Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorlijenstina <lijenstina@gmail.com>2017-04-07 17:22:32 +0300
committerlijenstina <lijenstina@gmail.com>2017-04-07 17:22:32 +0300
commit9bc76f9902e756c149695b2b3d86ebe2d690ae65 (patch)
tree1d8a3140c251cde36812b681b65bbe8dd95e3f3c /mesh_looptools.py
parent5c1812e61ff4a557c648521a740530aeb56bc4d9 (diff)
LoopTools: Update panel Rename, Cleanup
Bumped version to 4.6.7 As a part of the task T50726: Update the Panel rename code to more generic one PEP8 cleanup: Tuple imports and use them for class types Consistent Scene props definitions Update url link
Diffstat (limited to 'mesh_looptools.py')
-rw-r--r--mesh_looptools.py2479
1 files changed, 1377 insertions, 1102 deletions
diff --git a/mesh_looptools.py b/mesh_looptools.py
index b05c7830..e3fd302b 100644
--- a/mesh_looptools.py
+++ b/mesh_looptools.py
@@ -19,12 +19,12 @@
bl_info = {
"name": "LoopTools",
"author": "Bart Crouch",
- "version": (4, 6, 6),
+ "version": (4, 6, 7),
"blender": (2, 72, 2),
"location": "View3D > Toolbar and View3D > Specials (W-key)",
"warning": "",
"description": "Mesh modelling toolkit. Several tools to aid modelling",
- "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
+ "wiki_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Modeling/LoopTools",
"category": "Mesh",
}
@@ -36,12 +36,25 @@ import collections
import mathutils
import math
from bpy_extras import view3d_utils
-
-
-##########################################
-####### General functions ################
-##########################################
-
+from bpy.types import (
+ Operator,
+ Menu,
+ Panel,
+ PropertyGroup,
+ AddonPreferences,
+ )
+from bpy.props import (
+ BoolProperty,
+ EnumProperty,
+ FloatProperty,
+ IntProperty,
+ PointerProperty,
+ StringProperty,
+ )
+
+# ########################################
+# ##### General functions ################
+# ########################################
# used by all tools to improve speed on reruns Unlink
looptools_cache = {}
@@ -73,8 +86,8 @@ def cache_read(tool, object, bm, input_method, boundaries):
return(False, False, False, False, False)
if boundaries != looptools_cache[tool]["boundaries"]:
return(False, False, False, False, False)
- modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
- and mod.type == 'MIRROR']
+ modifiers = [mod.name for mod in object.modifiers if mod.show_viewport and
+ mod.type == 'MIRROR']
if modifiers != looptools_cache[tool]["modifiers"]:
return(False, False, False, False, False)
input = [v.index for v in bm.verts if v.select and not v.hide]
@@ -97,8 +110,8 @@ loops, derived, mapping):
del looptools_cache[tool]
# prepare values to be saved to cache
input = [v.index for v in bm.verts if v.select and not v.hide]
- modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
- and mod.type == 'MIRROR']
+ modifiers = [mod.name for mod in object.modifiers if mod.show_viewport and
+ mod.type == 'MIRROR']
# update cache
looptools_cache[tool] = {"input": input, "object": object.name,
"input_method": input_method, "boundaries": boundaries,
@@ -115,12 +128,12 @@ def calculate_cubic_splines(bm_mod, tknots, knots):
for k in range(-1, -5, -1):
if k - 1 < -len(knots):
k += len(knots)
- k_new1.append(knots[k-1])
+ k_new1.append(knots[k - 1])
k_new2 = []
for k in range(4):
if k + 1 > len(knots) - 1:
k -= len(knots)
- k_new2.append(knots[k+1])
+ k_new2.append(knots[k + 1])
for k in k_new1:
knots.insert(0, k)
for k in k_new2:
@@ -130,14 +143,14 @@ def calculate_cubic_splines(bm_mod, tknots, knots):
for t in range(-1, -5, -1):
if t - 1 < -len(tknots):
t += len(tknots)
- total1 += tknots[t] - tknots[t-1]
+ total1 += tknots[t] - tknots[t - 1]
t_new1.append(tknots[0] - total1)
t_new2 = []
total2 = 0
for t in range(4):
if t + 1 > len(tknots) - 1:
t -= len(tknots)
- total2 += tknots[t+1] - tknots[t]
+ total2 += tknots[t + 1] - tknots[t]
t_new2.append(tknots[-1] + total2)
for t in t_new1:
tknots.insert(0, t)
@@ -158,39 +171,39 @@ def calculate_cubic_splines(bm_mod, tknots, knots):
for i in locs:
a.append(i[j])
h = []
- for i in range(n-1):
- if x[i+1] - x[i] == 0:
+ for i in range(n - 1):
+ if x[i + 1] - x[i] == 0:
h.append(1e-8)
else:
- h.append(x[i+1] - x[i])
+ h.append(x[i + 1] - x[i])
q = [False]
- for i in range(1, n-1):
- q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1]))
+ for i in range(1, n - 1):
+ q.append(3 / h[i] * (a[i + 1] - a[i]) - 3 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
- for i in range(1, n-1):
- l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1])
+ for i in range(1, n - 1):
+ l.append(2 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
if l[i] == 0:
l[i] = 1e-8
u.append(h[i] / l[i])
- z.append((q[i] - h[i-1] * z[i-1]) / l[i])
+ z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
- b = [False for i in range(n-1)]
+ b = [False for i in range(n - 1)]
c = [False for i in range(n)]
- d = [False for i in range(n-1)]
- c[n-1] = 0.0
- for i in range(n-2, -1, -1):
- c[i] = z[i] - u[i]*c[i+1]
- b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3
- d[i] = (c[i+1]-c[i]) / (3*h[i])
- for i in range(n-1):
+ d = [False for i in range(n - 1)]
+ c[n - 1] = 0.0
+ for i in range(n - 2, -1, -1):
+ c[i] = z[i] - u[i] * c[i + 1]
+ b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2 * c[i]) / 3
+ d[i] = (c[i + 1] - c[i]) / (3 * h[i])
+ for i in range(n - 1):
result.append([a[i], b[i], c[i], d[i], x[i]])
splines = []
- for i in range(len(knots)-1):
- splines.append([result[i], result[i+n-1], result[i+(n-1)*2]])
- if circular: # cleaning up after hack
+ for i in range(len(knots) - 1):
+ splines.append([result[i], result[i + n - 1], result[i + (n - 1) * 2]])
+ if circular: # cleaning up after hack
knots = knots[4:-4]
tknots = tknots[4:-4]
@@ -200,13 +213,13 @@ def calculate_cubic_splines(bm_mod, tknots, knots):
# calculates linear splines through all given knots
def calculate_linear_splines(bm_mod, tknots, knots):
splines = []
- for i in range(len(knots)-1):
+ for i in range(len(knots) - 1):
a = bm_mod.verts[knots[i]].co
- b = bm_mod.verts[knots[i+1]].co
- d = b-a
+ b = bm_mod.verts[knots[i + 1]].co
+ d = b - a
t = tknots[i]
- u = tknots[i+1]-t
- splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
+ u = tknots[i + 1] - t
+ splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
return(splines)
@@ -230,15 +243,15 @@ def calculate_plane(bm_mod, loop, method="best_fit", object=False):
(0.0, 0.0, 0.0),
))
for loc in locs:
- mat[0][0] += (loc[0]-x)**2
- mat[1][0] += (loc[0]-x)*(loc[1]-y)
- mat[2][0] += (loc[0]-x)*(loc[2]-z)
- mat[0][1] += (loc[1]-y)*(loc[0]-x)
- mat[1][1] += (loc[1]-y)**2
- mat[2][1] += (loc[1]-y)*(loc[2]-z)
- mat[0][2] += (loc[2]-z)*(loc[0]-x)
- mat[1][2] += (loc[2]-z)*(loc[1]-y)
- mat[2][2] += (loc[2]-z)**2
+ mat[0][0] += (loc[0] - x) ** 2
+ mat[1][0] += (loc[0] - x) * (loc[1] - y)
+ mat[2][0] += (loc[0] - x) * (loc[2] - z)
+ mat[0][1] += (loc[1] - y) * (loc[0] - x)
+ mat[1][1] += (loc[1] - y) ** 2
+ mat[2][1] += (loc[1] - y) * (loc[2] - z)
+ mat[0][2] += (loc[2] - z) * (loc[0] - x)
+ mat[1][2] += (loc[2] - z) * (loc[1] - y)
+ mat[2][2] += (loc[2] - z) ** 2
# calculating the normal to the plane
normal = False
@@ -297,7 +310,7 @@ def calculate_plane(bm_mod, loop, method="best_fit", object=False):
def calculate_splines(interpolation, bm_mod, tknots, knots):
if interpolation == 'cubic':
splines = calculate_cubic_splines(bm_mod, tknots, knots[:])
- else: # interpolations == 'linear'
+ else: # interpolations == 'linear'
splines = calculate_linear_splines(bm_mod, tknots, knots[:])
return(splines)
@@ -322,8 +335,7 @@ def check_loops(loops, mapping, bm_mod):
# vertices can not all be at the same location
stacked = True
for i in range(len(loop) - 1):
- if (bm_mod.verts[loop[i]].co - \
- bm_mod.verts[loop[i+1]].co).length > 1e-6:
+ if (bm_mod.verts[loop[i]].co - bm_mod.verts[loop[i + 1]].co).length > 1e-6:
stacked = False
break
if stacked:
@@ -336,8 +348,7 @@ def check_loops(loops, mapping, bm_mod):
# input: bmesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(bm):
- edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if \
- not edge.hide])
+ edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not edge.hide])
for face in bm.faces:
if face.hide:
continue
@@ -352,8 +363,7 @@ def dict_face_faces(bm, edge_faces=False):
if not edge_faces:
edge_faces = dict_edge_faces(bm)
- connected_faces = dict([[face.index, []] for face in bm.faces if \
- not face.hide])
+ connected_faces = dict([[face.index, []] for face in bm.faces if not face.hide])
for face in bm.faces:
if face.hide:
continue
@@ -397,9 +407,9 @@ def dict_vert_verts(edge_keys):
for ek in edge_keys:
for i in range(2):
if ek[i] in vert_verts:
- vert_verts[ek[i]].append(ek[1-i])
+ vert_verts[ek[i]].append(ek[1 - i])
else:
- vert_verts[ek[i]] = [ek[1-i]]
+ vert_verts[ek[i]] = [ek[1 - i]]
return(vert_verts)
@@ -411,8 +421,7 @@ def edgekey(edge):
# returns the edgekeys of a bmesh face
def face_edgekeys(face):
- return([tuple(sorted([edge.verts[0].index, edge.verts[1].index])) for \
- edge in face.edges])
+ return([tuple(sorted([edge.verts[0].index, edge.verts[1].index])) for edge in face.edges])
# calculate input loops
@@ -421,8 +430,7 @@ def get_connected_input(object, bm, scene, input):
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# calculate selected loops
- edge_keys = [edgekey(edge) for edge in bm_mod.edges if \
- edge.select and not edge.hide]
+ edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
# if only selected loops are needed, we're done
@@ -511,8 +519,7 @@ def get_derived_bmesh(object, bm, scene):
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
derived = True
# disable other modifiers
- show_viewport = [mod.name for mod in object.modifiers if \
- mod.show_viewport]
+ show_viewport = [mod.name for mod in object.modifiers if mod.show_viewport]
for mod in object.modifiers:
if mod.type != 'MIRROR':
mod.show_viewport = False
@@ -555,15 +562,14 @@ def get_mapping(derived, bm, bm_mod, single_vertices, full_search, loops):
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
break
- real_singles = [v_real for v_real in mapping.values() if v_real>-1]
+ real_singles = [v_real for v_real in mapping.values() if v_real > -1]
verts_indices = [vert.index for vert in verts]
- for face in [face for face in bm.faces if not face.select \
- and not face.hide]:
+ for face in [face for face in bm.faces if not face.select and not face.hide]:
for vert in face.verts:
if vert.index in real_singles:
for v in face.verts:
- if not v.index in verts_indices:
+ if v.index not in verts_indices:
if v not in verts:
verts.append(v)
break
@@ -596,12 +602,12 @@ def matrix_determinant(m):
# custom matrix inversion, to provide higher precision than the built-in one
def matrix_invert(m):
r = mathutils.Matrix((
- (m[1][1]*m[2][2] - m[1][2]*m[2][1], m[0][2]*m[2][1] - m[0][1]*m[2][2],
- m[0][1]*m[1][2] - m[0][2]*m[1][1]),
- (m[1][2]*m[2][0] - m[1][0]*m[2][2], m[0][0]*m[2][2] - m[0][2]*m[2][0],
- m[0][2]*m[1][0] - m[0][0]*m[1][2]),
- (m[1][0]*m[2][1] - m[1][1]*m[2][0], m[0][1]*m[2][0] - m[0][0]*m[2][1],
- m[0][0]*m[1][1] - m[0][1]*m[1][0])))
+ (m[1][1] * m[2][2] - m[1][2] * m[2][1], m[0][2] * m[2][1] - m[0][1] * m[2][2],
+ m[0][1] * m[1][2] - m[0][2] * m[1][1]),
+ (m[1][2] * m[2][0] - m[1][0] * m[2][2], m[0][0] * m[2][2] - m[0][2] * m[2][0],
+ m[0][2] * m[1][0] - m[0][0] * m[1][2]),
+ (m[1][0] * m[2][1] - m[1][1] * m[2][0], m[0][1] * m[2][0] - m[0][0] * m[2][1],
+ m[0][0] * m[1][1] - m[0][1] * m[1][0])))
return (r * (1 / matrix_determinant(m)))
@@ -614,9 +620,9 @@ def get_parallel_loops(bm_mod, loops):
# turn vertex loops into edge loops
edgeloops = []
for loop in loops:
- edgeloop = [[sorted([loop[0][i], loop[0][i+1]]) for i in \
- range(len(loop[0])-1)], loop[1]]
- if loop[1]: # circular
+ edgeloop = [[sorted([loop[0][i], loop[0][i + 1]]) for i in
+ range(len(loop[0]) - 1)], loop[1]]
+ if loop[1]: # circular
edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
edgeloops.append(edgeloop[:])
# variables to keep track while iterating
@@ -641,7 +647,7 @@ def get_parallel_loops(bm_mod, loops):
for i in newloops[-1]:
i = tuple(i)
forbidden_side = False
- if not i in edge_faces:
+ if i not in edge_faces:
# weird input with branches
has_branches = True
break
@@ -709,9 +715,9 @@ def get_parallel_loops(bm_mod, loops):
for edgeloop in all_edgeloops:
loop = []
# grow loop by comparing vertices between consecutive edge-keys
- for i in range(len(edgeloop)-1):
+ for i in range(len(edgeloop) - 1):
for vert in range(2):
- if edgeloop[i][vert] in edgeloop[i+1]:
+ if edgeloop[i][vert] in edgeloop[i + 1]:
loop.append(edgeloop[i][vert])
break
if loop:
@@ -767,7 +773,7 @@ def move_verts(object, bm, mapping, move, lock, influence):
elif orientation == 'VIEW':
mat = bpy.context.region_data.view_matrix.copy() * \
object.matrix_world.copy()
- else: # orientation == 'GLOBAL'
+ else: # orientation == 'GLOBAL'
mat = object.matrix_world.copy()
mat_inv = mat.inverted()
@@ -791,8 +797,8 @@ def move_verts(object, bm, mapping, move, lock, influence):
if influence < 0:
new_loc = loc
else:
- new_loc = loc*(influence/100) + \
- bm.verts[index].co*((100-influence)/100)
+ new_loc = loc * (influence / 100) + \
+ bm.verts[index].co * ((100 - influence) / 100)
bm.verts[index].co = new_loc
bm.normal_update()
object.data.update()
@@ -830,9 +836,9 @@ def terminate(global_undo):
bpy.context.user_preferences.edit.use_global_undo = global_undo
-##########################################
-####### Bridge functions #################
-##########################################
+# ########################################
+# ##### Bridge functions #################
+# ########################################
# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(bm, coordinates):
@@ -845,27 +851,27 @@ def bridge_calculate_cubic_spline(bm, coordinates):
a.append(float(i[j]))
h = []
for i in range(3):
- h.append(x[i+1]-x[i])
+ h.append(x[i + 1] - x[i])
q = [False]
- for i in range(1,3):
- q.append(3.0/h[i]*(a[i+1]-a[i])-3.0/h[i-1]*(a[i]-a[i-1]))
+ for i in range(1, 3):
+ q.append(3.0 / h[i] * (a[i + 1] - a[i]) - 3.0 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
- for i in range(1,3):
- l.append(2.0*(x[i+1]-x[i-1])-h[i-1]*u[i-1])
- u.append(h[i]/l[i])
- z.append((q[i]-h[i-1]*z[i-1])/l[i])
+ for i in range(1, 3):
+ l.append(2.0 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
+ u.append(h[i] / l[i])
+ z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(3)]
c = [False for i in range(4)]
d = [False for i in range(3)]
c[3] = 0.0
- for i in range(2,-1,-1):
- c[i] = z[i]-u[i]*c[i+1]
- b[i] = (a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0
- d[i] = (c[i+1]-c[i])/(3.0*h[i])
+ for i in range(2, -1, -1):
+ c[i] = z[i] - u[i] * c[i + 1]
+ b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2.0 * c[i]) / 3.0
+ d[i] = (c[i + 1] - c[i]) / (3.0 * h[i])
for i in range(3):
result.append([a[i], b[i], c[i], d[i], x[i]])
spline = [result[1], result[4], result[7]]
@@ -885,22 +891,22 @@ interpolation, cubic_strength, min_width, max_vert_index):
v1 = bm.verts[lines[line][0]].co
v2 = bm.verts[lines[line][1]].co
if interpolation == 'linear':
- return v1 + (segment/segments) * (v2-v1)
- else: # interpolation == 'cubic'
- m = (segment/segments)
- ax,bx,cx,dx,tx = splines[line][0]
- x = ax+bx*m+cx*m**2+dx*m**3
- ay,by,cy,dy,ty = splines[line][1]
- y = ay+by*m+cy*m**2+dy*m**3
- az,bz,cz,dz,tz = splines[line][2]
- z = az+bz*m+cz*m**2+dz*m**3
+ return v1 + (segment / segments) * (v2 - v1)
+ else: # interpolation == 'cubic'
+ m = (segment / segments)
+ ax, bx, cx, dx, tx = splines[line][0]
+ x = ax + bx * m + cx * m ** 2 + dx * m ** 3
+ ay, by, cy, dy, ty = splines[line][1]
+ y = ay + by * m + cy * m ** 2 + dy * m ** 3
+ az, bz, cz, dz, tz = splines[line][2]
+ z = az + bz * m + cz * m ** 2 + dz * m ** 3
return mathutils.Vector((x, y, z))
# no interpolation needed
if segments == 1:
for i, line in enumerate(lines):
