 0 )
- stream->precision = 6;
-
- /* Encode the input value as ASCII, for display...
- */
- value = __pformat_ecvt( x, stream->precision + 1, &intlen, &sign );
-
- if( intlen == PFORMAT_INFNAN )
- /*
- * handle cases of `infinity' or `not-a-number'...
- */
- __pformat_emit_inf_or_nan( sign, value, stream );
-
- else
- /* or otherwise, emit the formatted result.
- */
- __pformat_emit_efloat( sign, value, intlen, stream );
-
- /* Clean up `__pformat_ecvt()' memory allocation for `value'...
- */
- __pformat_ecvt_release( value );
-}
-
-static
-void __pformat_gfloat( long double x, __pformat_t *stream )
-{
- /* Handler for `%g' and `%G' format specifiers.
- *
- * This wraps calls to `__pformat_cvt()', `__pformat_emit_float()',
- * `__pformat_emit_efloat()' and `__pformat_emit_inf_or_nan()', as
- * appropriate, to achieve output in the more suitable of either
- * fixed or floating point format.
- */
- int sign, intlen; char *value;
-
- /* Establish the precision for the displayed value, defaulting to
- * six significant digits, if not explicitly specified...
- */
- if( stream->precision < 0 )
- stream->precision = 6;
-
- /* or to a minimum of one digit, otherwise...
- */
- else if( stream->precision == 0 )
- stream->precision = 1;
-
- /* Encode the input value as ASCII, for display.
- */
- value = __pformat_ecvt( x, stream->precision, &intlen, &sign );
-
- if( intlen == PFORMAT_INFNAN )
- /*
- * Handle cases of `infinity' or `not-a-number'.
- */
- __pformat_emit_inf_or_nan( sign, value, stream );
-
- else if( (-4 < intlen) && (intlen <= stream->precision) )
- {
- /* Value lies in the acceptable range for fixed point output,
- * (i.e. the exponent is no less than minus four, and the number
- * of significant digits which precede the radix point is fewer
- * than the least number which would overflow the field width,
- * specified or implied by the established precision).
- */
- if( (stream->flags & PFORMAT_HASHED) == PFORMAT_HASHED )
- /*
- * The `#' flag is in effect...
- * Adjust precision to retain the specified number of significant
- * digits, with the proper number preceding the radix point, and
- * the balance following it...
- */
- stream->precision -= intlen;
-
- else
- /* The `#' flag is not in effect...
- * Here we adjust the precision to accommodate all digits which
- * precede the radix point, but we truncate any balance following
- * it, to suppress output of non-significant trailing zeros...
- */
- if( ((stream->precision = strlen( value ) - intlen) < 0)
- /*
- * This may require a compensating adjustment to the field
- * width, to accommodate significant trailing zeros, which
- * precede the radix point...
- */
- && (stream->width > 0) )
- stream->width += stream->precision;
-
- /* Now, we format the result as any other fixed point value.
- */
- __pformat_emit_float( sign, value, intlen, stream );
-
- /* If there is any residual field width as yet unfilled, then
- * we must be doing flush left justification, so pad out to the
- * right hand field boundary.
- */
- while( stream->width-- > 0 )
- __pformat_putc( '\x20', stream );
- }
-
- else
- { /* Value lies outside the acceptable range for fixed point;
- * one significant digit will precede the radix point, so we
- * decrement the precision to retain only the appropriate number
- * of additional digits following it, when we emit the result
- * in floating point format.
- */
- if( (stream->flags & PFORMAT_HASHED) == PFORMAT_HASHED )
- /*
- * The `#' flag is in effect...
- * Adjust precision to emit the specified number of significant
- * digits, with one preceding the radix point, and the balance
- * following it, retaining any non-significant trailing zeros
- * which are required to exactly match the requested precision...
- */
- stream->precision--;
-
- else
- /* The `#' flag is not in effect...
- * Adjust precision to emit only significant digits, with one
- * preceding the radix point, and any others following it, but
- * suppressing non-significant trailing zeros...
- */
- stream->precision = strlen( value ) - 1;
-
- /* Now, we format the result as any other floating point value.
- */
- __pformat_emit_efloat( sign, value, intlen, stream );
- }
-
- /* Clean up `__pformat_ecvt()' memory allocation for `value'.
- */
- __pformat_ecvt_release( value );
-}
-
-static
-void __pformat_emit_xfloat( __pformat_fpreg_t value, __pformat_t *stream )
-{
- /* Helper for emitting floating point data, originating as
- * either `double' or `long double' type, as a hexadecimal
- * representation of the argument value.
- */
- char buf[18], *p = buf;
- __pformat_intarg_t exponent; short exp_width = 2;
-
- /* The mantissa field of the argument value representation can
- * accommodate at most 16 hexadecimal digits, of which one will
- * be placed before the radix point, leaving at most 15 digits
- * to satisfy any requested precision; thus...
