Welcome to mirror list, hosted at ThFree Co, Russian Federation.

s_remquo.c « common « libm « newlib - cygwin.com/git/newlib-cygwin.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 30bf15f14bd032fb6917156d1f79ffaa227a9122 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/* Adapted for Newlib, 2009.  (Allow for int < 32 bits; return *quo=0 during
 * errors to make test scripts easier.)  */
/* @(#)e_fmod.c 1.3 95/01/18 */
/*-
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */
/*
FUNCTION
<<remquo>>, <<remquof>>---remainder and part of quotient
INDEX
	remquo
INDEX
	remquof

ANSI_SYNOPSIS
	#include <math.h>
	double remquo(double <[x]>, double <[y]>, int *<[quo]>);
	float remquof(float <[x]>, float <[y]>, int *<[quo]>);

DESCRIPTION
The <<remquo>> functions compute the same remainder as the <<remainder>>
functions; this value is in the range -<[y]>/2 ... +<[y]>/2.  In the object
pointed to by <<quo>> they store a value whose sign is the sign of <<x>>/<<y>>
and whose magnitude is congruent modulo 2**n to the magnitude of the integral
quotient of <<x>>/<<y>>.  (That is, <<quo>> is given the n lsbs of the
quotient, not counting the sign.)  This implementation uses n=31 if int is 32
bits or more, otherwise, n is 1 less than the width of int.

For example:
.	remquo(-29.0, 3.0, &<[quo]>)
returns -1.0 and sets <[quo]>=10, and
.	remquo(-98307.0, 3.0, &<[quo]>)
returns -0.0 and sets <[quo]>=-32769, although for 16-bit int, <[quo]>=-1.  In
the latter case, the actual quotient of -(32769=0x8001) is reduced to -1
because of the 15-bit limitation for the quotient.

RETURNS
When either argument is NaN, NaN is returned.  If <[y]> is 0 or <[x]> is
infinite (and neither is NaN), a domain error occurs (i.e. the "invalid"
floating point exception is raised or errno is set to EDOM), and NaN is
returned.
Otherwise, the <<remquo>> functions return <[x]> REM <[y]>.

BUGS
IEEE754-2008 calls for <<remquo>>(subnormal, inf) to cause the "underflow"
floating-point exception.  This implementation does not.

PORTABILITY
C99, POSIX.

*/

#include <limits.h>
#include <math.h>
#include "fdlibm.h"

/* For quotient, return either all 31 bits that can from calculation (using
 * int32_t), or as many as can fit into an int that is smaller than 32 bits.  */
#if INT_MAX > 0x7FFFFFFFL
  #define QUO_MASK 0x7FFFFFFF
# else
  #define QUO_MASK INT_MAX
#endif

static const double Zero[] = {0.0, -0.0,};

/*
 * Return the IEEE remainder and set *quo to the last n bits of the
 * quotient, rounded to the nearest integer.  We choose n=31--if that many fit--
 * because we wind up computing all the integer bits of the quotient anyway as
 * a side-effect of computing the remainder by the shift and subtract
 * method.  In practice, this is far more bits than are needed to use
 * remquo in reduction algorithms.
 */
double
remquo(double x, double y, int *quo)
{
	__int32_t n,hx,hy,hz,ix,iy,sx,i;
	__uint32_t lx,ly,lz,q,sxy;

	EXTRACT_WORDS(hx,lx,x);
	EXTRACT_WORDS(hy,ly,y);
	sxy = (hx ^ hy) & 0x80000000;
	sx = hx&0x80000000;		/* sign of x */
	hx ^=sx;		/* |x| */
	hy &= 0x7fffffff;	/* |y| */

    /* purge off exception values */
	if((hy|ly)==0||(hx>=0x7ff00000)||	/* y=0,or x not finite */
	  ((hy|((ly|-ly)>>31))>0x7ff00000))  {	/* or y is NaN */
	    *quo = 0;	/* Not necessary, but return consistent value */
	    return (x*y)/(x*y);
	}
	if(hx<=hy) {
	    if((hx<hy)||(lx<ly)) {
		q = 0;
		goto fixup;	/* |x|<|y| return x or x-y */
	    }
	    if(lx==ly) {
		*quo = (sxy ? -1 : 1);
		return Zero[(__uint32_t)sx>>31];	/* |x|=|y| return x*0 */
	    }
	}

    /* determine ix = ilogb(x) */
	if(hx<0x00100000) {	/* subnormal x */
	    if(hx==0) {
		for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
	    } else {
		for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
	    }
	} else ix = (hx>>20)-1023;

    /* determine iy = ilogb(y) */
	if(hy<0x00100000) {	/* subnormal y */
	    if(hy==0) {
		for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
	    } else {
		for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
	    }
	} else iy = (hy>>20)-1023;

    /* set up {hx,lx}, {hy,ly} and align y to x */
	if(ix >= -1022) 
	    hx = 0x00100000|(0x000fffff&hx);
	else {		/* subnormal x, shift x to normal */
	    n = -1022-ix;
	    if(n<=31) {
	        hx = (hx<<n)|(lx>>(32-n));
	        lx <<= n;
	    } else {
		hx = lx<<(n-32);
		lx = 0;
	    }
	}
	if(iy >= -1022) 
	    hy = 0x00100000|(0x000fffff&hy);
	else {		/* subnormal y, shift y to normal */
	    n = -1022-iy;
	    if(n<=31) {
	        hy = (hy<<n)|(ly>>(32-n));
	        ly <<= n;
	    } else {
		hy = ly<<(n-32);
		ly = 0;
	    }
	}

    /* fix point fmod */
	n = ix - iy;
	q = 0;
	while(n--) {
	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
	    if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
	    else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;}
	    q <<= 1;
	}
	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
	if(hz>=0) {hx=hz;lx=lz;q++;}

    /* convert back to floating value and restore the sign */
	if((hx|lx)==0) {			/* return sign(x)*0 */
	    q &= QUO_MASK;
	    *quo = (sxy ? -q : q);
	    return Zero[(__uint32_t)sx>>31];
	}
	while(hx<0x00100000) {		/* normalize x */
	    hx = hx+hx+(lx>>31); lx = lx+lx;
	    iy -= 1;
	}
	if(iy>= -1022) {	/* normalize output */
	    hx = ((hx-0x00100000)|((iy+1023)<<20));
	} else {		/* subnormal output */
	    n = -1022 - iy;
	    if(n<=20) {
		lx = (lx>>n)|((__uint32_t)hx<<(32-n));
		hx >>= n;
	    } else if (n<=31) {
		lx = (hx<<(32-n))|(lx>>n); hx = sx;
	    } else {
		lx = hx>>(n-32); hx = sx;
	    }
	}
fixup:
	INSERT_WORDS(x,hx,lx);
	y = fabs(y);
	if (y < 0x1p-1021) {
	    if (x+x>y || (x+x==y && (q & 1))) {
		q++;
		x-=y;
	    }
	} else if (x>0.5*y || (x==0.5*y && (q & 1))) {
	    q++;
	    x-=y;
	}
	GET_HIGH_WORD(hx,x);
	SET_HIGH_WORD(x,hx^sx);
	q &= QUO_MASK;
	*quo = (sxy ? -q : q);
	return x;
}