- if i < len(lines)-1:
- faces.append([line[0], lines[i+1][0], lines[i+1][1], line[1]])
+ if i < len(lines) - 1:
+ faces.append([line[0], lines[i + 1][0], lines[i + 1][1], line[1]])
# more than 1 segment, interpolate
else:
# calculate splines (if necessary) once, so no recalculations needed
@@ -909,64 +915,64 @@ interpolation, cubic_strength, min_width, max_vert_index):
for line in lines:
v1 = bm.verts[line[0]].co
v2 = bm.verts[line[1]].co
- size = (v2-v1).length * cubic_strength
+ size = (v2 - v1).length * cubic_strength
splines.append(bridge_calculate_cubic_spline(bm,
- [v1+size*vertex_normals[line[0]], v1, v2,
- v2+size*vertex_normals[line[1]]]))
+ [v1 + size * vertex_normals[line[0]], v1, v2,
+ v2 + size * vertex_normals[line[1]]]))
else:
splines = False
# create starting situation
virtual_width = [(bm.verts[lines[i][0]].co -
- bm.verts[lines[i+1][0]].co).length for i
- in range(len(lines)-1)]
+ bm.verts[lines[i + 1][0]].co).length for i
+ in range(len(lines) - 1)]
new_verts = [get_location(0, seg, splines) for seg in range(1,
segments)]
- first_line_indices = [i for i in range(max_vert_index+1,
- max_vert_index+segments)]
+ first_line_indices = [i for i in range(max_vert_index + 1,
+ max_vert_index + segments)]
- prev_verts = new_verts[:] # vertex locations of verts on previous line
+ prev_verts = new_verts[:] # vertex locations of verts on previous line
prev_vert_indices = first_line_indices[:]
- max_vert_index += segments - 1 # highest vertex index in virtual mesh
- next_verts = [] # vertex locations of verts on current line
+ max_vert_index += segments - 1 # highest vertex index in virtual mesh
+ next_verts = [] # vertex locations of verts on current line
next_vert_indices = []
for i, line in enumerate(lines):
- if i < len(lines)-1:
+ if i < len(lines) - 1:
v1 = line[0]
- v2 = lines[i+1][0]
+ v2 = lines[i + 1][0]
end_face = True
for seg in range(1, segments):
- loc1 = prev_verts[seg-1]
- loc2 = get_location(i+1, seg, splines)
- if (loc1-loc2).length < (min_width/100)*virtual_width[i] \
- and line[1]==lines[i+1][1]:
+ loc1 = prev_verts[seg - 1]
+ loc2 = get_location(i + 1, seg, splines)
+ if (loc1 - loc2).length < (min_width / 100) * virtual_width[i] \
+ and line[1] == lines[i + 1][1]:
# triangle, no new vertex
- faces.append([v1, v2, prev_vert_indices[seg-1],
- prev_vert_indices[seg-1]])
- next_verts += prev_verts[seg-1:]
- next_vert_indices += prev_vert_indices[seg-1:]
+ faces.append([v1, v2, prev_vert_indices[seg - 1],
+ prev_vert_indices[seg - 1]])
+ next_verts += prev_verts[seg - 1:]
+ next_vert_indices += prev_vert_indices[seg - 1:]
end_face = False
break
else:
- if i == len(lines)-2 and lines[0] == lines[-1]:
+ if i == len(lines) - 2 and lines[0] == lines[-1]:
# quad with first line, no new vertex
- faces.append([v1, v2, first_line_indices[seg-1],
- prev_vert_indices[seg-1]])
- v2 = first_line_indices[seg-1]
- v1 = prev_vert_indices[seg-1]
+ faces.append([v1, v2, first_line_indices[seg - 1],
+ prev_vert_indices[seg - 1]])
+ v2 = first_line_indices[seg - 1]
+ v1 = prev_vert_indices[seg - 1]
else:
# quad, add new vertex
max_vert_index += 1
faces.append([v1, v2, max_vert_index,
- prev_vert_indices[seg-1]])
+ prev_vert_indices[seg - 1]])
v2 = max_vert_index
- v1 = prev_vert_indices[seg-1]
+ v1 = prev_vert_indices[seg - 1]
new_verts.append(loc2)
next_verts.append(loc2)
next_vert_indices.append(max_vert_index)
if end_face:
- faces.append([v1, v2, lines[i+1][1], line[1]])
+ faces.append([v1, v2, lines[i + 1][1], line[1]])
prev_verts = next_verts[:]
prev_vert_indices = next_vert_indices[:]
@@ -1010,15 +1016,15 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
(0.0, 0.0, 0.0)))
x, y, z = centers[i]
for loc in [bm.verts[vertex].co for vertex in loop]:
- mat[0][0] += (loc[0]-x)**2
- mat[1][0] += (loc[0]-x)*(loc[1]-y)
- mat[2][0] += (loc[0]-x)*(loc[2]-z)
- mat[0][1] += (loc[1]-y)*(loc[0]-x)
- mat[1][1] += (loc[1]-y)**2
- mat[2][1] += (loc[1]-y)*(loc[2]-z)
- mat[0][2] += (loc[2]-z)*(loc[0]-x)
- mat[1][2] += (loc[2]-z)*(loc[1]-y)
- mat[2][2] += (loc[2]-z)**2
+ mat[0][0] += (loc[0] - x) ** 2
+ mat[1][0] += (loc[0] - x) * (loc[1] - y)
+ mat[2][0] += (loc[0] - x) * (loc[2] - z)
+ mat[0][1] += (loc[1] - y) * (loc[0] - x)
+ mat[1][1] += (loc[1] - y) ** 2
+ mat[2][1] += (loc[1] - y) * (loc[2] - z)
+ mat[0][2] += (loc[2] - z) * (loc[0] - x)
+ mat[1][2] += (loc[2] - z) * (loc[1] - y)
+ mat[2][2] += (loc[2] - z) ** 2
# plane normal
normal = False
if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
@@ -1037,9 +1043,9 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
itermax = 500
iter = 0
vec = mathutils.Vector((1.0, 1.0, 1.0))
- vec2 = (mat * vec)/(mat * vec).length
- while vec != vec2 and iter<itermax:
- iter+=1
+ vec2 = (mat * vec) / (mat * vec).length
+ while vec != vec2 and iter < itermax:
+ iter += 1
vec = vec2
vec2 = mat * vec
if vec2.length != 0:
@@ -1078,24 +1084,29 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
i, vertex in enumerate(loop1)]
dif_angles.sort()
if len(loop1) != len(loop2):
- angle_limit = dif_angles[0][0] * 1.2 # 20% margin
- dif_angles = [[(bm.verts[loop2[0]].co - \
- bm.verts[loop1[index]].co).length, angle, index] for \
- angle, distance, index in dif_angles if angle <= angle_limit]
+ angle_limit = dif_angles[0][0] * 1.2 # 20% margin
+ dif_angles = [
+ [(bm.verts[loop2[0]].co -
+ bm.verts[loop1[index]].co).length, angle, index] for
+ angle, distance, index in dif_angles if angle <= angle_limit
+ ]
dif_angles.sort()
loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
# have both loops face the same way
if normal_plurity and not circular:
- second_to_first, second_to_second, second_to_last = \
- [(bm.verts[loop1[1]].co - center1).\
- angle(bm.verts[loop2[i]].co - center2) for i in [0, 1, -1]]
- last_to_first, last_to_second = [(bm.verts[loop1[-1]].co - \
- center1).angle(bm.verts[loop2[i]].co - center2) for \
- i in [0, 1]]
- if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
- second_to_second)) or (loop2_circular and second_to_last*1.1 < \
- min(second_to_first, second_to_second)):
+ second_to_first, second_to_second, second_to_last = [
+ (bm.verts[loop1[1]].co - center1).angle(
+ bm.verts[loop2[i]].co - center2) for i in [0, 1, -1]
+ ]
+ last_to_first, last_to_second = [
+ (bm.verts[loop1[-1]].co -
+ center1).angle(bm.verts[loop2[i]].co - center2) for
+ i in [0, 1]
+ ]
+ if (min(last_to_first, last_to_second) * 1.1 < min(second_to_first,
+ second_to_second)) or (loop2_circular and second_to_last * 1.1 <
+ min(second_to_first, second_to_second)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
@@ -1104,9 +1115,9 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
cross(bm.verts[loop1[1]].co - center1).angle(normals[0], 0)
target_angle = (bm.verts[loop2[0]].co - center2).\
cross(bm.verts[loop2[1]].co - center2).angle(normals[1], 0)
- limit = 1.5707964 # 0.5*pi, 90 degrees
- if not ((angle > limit and target_angle > limit) or \
- (angle < limit and target_angle < limit)):
+ limit = 1.5707964 # 0.5*pi, 90 degrees
+ if not ((angle > limit and target_angle > limit) or
+ (angle < limit and target_angle < limit)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
@@ -1120,7 +1131,7 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
# manual override
if twist:
if abs(twist) < len(loop1):
- loop1 = loop1[twist:]+loop1[:twist]
+ loop1 = loop1[twist:] + loop1[:twist]
if reverse:
loop1.reverse()
@@ -1138,7 +1149,7 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
# manual override
if twist:
if abs(twist) < len(loop1):
- loop1 = loop1[twist:]+loop1[:twist]
+ loop1 = loop1[twist:] + loop1[:twist]
if reverse:
loop1.reverse()
@@ -1149,9 +1160,10 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
if len(loop1) - shifting < len(loop2):
shifting = False
break
- to_last, to_first = [(rotation_matrix *
- (bm.verts[loop1[-1]].co - center1)).angle((bm.\
- verts[loop2[i]].co - center2), 0) for i in [-1, 0]]
+ to_last, to_first = [
+ (rotation_matrix * (bm.verts[loop1[-1]].co - center1)).angle(
+ (bm.verts[loop2[i]].co - center2), 0) for i in [-1, 0]
+ ]
if to_first < to_last:
loop1 = [loop1[-1]] + loop1[:-1]
shifting += 1
@@ -1171,16 +1183,16 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
lines.append([loop1[i], loop2[i]])
# shortest edge algorithm
- else: # mode == 'shortest'
+ else: # mode == 'shortest'
lines.append([loop1[0], loop2[0]])
prev_vert2 = 0
- for i in range(len(loop1) -1):
+ for i in range(len(loop1) - 1):
if prev_vert2 == len(loop2) - 1 and not loop2_circular:
# force triangles, reached end of loop2
tri, quad = 0, 1
elif prev_vert2 == len(loop2) - 1 and loop2_circular:
# at end of loop2, but circular, so check with first vert
- tri, quad = [(bm.verts[loop1[i+1]].co -
+ tri, quad = [(bm.verts[loop1[i + 1]].co -
bm.verts[loop2[j]].co).length
for j in [prev_vert2, 0]]
circle_full = 2
@@ -1190,22 +1202,22 @@ def bridge_calculate_lines(bm, loops, mode, twist, reverse):
tri, quad = 1, 0
else:
# calculate if tri or quad gives shortest edge
- tri, quad = [(bm.verts[loop1[i+1]].co -
+ tri, quad = [(bm.verts[loop1[i + 1]].co -
bm.verts[loop2[j]].co).length
- for j in range(prev_vert2, prev_vert2+2)]
+ for j in range(prev_vert2, prev_vert2 + 2)]
# triangle
if tri < quad:
- lines.append([loop1[i+1], loop2[prev_vert2]])
+ lines.append([loop1[i + 1], loop2[prev_vert2]])
if circle_full == 2:
circle_full = False
# quad
elif not circle_full:
- lines.append([loop1[i+1], loop2[prev_vert2+1]])
+ lines.append([loop1[i + 1], loop2[prev_vert2 + 1]])
prev_vert2 += 1
# quad to first vertex of loop2
else:
- lines.append([loop1[i+1], loop2[0]])
+ lines.append([loop1[i + 1], loop2[0]])
prev_vert2 = 0
circle_full = True
@@ -1223,17 +1235,23 @@ def bridge_calculate_segments(bm, lines, loops, segments):
return segments
# edge lengths
- average_edge_length = [(bm.verts[vertex].co - \
- bm.verts[loop[0][i+1]].co).length for loop in loops for \
- i, vertex in enumerate(loop[0][:-1])]
+ average_edge_length = [
+ (bm.verts[vertex].co -
+ bm.verts[loop[0][i + 1]].co).length for loop in loops for
+ i, vertex in enumerate(loop[0][:-1])
+ ]
# closing edges of circular loops
- average_edge_length += [(bm.verts[loop[0][-1]].co - \
- bm.verts[loop[0][0]].co).length for loop in loops if loop[1]]
+ average_edge_length += [
+ (bm.verts[loop[0][-1]].co -
+ bm.verts[loop[0][0]].co).length for loop in loops if loop[1]
+ ]
# average lengths
average_edge_length = sum(average_edge_length) / len(average_edge_length)
- average_bridge_length = sum([(bm.verts[v1].co - \
- bm.verts[v2].co).length for v1, v2 in lines]) / len(lines)
+ average_bridge_length = sum(
+ [(bm.verts[v1].co -
+ bm.verts[v2].co).length for v1, v2 in lines]
+ ) / len(lines)
segments = max(1, round(average_bridge_length / average_edge_length))
@@ -1243,13 +1261,13 @@ def bridge_calculate_segments(bm, lines, loops, segments):
# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(bm, lines, loops, edge_faces,
edgekey_to_edge):
- if not edge_faces: # interpolation isn't set to cubic
+ if not edge_faces: # interpolation isn't set to cubic
return False
# pity reduce() isn't one of the basic functions in python anymore
def average_vector_dictionary(dic):
for key, vectors in dic.items():
- #if type(vectors) == type([]) and len(vectors) > 1:
+ # if type(vectors) == type([]) and len(vectors) > 1:
if len(vectors) > 1:
average = mathutils.Vector()
for vector in vectors:
@@ -1259,12 +1277,14 @@ edgekey_to_edge):
return dic
# get all edges of the loop
- edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
- loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
- j in [0,1]]
+ edges = [
+ [edgekey_to_edge[tuple(sorted([loops[j][0][i],
+ loops[j][0][i + 1]]))] for i in range(len(loops[j][0]) - 1)] for
+ j in [0, 1]
+ ]
edges = edges[0] + edges[1]
for j in [0, 1]:
- if loops[j][1]: # circular
+ if loops[j][1]: # circular
edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
loops[j][0][-1]]))])
@@ -1274,13 +1294,13 @@ edgekey_to_edge):
edge_normal = face_normal x edge_vector
vertex_normal = average(edge_normals)
"""
- vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
+ vertex_normals = dict([(vertex, []) for vertex in loops[0][0] + loops[1][0]])
for edge in edges:
- faces = edge_faces[edgekey(edge)] # valid faces connected to edge
+ faces = edge_faces[edgekey(edge)] # valid faces connected to edge
if faces:
# get edge coordinates
- v1, v2 = [bm.verts[edgekey(edge)[i]].co for i in [0,1]]
+ v1, v2 = [bm.verts[edgekey(edge)[i]].co for i in [0, 1]]
edge_vector = v1 - v2
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
@@ -1322,8 +1342,9 @@ edgekey_to_edge):
plane_normal = edge_vector x connection_vector
vertex_normal = plane_normal x edge_vector
"""
- vertices = [vertex for vertex, normal in vertex_normals.items() if not \
- normal]
+ vertices = [
+ vertex for vertex, normal in vertex_normals.items() if not normal
+ ]
if vertices:
# edge vectors connected to vertices
@@ -1355,8 +1376,10 @@ edgekey_to_edge):
connection_vectors[v2].append(new_vector)
connections[v2].append(v1)
connection_vectors = average_vector_dictionary(connection_vectors)
- connection_vectors = dict([[vertex, vector[0]] if vector else \
- [vertex, []] for vertex, vector in connection_vectors.items()])
+ connection_vectors = dict(
+ [[vertex, vector[0]] if vector else
+ [vertex, []] for vertex, vector in connection_vectors.items()]
+ )
for vertex, values in edge_vectors.items():
# vertex normal doesn't matter, just assign a random vector to it
@@ -1378,13 +1401,11 @@ edgekey_to_edge):
# can't do proper calculations, because of zero-length vector
if not values:
- if (connected_center - (bm.verts[vertex].co + \
- connection_vectors[vertex])).length < (connected_center - \
- (bm.verts[vertex].co - connection_vectors[vertex])).\
- length:
+ if (connected_center - (bm.verts[vertex].co +
+ connection_vectors[vertex])).length < (connected_center -
+ (bm.verts[vertex].co - connection_vectors[vertex])).length:
connection_vectors[vertex].negate()
- vertex_normals[vertex] = [connection_vectors[vertex].\
- normalized()]
+ vertex_normals[vertex] = [connection_vectors[vertex].normalized()]
continue
# calculate vertex normals using edge-vectors,
@@ -1393,18 +1414,17 @@ edgekey_to_edge):
plane_normal = edge_vector.cross(connection_vectors[vertex])
vertex_normal = edge_vector.cross(plane_normal)
vertex_normal.length = 0.1
- if (connected_center - (bm.verts[vertex].co + \
- vertex_normal)).length < (connected_center - \
+ if (connected_center - (bm.verts[vertex].co +
+ vertex_normal)).length < (connected_center -
(bm.verts[vertex].co - vertex_normal)).length:
- # make normal face the correct way
+ # make normal face the correct way
vertex_normal.negate()
vertex_normal.normalize()
vertex_normals[vertex].append(vertex_normal)
# average virtual vertex normals, based on all edges it's connected to
vertex_normals = average_vector_dictionary(vertex_normals)
- vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
- vertex_normals.items()])
+ vertex_normals = dict([[vertex, vector[0]] for vertex, vector in vertex_normals.items()])
return(vertex_normals)
@@ -1421,8 +1441,7 @@ def bridge_create_faces(object, bm, faces, twist):
# have the normal point the correct way
if twist < 0:
[face.reverse() for face in faces]
- faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
- face in faces]
+ faces = [face[2:] + face[:2] if face[0] == face[1] else face for face in faces]
# eekadoodle prevention
for i in range(len(faces)):
@@ -1439,7 +1458,7 @@ def bridge_create_faces(object, bm, faces, twist):
for i in range(len(faces)):
new_faces.append(bm.faces.new([bm.verts[v] for v in faces[i]]))
bm.normal_update()
- object.data.update(calc_edges=True) # calc_edges prevents memory-corruption
+ object.data.update(calc_edges=True) # calc_edges prevents memory-corruption
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
@@ -1451,8 +1470,10 @@ def bridge_create_faces(object, bm, faces, twist):