- */
- if( (stream->precision >= 0) && (stream->precision < 15) )
- {
- /* When the user specifies a precision within this range,
- * we want to adjust the mantissa, to retain just the number
- * of digits required, rounding up when the high bit of the
- * leftmost discarded digit is set; (mask of 0x08 accounts
- * for exactly one digit discarded, shifting 4 bits per
- * digit, with up to 14 additional digits, to consume the
- * full availability of 15 precision digits).
- *
- * However, before we perform the rounding operation, we
- * normalise the mantissa, shifting it to the left by as many
- * bit positions may be necessary, until its highest order bit
- * is set, thus preserving the maximum number of bits in the
- * rounded result as possible.
- */
- while( value.__pformat_fpreg_mantissa < (LLONG_MAX + 1ULL) )
- value.__pformat_fpreg_mantissa <<= 1;
-
- /* We then shift the mantissa one bit position back to the
- * right, to guard against possible overflow when the rounding
- * adjustment is added.
- */
- value.__pformat_fpreg_mantissa >>= 1;
-
- /* We now add the rounding adjustment, noting that to keep the
- * 0x08 mask aligned with the shifted mantissa, we also need to
- * shift it right by one bit initially, changing its starting
- * value to 0x04...
- */
- value.__pformat_fpreg_mantissa += 0x04LL << (4 * (14 - stream->precision));
- if( (value.__pformat_fpreg_mantissa & (LLONG_MAX + 1ULL)) == 0ULL )
- /*
- * When the rounding adjustment would not have overflowed,
- * then we shift back to the left again, to fill the vacated
- * bit we reserved to accommodate the carry.
- */
- value.__pformat_fpreg_mantissa <<= 1;
-
- else
- /* Otherwise the rounding adjustment would have overflowed,
- * so the carry has already filled the vacated bit; the effect
- * of this is equivalent to an increment of the exponent.
- */
- value.__pformat_fpreg_exponent++;
-
- /* We now complete the rounding to the required precision, by
- * shifting the unwanted digits out, from the right hand end of
- * the mantissa.
- */
- value.__pformat_fpreg_mantissa >>= 4 * (15 - stream->precision);
- }
-
- /* Encode the significant digits of the mantissa in hexadecimal
- * ASCII notation, ready for transfer to the output stream...
- */
- while( value.__pformat_fpreg_mantissa )
- {
- /* taking the rightmost digit in each pass...
- */
- int c = value.__pformat_fpreg_mantissa & 0xF;
- if( c == value.__pformat_fpreg_mantissa )
- {
- /* inserting the radix point, when we reach the last,
- * (i.e. the most significant digit), unless we found no
- * less significant digits, with no mandatory radix point
- * inclusion, and no additional required precision...
- */
- if( (p > buf)
- || (stream->flags & PFORMAT_HASHED) || (stream->precision > 0) )
- /*
- * Internally, we represent the radix point as an ASCII '.';
- * we will replace it with any locale specific alternative,
- * at the time of transfer to the ultimate destination.
- */
- *p++ = '.';
-
- /* If the most significant hexadecimal digit of the encoded
- * output value is greater than one, then the indicated value
- * will appear too large, by an additional binary exponent
- * corresponding to the number of higher order bit positions
- * which it occupies...
- */
- while( value.__pformat_fpreg_mantissa > 1 )
- {
- /* so reduce the exponent value to compensate...
- */
- value.__pformat_fpreg_exponent--;
- value.__pformat_fpreg_mantissa >>= 1;
- }
- }
-
- else if( stream->precision > 0 )
- /*
- * we have not yet fulfilled the desired precision,
- * and we have not yet found the most significant digit,
- * so account for the current digit, within the field
- * width required to meet the specified precision.
- */
- stream->precision--;
-
- if( (c > 0) || (p > buf) || (stream->precision >= 0) )
- /*
- * Ignoring insignificant trailing zeros, (unless required to
- * satisfy specified precision), store the current encoded digit
- * into the pending output buffer, in LIFO order, and using the
- * appropriate case for digits in the `A'..`F' range.
- */
- *p++ = c > 9 ? (c - 10 + 'A') | (stream->flags & PFORMAT_XCASE) : c + '0';
-
- /* Shift out the current digit, (4-bit logical shift right),
- * to align the next more significant digit to be extracted,
- * and encoded in the next pass.
- */
- value.__pformat_fpreg_mantissa >>= 4;
- }
-
- if( p == buf )
- {
- /* Nothing has been queued for output...
- * We need at least one zero, and possibly a radix point.
- */
- if( (stream->precision > 0) || (stream->flags & PFORMAT_HASHED) )
- *p++ = '.';
-
- *p++ = '0';
- }
-
- if( stream->width > 0 )
- {
- /* Adjust the user specified field width, to account for the
- * number of digits minimally required, to display the encoded
- * value, at the requested precision.