# calculate input loops
def bridge_get_input(bm):
# create list of internal edges, which should be skipped
- eks_of_selected_faces = [item for sublist in [face_edgekeys(face) for \
- face in bm.faces if face.select and not face.hide] for item in sublist]
+ eks_of_selected_faces = [
+ item for sublist in [face_edgekeys(face) for
+ face in bm.faces if face.select and not face.hide] for item in sublist
+ ]
edge_count = {}
for ek in eks_of_selected_faces:
if ek in edge_count:
@@ -1462,8 +1483,10 @@ def bridge_get_input(bm):
internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
# sort correct edges into loops
- selected_edges = [edgekey(edge) for edge in bm.edges if edge.select \
- and not edge.hide and edgekey(edge) not in internal_edges]
+ selected_edges = [
+ edgekey(edge) for edge in bm.edges if edge.select and
+ not edge.hide and edgekey(edge) not in internal_edges
+ ]
loops = get_connected_selections(selected_edges)
return(loops)
@@ -1473,31 +1496,35 @@ def bridge_get_input(bm):
def bridge_initialise(bm, interpolation):
if interpolation == 'cubic':
# dict with edge-key as key and list of connected valid faces as value
- face_blacklist = [face.index for face in bm.faces if face.select or \
- face.hide]
- edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not \
- edge.hide])
+ face_blacklist = [
+ face.index for face in bm.faces if face.select or
+ face.hide
+ ]
+ edge_faces = dict(
+ [[edgekey(edge), []] for edge in bm.edges if not edge.hide]
+ )
for face in bm.faces:
if face.index in face_blacklist:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face)
# dictionary with the edge-key as key and edge as value
- edgekey_to_edge = dict([[edgekey(edge), edge] for edge in \
- bm.edges if edge.select and not edge.hide])
+ edgekey_to_edge = dict(
+ [[edgekey(edge), edge] for edge in bm.edges if edge.select and not edge.hide]
+ )
else:
edge_faces = False
edgekey_to_edge = False
# selected faces input
- old_selected_faces = [face.index for face in bm.faces if face.select \
- and not face.hide]
+ old_selected_faces = [
+ face.index for face in bm.faces if face.select and not face.hide
+ ]
# find out if faces created by bridging should be smoothed
smooth = False
if bm.faces:
- if sum([face.smooth for face in bm.faces])/len(bm.faces) \
- >= 0.5:
+ if sum([face.smooth for face in bm.faces]) / len(bm.faces) >= 0.5:
smooth = True
return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)
@@ -1536,17 +1563,18 @@ def bridge_match_loops(bm, loops):
matches = dict([[i, []] for i in range(len(loops))])
matches_amount = 0
for i in range(len(loops) + 1):
- for j in range(i+1, len(loops)):
- if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
- + normals[j])).length and (centers[j] - centers[i]).length > \
- (centers[j] - (centers[i] + normals[i])).length:
+ for j in range(i + 1, len(loops)):
+ if (centers[i] - centers[j]).length > \
+ (centers[i] - (centers[j] + normals[j])).length and \
+ (centers[j] - centers[i]).length > \
+ (centers[j] - (centers[i] + normals[i])).length:
matches_amount += 1
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
# if no loops face each other, just make matches between all the loops
if matches_amount == 0:
for i in range(len(loops) + 1):
- for j in range(i+1, len(loops)):
+ for j in range(i + 1, len(loops)):
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
for key, value in matches.items():
@@ -1562,9 +1590,11 @@ def bridge_match_loops(bm, loops):
continue
shortest_distance = loop_matches[0][0]
shortest_distance *= 1.1
- loop_matches = [[abs(len(loops[loop_index][0]) - \
- len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
- loop_matches if loop[0] < shortest_distance]
+ loop_matches = [
+ [abs(len(loops[loop_index][0]) -
+ len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in
+ loop_matches if loop[0] < shortest_distance
+ ]
loop_matches.sort()
for match in loop_matches:
if match[3] not in new_order:
@@ -1582,8 +1612,9 @@ def bridge_match_loops(bm, loops):
def bridge_remove_internal_faces(bm, old_selected_faces):
# collect bmesh faces and internal bmesh edges
remove_faces = [bm.faces[face] for face in old_selected_faces]
- edges = collections.Counter([edge.index for face in remove_faces for \
- edge in face.edges])
+ edges = collections.Counter(
+ [edge.index for face in remove_faces for edge in face.edges]
+ )
remove_edges = [bm.edges[edge] for edge in edges if edges[edge] > 1]
# remove internal faces and edges
@@ -1602,8 +1633,8 @@ def bridge_save_unused_faces(bm, old_selected_faces, loops):
# key: vertex index, value: lists of selected faces using it
vertex_to_face = dict([[i, []] for i in range(len(bm.verts))])
- [[vertex_to_face[vertex.index].append(face) for vertex in \
- bm.faces[face].verts] for face in old_selected_faces]
+ [[vertex_to_face[vertex.index].append(face) for vertex in
+ bm.faces[face].verts] for face in old_selected_faces]
# group selected faces that are connected
groups = []
@@ -1617,8 +1648,10 @@ def bridge_save_unused_faces(bm, old_selected_faces, loops):
while new_faces:
grow_face = new_faces[0]
for vertex in bm.faces[grow_face].verts:
- vertex_face_group = [face for face in vertex_to_face[\
- vertex.index] if face not in grouped_faces]
+ vertex_face_group = [
+ face for face in vertex_to_face[vertex.index] if
+ face not in grouped_faces
+ ]
new_faces += vertex_face_group
grouped_faces += vertex_face_group
group += vertex_face_group
@@ -1656,13 +1689,15 @@ def bridge_select_new_faces(new_faces, smooth):
# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(bm, loops, loft_loop):
# simplify loops to single points, and prepare for pathfinding
- x, y, z = [[sum([bm.verts[i].co[j] for i in loop[0]]) / \
- len(loop[0]) for loop in loops] for j in range(3)]
+ x, y, z = [
+ [sum([bm.verts[i].co[j] for i in loop[0]]) /
+ len(loop[0]) for loop in loops] for j in range(3)
+ ]
nodes = [mathutils.Vector((x[i], y[i], z[i])) for i in range(len(loops))]
active_node = 0
open = [i for i in range(1, len(loops))]
- path = [[0,0]]
+ path = [[0, 0]]
# connect node to path, that is shortest to active_node
while len(open) > 0:
distances = [(nodes[active_node] - nodes[i]).length for i in open]
@@ -1671,7 +1706,7 @@ def bridge_sort_loops(bm, loops, loft_loop):
path.append([active_node, min(distances)])
# check if we didn't start in the middle of the path
for i in range(2, len(path)):
- if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
+ if (nodes[path[i][0]] - nodes[0]).length < path[i][1]:
temp = path[:i]
path.reverse()
path = path[:-i] + temp
@@ -1688,21 +1723,23 @@ def bridge_sort_loops(bm, loops, loft_loop):
# remapping old indices to new position in list
def bridge_update_old_selection(bm, old_selected_faces):
- #old_indices = old_selected_faces[:]
- #old_selected_faces = []
- #for i, face in enumerate(bm.faces):
- # if face.index in old_indices:
- # old_selected_faces.append(i)
-
- old_selected_faces = [i for i, face in enumerate(bm.faces) if face.index \
- in old_selected_faces]
+ """
+ old_indices = old_selected_faces[:]
+ old_selected_faces = []
+ for i, face in enumerate(bm.faces):
+ if face.index in old_indices:
+ old_selected_faces.append(i)
+ """
+ old_selected_faces = [
+ i for i, face in enumerate(bm.faces) if face.index in old_selected_faces
+ ]
return(old_selected_faces)
-##########################################
-####### Circle functions #################
-##########################################
+# ########################################
+# ##### Circle functions #################
+# ########################################
# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(bm_mod, loop, com, normal):
@@ -1742,22 +1779,22 @@ def circle_calculate_best_fit(locs_2d):
jmat = []
k = []
for v in locs_2d:
- d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
- jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
- k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
+ d = (v[0] ** 2 - 2.0 * x0 * v[0] + v[1] ** 2 - 2.0 * y0 * v[1] + x0 ** 2 + y0 ** 2) ** 0.5
+ jmat.append([(x0 - v[0]) / d, (y0 - v[1]) / d, -1.0])
+ k.append(-(((v[0] - x0) ** 2 + (v[1] - y0) ** 2) ** 0.5 - r))
jmat2 = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
k2 = mathutils.Vector((0.0, 0.0, 0.0))
for i in range(len(jmat)):
- k2 += mathutils.Vector(jmat[i])*k[i]
- jmat2[0][0] += jmat[i][0]**2
- jmat2[1][0] += jmat[i][0]*jmat[i][1]
- jmat2[2][0] += jmat[i][0]*jmat[i][2]
- jmat2[1][1] += jmat[i][1]**2
- jmat2[2][1] += jmat[i][1]*jmat[i][2]
- jmat2[2][2] += jmat[i][2]**2
+ k2 += mathutils.Vector(jmat[i]) * k[i]
+ jmat2[0][0] += jmat[i][0] ** 2
+ jmat2[1][0] += jmat[i][0] * jmat[i][1]
+ jmat2[2][0] += jmat[i][0] * jmat[i][2]
+ jmat2[1][1] += jmat[i][1] ** 2
+ jmat2[2][1] += jmat[i][1] * jmat[i][2]
+ jmat2[2][2] += jmat[i][2] ** 2
jmat2[0][1] = jmat2[1][0]
jmat2[0][2] = jmat2[2][0]
jmat2[1][2] = jmat2[2][1]
@@ -1770,7 +1807,7 @@ def circle_calculate_best_fit(locs_2d):
y0 += dy0
r += dr
# stop iterating if we're close enough to optimal solution
- if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
+ if abs(dx0) < 1e-6 and abs(dy0) < 1e-6 and abs(dr) < 1e-6:
break
# return center of circle and radius
@@ -1780,11 +1817,11 @@ def circle_calculate_best_fit(locs_2d):
# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
# center of circle
- x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
- y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
+ x0 = (min([i[0] for i in locs_2d]) + max([i[0] for i in locs_2d])) / 2.0
+ y0 = (min([i[1] for i in locs_2d]) + max([i[1] for i in locs_2d])) / 2.0
center = mathutils.Vector([x0, y0])
# radius of circle
- r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
+ r = min([(mathutils.Vector([i[0], i[1]]) - center).length for i in locs_2d])
# return center of circle and radius
return(x0, y0, r)
@@ -1795,12 +1832,12 @@ def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
# changing 2d coordinates back to 3d coordinates
locs_3d = []
for loc in locs_2d:
- locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
+ locs_3d.append([loc[2], loc[0] * p + loc[1] * q + com])
- if flatten: # flat circle
+ if flatten: # flat circle
return(locs_3d)
- else: # project the locations on the existing mesh
+ else: # project the locations on the existing mesh
vert_edges = dict_vert_edges(bm_mod)
vert_faces = dict_vert_faces(bm_mod)
faces = [f for f in bm_mod.faces if not f.hide]
@@ -1808,21 +1845,21 @@ def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
new_locs = []
for loc in locs_3d:
projection = False
- if bm_mod.verts[loc[0]].co == loc[1]: # vertex hasn't moved
+ if bm_mod.verts[loc[0]].co == loc[1]: # vertex hasn't moved
projection = loc[1]
else:
- dif = normal.angle(loc[1]-bm_mod.verts[loc[0]].co)
- if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
+ dif = normal.angle(loc[1] - bm_mod.verts[loc[0]].co)
+ if -1e-6 < dif < 1e-6 or math.pi - 1e-6 < dif < math.pi + 1e-6:
# original location is already along projection normal
projection = bm_mod.verts[loc[0]].co
else:
# quick search through adjacent faces
for face in vert_faces[loc[0]]:
verts = [v.co for v in bm_mod.faces[face].verts]
- if len(verts) == 3: # triangle
+ if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
- else: # assume quad
+ else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.\
@@ -1843,8 +1880,9 @@ def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
for edgekey in vert_edges[loc[0]]:
line1 = bm_mod.verts[edgekey[0]].co
line2 = bm_mod.verts[edgekey[1]].co
- intersect, dist = mathutils.geometry.intersect_point_line(\
- loc[1], line1, line2)
+ intersect, dist = mathutils.geometry.intersect_point_line(
+ loc[1], line1, line2
+ )
if 1e-6 < dist < 1 - 1e-6:
projection = intersect
break
@@ -1853,21 +1891,23 @@ def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
hits = []
for face in faces:
verts = [v.co for v in face.verts]
- if len(verts) == 3: # triangle
+ if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
- else: # assume quad
+ else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
- intersect = mathutils.geometry.intersect_ray_tri(\
- v1, v2, v3, ray, loc[1])
+ intersect = mathutils.geometry.intersect_ray_tri(
+ v1, v2, v3, ray, loc[1]
+ )
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
elif v4:
- intersect = mathutils.geometry.intersect_ray_tri(\
- v1, v3, v4, ray, loc[1])
+ intersect = mathutils.geometry.intersect_ray_tri(
+ v1, v3, v4, ray, loc[1]
+ )
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
@@ -1912,8 +1952,8 @@ def circle_check_loops(single_loops, loops, mapping, bm_mod):
loc0 = loc1
loc1 = locn
continue
- d1 = loc1-loc0
- d2 = locn-loc1
+ d1 = loc1 - loc0
+ d2 = locn - loc1
if -1e-6 < d1.angle(d2, 0) < 1e-6:
loc0 = loc1
loc1 = locn
@@ -1924,7 +1964,7 @@ def circle_check_loops(single_loops, loops, mapping, bm_mod):
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
- valid_single_loops[len(valid_loops)-1] = single_loops[i]
+ valid_single_loops[len(valid_loops) - 1] = single_loops[i]
return(valid_single_loops, valid_loops)
@@ -1934,7 +1974,7 @@ def circle_flatten_singles(bm_mod, com, p, q, normal, single_loop):
new_locs = []
for vert in single_loop:
loc = mathutils.Vector(bm_mod.verts[vert].co[:])
- new_locs.append([vert, loc - (loc-com).dot(normal)*normal])
+ new_locs.append([vert, loc - (loc - com).dot(normal) * normal])
return(new_locs)
@@ -1952,39 +1992,48 @@ def circle_get_input(object, bm, scene):
break
if faces:
# get selected, non-hidden , non-internal edge-keys
- eks_selected = [key for keys in [face_edgekeys(face) for face in \
- bm_mod.faces if face.select and not face.hide] for key in keys]
+ eks_selected = [
+ key for keys in [face_edgekeys(face) for face in
+ bm_mod.faces if face.select and not face.hide] for key in keys
+ ]
edge_count = {}
for ek in eks_selected:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
- edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
- and not edge.hide and edge_count.get(edgekey(edge), 1)==1]
+ edge_keys = [
+ edgekey(edge) for edge in bm_mod.edges if edge.select and
+ not edge.hide and edge_count.get(edgekey(edge), 1) == 1
+ ]
else:
# no faces, so no internal edges either
- edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
- and not edge.hide]
+ edge_keys = [
+ edgekey(edge) for edge in bm_mod.edges if edge.select and not edge.hide
+ ]
# add edge-keys around single vertices
- verts_connected = dict([[vert, 1] for edge in [edge for edge in \
- bm_mod.edges if edge.select and not edge.hide] for vert in \
- edgekey(edge)])
- single_vertices = [vert.index for vert in bm_mod.verts if \
- vert.select and not vert.hide and not \
- verts_connected.get(vert.index, False)]
-
- if single_vertices and len(bm.faces)>0:
- vert_to_single = dict([[v.index, []] for v in bm_mod.verts \
- if not v.hide])
- for face in [face for face in bm_mod.faces if not face.select \
- and not face.hide]:
+ verts_connected = dict(
+ [[vert, 1] for edge in [edge for edge in
+ bm_mod.edges if edge.select and not edge.hide] for vert in
+ edgekey(edge)]
+ )
+ single_vertices = [
+ vert.index for vert in bm_mod.verts if
+ vert.select and not vert.hide and
+ not verts_connected.get(vert.index, False)
+ ]
+
+ if single_vertices and len(bm.faces) > 0:
+ vert_to_single = dict(
+ [[v.index, []] for v in bm_mod.verts if not v.hide]
+ )
+ for face in [face for face in bm_mod.faces if not face.select and not face.hide]:
for vert in face.verts:
vert = vert.index
if vert in single_vertices:
for ek in face_edgekeys(face):
- if not vert in ek:
+ if vert not in ek:
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
@@ -1997,7 +2046,7 @@ def circle_get_input(object, bm, scene):
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
- if single_vertices and len(bm.faces)>0:
+ if single_vertices and len(bm.faces) > 0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
@@ -2013,8 +2062,8 @@ def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