- *
- * FIXME: this uses the minimum number of digits possible for
- * representation of the binary exponent, in strict conformance
- * with C99 and POSIX specifications. Although there appears to
- * be no Microsoft precedent for doing otherwise, we may wish to
- * relate this to the `_get_output_format()' result, to maintain
- * consistency with `%e', `%f' and `%g' styles.
- */
- int min_width = p - buf;
- int exponent = value.__pformat_fpreg_exponent;
-
- /* If we have not yet queued sufficient digits to fulfil the
- * requested precision, then we must adjust the minimum width
- * specification, to accommodate the additional digits which
- * are required to do so.
- */
- if( stream->precision > 0 )
- min_width += stream->precision;
-
- /* Adjust the minimum width requirement, to accomodate the
- * sign, radix indicator and at least one exponent digit...
- */
- min_width += stream->flags & PFORMAT_SIGNED ? 6 : 5;
- while( (exponent = exponent / 10) != 0 )
- {
- /* and increase as required, if additional exponent digits
- * are needed, also saving the exponent field width adjustment,
- * for later use when that is emitted.
- */
- min_width++;
- exp_width++;
- }
-
- if( stream->width > min_width )
- {
- /* When specified field width exceeds the minimum required,
- * adjust to retain only the excess...
- */
- stream->width -= min_width;
-
- /* and then emit any required left side padding spaces.
- */
- if( (stream->flags & PFORMAT_JUSTIFY) == 0 )
- while( stream->width-- > 0 )
- __pformat_putc( '\x20', stream );
- }
-
- else
- /* Specified field width is insufficient; just ignore it!
- */
- stream->width = PFORMAT_IGNORE;
- }
-
- /* Emit the sign of the encoded value, as required...
- */
- if( stream->flags & PFORMAT_NEGATIVE )
- /*
- * this is mandatory, to indicate a negative value...
- */
- __pformat_putc( '-', stream );
-
- else if( stream->flags & PFORMAT_POSITIVE )
- /*
- * but this is optional, for a positive value...
- */
- __pformat_putc( '+', stream );
-
- else if( stream->flags & PFORMAT_ADDSPACE )
- /*
- * with this optional alternative.
- */
- __pformat_putc( '\x20', stream );
-
- /* Prefix a `0x' or `0X' radix indicator to the encoded value,
- * with case appropriate to the format specification.
- */
- __pformat_putc( '0', stream );
- __pformat_putc( 'X' | (stream->flags & PFORMAT_XCASE), stream );
-
- /* If the `0' flag is in effect...
- * Zero padding, to fill out the field, goes here...
- */
- if( (stream->width > 0) && (stream->flags & PFORMAT_ZEROFILL) )
- while( stream->width-- > 0 )
- __pformat_putc( '0', stream );
-
- /* Next, we emit the encoded value, without its exponent...
- */
- while( p > buf )
- __pformat_emit_numeric_value( *--p, stream );
-
- /* followed by any additional zeros needed to satisfy the
- * precision specification...
- */
- while( stream->precision-- > 0 )
- __pformat_putc( '0', stream );
-
- /* then the exponent prefix, (C99 and POSIX specify `p'),
- * in the case appropriate to the format specification...
- */
- __pformat_putc( 'P' | (stream->flags & PFORMAT_XCASE), stream );
-
- /* and finally, the decimal representation of the binary exponent,
- * as a signed value with mandatory sign displayed, in a field width
- * adjusted to accommodate it, LEFT justified, with any additional
- * right side padding remaining from the original field width.
- */
- stream->width += exp_width;
- stream->flags |= PFORMAT_SIGNED;
- exponent.__pformat_llong_t = value.__pformat_fpreg_exponent;
- __pformat_int( exponent, stream );
-}
-
-static
-void __pformat_xdouble( double x, __pformat_t *stream )
-{
- /* Handler for `%a' and `%A' format specifiers, (with argument
- * value specified as `double' type).
- */
- unsigned sign_bit = 0;
- __pformat_fpreg_t z; z.__pformat_fpreg_double_t = x;
-
- /* First check for NaN; it is emitted unsigned...
- */
- if( isnan( x ) )
- __pformat_emit_inf_or_nan( sign_bit, "NaN", stream );
-
- else
- { /* Capture the sign bit up-front, so we can show it correctly
- * even when the argument value is zero or infinite.
- */
- if( (sign_bit = (z.__pformat_fpreg_bitmap[3] & 0x8000)) != 0 )
- stream->flags |= PFORMAT_NEGATIVE;
-
- /* Check for infinity, (positive or negative)...
- */
- if( isinf( x ) )
- /*
- * displaying the appropriately signed indicator,
- * when appropriate.
- */
- __pformat_emit_inf_or_nan( sign_bit, "Inf", stream );
-
- else
- { /* The argument value is a representable number...
- * first move its exponent into the appropriate field...
- */
- z.__pformat_fpreg_bitmap[4] = (z.__pformat_fpreg_bitmap[3] >> 4) & 0x7FF;
-
- /* Realign the mantissa, leaving space for a
- * normalised most significant digit...
- */
- z.__pformat_fpreg_mantissa <<= 8;
- z.__pformat_fpreg_bitmap[3] = (z.__pformat_fpreg_bitmap[3] & 0x0FFF);
-
- /* Check for zero value...
- */
- if( z.__pformat_fpreg_exponent || z.__pformat_fpreg_mantissa )
- {
- /* and only when the value is non-zero,
- * eliminate the bias from the exponent...
- */
- z.__pformat_fpreg_exponent -= 0x3FF;
-
- /* Check for a possible denormalised value...
- */
- if( z.__pformat_fpreg_exponent > -126 )
- /*
- * and normalise when it isn't.
- */
- z.__pformat_fpreg_bitmap[3] += 0x1000;
- }
-
- /* Finally, hand the adjusted representation off to the generalised
- * hexadecimal floating point format handler...
- */
- __pformat_emit_xfloat( z, stream );
- }
- }
-}
-
-static
-void __pformat_xldouble( long double x, __pformat_t *stream )
-{
- /* Handler for `%La' and `%LA' format specifiers, (with argument
- * value specified as `long double' type).
- */
- unsigned sign_bit = 0;
- __pformat_fpreg_t z; z.__pformat_fpreg_ldouble_t = x;
-
- /* First check for NaN; it is emitted unsigned...
- */
- if( isnan( x ) )
- __pformat_emit_inf_or_nan( sign_bit, "NaN", stream );
-
- else
- { /* Capture the sign bit up-front, so we can show it correctly
- * even when the argument value is zero or infinite.
- */
- if( (sign_bit = (z.__pformat_fpreg_exponent & 0x8000)) != 0 )
- stream->flags |= PFORMAT_NEGATIVE;
-
- /* Check for infinity, (positive or negative)...
- */
- if( isinf( x ) )
- /*
- * displaying the appropriately signed indicator,
- * when appropriate.
- */
- __pformat_emit_inf_or_nan( sign_bit, "Inf", stream );
-
- else
- { /* The argument value is a representable number...
- * extract the effective value of the biased exponent...
- */
- z.__pformat_fpreg_exponent &= 0x7FFF;
- if( z.__pformat_fpreg_exponent || z.__pformat_fpreg_mantissa )
- /*
- * and if the argument value itself is non-zero,
- * eliminate the bias from the exponent...
- */
- z.__pformat_fpreg_exponent -= 0x3FFF;
-
- /* Finally, hand the adjusted representation off to the
- * generalised hexadecimal floating point format handler...
- */
- __pformat_emit_xfloat( z, stream );
- }
- }
-}
-
-int __pformat( int flags, void *dest, int max, const char *fmt, va_list argv )
-{
- int c;
-
- __pformat_t stream =
- {
- /* Create and initialise a format control block
- * for this output request.
- */
- dest, /* output goes to here */
- flags &= PFORMAT_TO_FILE | PFORMAT_NOLIMIT, /* only these valid initially */
- PFORMAT_IGNORE, /* no field width yet */
- PFORMAT_IGNORE, /* nor any precision spec */
- PFORMAT_RPINIT, /* radix point uninitialised */
- (wchar_t)(0), /* leave it unspecified */
- 0, /* zero output char count */
- max, /* establish output limit */
- PFORMAT_MINEXP /* exponent chars preferred */
- };
-
- format_scan: while( (c = *fmt++) != 0 )
- {
- /* Format string parsing loop...
- * The entry point is labelled, so that we can return to the start state
- * from within the inner `conversion specification' interpretation loop,
- * as soon as a conversion specification has been resolved.
- */
- if( c == '%' )
- {
- /* Initiate parsing of a `conversion specification'...
- */
- __pformat_intarg_t argval;
- __pformat_state_t state = PFORMAT_INIT;
- __pformat_length_t length = PFORMAT_LENGTH_INT;
-
- /* Save the current format scan position, so that we can backtrack
- * in the event of encountering an invalid format specification...
- */
- const char *backtrack = fmt;
-
- /* Restart capture for dynamic field width and precision specs...
- */
- int *width_spec = &stream.width;
-
- /* Reset initial state for flags, width and precision specs...
- */
- stream.flags = flags;
- stream.width = stream.precision = PFORMAT_IGNORE;
-
- while( *fmt )
- {
- switch( c = *fmt++ )
- {
- /* Data type specifiers...
- * All are terminal, so exit the conversion spec parsing loop
- * with a `goto format_scan', thus resuming at the outer level
- * in the regular format string parser.