- altx = newx*(influence/100)+ oldx*((100-influence)/100)
- alty = newy*(influence/100)+ oldy*((100-influence)/100)
+ altx = newx * (influence / 100) + oldx * ((100 - influence) / 100)
+ alty = newy * (influence / 100) + oldy * ((100 - influence) / 100)
locs_2d[i] = [altx, alty, j]
return(locs_2d)
@@ -2024,7 +2073,7 @@ def circle_influence_locs(locs_2d, new_locs_2d, influence):
def circle_project_non_regular(locs_2d, x0, y0, r):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
- loc = mathutils.Vector([x-x0, y-y0])
+ loc = mathutils.Vector([x - x0, y - y0])
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
@@ -2035,14 +2084,14 @@ def circle_project_non_regular(locs_2d, x0, y0, r):
def circle_project_regular(locs_2d, x0, y0, r):
# find offset angle and circling direction
x, y, i = locs_2d[0]
- loc = mathutils.Vector([x-x0, y-y0])
+ loc = mathutils.Vector([x - x0, y - y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
- loca = mathutils.Vector([x-x0, y-y0, 0.0])
+ loca = mathutils.Vector([x - x0, y - y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
- locb = mathutils.Vector([x-x0, y-y0, 0.0])
+ locb = mathutils.Vector([x - x0, y - y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
@@ -2060,8 +2109,9 @@ def circle_project_regular(locs_2d, x0, y0, r):
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
verts, circular = loop
- distances = [[(bm_mod.verts[vert].co - com).length, i] \
- for i, vert in enumerate(verts)]
+ distances = [
+ [(bm_mod.verts[vert].co - com).length, i] for i, vert in enumerate(verts)
+ ]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
@@ -2069,9 +2119,9 @@ def circle_shift_loop(bm_mod, loop, com):
return(loop)
-##########################################
-####### Curve functions ##################
-##########################################
+# ########################################
+# ##### Curve functions ##################
+# ########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
@@ -2085,7 +2135,7 @@ def curve_calculate_knots(loop, verts_selected):
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
- kdif.append(kpos[i+1] - kpos[i])
+ kdif.append(kpos[i + 1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
@@ -2093,53 +2143,52 @@ def curve_calculate_knots(loop, verts_selected):
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
- #elif k > offset:
+ # elif k > offset:
# kadd.append([kdif.index(k), False])
kins = []
krot = False
- for k in kadd: # extra knots to be added
- if k[1]: # big gap (break circular spline)
+ for k in kadd: # extra knots to be added
+ if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset
if kpos > len(loop[0]) - 1:
kpos -= len(loop[0])
kins.append([knots[k[0]], loop[0][kpos]])
kpos2 = k[0] + 1
- if kpos2 > len(knots)-1:
+ if kpos2 > len(knots) - 1:
kpos2 -= len(knots)
kpos2 = loop[0].index(knots[kpos2]) - offset
if kpos2 < 0:
kpos2 += len(loop[0])
kins.append([loop[0][kpos], loop[0][kpos2]])
krot = loop[0][kpos2]
- else: # small gap (keep circular spline)
+ else: # small gap (keep circular spline)
k1 = loop[0].index(knots[k[0]])
k2 = k[0] + 1
- if k2 > len(knots)-1:
+ if k2 > len(knots) - 1:
k2 -= len(knots)
k2 = loop[0].index(knots[k2])
if k2 < k1:
dif = len(loop[0]) - 1 - k1 + k2
else:
dif = k2 - k1
- kn = k1 + int(dif/2)
+ kn = k1 + int(dif / 2)
if kn > len(loop[0]) - 1:
kn -= len(loop[0])
kins.append([loop[0][k1], loop[0][kn]])
- for j in kins: # insert new knots
+ for j in kins: # insert new knots
knots.insert(knots.index(j[0]) + 1, j[1])
- if not krot: # circular loop
+ if not krot: # circular loop
knots.append(knots[0])
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[0]) + 1]
- else: # non-circular loop (broken by script)
+ else: # non-circular loop (broken by script)
krot = knots.index(krot)
knots = knots[krot:] + knots[0:krot]
if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
points = loop[0][loop[0].index(knots[0]):]
- points += loop[0][0:loop[0].index(knots[-1])+1]
+ points += loop[0][0:loop[0].index(knots[-1]) + 1]
else:
- points = loop[0][loop[0].index(knots[0]):\
- loop[0].index(knots[-1]) + 1]
+ points = loop[0][loop[0].index(knots[0]):loop[0].index(knots[-1]) + 1]
# non-circular loop, add first and last point as knots
else:
if loop[0][0] not in knots:
@@ -2158,12 +2207,12 @@ def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
for p in points:
if p in knots:
- loc = pknots[knots.index(p)] # use projected knot location
+ loc = pknots[knots.index(p)] # use projected knot location
else:
loc = mathutils.Vector(bm_mod.verts[p].co[:])
if not loc_prev:
loc_prev = loc
- len_total += (loc-loc_prev).length
+ len_total += (loc - loc_prev).length
tpoints.append(len_total)
loc_prev = loc
tknots = []
@@ -2210,22 +2259,22 @@ interpolation, restriction):
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
- x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
+ x = ax + bx * (m - tx) + cx * (m - tx) ** 2 + dx * (m - tx) ** 3
ay, by, cy, dy, ty = splines[n][1]
- y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
+ y = ay + by * (m - ty) + cy * (m - ty) ** 2 + dy * (m - ty) ** 3
az, bz, cz, dz, tz = splines[n][2]
- z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
- newloc = mathutils.Vector([x,y,z])
- else: # interpolation == 'linear'
+ z = az + bz * (m - tz) + cz * (m - tz) ** 2 + dz * (m - tz) ** 3
+ newloc = mathutils.Vector([x, y, z])
+ else: # interpolation == 'linear'
a, d, t, u = splines[n]
- newloc = ((m-t)/u)*d + a
+ newloc = ((m - t) / u) * d + a
- if restriction != 'none': # vertex movement is restricted
+ if restriction != 'none': # vertex movement is restricted
newlocs[p] = newloc
- else: # set the vertex to its new location
+ else: # set the vertex to its new location
move.append([p, newloc])
- if restriction != 'none': # vertex movement is restricted
+ if restriction != 'none': # vertex movement is restricted
for p in points:
if p in newlocs:
newloc = newlocs[p]
@@ -2237,10 +2286,10 @@ interpolation, restriction):
dloc = newloc - oldloc
if dloc.length < 1e-6:
move.append([p, newloc])
- elif restriction == 'extrude': # only extrusions
+ elif restriction == 'extrude': # only extrusions
if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
move.append([p, newloc])
- else: # restriction == 'indent' only indentations
+ else: # restriction == 'indent' only indentations
if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
move.append([p, newloc])
@@ -2273,8 +2322,9 @@ def curve_get_input(object, bm, boundaries, scene):
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# vertices that still need a loop to run through it
- verts_unsorted = [v.index for v in bm_mod.verts if \
- v.select and not v.hide]
+ verts_unsorted = [
+ v.index for v in bm_mod.verts if v.select and not v.hide
+ ]
# necessary dictionaries
vert_edges = dict_vert_edges(bm_mod)
edge_faces = dict_edge_faces(bm_mod)
@@ -2334,8 +2384,9 @@ def curve_perpendicular_loops(bm_mod, start_loop, vert_edges, edge_faces):
perp_loops.append([loop, circular, loop.index(start_vert)])
# trim loops to same lengths
- shortest = [[len(loop[0]), i] for i, loop in enumerate(perp_loops)\
- if not loop[1]]
+ shortest = [
+ [len(loop[0]), i] for i, loop in enumerate(perp_loops) if not loop[1]
+ ]
if not shortest:
# all loops are circular, not trimming
return([[loop[0], loop[1]] for loop in perp_loops])
@@ -2364,7 +2415,7 @@ def curve_perpendicular_loops(bm_mod, start_loop, vert_edges, edge_faces):
loop[2] += shift
if loop[2] < 0:
loop[2] += len(loop[0])
- elif loop[2] > len(loop[0]) -1:
+ elif loop[2] > len(loop[0]) - 1:
loop[2] -= len(loop[0])
# trim
start = max(0, loop[2] - before_start)
@@ -2385,37 +2436,35 @@ def curve_project_knots(bm_mod, verts_selected, knots, points, circular):
p = v3.project(v2)
return(p + v1)
- if circular: # project all knots
+ if circular: # project all knots
start = 0
end = len(knots)
pknots = []
- else: # first and last knot shouldn't be projected
+ else: # first and last knot shouldn't be projected
start = 1
end = -1
pknots = [mathutils.Vector(bm_mod.verts[knots[0]].co[:])]
for knot in knots[start:end]:
if knot in verts_selected:
knot_left = knot_right = False
- for i in range(points.index(knot)-1, -1*len(points), -1):
+ for i in range(points.index(knot) - 1, -1 * len(points), -1):
if points[i] not in knots:
knot_left = points[i]
break
- for i in range(points.index(knot)+1, 2*len(points)):
+ for i in range(points.index(knot) + 1, 2 * len(points)):
if i > len(points) - 1:
i -= len(points)
if points[i] not in knots:
knot_right = points[i]
break
if knot_left and knot_right and knot_left != knot_right:
- knot_left = mathutils.Vector(\
- bm_mod.verts[knot_left].co[:])
- knot_right = mathutils.Vector(\
- bm_mod.verts[knot_right].co[:])
+ knot_left = mathutils.Vector(bm_mod.verts[knot_left].co[:])
+ knot_right = mathutils.Vector(bm_mod.verts[knot_right].co[:])
knot = mathutils.Vector(bm_mod.verts[knot].co[:])
pknots.append(project(knot_left, knot_right, knot))
else:
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
- else: # knot isn't selected, so shouldn't be changed
+ else: # knot isn't selected, so shouldn't be changed
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
if not circular:
pknots.append(mathutils.Vector(bm_mod.verts[knots[-1]].co[:]))
@@ -2478,14 +2527,15 @@ def curve_vertex_loops(bm_mod, start_vert, vert_edges, edge_faces):
return(loops)
-##########################################
-####### Flatten functions ################
-##########################################
+# ########################################
+# ##### Flatten functions ################
+# ########################################
# sort input into loops
def flatten_get_input(bm):
- vert_verts = dict_vert_verts([edgekey(edge) for edge in bm.edges \
- if edge.select and not edge.hide])
+ vert_verts = dict_vert_verts(
+ [edgekey(edge) for edge in bm.edges if edge.select and not edge.hide]
+ )
verts = [v.index for v in bm.verts if v.select and not v.hide]
# no connected verts, consider all selected verts as a single input
@@ -2519,15 +2569,17 @@ def flatten_get_input(bm):
# calculate position of vertex projections on plane
def flatten_project(bm, loop, com, normal):
verts = [bm.verts[v] for v in loop[0]]
- verts_projected = [[v.index, mathutils.Vector(v.co[:]) - \
- (mathutils.Vector(v.co[:])-com).dot(normal)*normal] for v in verts]
+ verts_projected = [
+ [v.index, mathutils.Vector(v.co[:]) -
+ (mathutils.Vector(v.co[:]) - com).dot(normal) * normal] for v in verts
+ ]
return(verts_projected)
-##########################################
-####### Gstretch functions ###############
-##########################################
+# ########################################
+# ##### Gstretch functions ###############
+# ########################################
# fake stroke class, used to create custom strokes if no GP data is found
class gstretch_fake_stroke():
@@ -2599,7 +2651,6 @@ def gstretch_calculate_verts(loop, stroke, object, bm_mod, method):
return(None)
if method == 'project':
- projection_vectors = []
vert_edges = dict_vert_edges(bm_mod)
for v_index in loop[0]:
@@ -2628,7 +2679,7 @@ def gstretch_calculate_verts(loop, stroke, object, bm_mod, method):
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
- else: # method == 'irregular'
+ else: # method == 'irregular'
relative_distance = relative_lengths[i]
loc, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
@@ -2661,8 +2712,7 @@ conversion_distance, conversion_max, conversion_min, conversion_vertices):
if conversion == 'distance':
method = 'project'
prev_point = stroke.points[0]
- stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
- prev_point.co))
+ stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * prev_point.co))
distance = 0
limit = conversion_distance
for point in stroke.points:
@@ -2672,8 +2722,7 @@ conversion_distance, conversion_max, conversion_min, conversion_vertices):
to_cover = limit - distance + (limit * iteration)
new_loc = prev_point.co + to_cover * \
(point.co - prev_point.co).normalized()
- stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
- new_loc))
+ stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * new_loc))
new_distance -= limit
iteration += 1
distance = new_distance
@@ -2682,14 +2731,12 @@ conversion_distance, conversion_max, conversion_min, conversion_vertices):
else:
# add vertices at stroke points
for point in stroke.points[:end_point]:
- stroke_verts[-1][1].append(bm_mod.verts.new(\
- mat_world * point.co))
+ stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * point.co))
# add more vertices, beyond the points that are available
if min_end_point > min(len(stroke.points), end_point):
for i in range(min_end_point -
(min(len(stroke.points), end_point))):
- stroke_verts[-1][1].append(bm_mod.verts.new(\
- mat_world * point.co))
+ stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * point.co))
# force even spreading of points, so they are placed on stroke
method = 'regular'
bm_mod.verts.ensure_lookup_table()
@@ -2705,7 +2752,7 @@ conversion_distance, conversion_max, conversion_min, conversion_vertices):
# create edges
for i, vert in enumerate(verts_seq):
if i > 0:
- bm_mod.edges.new((verts_seq[i-1], verts_seq[i]))
+ bm_mod.edges.new((verts_seq[i - 1], verts_seq[i]))
vert.select = True
# connect single vertices to the closest stroke
if singles:
@@ -2727,8 +2774,10 @@ def gstretch_erase_stroke(stroke, context):
'pen_flip': False,
'is_start': False,
'location': (0, 0, 0),
- 'mouse': (view3d_utils.location_3d_to_region_2d(\
- context.region, context.space_data.region_3d, loc)),
+ 'mouse': (
+ view3d_utils.location_3d_to_region_2d(
+ context.region, context.space_data.region_3d, loc)
+ ),
'pressure': 1,
'size': 0,
'time': 0}
@@ -2750,8 +2799,7 @@ def gstretch_eval_stroke(stroke, distance, stroke_lengths_cache=False):
if not stroke_lengths_cache:
lengths = [0]
for i, p in enumerate(stroke.points[1:]):
- lengths.append((p.co - stroke.points[i].co).length + \
- lengths[-1])
+ lengths.append((p.co - stroke.points[i].co).length + lengths[-1])
total_length = max(lengths[-1], 1e-7)
stroke_lengths_cache = [length / total_length for length in
lengths]
@@ -2766,14 +2814,12 @@ def gstretch_eval_stroke(stroke, distance, stroke_lengths_cache=False):
stroke_lengths.append(distance)
stroke_lengths.sort()
stroke_index = stroke_lengths.index(distance)
- interval_length = stroke_lengths[stroke_index+1] - \
- stroke_lengths[stroke_index-1]
- distance_relative = (distance - stroke_lengths[stroke_index-1]) / \
- interval_length
- interval_vector = stroke.points[stroke_index].co - \
- stroke.points[stroke_index-1].co
- loc = stroke.points[stroke_index-1].co + \
- distance_relative * interval_vector
+ interval_length = stroke_lengths[
+ stroke_index + 1] - stroke_lengths[stroke_index - 1
+ ]
+ distance_relative = (distance - stroke_lengths[stroke_index - 1]) / interval_length
+ interval_vector = stroke.points[stroke_index].co - stroke.points[stroke_index - 1].co
+ loc = stroke.points[stroke_index - 1].co + distance_relative * interval_vector
return(loc, stroke_lengths_cache)
@@ -2841,7 +2887,7 @@ def gstretch_match_loops_strokes(loops, strokes, object, bm_mod):
distances.sort()
best_stroke = distances[0][2]
ls_pairs.append([lc[1], stroke_centers[best_stroke][1]])
- stroke_centers[best_stroke][2] += 1 # increase stroke use count
+ stroke_centers[best_stroke][2] += 1 # increase stroke use count
return(ls_pairs)
@@ -2897,8 +2943,10 @@ def gstretch_match_single_verts(bm_mod, strokes, mat_world):
def gstretch_relative_lengths(loop, bm_mod):
lengths = [0]
for i, v_index in enumerate(loop[0][1:]):
- lengths.append((bm_mod.verts[v_index].co - \
- bm_mod.verts[loop[0][i]].co).length + lengths[-1])
+ lengths.append(
+ (bm_mod.verts[v_index].co -
+ bm_mod.verts[loop[0][i]].co).length + lengths[-1]
+ )
total_length = max(lengths[-1], 1e-7)
relative_lengths = [length / total_length for length in
lengths]
@@ -2950,9 +2998,9 @@ def gstretch_update_min(self, context):