- */
- case '%':
- /*
- * Not strictly a data type specifier...
- * it simply converts as a literal `%' character.
- *
- * FIXME: should we require this to IMMEDIATELY follow the
- * initial `%' of the "conversion spec"? (glibc `printf()'
- * on GNU/Linux does NOT appear to require this, but POSIX
- * and SUSv3 do seem to demand it).
- */
- __pformat_putc( c, &stream );
- goto format_scan;
-
- case 'C':
- /*
- * Equivalent to `%lc'; set `length' accordingly,
- * and simply fall through.
- */
- length = PFORMAT_LENGTH_LONG;
-
- case 'c':
- /*
- * Single, (or single multibyte), character output...
- *
- * We handle these by copying the argument into our local
- * `argval' buffer, and then we pass the address of that to
- * either `__pformat_putchars()' or `__pformat_wputchars()',
- * as appropriate, effectively formatting it as a string of
- * the appropriate type, with a length of one.
- *
- * A side effect of this method of handling character data
- * is that, if the user sets a precision of zero, then no
- * character is actually emitted; we don't want that, so we
- * forcibly override any user specified precision.
- */
- stream.precision = PFORMAT_IGNORE;
-
- /* Now we invoke the appropriate format handler...
- */
- if( (length == PFORMAT_LENGTH_LONG)
- || (length == PFORMAT_LENGTH_LLONG) )
- {
- /* considering any `long' type modifier as a reference to
- * `wchar_t' data, (which is promoted to an `int' argument)...
- */
- wchar_t argval = (wchar_t)(va_arg( argv, int ));
- __pformat_wputchars( &argval, 1, &stream );
- }
-
- else
- { /* while anything else is simply taken as `char', (which
- * is also promoted to an `int' argument)...
- */
- argval.__pformat_uchar_t = (unsigned char)(va_arg( argv, int ));
- __pformat_putchars( (char *)(&argval), 1, &stream );
- }
- goto format_scan;
-
- case 'S':
- /*
- * Equivalent to `%ls'; set `length' accordingly,
- * and simply fall through.
- */
- length = PFORMAT_LENGTH_LONG;
-
- case 's':
- if( (length == PFORMAT_LENGTH_LONG)
- || (length == PFORMAT_LENGTH_LLONG) )
- {
- /* considering any `long' type modifier as a reference to
- * a `wchar_t' string...
- */
- __pformat_wcputs( va_arg( argv, wchar_t * ), &stream );
- }
-
- else
- /* This is normal string output;
- * we simply invoke the appropriate handler...
- */
- __pformat_puts( va_arg( argv, char * ), &stream );
-
- goto format_scan;
-
- case 'o':
- case 'u':
- case 'x':
- case 'X':
- /*
- * Unsigned integer values; octal, decimal or hexadecimal format...
- */
- if( length == PFORMAT_LENGTH_LLONG )
- /*
- * with an `unsigned long long' argument, which we
- * process `as is'...
- */
- argval.__pformat_ullong_t = va_arg( argv, unsigned long long );
-
- else if( length == PFORMAT_LENGTH_LONG )
- /*
- * or with an `unsigned long', which we promote to
- * `unsigned long long'...
- */
- argval.__pformat_ullong_t = va_arg( argv, unsigned long );
-
- else
- { /* or for any other size, which will have been promoted
- * to `unsigned int', we select only the appropriately sized
- * least significant segment, and again promote to the same
- * size as `unsigned long long'...
- */
- argval.__pformat_ullong_t = va_arg( argv, unsigned int );
- if( length == PFORMAT_LENGTH_SHORT )
- /*
- * from `unsigned short'...
- */
- argval.__pformat_ullong_t = argval.__pformat_ushort_t;
-
- else if( length == PFORMAT_LENGTH_CHAR )
- /*
- * or even from `unsigned char'...
- */
- argval.__pformat_ullong_t = argval.__pformat_uchar_t;
- }
-
- /* so we can pass any size of argument to either of two
- * common format handlers...
- */
- if( c == 'u' )
- /*
- * depending on whether output is to be encoded in
- * decimal format...
- */
- __pformat_int( argval, &stream );
-
- else
- /* or in octal or hexadecimal format...
- */
- __pformat_xint( c, argval, &stream );
-
- goto format_scan;
-
- case 'd':
- case 'i':
- /*
- * Signed integer values; decimal format...
- * This is similar to `u', but must process `argval' as signed,
- * and be prepared to handle negative numbers.
- */
- stream.flags |= PFORMAT_NEGATIVE;
-
- if( length == PFORMAT_LENGTH_LLONG )
- /*
- * The argument is a `long long' type...
- */
- argval.__pformat_llong_t = va_arg( argv, long long );
-
- else if( length == PFORMAT_LENGTH_LONG )
- /*
- * or here, a `long' type...
- */
- argval.__pformat_llong_t = va_arg( argv, long );
-
- else
- { /* otherwise, it's an `int' type...
- */
- argval.__pformat_llong_t = va_arg( argv, int );
- if( length == PFORMAT_LENGTH_SHORT )
- /*
- * but it was promoted from a `short' type...
- */
- argval.__pformat_llong_t = argval.__pformat_short_t;
- else if( length == PFORMAT_LENGTH_CHAR )
- /*
- * or even from a `char' type...
- */
- argval.__pformat_llong_t = argval.__pformat_char_t;
- }
-
- /* In any case, all share a common handler...
- */
- __pformat_int( argval, &stream );
- goto format_scan;
-
- case 'p':
- /*
- * Pointer argument; format as hexadecimal, subject to...
- */
- if( (state == PFORMAT_INIT) && (stream.flags == flags) )
- {
- /* Here, the user didn't specify any particular
- * formatting attributes. We must choose a default
- * which will be compatible with Microsoft's (broken)
- * scanf() implementation, (i.e. matching the default
- * used by MSVCRT's printf(), which appears to resemble
- * "%0.8X" for 32-bit pointers); in particular, we MUST
- * NOT adopt a GNU-like format resembling "%#x", because
- * Microsoft's scanf() will choke on the "0x" prefix.
- */
- stream.flags |= PFORMAT_ZEROFILL;
- stream.precision = 2 * sizeof( uintptr_t );
- }
- argval.__pformat_ullong_t = va_arg( argv, uintptr_t );
- __pformat_xint( 'x', argval, &stream );
- goto format_scan;
-
- case 'e':
- /*
- * Floating point format, with lower case exponent indicator
- * and lower case `inf' or `nan' representation when required;
- * select lower case mode, and simply fall through...
- */
- stream.flags |= PFORMAT_XCASE;
-
- case 'E':
- /*
- * Floating point format, with upper case exponent indicator
- * and upper case `INF' or `NAN' representation when required,
- * (or lower case for all of these, on fall through from above);
- * select lower case mode, and simply fall through...
- */
- if( stream.flags & PFORMAT_LDOUBLE )
- /*
- * for a `long double' argument...
- */
- __pformat_efloat( va_arg( argv, long double ), &stream );
-
- else
- /* or just a `double', which we promote to `long double',
- * so the two may share a common format handler.
- */
- __pformat_efloat( (long double)(va_arg( argv, double )), &stream );
-
- goto format_scan;
-
- case 'f':
- /*
- * Fixed point format, using lower case for `inf' and
- * `nan', when appropriate; select lower case mode, and
- * simply fall through...
- */
- stream.flags |= PFORMAT_XCASE;
-
- case 'F':
- /*
- * Fixed case format using upper case, or lower case on
- * fall through from above, for `INF' and `NAN'...
- */
- if( stream.flags & PFORMAT_LDOUBLE )
- /*
- * for a `long double' argument...
- */
- __pformat_float( va_arg( argv, long double ), &stream );
-
- else
- /* or just a `double', which we promote to `long double',
- * so the two may share a common format handler.
- */
- __pformat_float( (long double)(va_arg( argv, double )), &stream );
-
- goto format_scan;
-
- case 'g':
- /*
- * Generalised floating point format, with lower case
- * exponent indicator when required; select lower case
- * mode, and simply fall through...
- */
- stream.flags |= PFORMAT_XCASE;
-
- case 'G':
- /*
- * Generalised floating point format, with upper case,
- * or on fall through from above, with lower case exponent
- * indicator when required...
- */
- if( stream.flags & PFORMAT_LDOUBLE )
- /*
- * for a `long double' argument...
- */
- __pformat_gfloat( va_arg( argv, long double ), &stream );
-
- else
- /* or just a `double', which we promote to `long double',
- * so the two may share a common format handler.
- */
- __pformat_gfloat( (long double)(va_arg( argv, double )), &stream );
-
- goto format_scan;
-
- case 'a':
- /*
- * Hexadecimal floating point format, with lower case radix
- * and exponent indicators; select the lower case mode, and
- * fall through...
- */
- stream.flags |= PFORMAT_XCASE;
-
- case 'A':
- /*
- * Hexadecimal floating point format; handles radix and
- * exponent indicators in either upper or lower case...
- */
- if( stream.flags & PFORMAT_LDOUBLE )
- /*
- * with a `long double' argument...
- */
- __pformat_xldouble( va_arg( argv, long double ), &stream );
-
- else
- /* or just a `double'.
- */
- __pformat_xdouble( va_arg( argv, double ), &stream );
-
- goto format_scan;
-
- case 'n':
- /*
- * Save current output character count...
- */
- if( length == PFORMAT_LENGTH_CHAR )
- /*
- * to a signed `char' destination...