lt.gstretch_conversion_min = lt.gstretch_conversion_max
-##########################################
-####### Relax functions ##################
-##########################################
+# ########################################
+# ##### Relax functions ##################
+# ########################################
# create lists with knots and points, all correctly sorted
def relax_calculate_knots(loops):
@@ -2962,21 +3010,21 @@ def relax_calculate_knots(loops):
knots = [[], []]
points = [[], []]
if circular:
- if len(loop)%2 == 1: # odd
+ if len(loop) % 2 == 1: # odd
extend = [False, True, 0, 1, 0, 1]
- else: # even
+ else: # even
extend = [True, False, 0, 1, 1, 2]
else:
- if len(loop)%2 == 1: # odd
+ if len(loop) % 2 == 1: # odd
extend = [False, False, 0, 1, 1, 2]
- else: # even
+ else: # even
extend = [False, False, 0, 1, 1, 2]
for j in range(2):
if extend[j]:
loop = [loop[-1]] + loop + [loop[0]]
- for i in range(extend[2+2*j], len(loop), 2):
+ for i in range(extend[2 + 2 * j], len(loop), 2):
knots[j].append(loop[i])
- for i in range(extend[3+2*j], len(loop), 2):
+ for i in range(extend[3 + 2 * j], len(loop), 2):
if loop[i] == loop[-1] and not circular:
continue
if len(points[j]) == 0:
@@ -3003,14 +3051,14 @@ def relax_calculate_t(bm_mod, knots, points, regular):
all_tpoints = []
for i in range(len(knots)):
amount = len(knots[i]) + len(points[i])
- mix = []
+ mix = []
for j in range(amount):
- if j%2 == 0:
- mix.append([True, knots[i][round(j/2)]])
- elif j == amount-1:
+ if j % 2 == 0:
+ mix.append([True, knots[i][round(j / 2)]])
+ elif j == amount - 1:
mix.append([True, knots[i][-1]])
else:
- mix.append([False, points[i][int(j/2)]])
+ mix.append([False, points[i][int(j / 2)]])
len_total = 0
loc_prev = False
tknots = []
@@ -3028,7 +3076,7 @@ def relax_calculate_t(bm_mod, knots, points, regular):
if regular:
tpoints = []
for p in range(len(points[i])):
- tpoints.append((tknots[p] + tknots[p+1]) / 2)
+ tpoints.append((tknots[p] + tknots[p + 1]) / 2)
all_tknots.append(tknots)
all_tpoints.append(tpoints)
@@ -3049,7 +3097,7 @@ points, splines):
t = tknots[i][:]
t.append(m)
t.sort()
- n = t.index(m)-1
+ n = t.index(m) - 1
if n > len(splines[i]) - 1:
n = len(splines[i]) - 1
elif n < 0:
@@ -3057,26 +3105,26 @@ points, splines):
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[i][n][0]
- x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
+ x = ax + bx * (m - tx) + cx * (m - tx) ** 2 + dx * (m - tx) ** 3
ay, by, cy, dy, ty = splines[i][n][1]
- y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
+ y = ay + by * (m - ty) + cy * (m - ty) ** 2 + dy * (m - ty) ** 3
az, bz, cz, dz, tz = splines[i][n][2]
- z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
- change.append([p, mathutils.Vector([x,y,z])])
- else: # interpolation == 'linear'
+ z = az + bz * (m - tz) + cz * (m - tz) ** 2 + dz * (m - tz) ** 3
+ change.append([p, mathutils.Vector([x, y, z])])
+ else: # interpolation == 'linear'
a, d, t, u = splines[i][n]
if u == 0:
u = 1e-8
- change.append([p, ((m-t)/u)*d + a])
+ change.append([p, ((m - t) / u) * d + a])
for c in change:
move.append([c[0], (bm_mod.verts[c[0]].co + c[1]) / 2])
return(move)
-##########################################
-####### Space functions ##################
-##########################################
+# ########################################
+# ##### Space functions ##################
+# ########################################
# calculate relative positions compared to first knot
def space_calculate_t(bm_mod, knots):
@@ -3117,77 +3165,95 @@ splines):
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
- x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
+ x = ax + bx * (m - tx) + cx * (m - tx) ** 2 + dx * (m - tx) ** 3
ay, by, cy, dy, ty = splines[n][1]
- y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
+ y = ay + by * (m - ty) + cy * (m - ty) ** 2 + dy * (m - ty) ** 3
az, bz, cz, dz, tz = splines[n][2]
- z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
- move.append([p, mathutils.Vector([x,y,z])])
- else: # interpolation == 'linear'
+ z = az + bz * (m - tz) + cz * (m - tz) ** 2 + dz * (m - tz) ** 3
+ move.append([p, mathutils.Vector([x, y, z])])
+ else: # interpolation == 'linear'
a, d, t, u = splines[n]
- move.append([p, ((m-t)/u)*d + a])
+ move.append([p, ((m - t) / u) * d + a])
return(move)
-##########################################
-####### Operators ########################
-##########################################
+# ########################################
+# ##### Operators ########################
+# ########################################
# bridge operator
-class Bridge(bpy.types.Operator):
+class Bridge(Operator):
bl_idname = 'mesh.looptools_bridge'
bl_label = "Bridge / Loft"
bl_description = "Bridge two, or loft several, loops of vertices"
bl_options = {'REGISTER', 'UNDO'}
- cubic_strength = bpy.props.FloatProperty(name = "Strength",
- description = "Higher strength results in more fluid curves",
- default = 1.0,
- soft_min = -3.0,
- soft_max = 3.0)
- interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
- items = (('cubic', "Cubic", "Gives curved results"),
+ cubic_strength = FloatProperty(
+ name="Strength",
+ description="Higher strength results in more fluid curves",
+ default=1.0,
+ soft_min=-3.0,
+ soft_max=3.0
+ )
+ interpolation = EnumProperty(
+ name="Interpolation mode",
+ items=(('cubic', "Cubic", "Gives curved results"),
('linear', "Linear", "Basic, fast, straight interpolation")),
- description = "Interpolation mode: algorithm used when creating "\
- "segments",
- default = 'cubic')
- loft = bpy.props.BoolProperty(name = "Loft",
- description = "Loft multiple loops, instead of considering them as "\
- "a multi-input for bridging",
- default = False)
- loft_loop = bpy.props.BoolProperty(name = "Loop",
- description = "Connect the first and the last loop with each other",
- default = False)
- min_width = bpy.props.IntProperty(name = "Minimum width",
- description = "Segments with an edge smaller than this are merged "\
- "(compared to base edge)",
- default = 0,
- min = 0,
- max = 100,
- subtype = 'PERCENTAGE')
- mode = bpy.props.EnumProperty(name = "Mode",
- items = (('basic', "Basic", "Fast algorithm"), ('shortest',
- "Shortest edge", "Slower algorithm with better vertex matching")),
- description = "Algorithm used for bridging",
- default = 'shortest')
- remove_faces = bpy.props.BoolProperty(name = "Remove faces",
- description = "Remove faces that are internal after bridging",
- default = True)
- reverse = bpy.props.BoolProperty(name = "Reverse",
- description = "Manually override the direction in which the loops "\
- "are bridged. Only use if the tool gives the wrong " \
- "result",
- default = False)
- segments = bpy.props.IntProperty(name = "Segments",
- description = "Number of segments used to bridge the gap "\
- "(0 = automatic)",
- default = 1,
- min = 0,
- soft_max = 20)
- twist = bpy.props.IntProperty(name = "Twist",
- description = "Twist what vertices are connected to each other",
- default = 0)
+ description="Interpolation mode: algorithm used when creating "
+ "segments",
+ default='cubic'
+ )
+ loft = BoolProperty(
+ name="Loft",
+ description="Loft multiple loops, instead of considering them as "
+ "a multi-input for bridging",
+ default=False
+ )
+ loft_loop = BoolProperty(
+ name="Loop",
+ description="Connect the first and the last loop with each other",
+ default=False
+ )
+ min_width = IntProperty(
+ name="Minimum width",
+ description="Segments with an edge smaller than this are merged "
+ "(compared to base edge)",
+ default=0,
+ min=0,
+ max=100,
+ subtype='PERCENTAGE'
+ )
+ mode = EnumProperty(
+ name="Mode",
+ items=(('basic', "Basic", "Fast algorithm"),
+ ('shortest', "Shortest edge", "Slower algorithm with better vertex matching")),
+ description="Algorithm used for bridging",
+ default='shortest'
+ )
+ remove_faces = BoolProperty(
+ name="Remove faces",
+ description="Remove faces that are internal after bridging",
+ default=True
+ )
+ reverse = BoolProperty(
+ name="Reverse",
+ description="Manually override the direction in which the loops "
+ "are bridged. Only use if the tool gives the wrong result",
+ default=False
+ )
+ segments = IntProperty(
+ name="Segments",
+ description="Number of segments used to bridge the gap (0=automatic)",
+ default=1,
+ min=0,
+ soft_max=20
+ )
+ twist = IntProperty(
+ name="Twist",
+ description="Twist what vertices are connected to each other",
+ default=0
+ )
@classmethod
def poll(cls, context):
@@ -3196,7 +3262,7 @@ class Bridge(bpy.types.Operator):
def draw(self, context):
layout = self.layout
- #layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
+ # layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
# top row
col_top = layout.column(align=True)
@@ -3220,7 +3286,7 @@ class Bridge(bpy.types.Operator):
# override properties
col_top.separator()
- row = layout.row(align = True)
+ row = layout.row(align=True)
row.prop(self, "twist")
row.prop(self, "reverse")
@@ -3261,20 +3327,22 @@ class Bridge(bpy.types.Operator):
# calculate new geometry
vertices = []
faces = []
- max_vert_index = len(bm.verts)-1
+ max_vert_index = len(bm.verts) - 1
for i in range(1, len(loops)):
- if not self.loft and i%2 == 0:
+ if not self.loft and i % 2 == 0:
continue
- lines = bridge_calculate_lines(bm, loops[i-1:i+1],
+ lines = bridge_calculate_lines(bm, loops[i - 1:i + 1],
self.mode, self.twist, self.reverse)
vertex_normals = bridge_calculate_virtual_vertex_normals(bm,
- lines, loops[i-1:i+1], edge_faces, edgekey_to_edge)
+ lines, loops[i - 1:i + 1], edge_faces, edgekey_to_edge)
segments = bridge_calculate_segments(bm, lines,
- loops[i-1:i+1], self.segments)
+ loops[i - 1:i + 1], self.segments)
new_verts, new_faces, max_vert_index = \
- bridge_calculate_geometry(bm, lines, vertex_normals,
- segments, self.interpolation, self.cubic_strength,
- self.min_width, max_vert_index)
+ bridge_calculate_geometry(
+ bm, lines, vertex_normals,
+ segments, self.interpolation, self.cubic_strength,
+ self.min_width, max_vert_index
+ )
if new_verts:
vertices += new_verts
if new_faces:
@@ -3288,8 +3356,9 @@ class Bridge(bpy.types.Operator):
# create faces
if faces:
new_faces = bridge_create_faces(object, bm, faces, self.twist)
- old_selected_faces = [i for i, face in enumerate(bm.faces) \
- if face.index in old_selected_faces] # updating list
+ old_selected_faces = [
+ i for i, face in enumerate(bm.faces) if face.index in old_selected_faces
+ ] # updating list
bridge_select_new_faces(new_faces, smooth)
# edge-data could have changed, can't use cache next run
if faces and not vertices:
@@ -3309,49 +3378,64 @@ class Bridge(bpy.types.Operator):
# circle operator
-class Circle(bpy.types.Operator):
+class Circle(Operator):
bl_idname = "mesh.looptools_circle"
bl_label = "Circle"
bl_description = "Move selected vertices into a circle shape"
bl_options = {'REGISTER', 'UNDO'}
- custom_radius = bpy.props.BoolProperty(name = "Radius",
- description = "Force a custom radius",
- default = False)
- fit = bpy.props.EnumProperty(name = "Method",
- items = (("best", "Best fit", "Non-linear least squares"),
- ("inside", "Fit inside","Only move vertices towards the center")),
- description = "Method used for fitting a circle to the vertices",
- default = 'best')
- flatten = bpy.props.BoolProperty(name = "Flatten",
- description = "Flatten the circle, instead of projecting it on the " \
- "mesh",
- default = True)
- influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- radius = bpy.props.FloatProperty(name = "Radius",
- description = "Custom radius for circle",
- default = 1.0,
- min = 0.0,
- soft_max = 1000.0)
- regular = bpy.props.BoolProperty(name = "Regular",
- description = "Distribute vertices at constant distances along the " \
- "circle",
- default = True)
+ custom_radius = BoolProperty(
+ name="Radius",
+ description="Force a custom radius",
+ default=False
+ )
+ fit = EnumProperty(
+ name="Method",
+ items=(("best", "Best fit", "Non-linear least squares"),
+ ("inside", "Fit inside", "Only move vertices towards the center")),
+ description="Method used for fitting a circle to the vertices",
+ default='best'
+ )
+ flatten = BoolProperty(
+ name="Flatten",
+ description="Flatten the circle, instead of projecting it on the mesh",
+ default=True
+ )
+ influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ lock_z = BoolProperty(name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ radius = FloatProperty(
+ name="Radius",
+ description="Custom radius for circle",
+ default=1.0,
+ min=0.0,
+ soft_max=1000.0
+ )
+ regular = BoolProperty(
+ name="Regular",
+ description="Distribute vertices at constant distances along the circle",
+ default=True
+ )
@classmethod
def poll(cls, context):
@@ -3377,17 +3461,17 @@ class Circle(bpy.types.Operator):
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
- row.prop(self, "lock_x", text = "X", icon='LOCKED')
+ row.prop(self, "lock_x", text="X", icon='LOCKED')
else:
- row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
+ row.prop(self, "lock_x", text="X", icon='UNLOCKED')
if self.lock_y:
- row.prop(self, "lock_y", text = "Y", icon='LOCKED')
+ row.prop(self, "lock_y", text="Y", icon='LOCKED')
else:
- row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
if self.lock_z:
- row.prop(self, "lock_z", text = "Z", icon='LOCKED')
+ row.prop(self, "lock_z", text="Z", icon='LOCKED')
else:
- row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
@@ -3430,7 +3514,7 @@ class Circle(bpy.types.Operator):
# calculate circle
if self.fit == 'best':
x0, y0, r = circle_calculate_best_fit(locs_2d)
- else: # self.fit == 'inside'
+ else: # self.fit == 'inside'
x0, y0, r = circle_calculate_min_fit(locs_2d)
# radius override
if self.custom_radius:
@@ -3467,49 +3551,61 @@ class Circle(bpy.types.Operator):
# curve operator
-class Curve(bpy.types.Operator):
+class Curve(Operator):
bl_idname = "mesh.looptools_curve"
bl_label = "Curve"
bl_description = "Turn a loop into a smooth curve"
bl_options = {'REGISTER', 'UNDO'}
- boundaries = bpy.props.BoolProperty(name = "Boundaries",
- description = "Limit the tool to work within the boundaries of the "\
- "selected vertices",
- default = False)
- influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- interpolation = bpy.props.EnumProperty(name = "Interpolation",
- items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
- ("linear", "Linear", "Simple and fast linear algorithm")),
- description = "Algorithm used for interpolation",
- default = 'cubic')
- lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- regular = bpy.props.BoolProperty(name = "Regular",
- description = "Distribute vertices at constant distances along the" \
- "curve",
- default = True)
- restriction = bpy.props.EnumProperty(name = "Restriction",
- items = (("none", "None", "No restrictions on vertex movement"),
- ("extrude", "Extrude only","Only allow extrusions (no "\
- "indentations)"),
- ("indent", "Indent only", "Only allow indentation (no "\
- "extrusions)")),
- description = "Restrictions on how the vertices can be moved",
- default = 'none')
+ boundaries = BoolProperty(
+ name="Boundaries",
+ description="Limit the tool to work within the boundaries of the selected vertices",
+ default=False
+ )
+ influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ interpolation = EnumProperty(
+ name="Interpolation",
+ items=(("cubic", "Cubic", "Natural cubic spline, smooth results"),
+ ("linear", "Linear", "Simple and fast linear algorithm")),
+ description="Algorithm used for interpolation",
+ default='cubic'
+ )
+ lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ regular = BoolProperty(
+ name="Regular",
+ description="Distribute vertices at constant distances along the curve",
+ default=True
+ )
+ restriction = EnumProperty(
+ name="Restriction",
+ items=(("none", "None", "No restrictions on vertex movement"),