- */
- *va_arg( argv, char * ) = stream.count;
-
- else if( length == PFORMAT_LENGTH_SHORT )
- /*
- * or to a signed `short'...
- */
- *va_arg( argv, short * ) = stream.count;
-
- else if( length == PFORMAT_LENGTH_LONG )
- /*
- * or to a signed `long'...
- */
- *va_arg( argv, long * ) = stream.count;
-
- else if( length == PFORMAT_LENGTH_LLONG )
- /*
- * or to a signed `long long'...
- */
- *va_arg( argv, long long * ) = stream.count;
-
- else
- /*
- * or, by default, to a signed `int'.
- */
- *va_arg( argv, int * ) = stream.count;
-
- goto format_scan;
-
- /* Argument length modifiers...
- * These are non-terminal; each sets the format parser
- * into the PFORMAT_END state, and ends with a `break'.
- */
- case 'h':
- /*
- * Interpret the argument as explicitly of a `short'
- * or `char' data type, truncated from the standard
- * length defined for integer promotion.
- */
- if( *fmt == 'h' )
- {
- /* Modifier is `hh'; data type is `char' sized...
- * Skip the second `h', and set length accordingly.
- */
- ++fmt;
- length = PFORMAT_LENGTH_CHAR;
- }
-
- else
- /* Modifier is `h'; data type is `short' sized...
- */
- length = PFORMAT_LENGTH_SHORT;
-
- state = PFORMAT_END;
- break;
-
- case 'j':
- /*
- * Interpret the argument as being of the same size as
- * a `intmax_t' entity...
- */
- length = __pformat_arg_length( intmax_t );
- state = PFORMAT_END;
- break;
-
-# ifdef _WIN32
-
- case 'I':
- /*
- * The MSVCRT implementation of the printf() family of
- * functions explicitly uses...
- */
- if( (fmt[0] == '6') && (fmt[1] == '4') )
- {
- /* I64' instead of `ll',
- * when referring to `long long' integer types...
- */
- length = PFORMAT_LENGTH_LLONG;
- fmt += 2;
- }
-
- else if( (fmt[0] == '3') && (fmt[1] == '2') )
- {
- /* and `I32' instead of `l',
- * when referring to `long' integer types...
- */
- length = PFORMAT_LENGTH_LONG;
- fmt += 2;
- }
-
- else
- /* or unqualified `I' instead of `t' or `z',
- * when referring to `ptrdiff_t' or `size_t' entities;
- * (we will choose to map it to `ptrdiff_t').
- */
- length = __pformat_arg_length( ptrdiff_t );
-
- state = PFORMAT_END;
- break;
-
-# endif
-
- case 'l':
- /*
- * Interpret the argument as explicitly of a
- * `long' or `long long' data type.
- */
- if( *fmt == 'l' )
- {
- /* Modifier is `ll'; data type is `long long' sized...
- * Skip the second `l', and set length accordingly.
- */
- ++fmt;
- length = PFORMAT_LENGTH_LLONG;
- }
-
- else
- /* Modifier is `l'; data type is `long' sized...
- */
- length = PFORMAT_LENGTH_LONG;
-
-# ifndef _WIN32
- /*
- * Microsoft's MSVCRT implementation also uses `l'
- * as a modifier for `long double'; if we don't want
- * to support that, we end this case here...
- */
- state = PFORMAT_END;
- break;
-
- /* otherwise, we simply fall through...
- */
-# endif
-
- case 'L':
- /*
- * Identify the appropriate argument as a `long double',
- * when associated with `%a', `%A', `%e', `%E', `%f', `%F',
- * `%g' or `%G' format specifications.
- */
- stream.flags |= PFORMAT_LDOUBLE;
- state = PFORMAT_END;
- break;
-
- case 't':
- /*
- * Interpret the argument as being of the same size as
- * a `ptrdiff_t' entity...
- */
- length = __pformat_arg_length( ptrdiff_t );
- state = PFORMAT_END;
- break;
-
- case 'z':
- /*
- * Interpret the argument as being of the same size as
- * a `size_t' entity...
- */
- length = __pformat_arg_length( size_t );
- state = PFORMAT_END;
- break;
-
- /* Precision indicator...
- * May appear once only; it must precede any modifier
- * for argument length, or any data type specifier.
- */
- case '.':
- if( state < PFORMAT_GET_PRECISION )
- {
- /* We haven't seen a precision specification yet,
- * so initialise it to zero, (in case no digits follow),
- * and accept any following digits as the precision.
- */
- stream.precision = 0;
- width_spec = &stream.precision;
- state = PFORMAT_GET_PRECISION;
- }
-
- else
- /* We've already seen a precision specification,
- * so this is just junk; proceed to end game.
- */
- state = PFORMAT_END;
-
- /* Either way, we must not fall through here.