+ ("extrude", "Extrude only", "Only allow extrusions (no indentations)"),
+ ("indent", "Indent only", "Only allow indentation (no extrusions)")),
+ description="Restrictions on how the vertices can be moved",
+ default='none'
+ )
@classmethod
def poll(cls, context):
@@ -3529,17 +3625,17 @@ class Curve(bpy.types.Operator):
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
- row.prop(self, "lock_x", text = "X", icon='LOCKED')
+ row.prop(self, "lock_x", text="X", icon='LOCKED')
else:
- row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
+ row.prop(self, "lock_x", text="X", icon='UNLOCKED')
if self.lock_y:
- row.prop(self, "lock_y", text = "Y", icon='LOCKED')
+ row.prop(self, "lock_y", text="Y", icon='LOCKED')
else:
- row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
if self.lock_z:
- row.prop(self, "lock_z", text = "Z", icon='LOCKED')
+ row.prop(self, "lock_z", text="Z", icon='LOCKED')
else:
- row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
@@ -3562,8 +3658,9 @@ class Curve(bpy.types.Operator):
self.boundaries, context.scene)
mapping = get_mapping(derived, bm, bm_mod, False, True, loops)
loops = check_loops(loops, mapping, bm_mod)
- verts_selected = [v.index for v in bm_mod.verts if v.select \
- and not v.hide]
+ verts_selected = [
+ v.index for v in bm_mod.verts if v.select and not v.hide
+ ]
# saving cache for faster execution next time
if not cached:
@@ -3599,42 +3696,51 @@ class Curve(bpy.types.Operator):
# flatten operator
-class Flatten(bpy.types.Operator):
+class Flatten(Operator):
bl_idname = "mesh.looptools_flatten"
bl_label = "Flatten"
bl_description = "Flatten vertices on a best-fitting plane"
bl_options = {'REGISTER', 'UNDO'}
- influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- plane = bpy.props.EnumProperty(name = "Plane",
- items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
- ("normal", "Normal", "Derive plane from averaging vertex "\
- "normals"),
- ("view", "View", "Flatten on a plane perpendicular to the "\
- "viewing angle")),
- description = "Plane on which vertices are flattened",
- default = 'best_fit')
- restriction = bpy.props.EnumProperty(name = "Restriction",
- items = (("none", "None", "No restrictions on vertex movement"),
- ("bounding_box", "Bounding box", "Vertices are restricted to "\
- "movement inside the bounding box of the selection")),
- description = "Restrictions on how the vertices can be moved",
- default = 'none')
+ influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ lock_z = BoolProperty(name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ plane = EnumProperty(
+ name="Plane",
+ items=(("best_fit", "Best fit", "Calculate a best fitting plane"),
+ ("normal", "Normal", "Derive plane from averaging vertex normals"),
+ ("view", "View", "Flatten on a plane perpendicular to the viewing angle")),
+ description="Plane on which vertices are flattened",
+ default='best_fit'
+ )
+ restriction = EnumProperty(
+ name="Restriction",
+ items=(("none", "None", "No restrictions on vertex movement"),
+ ("bounding_box", "Bounding box", "Vertices are restricted to "
+ "movement inside the bounding box of the selection")),
+ description="Restrictions on how the vertices can be moved",
+ default='none'
+ )
@classmethod
def poll(cls, context):
@@ -3646,23 +3752,23 @@ class Flatten(bpy.types.Operator):
col = layout.column()
col.prop(self, "plane")
- #col.prop(self, "restriction")
+ # col.prop(self, "restriction")
col.separator()
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
- row.prop(self, "lock_x", text = "X", icon='LOCKED')
+ row.prop(self, "lock_x", text="X", icon='LOCKED')
else:
- row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
+ row.prop(self, "lock_x", text="X", icon='UNLOCKED')
if self.lock_y:
- row.prop(self, "lock_y", text = "Y", icon='LOCKED')
+ row.prop(self, "lock_y", text="Y", icon='LOCKED')
else:
- row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
if self.lock_z:
- row.prop(self, "lock_z", text = "Z", icon='LOCKED')
+ row.prop(self, "lock_z", text="Z", icon='LOCKED')
else:
- row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
@@ -3712,7 +3818,7 @@ class Flatten(bpy.types.Operator):
# gstretch operator
-class RemoveGP(bpy.types.Operator):
+class RemoveGP(Operator):
bl_idname = "remove.gp"
bl_label = "Remove GP"
bl_description = "Remove all Grease Pencil Strokes"
@@ -3728,83 +3834,106 @@ class RemoveGP(bpy.types.Operator):
return{'FINISHED'}
-class GStretch(bpy.types.Operator):
+
+class GStretch(Operator):
bl_idname = "mesh.looptools_gstretch"
bl_label = "Gstretch"
bl_description = "Stretch selected vertices to Grease Pencil stroke"
bl_options = {'REGISTER', 'UNDO'}
- conversion = bpy.props.EnumProperty(name = "Conversion",
- items = (("distance", "Distance", "Set the distance between vertices "\
- "of the converted grease pencil stroke"),
- ("limit_vertices", "Limit vertices", "Set the minimum and maximum "\
- "number of vertices that converted GP strokes will have"),
- ("vertices", "Exact vertices", "Set the exact number of vertices "\
- "that converted grease pencil strokes will have. Short strokes "\
- "with few points may contain less vertices than this number."),
- ("none", "No simplification", "Convert each grease pencil point "\
- "to a vertex")),
- description = "If grease pencil strokes are converted to geometry, "\
- "use this simplification method",
- default = 'limit_vertices')
- conversion_distance = bpy.props.FloatProperty(name = "Distance",
- description = "Absolute distance between vertices along the converted "\
- "grease pencil stroke",
- default = 0.1,
- min = 0.000001,
- soft_min = 0.01,
- soft_max = 100)
- conversion_max = bpy.props.IntProperty(name = "Max Vertices",
- description = "Maximum number of vertices grease pencil strokes will "\
- "have, when they are converted to geomtery",
- default = 32,
- min = 3,
- soft_max = 500,
- update = gstretch_update_min)
- conversion_min = bpy.props.IntProperty(name = "Min Vertices",
- description = "Minimum number of vertices grease pencil strokes will "\
- "have, when they are converted to geomtery",
- default = 8,
- min = 3,
- soft_max = 500,
- update = gstretch_update_max)
- conversion_vertices = bpy.props.IntProperty(name = "Vertices",
- description = "Number of vertices grease pencil strokes will "\
- "have, when they are converted to geometry. If strokes have less "\
- "points than required, the 'Spread evenly' method is used",
- default = 32,
- min = 3,
- soft_max = 500)
- delete_strokes = bpy.props.BoolProperty(name="Delete strokes",
- description = "Remove Grease Pencil strokes if they have been used "\
- "for Gstretch. WARNING: DOES NOT SUPPORT UNDO",
- default = False)
- influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- method = bpy.props.EnumProperty(name = "Method",
- items = (("project", "Project", "Project vertices onto the stroke, "\
- "using vertex normals and connected edges"),
- ("irregular", "Spread", "Distribute vertices along the full "\
- "stroke, retaining relative distances between the vertices"),
- ("regular", "Spread evenly", "Distribute vertices at regular "\
- "distances along the full stroke")),
- description = "Method of distributing the vertices over the Grease "\
- "Pencil stroke",
- default = 'regular')
+ conversion = EnumProperty(
+ name="Conversion",
+ items=(("distance", "Distance", "Set the distance between vertices "
+ "of the converted grease pencil stroke"),
+ ("limit_vertices", "Limit vertices", "Set the minimum and maximum "
+ "number of vertices that converted GP strokes will have"),
+ ("vertices", "Exact vertices", "Set the exact number of vertices "
+ "that converted grease pencil strokes will have. Short strokes "
+ "with few points may contain less vertices than this number."),
+ ("none", "No simplification", "Convert each grease pencil point "
+ "to a vertex")),
+ description="If grease pencil strokes are converted to geometry, "
+ "use this simplification method",
+ default='limit_vertices'
+ )
+ conversion_distance = FloatProperty(
+ name="Distance",
+ description="Absolute distance between vertices along the converted "
+ "grease pencil stroke",
+ default=0.1,
+ min=0.000001,
+ soft_min=0.01,
+ soft_max=100
+ )
+ conversion_max = IntProperty(
+ name="Max Vertices",
+ description="Maximum number of vertices grease pencil strokes will "
+ "have, when they are converted to geomtery",
+ default=32,
+ min=3,
+ soft_max=500,
+ update=gstretch_update_min
+ )
+ conversion_min = IntProperty(
+ name="Min Vertices",
+ description="Minimum number of vertices grease pencil strokes will "
+ "have, when they are converted to geomtery",
+ default=8,
+ min=3,
+ soft_max=500,
+ update=gstretch_update_max
+ )
+ conversion_vertices = IntProperty(
+ name="Vertices",
+ description="Number of vertices grease pencil strokes will "
+ "have, when they are converted to geometry. If strokes have less "
+ "points than required, the 'Spread evenly' method is used",
+ default=32,
+ min=3,
+ soft_max=500
+ )
+ delete_strokes = BoolProperty(
+ name="Delete strokes",
+ description="Remove Grease Pencil strokes if they have been used "
+ "for Gstretch. WARNING: DOES NOT SUPPORT UNDO",
+ default=False
+ )
+ influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ method = EnumProperty(
+ name="Method",
+ items=(("project", "Project", "Project vertices onto the stroke, "
+ "using vertex normals and connected edges"),
+ ("irregular", "Spread", "Distribute vertices along the full "
+ "stroke, retaining relative distances between the vertices"),
+ ("regular", "Spread evenly", "Distribute vertices at regular "
+ "distances along the full stroke")),
+ description="Method of distributing the vertices over the Grease "
+ "Pencil stroke",
+ default='regular'
+ )
@classmethod
def poll(cls, context):
@@ -3833,20 +3962,20 @@ class GStretch(bpy.types.Operator):
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
- row.prop(self, "lock_x", text = "X", icon='LOCKED')
+ row.prop(self, "lock_x", text="X", icon='LOCKED')
else:
- row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
+ row.prop(self, "lock_x", text="X", icon='UNLOCKED')
if self.lock_y:
- row.prop(self, "lock_y", text = "Y", icon='LOCKED')
+ row.prop(self, "lock_y", text="Y", icon='LOCKED')
else:
- row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
if self.lock_z:
- row.prop(self, "lock_z", text = "Z", icon='LOCKED')
+ row.prop(self, "lock_z", text="Z", icon='LOCKED')
else:
- row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
col_move.prop(self, "influence")
col.separator()
- col.operator("remove.gp", text = "Delete GP Strokes")
+ col.operator("remove.gp", text="Delete GP Strokes")
def invoke(self, context, event):
# flush cached strokes
@@ -3858,7 +3987,6 @@ class GStretch(bpy.types.Operator):
def execute(self, context):
# initialise
- scene = context.scene
global_undo, object, bm = initialise()
settings_write(self)
@@ -3886,7 +4014,7 @@ class GStretch(bpy.types.Operator):
else:
# get loops and strokes
if get_grease_pencil(object, context):
- # find loops
+ # find loops
derived, bm_mod, loops = get_connected_input(object, bm,
context.scene, input='selected')
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
@@ -3901,8 +4029,10 @@ class GStretch(bpy.types.Operator):
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
- edge_keys = [edgekey(edge) for edge in bm_mod.edges if \
- edge.select and not edge.hide]
+ edge_keys = [
+ edgekey(edge) for edge in bm_mod.edges if
+ edge.select and not edge.hide
+ ]
loops = get_connected_selections(edge_keys)
loops = check_loops(loops, mapping, bm_mod)
# create fake strokes
@@ -3968,35 +4098,42 @@ class GStretch(bpy.types.Operator):
# relax operator
-class Relax(bpy.types.Operator):
+class Relax(Operator):
bl_idname = "mesh.looptools_relax"
bl_label = "Relax"
bl_description = "Relax the loop, so it is smoother"
bl_options = {'REGISTER', 'UNDO'}
- input = bpy.props.EnumProperty(name = "Input",
- items = (("all", "Parallel (all)", "Also use non-selected "\
- "parallel loops as input"),
- ("selected", "Selection","Only use selected vertices as input")),
- description = "Loops that are relaxed",
- default = 'selected')
- interpolation = bpy.props.EnumProperty(name = "Interpolation",
- items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
- ("linear", "Linear", "Simple and fast linear algorithm")),
- description = "Algorithm used for interpolation",
- default = 'cubic')
- iterations = bpy.props.EnumProperty(name = "Iterations",
- items = (("1", "1", "One"),
- ("3", "3", "Three"),
- ("5", "5", "Five"),
- ("10", "10", "Ten"),
- ("25", "25", "Twenty-five")),
- description = "Number of times the loop is relaxed",
- default = "1")
- regular = bpy.props.BoolProperty(name = "Regular",
- description = "Distribute vertices at constant distances along the" \
- "loop",
- default = True)
+ input = EnumProperty(
+ name="Input",
+ items=(("all", "Parallel (all)", "Also use non-selected "
+ "parallel loops as input"),
+ ("selected", "Selection", "Only use selected vertices as input")),
+ description="Loops that are relaxed",
+ default='selected'
+ )
+ interpolation = EnumProperty(
+ name="Interpolation",
+ items=(("cubic", "Cubic", "Natural cubic spline, smooth results"),
+ ("linear", "Linear", "Simple and fast linear algorithm")),
+ description="Algorithm used for interpolation",
+ default='cubic'
+ )
+ iterations = EnumProperty(
+ name="Iterations",
+ items=(("1", "1", "One"),
+ ("3", "3", "Three"),
+ ("5", "5", "Five"),
+ ("10", "10", "Ten"),
+ ("25", "25", "Twenty-five")),
+ description="Number of times the loop is relaxed",
+ default="1"
+ )
+ regular = BoolProperty(
+ name="Regular",
+ description="Distribute vertices at constant distances along the loop",
+ default=True
+ )
@classmethod
def poll(cls, context):
@@ -4060,39 +4197,51 @@ class Relax(bpy.types.Operator):
# space operator
-class Space(bpy.types.Operator):
+class Space(Operator):
bl_idname = "mesh.looptools_space"
bl_label = "Space"
bl_description = "Space the vertices in a regular distrubtion on the loop"
bl_options = {'REGISTER', 'UNDO'}
- influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- input = bpy.props.EnumProperty(name = "Input",
- items = (("all", "Parallel (all)", "Also use non-selected "\
+ influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ input = EnumProperty(
+ name="Input",
+ items=(("all", "Parallel (all)", "Also use non-selected "
"parallel loops as input"),
- ("selected", "Selection","Only use selected vertices as input")),
- description = "Loops that are spaced",
- default = 'selected')
- interpolation = bpy.props.EnumProperty(name = "Interpolation",
- items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
- ("linear", "Linear", "Vertices are projected on existing edges")),
- description = "Algorithm used for interpolation",
- default = 'cubic')
- lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
+ ("selected", "Selection", "Only use selected vertices as input")),
+ description="Loops that are spaced",
+ default='selected'
+ )
+ interpolation = EnumProperty(
+ name="Interpolation",
+ items=(("cubic", "Cubic", "Natural cubic spline, smooth results"),
+ ("linear", "Linear", "Vertices are projected on existing edges")),
+ description="Algorithm used for interpolation",
+ default='cubic'
+ )
+ lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
@classmethod
def poll(cls, context):
@@ -4110,17 +4259,17 @@ class Space(bpy.types.Operator):
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
- row.prop(self, "lock_x", text = "X", icon='LOCKED')
+ row.prop(self, "lock_x", text="X", icon='LOCKED')
else:
- row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
+ row.prop(self, "lock_x", text="X", icon='UNLOCKED')
if self.lock_y:
- row.prop(self, "lock_y", text = "Y", icon='LOCKED')
+ row.prop(self, "lock_y", text="Y", icon='LOCKED')
else:
- row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
if self.lock_z:
- row.prop(self, "lock_z", text = "Z", icon='LOCKED')
+ row.prop(self, "lock_z", text="Z", icon='LOCKED')
else:
- row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
@@ -4152,7 +4301,7 @@ class Space(bpy.types.Operator):
move = []
for loop in loops:
# calculate splines and new positions
- if loop[1]: # circular
+ if loop[1]: # circular
loop[0].append(loop[0][0])
tknots, tpoints = space_calculate_t(bm_mod, loop[0][:])
splines = calculate_splines(self.interpolation, bm_mod,
@@ -4174,12 +4323,12 @@ class Space(bpy.types.Operator):
return{'FINISHED'}
-##########################################
-####### GUI and registration #############
-##########################################
+# ########################################
+# ##### GUI and registration #############
+# ########################################
# menu containing all tools
-class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
+class VIEW3D_MT_edit_mesh_looptools(Menu):
bl_label = "LoopTools"
def draw(self, context):
@@ -4196,7 +4345,7 @@ class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
# panel containing all tools
-class VIEW3D_PT_tools_looptools(bpy.types.Panel):
+class VIEW3D_PT_tools_looptools(Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_category = 'Tools'
@@ -4219,7 +4368,7 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
# bridge - settings
if lt.display_bridge:
box = col.column(align=True).box().column()
- #box.prop(self, "mode")
+ # box.prop(self, "mode")
# top row
col_top = box.column(align=True)
@@ -4241,7 +4390,7 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
# override properties
col_top.separator()
- row = box.row(align = True)
+ row = box.row(align=True)
row.prop(lt, "bridge_twist")
row.prop(lt, "bridge_reverse")
@@ -4270,17 +4419,17 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.circle_lock_x:
- row.prop(lt, "circle_lock_x", text = "X", icon='LOCKED')
+ row.prop(lt, "circle_lock_x", text="X", icon='LOCKED')
else:
- row.prop(lt, "circle_lock_x", text = "X", icon='UNLOCKED')
+ row.prop(lt, "circle_lock_x", text="X", icon='UNLOCKED')
if lt.circle_lock_y:
- row.prop(lt, "circle_lock_y", text = "Y", icon='LOCKED')
+ row.prop(lt, "circle_lock_y", text="Y", icon='LOCKED')
else:
- row.prop(lt, "circle_lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(lt, "circle_lock_y", text="Y", icon='UNLOCKED')
if lt.circle_lock_z:
- row.prop(lt, "circle_lock_z", text = "Z", icon='LOCKED')
+ row.prop(lt, "circle_lock_z", text="Z", icon='LOCKED')
else:
- row.prop(lt, "circle_lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(lt, "circle_lock_z", text="Z", icon='UNLOCKED')
col_move.prop(lt, "circle_influence")
# curve - first line
@@ -4302,17 +4451,17 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.curve_lock_x:
- row.prop(lt, "curve_lock_x", text = "X", icon='LOCKED')
+ row.prop(lt, "curve_lock_x", text="X", icon='LOCKED')
else:
- row.prop(lt, "curve_lock_x", text = "X", icon='UNLOCKED')
+ row.prop(lt, "curve_lock_x", text="X", icon='UNLOCKED')
if lt.curve_lock_y:
- row.prop(lt, "curve_lock_y", text = "Y", icon='LOCKED')
+ row.prop(lt, "curve_lock_y", text="Y", icon='LOCKED')
else:
- row.prop(lt, "curve_lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(lt, "curve_lock_y", text="Y", icon='UNLOCKED')
if lt.curve_lock_z:
- row.prop(lt, "curve_lock_z", text = "Z", icon='LOCKED')
+ row.prop(lt, "curve_lock_z", text="Z", icon='LOCKED')
else:
- row.prop(lt, "curve_lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(lt, "curve_lock_z", text="Z", icon='UNLOCKED')
col_move.prop(lt, "curve_influence")
# flatten - first line
@@ -4326,23 +4475,23 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
if lt.display_flatten:
box = col.column(align=True).box().column()
box.prop(lt, "flatten_plane")
- #box.prop(lt, "flatten_restriction")
+ # box.prop(lt, "flatten_restriction")
box.separator()
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.flatten_lock_x:
- row.prop(lt, "flatten_lock_x", text = "X", icon='LOCKED')
+ row.prop(lt, "flatten_lock_x", text="X", icon='LOCKED')
else:
- row.prop(lt, "flatten_lock_x", text = "X", icon='UNLOCKED')
+ row.prop(lt, "flatten_lock_x", text="X", icon='UNLOCKED')
if lt.flatten_lock_y:
- row.prop(lt, "flatten_lock_y", text = "Y", icon='LOCKED')
+ row.prop(lt, "flatten_lock_y", text="Y", icon='LOCKED')
else:
- row.prop(lt, "flatten_lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(lt, "flatten_lock_y", text="Y", icon='UNLOCKED')
if lt.flatten_lock_z:
- row.prop(lt, "flatten_lock_z", text = "Z", icon='LOCKED')
+ row.prop(lt, "flatten_lock_z", text="Z", icon='LOCKED')
else:
- row.prop(lt, "flatten_lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(lt, "flatten_lock_z", text="Z", icon='UNLOCKED')
col_move.prop(lt, "flatten_influence")
# gstretch - first line
@@ -4357,7 +4506,6 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
box = col.column(align=True).box().column()
box.prop(lt, "gstretch_method")
-
col_conv = box.column(align=True)
col_conv.prop(lt, "gstretch_conversion", text="")
if lt.gstretch_conversion == 'distance':
@@ -4373,19 +4521,19 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.gstretch_lock_x:
- row.prop(lt, "gstretch_lock_x", text = "X", icon='LOCKED')
+ row.prop(lt, "gstretch_lock_x", text="X", icon='LOCKED')
else:
- row.prop(lt, "gstretch_lock_x", text = "X", icon='UNLOCKED')
+ row.prop(lt, "gstretch_lock_x", text="X", icon='UNLOCKED')
if lt.gstretch_lock_y:
- row.prop(lt, "gstretch_lock_y", text = "Y", icon='LOCKED')
+ row.prop(lt, "gstretch_lock_y", text="Y", icon='LOCKED')
else:
- row.prop(lt, "gstretch_lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(lt, "gstretch_lock_y", text="Y", icon='UNLOCKED')
if lt.gstretch_lock_z:
- row.prop(lt, "gstretch_lock_z", text = "Z", icon='LOCKED')
+ row.prop(lt, "gstretch_lock_z", text="Z", icon='LOCKED')
else:
- row.prop(lt, "gstretch_lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(lt, "gstretch_lock_z", text="Z", icon='UNLOCKED')
col_move.prop(lt, "gstretch_influence")
- box.operator("remove.gp", text = "Delete GP Strokes")
+ box.operator("remove.gp", text="Delete GP Strokes")
# loft - first line
split = col.split(percentage=0.15, align=True)
@@ -4397,7 +4545,7 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
# loft - settings
if lt.display_loft:
box = col.column(align=True).box().column()
- #box.prop(self, "mode")
+ # box.prop(self, "mode")
# top row
col_top = box.column(align=True)
@@ -4420,7 +4568,7 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
# override properties
col_top.separator()
- row = box.row(align = True)
+ row = box.row(align=True)
row.prop(lt, "bridge_twist")
row.prop(lt, "bridge_reverse")
@@ -4456,339 +4604,448 @@ class VIEW3D_PT_tools_looptools(bpy.types.Panel):
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.space_lock_x:
- row.prop(lt, "space_lock_x", text = "X", icon='LOCKED')
+ row.prop(lt, "space_lock_x", text="X", icon='LOCKED')
else:
- row.prop(lt, "space_lock_x", text = "X", icon='UNLOCKED')
+ row.prop(lt, "space_lock_x", text="X", icon='UNLOCKED')
if lt.space_lock_y:
- row.prop(lt, "space_lock_y", text = "Y", icon='LOCKED')
+ row.prop(lt, "space_lock_y", text="Y", icon='LOCKED')
else:
- row.prop(lt, "space_lock_y", text = "Y", icon='UNLOCKED')
+ row.prop(lt, "space_lock_y", text="Y", icon='UNLOCKED')
if lt.space_lock_z:
- row.prop(lt, "space_lock_z", text = "Z", icon='LOCKED')
+ row.prop(lt, "space_lock_z", text="Z", icon='LOCKED')
else:
- row.prop(lt, "space_lock_z", text = "Z", icon='UNLOCKED')
+ row.prop(lt, "space_lock_z", text="Z", icon='UNLOCKED')
col_move.prop(lt, "space_influence")
# property group containing all properties for the gui in the panel
-class LoopToolsProps(bpy.types.PropertyGroup):
+class LoopToolsProps(PropertyGroup):
"""
Fake module like class
bpy.context.window_manager.looptools
"""
-
# general display properties
- display_bridge = bpy.props.BoolProperty(name = "Bridge settings",
- description = "Display settings of the Bridge tool",
- default = False)
- display_circle = bpy.props.BoolProperty(name = "Circle settings",
- description = "Display settings of the Circle tool",
- default = False)
- display_curve = bpy.props.BoolProperty(name = "Curve settings",
- description = "Display settings of the Curve tool",
- default = False)
- display_flatten = bpy.props.BoolProperty(name = "Flatten settings",
- description = "Display settings of the Flatten tool",
- default = False)
- display_gstretch = bpy.props.BoolProperty(name = "Gstretch settings",
- description = "Display settings of the Gstretch tool",
- default = False)
- display_loft = bpy.props.BoolProperty(name = "Loft settings",
- description = "Display settings of the Loft tool",
- default = False)
- display_relax = bpy.props.BoolProperty(name = "Relax settings",
- description = "Display settings of the Relax tool",
- default = False)
- display_space = bpy.props.BoolProperty(name = "Space settings",
- description = "Display settings of the Space tool",
- default = False)
+ display_bridge = BoolProperty(
+ name="Bridge settings",
+ description="Display settings of the Bridge tool",
+ default=False
+ )
+ display_circle = BoolProperty(
+ name="Circle settings",
+ description="Display settings of the Circle tool",
+ default=False
+ )
+ display_curve = BoolProperty(
+ name="Curve settings",
+ description="Display settings of the Curve tool",
+ default=False
+ )
+ display_flatten = BoolProperty(
+ name="Flatten settings",
+ description="Display settings of the Flatten tool",
+ default=False
+ )
+ display_gstretch = BoolProperty(
+ name="Gstretch settings",
+ description="Display settings of the Gstretch tool",
+ default=False
+ )
+ display_loft = BoolProperty(
+ name="Loft settings",
+ description="Display settings of the Loft tool",
+ default=False
+ )
+ display_relax = BoolProperty(
+ name="Relax settings",
+ description="Display settings of the Relax tool",
+ default=False
+ )
+ display_space = BoolProperty(
+ name="Space settings",
+ description="Display settings of the Space tool",
+ default=False
+ )
# bridge properties
- bridge_cubic_strength = bpy.props.FloatProperty(name = "Strength",
- description = "Higher strength results in more fluid curves",
- default = 1.0,
- soft_min = -3.0,
- soft_max = 3.0)
- bridge_interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
- items = (('cubic', "Cubic", "Gives curved results"),
- ('linear', "Linear", "Basic, fast, straight interpolation")),
- description = "Interpolation mode: algorithm used when creating "\
- "segments",
- default = 'cubic')
- bridge_loft = bpy.props.BoolProperty(name = "Loft",
- description = "Loft multiple loops, instead of considering them as "\
- "a multi-input for bridging",
- default = False)
- bridge_loft_loop = bpy.props.BoolProperty(name = "Loop",
- description = "Connect the first and the last loop with each other",
- default = False)
- bridge_min_width = bpy.props.IntProperty(name = "Minimum width",
- description = "Segments with an edge smaller than this are merged "\
- "(compared to base edge)",
- default = 0,
- min = 0,
- max = 100,
- subtype = 'PERCENTAGE')
- bridge_mode = bpy.props.EnumProperty(name = "Mode",
- items = (('basic', "Basic", "Fast algorithm"),
- ('shortest', "Shortest edge", "Slower algorithm with " \
+ bridge_cubic_strength = FloatProperty(
+ name="Strength",
+ description="Higher strength results in more fluid curves",
+ default=1.0,
+ soft_min=-3.0,
+ soft_max=3.0
+ )
+ bridge_interpolation = EnumProperty(
+ name="Interpolation mode",
+ items=(('cubic', "Cubic", "Gives curved results"),
+ ('linear', "Linear", "Basic, fast, straight interpolation")),
+ description="Interpolation mode: algorithm used when creating segments",
+ default='cubic'
+ )
+ bridge_loft = BoolProperty(
+ name="Loft",
+ description="Loft multiple loops, instead of considering them as "
+ "a multi-input for bridging",
+ default=False
+ )
+ bridge_loft_loop = BoolProperty(
+ name="Loop",
+ description="Connect the first and the last loop with each other",
+ default=False
+ )
+ bridge_min_width = IntProperty(
+ name="Minimum width",
+ description="Segments with an edge smaller than this are merged "
+ "(compared to base edge)",
+ default=0,
+ min=0,
+ max=100,
+ subtype='PERCENTAGE'
+ )
+ bridge_mode = EnumProperty(
+ name="Mode",
+ items=(('basic', "Basic", "Fast algorithm"),
+ ('shortest', "Shortest edge", "Slower algorithm with "
"better vertex matching")),
- description = "Algorithm used for bridging",
- default = 'shortest')
- bridge_remove_faces = bpy.props.BoolProperty(name = "Remove faces",
- description = "Remove faces that are internal after bridging",
- default = True)
- bridge_reverse = bpy.props.BoolProperty(name = "Reverse",
- description = "Manually override the direction in which the loops "\
- "are bridged. Only use if the tool gives the wrong " \
- "result",
- default = False)
- bridge_segments = bpy.props.IntProperty(name = "Segments",
- description = "Number of segments used to bridge the gap "\
- "(0 = automatic)",
- default = 1,
- min = 0,
- soft_max = 20)
- bridge_twist = bpy.props.IntProperty(name = "Twist",
- description = "Twist what vertices are connected to each other",
- default = 0)
+ description="Algorithm used for bridging",
+ default='shortest'
+ )
+ bridge_remove_faces = BoolProperty(
+ name="Remove faces",
+ description="Remove faces that are internal after bridging",
+ default=True
+ )
+ bridge_reverse = BoolProperty(
+ name="Reverse",
+ description="Manually override the direction in which the loops "
+ "are bridged. Only use if the tool gives the wrong result",
+ default=False
+ )
+ bridge_segments = IntProperty(
+ name="Segments",
+ description="Number of segments used to bridge the gap (0=automatic)",
+ default=1,
+ min=0,
+ soft_max=20
+ )
+ bridge_twist = IntProperty(
+ name="Twist",
+ description="Twist what vertices are connected to each other",
+ default=0
+ )
# circle properties
- circle_custom_radius = bpy.props.BoolProperty(name = "Radius",
- description = "Force a custom radius",
- default = False)
- circle_fit = bpy.props.EnumProperty(name = "Method",
- items = (("best", "Best fit", "Non-linear least squares"),
- ("inside", "Fit inside","Only move vertices towards the center")),
- description = "Method used for fitting a circle to the vertices",
- default = 'best')
- circle_flatten = bpy.props.BoolProperty(name = "Flatten",
- description = "Flatten the circle, instead of projecting it on the " \
- "mesh",
- default = True)
- circle_influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- circle_lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- circle_lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- circle_lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- circle_radius = bpy.props.FloatProperty(name = "Radius",
- description = "Custom radius for circle",
- default = 1.0,
- min = 0.0,
- soft_max = 1000.0)
- circle_regular = bpy.props.BoolProperty(name = "Regular",
- description = "Distribute vertices at constant distances along the " \
- "circle",
- default = True)
-
+ circle_custom_radius = BoolProperty(
+ name="Radius",
+ description="Force a custom radius",
+ default=False
+ )
+ circle_fit = EnumProperty(
+ name="Method",
+ items=(("best", "Best fit", "Non-linear least squares"),
+ ("inside", "Fit inside", "Only move vertices towards the center")),
+ description="Method used for fitting a circle to the vertices",
+ default='best'
+ )
+ circle_flatten = BoolProperty(
+ name="Flatten",
+ description="Flatten the circle, instead of projecting it on the mesh",
+ default=True
+ )
+ circle_influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ circle_lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ circle_lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ circle_lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ circle_radius = FloatProperty(
+ name="Radius",