- */
- break;
-
- /* Variable field width, or precision specification,
- * derived from the argument list...
- */
- case '*':
- /*
- * When this appears...
- */
- if( width_spec
- && ((state == PFORMAT_INIT) || (state == PFORMAT_GET_PRECISION)) )
- {
- /* in proper context; assign to field width
- * or precision, as appropriate.
- */
- if( (*width_spec = va_arg( argv, int )) < 0 )
- {
- /* Assigned value was negative...
- */
- if( state == PFORMAT_INIT )
- {
- /* For field width, this is equivalent to
- * a positive value with the `-' flag...
- */
- stream.flags |= PFORMAT_LJUSTIFY;
- stream.width = -stream.width;
- }
-
- else
- /* while as a precision specification,
- * it should simply be ignored.
- */
- stream.precision = PFORMAT_IGNORE;
- }
- }
-
- else
- /* out of context; give up on width and precision
- * specifications for this conversion.
- */
- state = PFORMAT_END;
-
- /* Mark as processed...
- * we must not see `*' again, in this context.
- */
- width_spec = NULL;
- break;
-
- /* Formatting flags...
- * Must appear while in the PFORMAT_INIT state,
- * and are non-terminal, so again, end with `break'.
- */
- case '#':
- /*
- * Select alternate PFORMAT_HASHED output style.
- */
- if( state == PFORMAT_INIT )
- stream.flags |= PFORMAT_HASHED;
- break;
-
- case '+':
- /*
- * Print a leading sign with numeric output,
- * for both positive and negative values.
- */
- if( state == PFORMAT_INIT )
- stream.flags |= PFORMAT_POSITIVE;
- break;
-
- case '-':
- /*
- * Select left justification of displayed output
- * data, within the output field width, instead of
- * the default flush right justification.
- */
- if( state == PFORMAT_INIT )
- stream.flags |= PFORMAT_LJUSTIFY;
- break;
-
-# ifdef WITH_XSI_FEATURES
-
- case '\'':
- /*
- * This is an XSI extension to the POSIX standard,
- * which we do not support, at present.
- */
- if( state == PFORMAT_INIT )
- stream.flags |= PFORMAT_GROUPED;
- break;
-
-# endif
-
- case '\x20':
- /*
- * Reserve a single space, within the output field,
- * for display of the sign of signed data; this will
- * be occupied by the minus sign, if the data value
- * is negative, or by a plus sign if the data value
- * is positive AND the `+' flag is also present, or
- * by a space otherwise. (Technically, this flag
- * is redundant, if the `+' flag is present).
- */
- if( state == PFORMAT_INIT )
- stream.flags |= PFORMAT_ADDSPACE;
- break;
-
- case '0':
- /*
- * May represent a flag, to activate the `pad with zeros'
- * option, or it may simply be a digit in a width or in a
- * precision specification...
- */
- if( state == PFORMAT_INIT )
- {
- /* This is the flag usage...
- */
- stream.flags |= PFORMAT_ZEROFILL;
- break;
- }
-
- default:
- /*
- * If we didn't match anything above, then we will check
- * for digits, which we may accumulate to generate field
- * width or precision specifications...
- */
- if( (state < PFORMAT_END) && ('9' >= c) && (c >= '0') )
- {
- if( state == PFORMAT_INIT )
- /*
- * Initial digits explicitly relate to field width...
- */
- state = PFORMAT_SET_WIDTH;
-
- else if( state == PFORMAT_GET_PRECISION )
- /*
- * while those following a precision indicator
- * explicitly relate to precision.
- */
- state = PFORMAT_SET_PRECISION;
-
- if( width_spec )
- {
- /* We are accepting a width or precision specification...
- */
- if( *width_spec < 0 )
- /*
- * and accumulation hasn't started yet; we simply
- * initialise the accumulator with the current digit
- * value, converting from ASCII to decimal.
- */
- *width_spec = c - '0';
-
- else
- /* Accumulation has already started; we perform a
- * `leftwise decimal digit shift' on the accumulator,
- * (i.e. multiply it by ten), then add the decimal
- * equivalent value of the current digit.
- */
- *width_spec = *width_spec * 10 + c - '0';
- }
- }
-
- else
- {
- /* We found a digit out of context, or some other character
- * with no designated meaning; reject this format specification,
- * backtrack, and emit it as literal text...
- */
- fmt = backtrack;
- __pformat_putc( '%', &stream );
- goto format_scan;
- }
- }
- }
- }
-
- else
- /* We just parsed a character which is not included within any format
- * specification; we simply emit it as a literal.
- */
- __pformat_putc( c, &stream );
- }
-
- /* When we have fully dispatched the format string, the return value is the
- * total number of bytes we transferred to the output destination.
- */
- return stream.count;
-}
-
-/* $RCSfile$Revision$: end of file */