+ description="Custom radius for circle",
+ default=1.0,
+ min=0.0,
+ soft_max=1000.0
+ )
+ circle_regular = BoolProperty(
+ name="Regular",
+ description="Distribute vertices at constant distances along the circle",
+ default=True
+ )
# curve properties
- curve_boundaries = bpy.props.BoolProperty(name = "Boundaries",
- description = "Limit the tool to work within the boundaries of the "\
- "selected vertices",
- default = False)
- curve_influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- curve_interpolation = bpy.props.EnumProperty(name = "Interpolation",
- items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+ curve_boundaries = BoolProperty(
+ name="Boundaries",
+ description="Limit the tool to work within the boundaries of the "
+ "selected vertices",
+ default=False
+ )
+ curve_influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ curve_interpolation = EnumProperty(
+ name="Interpolation",
+ items=(("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
- description = "Algorithm used for interpolation",
- default = 'cubic')
- curve_lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- curve_lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- curve_lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- curve_regular = bpy.props.BoolProperty(name = "Regular",
- description = "Distribute vertices at constant distances along the " \
- "curve",
- default = True)
- curve_restriction = bpy.props.EnumProperty(name = "Restriction",
- items = (("none", "None", "No restrictions on vertex movement"),
- ("extrude", "Extrude only","Only allow extrusions (no "\
- "indentations)"),
- ("indent", "Indent only", "Only allow indentation (no "\
- "extrusions)")),
- description = "Restrictions on how the vertices can be moved",
- default = 'none')
+ description="Algorithm used for interpolation",
+ default='cubic'
+ )
+ curve_lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ curve_lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ curve_lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ curve_regular = BoolProperty(
+ name="Regular",
+ description="Distribute vertices at constant distances along the curve",
+ default=True
+ )
+ curve_restriction = EnumProperty(
+ name="Restriction",
+ items=(("none", "None", "No restrictions on vertex movement"),
+ ("extrude", "Extrude only", "Only allow extrusions (no indentations)"),
+ ("indent", "Indent only", "Only allow indentation (no extrusions)")),
+ description="Restrictions on how the vertices can be moved",
+ default='none'
+ )
# flatten properties
- flatten_influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- flatten_lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- flatten_lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- flatten_lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- flatten_plane = bpy.props.EnumProperty(name = "Plane",
- items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
- ("normal", "Normal", "Derive plane from averaging vertex "\
+ flatten_influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ flatten_lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False)
+ flatten_lock_y = BoolProperty(name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ flatten_lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ flatten_plane = EnumProperty(
+ name="Plane",
+ items=(("best_fit", "Best fit", "Calculate a best fitting plane"),
+ ("normal", "Normal", "Derive plane from averaging vertex "
"normals"),
- ("view", "View", "Flatten on a plane perpendicular to the "\
+ ("view", "View", "Flatten on a plane perpendicular to the "
"viewing angle")),
- description = "Plane on which vertices are flattened",
- default = 'best_fit')
- flatten_restriction = bpy.props.EnumProperty(name = "Restriction",
- items = (("none", "None", "No restrictions on vertex movement"),
- ("bounding_box", "Bounding box", "Vertices are restricted to "\
+ description="Plane on which vertices are flattened",
+ default='best_fit'
+ )
+ flatten_restriction = EnumProperty(
+ name="Restriction",
+ items=(("none", "None", "No restrictions on vertex movement"),
+ ("bounding_box", "Bounding box", "Vertices are restricted to "
"movement inside the bounding box of the selection")),
- description = "Restrictions on how the vertices can be moved",
- default = 'none')
+ description="Restrictions on how the vertices can be moved",
+ default='none'
+ )
# gstretch properties
- gstretch_conversion = bpy.props.EnumProperty(name = "Conversion",
- items = (("distance", "Distance", "Set the distance between vertices "\
+ gstretch_conversion = EnumProperty(
+ name="Conversion",
+ items=(("distance", "Distance", "Set the distance between vertices "
"of the converted grease pencil stroke"),
- ("limit_vertices", "Limit vertices", "Set the minimum and maximum "\
+ ("limit_vertices", "Limit vertices", "Set the minimum and maximum "
"number of vertices that converted GP strokes will have"),
- ("vertices", "Exact vertices", "Set the exact number of vertices "\
- "that converted grease pencil strokes will have. Short strokes "\
+ ("vertices", "Exact vertices", "Set the exact number of vertices "
+ "that converted grease pencil strokes will have. Short strokes "
"with few points may contain less vertices than this number."),
- ("none", "No simplification", "Convert each grease pencil point "\
+ ("none", "No simplification", "Convert each grease pencil point "
"to a vertex")),
- description = "If grease pencil strokes are converted to geometry, "\
- "use this simplification method",
- default = 'limit_vertices')
- gstretch_conversion_distance = bpy.props.FloatProperty(name = "Distance",
- description = "Absolute distance between vertices along the converted "\
- "grease pencil stroke",
- default = 0.1,
- min = 0.000001,
- soft_min = 0.01,
- soft_max = 100)
- gstretch_conversion_max = bpy.props.IntProperty(name = "Max Vertices",
- description = "Maximum number of vertices grease pencil strokes will "\
- "have, when they are converted to geomtery",
- default = 32,
- min = 3,
- soft_max = 500,
- update = gstretch_update_min)
- gstretch_conversion_min = bpy.props.IntProperty(name = "Min Vertices",
- description = "Minimum number of vertices grease pencil strokes will "\
- "have, when they are converted to geomtery",
- default = 8,
- min = 3,
- soft_max = 500,
- update = gstretch_update_max)
- gstretch_conversion_vertices = bpy.props.IntProperty(name = "Vertices",
- description = "Number of vertices grease pencil strokes will "\
- "have, when they are converted to geometry. If strokes have less "\
- "points than required, the 'Spread evenly' method is used",
- default = 32,
- min = 3,
- soft_max = 500)
- gstretch_delete_strokes = bpy.props.BoolProperty(name="Delete strokes",
- description = "Remove Grease Pencil strokes if they have been used "\
- "for Gstretch. WARNING: DOES NOT SUPPORT UNDO",
- default = False)
- gstretch_influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- gstretch_lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- gstretch_lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- gstretch_lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
- gstretch_method = bpy.props.EnumProperty(name = "Method",
- items = (("project", "Project", "Project vertices onto the stroke, "\
- "using vertex normals and connected edges"),
- ("irregular", "Spread", "Distribute vertices along the full "\
- "stroke, retaining relative distances between the vertices"),
- ("regular", "Spread evenly", "Distribute vertices at regular "\
- "distances along the full stroke")),
- description = "Method of distributing the vertices over the Grease "\
- "Pencil stroke",
- default = 'regular')
+ description="If grease pencil strokes are converted to geometry, "
+ "use this simplification method",
+ default='limit_vertices'
+ )
+ gstretch_conversion_distance = FloatProperty(
+ name="Distance",
+ description="Absolute distance between vertices along the converted "
+ "grease pencil stroke",
+ default=0.1,
+ min=0.000001,
+ soft_min=0.01,
+ soft_max=100
+ )
+ gstretch_conversion_max = IntProperty(
+ name="Max Vertices",
+ description="Maximum number of vertices grease pencil strokes will "
+ "have, when they are converted to geomtery",
+ default=32,
+ min=3,
+ soft_max=500,
+ update=gstretch_update_min
+ )
+ gstretch_conversion_min = IntProperty(
+ name="Min Vertices",
+ description="Minimum number of vertices grease pencil strokes will "
+ "have, when they are converted to geomtery",
+ default=8,
+ min=3,
+ soft_max=500,
+ update=gstretch_update_max
+ )
+ gstretch_conversion_vertices = IntProperty(
+ name="Vertices",
+ description="Number of vertices grease pencil strokes will "
+ "have, when they are converted to geometry. If strokes have less "
+ "points than required, the 'Spread evenly' method is used",
+ default=32,
+ min=3,
+ soft_max=500
+ )
+ gstretch_delete_strokes = BoolProperty(
+ name="Delete strokes",
+ description="Remove Grease Pencil strokes if they have been used "
+ "for Gstretch. WARNING: DOES NOT SUPPORT UNDO",
+ default=False
+ )
+ gstretch_influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ gstretch_lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ gstretch_lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ gstretch_lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
+ gstretch_method = EnumProperty(
+ name="Method",
+ items=(("project", "Project", "Project vertices onto the stroke, "
+ "using vertex normals and connected edges"),
+ ("irregular", "Spread", "Distribute vertices along the full "
+ "stroke, retaining relative distances between the vertices"),
+ ("regular", "Spread evenly", "Distribute vertices at regular "
+ "distances along the full stroke")),
+ description="Method of distributing the vertices over the Grease "
+ "Pencil stroke",
+ default='regular'
+ )
# relax properties
- relax_input = bpy.props.EnumProperty(name = "Input",
- items = (("all", "Parallel (all)", "Also use non-selected "\
- "parallel loops as input"),
- ("selected", "Selection","Only use selected vertices as input")),
- description = "Loops that are relaxed",
- default = 'selected')
- relax_interpolation = bpy.props.EnumProperty(name = "Interpolation",
- items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
- ("linear", "Linear", "Simple and fast linear algorithm")),
- description = "Algorithm used for interpolation",
- default = 'cubic')
- relax_iterations = bpy.props.EnumProperty(name = "Iterations",
- items = (("1", "1", "One"),
- ("3", "3", "Three"),
- ("5", "5", "Five"),
- ("10", "10", "Ten"),
- ("25", "25", "Twenty-five")),
- description = "Number of times the loop is relaxed",
- default = "1")
- relax_regular = bpy.props.BoolProperty(name = "Regular",
- description = "Distribute vertices at constant distances along the" \
- "loop",
- default = True)
+ relax_input = EnumProperty(name="Input",
+ items=(("all", "Parallel (all)", "Also use non-selected "
+ "parallel loops as input"),
+ ("selected", "Selection", "Only use selected vertices as input")),
+ description="Loops that are relaxed",
+ default='selected'
+ )
+ relax_interpolation = EnumProperty(
+ name="Interpolation",
+ items=(("cubic", "Cubic", "Natural cubic spline, smooth results"),
+ ("linear", "Linear", "Simple and fast linear algorithm")),
+ description="Algorithm used for interpolation",
+ default='cubic'
+ )
+ relax_iterations = EnumProperty(name="Iterations",
+ items=(("1", "1", "One"),
+ ("3", "3", "Three"),
+ ("5", "5", "Five"),
+ ("10", "10", "Ten"),
+ ("25", "25", "Twenty-five")),
+ description="Number of times the loop is relaxed",
+ default="1"
+ )
+ relax_regular = BoolProperty(
+ name="Regular",
+ description="Distribute vertices at constant distances along the loop",
+ default=True
+ )
# space properties
- space_influence = bpy.props.FloatProperty(name = "Influence",
- description = "Force of the tool",
- default = 100.0,
- min = 0.0,
- max = 100.0,
- precision = 1,
- subtype = 'PERCENTAGE')
- space_input = bpy.props.EnumProperty(name = "Input",
- items = (("all", "Parallel (all)", "Also use non-selected "\
+ space_influence = FloatProperty(
+ name="Influence",
+ description="Force of the tool",
+ default=100.0,
+ min=0.0,
+ max=100.0,
+ precision=1,
+ subtype='PERCENTAGE'
+ )
+ space_input = EnumProperty(
+ name="Input",
+ items=(("all", "Parallel (all)", "Also use non-selected "
"parallel loops as input"),
- ("selected", "Selection","Only use selected vertices as input")),
- description = "Loops that are spaced",
- default = 'selected')
- space_interpolation = bpy.props.EnumProperty(name = "Interpolation",
- items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+ ("selected", "Selection", "Only use selected vertices as input")),
+ description="Loops that are spaced",
+ default='selected'
+ )
+ space_interpolation = EnumProperty(
+ name="Interpolation",
+ items=(("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Vertices are projected on existing edges")),
- description = "Algorithm used for interpolation",
- default = 'cubic')
- space_lock_x = bpy.props.BoolProperty(name = "Lock X",
- description = "Lock editing of the x-coordinate",
- default = False)
- space_lock_y = bpy.props.BoolProperty(name = "Lock Y",
- description = "Lock editing of the y-coordinate",
- default = False)
- space_lock_z = bpy.props.BoolProperty(name = "Lock Z",
- description = "Lock editing of the z-coordinate",
- default = False)
+ description="Algorithm used for interpolation",
+ default='cubic'
+ )
+ space_lock_x = BoolProperty(
+ name="Lock X",
+ description="Lock editing of the x-coordinate",
+ default=False
+ )
+ space_lock_y = BoolProperty(
+ name="Lock Y",
+ description="Lock editing of the y-coordinate",
+ default=False
+ )
+ space_lock_z = BoolProperty(
+ name="Lock Z",
+ description="Lock editing of the z-coordinate",
+ default=False
+ )
# draw function for integration in menus
@@ -4796,34 +5053,52 @@ def menu_func(self, context):
self.layout.menu("VIEW3D_MT_edit_mesh_looptools")
self.layout.separator()
-## Addons Preferences Update Panel
+
+# Add-ons Preferences Update Panel
+
+# Define Panel classes for updating
+panels = (
+ VIEW3D_PT_tools_looptools,
+ )
+
+
def update_panel(self, context):
+ message = "LoopTools: Updating Panel locations has failed"
try:
- bpy.utils.unregister_class(VIEW3D_PT_tools_looptools)
- except:
+ for panel in panels:
+ if "bl_rna" in panel.__dict__:
+ bpy.utils.unregister_class(panel)
+
+ for panel in panels:
+ panel.bl_category = context.user_preferences.addons[__name__].preferences.category
+ bpy.utils.register_class(panel)
+
+ except Exception as e:
+ print("\n[{}]\n{}\n\nError:\n{}".format(__name__, message, e))
pass
- VIEW3D_PT_tools_looptools.bl_category = context.user_preferences.addons[__name__].preferences.category
- bpy.utils.register_class(VIEW3D_PT_tools_looptools)
-class LoopPreferences(bpy.types.AddonPreferences):
+
+class LoopPreferences(AddonPreferences):
# this must match the addon name, use '__package__'
# when defining this in a submodule of a python package.
bl_idname = __name__
- category = bpy.props.StringProperty(
+ category = StringProperty(
name="Tab Category",
description="Choose a name for the category of the panel",
default="Tools",
- update=update_panel)
+ update=update_panel
+ )
def draw(self, context):
-
layout = self.layout
+
row = layout.row()
col = row.column()
col.label(text="Tab Category:")
col.prop(self, "category", text="")
+
# define classes for registration
classes = [
VIEW3D_MT_edit_mesh_looptools,
@@ -4846,10 +5121,10 @@ def register():
for c in classes:
bpy.utils.register_class(c)
bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
- bpy.types.WindowManager.looptools = bpy.props.PointerProperty(\
- type = LoopToolsProps)
+ bpy.types.WindowManager.looptools = PointerProperty(type=LoopToolsProps)
update_panel(None, bpy.context)
+
# unregistering and removing menus
def unregister():
for c in classes: