Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'io_mesh_atomic/xyz_import.py')
-rw-r--r--io_mesh_atomic/xyz_import.py810
1 files changed, 810 insertions, 0 deletions
diff --git a/io_mesh_atomic/xyz_import.py b/io_mesh_atomic/xyz_import.py
new file mode 100644
index 00000000..fe903f4e
--- /dev/null
+++ b/io_mesh_atomic/xyz_import.py
@@ -0,0 +1,810 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+import os
+import bpy
+from math import pi, sqrt
+from mathutils import Vector, Matrix
+
+# -----------------------------------------------------------------------------
+# Atom and element data
+
+
+# This is a list that contains some data of all possible elements. The structure
+# is as follows:
+#
+# 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54 means
+#
+# No., name, short name, color, radius (used), radius (covalent), radius (atomic),
+#
+# charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
+# charge states for any atom are listed, if existing.
+# The list is fixed and cannot be changed ... (see below)
+
+ELEMENTS_DEFAULT = (
+( 1, "Hydrogen", "H", ( 1.0, 1.0, 1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
+( 2, "Helium", "He", ( 0.85, 1.0, 1.0, 1.0), 0.93, 0.93, 0.49 ),
+( 3, "Lithium", "Li", ( 0.8, 0.50, 1.0, 1.0), 1.23, 1.23, 2.05 , 1 , 0.68 ),
+( 4, "Beryllium", "Be", ( 0.76, 1.0, 0.0, 1.0), 0.90, 0.90, 1.40 , 1 , 0.44 , 2 , 0.35 ),
+( 5, "Boron", "B", ( 1.0, 0.70, 0.70, 1.0), 0.82, 0.82, 1.17 , 1 , 0.35 , 3 , 0.23 ),
+( 6, "Carbon", "C", ( 0.56, 0.56, 0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 , 4 , 0.16 ),
+( 7, "Nitrogen", "N", ( 0.18, 0.31, 0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 , 1 , 0.25 , 3 , 0.16 , 5 , 0.13 ),
+( 8, "Oxygen", "O", ( 1.0, 0.05, 0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 , 1 , 0.22 , 6 , 0.09 ),
+( 9, "Fluorine", "F", ( 0.56, 0.87, 0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 , 7 , 0.08 ),
+(10, "Neon", "Ne", ( 0.70, 0.89, 0.96, 1.0), 0.71, 0.71, 0.51 , 1 , 1.12 ),
+(11, "Sodium", "Na", ( 0.67, 0.36, 0.94, 1.0), 1.54, 1.54, 2.23 , 1 , 0.97 ),
+(12, "Magnesium", "Mg", ( 0.54, 1.0, 0.0, 1.0), 1.36, 1.36, 1.72 , 1 , 0.82 , 2 , 0.66 ),
+(13, "Aluminium", "Al", ( 0.74, 0.65, 0.65, 1.0), 1.18, 1.18, 1.82 , 3 , 0.51 ),
+(14, "Silicon", "Si", ( 0.94, 0.78, 0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 , 1 , 0.65 , 4 , 0.42 ),
+(15, "Phosphorus", "P", ( 1.0, 0.50, 0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 , 3 , 0.44 , 5 , 0.35 ),
+(16, "Sulfur", "S", ( 1.0, 1.0, 0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 , 2 , 2.19 , 4 , 0.37 , 6 , 0.30 ),
+(17, "Chlorine", "Cl", ( 0.12, 0.94, 0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 , 5 , 0.34 , 7 , 0.27 ),
+(18, "Argon", "Ar", ( 0.50, 0.81, 0.89, 1.0), 0.98, 0.98, 0.88 , 1 , 1.54 ),
+(19, "Potassium", "K", ( 0.56, 0.25, 0.83, 1.0), 2.03, 2.03, 2.77 , 1 , 0.81 ),
+(20, "Calcium", "Ca", ( 0.23, 1.0, 0.0, 1.0), 1.74, 1.74, 2.23 , 1 , 1.18 , 2 , 0.99 ),
+(21, "Scandium", "Sc", ( 0.90, 0.90, 0.90, 1.0), 1.44, 1.44, 2.09 , 3 , 0.73 ),
+(22, "Titanium", "Ti", ( 0.74, 0.76, 0.78, 1.0), 1.32, 1.32, 2.00 , 1 , 0.96 , 2 , 0.94 , 3 , 0.76 , 4 , 0.68 ),
+(23, "Vanadium", "V", ( 0.65, 0.65, 0.67, 1.0), 1.22, 1.22, 1.92 , 2 , 0.88 , 3 , 0.74 , 4 , 0.63 , 5 , 0.59 ),
+(24, "Chromium", "Cr", ( 0.54, 0.6, 0.78, 1.0), 1.18, 1.18, 1.85 , 1 , 0.81 , 2 , 0.89 , 3 , 0.63 , 6 , 0.52 ),
+(25, "Manganese", "Mn", ( 0.61, 0.47, 0.78, 1.0), 1.17, 1.17, 1.79 , 2 , 0.80 , 3 , 0.66 , 4 , 0.60 , 7 , 0.46 ),
+(26, "Iron", "Fe", ( 0.87, 0.4, 0.2, 1.0), 1.17, 1.17, 1.72 , 2 , 0.74 , 3 , 0.64 ),
+(27, "Cobalt", "Co", ( 0.94, 0.56, 0.62, 1.0), 1.16, 1.16, 1.67 , 2 , 0.72 , 3 , 0.63 ),
+(28, "Nickel", "Ni", ( 0.31, 0.81, 0.31, 1.0), 1.15, 1.15, 1.62 , 2 , 0.69 ),
+(29, "Copper", "Cu", ( 0.78, 0.50, 0.2, 1.0), 1.17, 1.17, 1.57 , 1 , 0.96 , 2 , 0.72 ),
+(30, "Zinc", "Zn", ( 0.49, 0.50, 0.69, 1.0), 1.25, 1.25, 1.53 , 1 , 0.88 , 2 , 0.74 ),
+(31, "Gallium", "Ga", ( 0.76, 0.56, 0.56, 1.0), 1.26, 1.26, 1.81 , 1 , 0.81 , 3 , 0.62 ),
+(32, "Germanium", "Ge", ( 0.4, 0.56, 0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 , 2 , 0.73 , 4 , 0.53 ),
+(33, "Arsenic", "As", ( 0.74, 0.50, 0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 , 3 , 0.58 , 5 , 0.46 ),
+(34, "Selenium", "Se", ( 1.0, 0.63, 0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 , 1 , 0.66 , 4 , 0.50 , 6 , 0.42 ),
+(35, "Bromine", "Br", ( 0.65, 0.16, 0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 , 5 , 0.47 , 7 , 0.39 ),
+(36, "Krypton", "Kr", ( 0.36, 0.72, 0.81, 1.0), 1.31, 1.31, 1.24 ),
+(37, "Rubidium", "Rb", ( 0.43, 0.18, 0.69, 1.0), 2.16, 2.16, 2.98 , 1 , 1.47 ),
+(38, "Strontium", "Sr", ( 0.0, 1.0, 0.0, 1.0), 1.91, 1.91, 2.45 , 2 , 1.12 ),
+(39, "Yttrium", "Y", ( 0.58, 1.0, 1.0, 1.0), 1.62, 1.62, 2.27 , 3 , 0.89 ),
+(40, "Zirconium", "Zr", ( 0.58, 0.87, 0.87, 1.0), 1.45, 1.45, 2.16 , 1 , 1.09 , 4 , 0.79 ),
+(41, "Niobium", "Nb", ( 0.45, 0.76, 0.78, 1.0), 1.34, 1.34, 2.08 , 1 , 1.00 , 4 , 0.74 , 5 , 0.69 ),
+(42, "Molybdenum", "Mo", ( 0.32, 0.70, 0.70, 1.0), 1.30, 1.30, 2.01 , 1 , 0.93 , 4 , 0.70 , 6 , 0.62 ),
+(43, "Technetium", "Tc", ( 0.23, 0.61, 0.61, 1.0), 1.27, 1.27, 1.95 , 7 , 0.97 ),
+(44, "Ruthenium", "Ru", ( 0.14, 0.56, 0.56, 1.0), 1.25, 1.25, 1.89 , 4 , 0.67 ),
+(45, "Rhodium", "Rh", ( 0.03, 0.49, 0.54, 1.0), 1.25, 1.25, 1.83 , 3 , 0.68 ),
+(46, "Palladium", "Pd", ( 0.0, 0.41, 0.52, 1.0), 1.28, 1.28, 1.79 , 2 , 0.80 , 4 , 0.65 ),
+(47, "Silver", "Ag", ( 0.75, 0.75, 0.75, 1.0), 1.34, 1.34, 1.75 , 1 , 1.26 , 2 , 0.89 ),
+(48, "Cadmium", "Cd", ( 1.0, 0.85, 0.56, 1.0), 1.48, 1.48, 1.71 , 1 , 1.14 , 2 , 0.97 ),
+(49, "Indium", "In", ( 0.65, 0.45, 0.45, 1.0), 1.44, 1.44, 2.00 , 3 , 0.81 ),
+(50, "Tin", "Sn", ( 0.4, 0.50, 0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 , 2 , 0.93 , 4 , 0.71 ),
+(51, "Antimony", "Sb", ( 0.61, 0.38, 0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 , 3 , 0.76 , 5 , 0.62 ),
+(52, "Tellurium", "Te", ( 0.83, 0.47, 0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 , 1 , 0.82 , 4 , 0.70 , 6 , 0.56 ),
+(53, "Iodine", "I", ( 0.58, 0.0, 0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 , 5 , 0.62 , 7 , 0.50 ),
+(54, "Xenon", "Xe", ( 0.25, 0.61, 0.69, 1.0), 1.31, 1.31, 1.24 ),
+(55, "Caesium", "Cs", ( 0.34, 0.09, 0.56, 1.0), 2.35, 2.35, 3.35 , 1 , 1.67 ),
+(56, "Barium", "Ba", ( 0.0, 0.78, 0.0, 1.0), 1.98, 1.98, 2.78 , 1 , 1.53 , 2 , 1.34 ),
+(57, "Lanthanum", "La", ( 0.43, 0.83, 1.0, 1.0), 1.69, 1.69, 2.74 , 1 , 1.39 , 3 , 1.06 ),
+(58, "Cerium", "Ce", ( 1.0, 1.0, 0.78, 1.0), 1.65, 1.65, 2.70 , 1 , 1.27 , 3 , 1.03 , 4 , 0.92 ),
+(59, "Praseodymium", "Pr", ( 0.85, 1.0, 0.78, 1.0), 1.65, 1.65, 2.67 , 3 , 1.01 , 4 , 0.90 ),
+(60, "Neodymium", "Nd", ( 0.78, 1.0, 0.78, 1.0), 1.64, 1.64, 2.64 , 3 , 0.99 ),
+(61, "Promethium", "Pm", ( 0.63, 1.0, 0.78, 1.0), 1.63, 1.63, 2.62 , 3 , 0.97 ),
+(62, "Samarium", "Sm", ( 0.56, 1.0, 0.78, 1.0), 1.62, 1.62, 2.59 , 3 , 0.96 ),
+(63, "Europium", "Eu", ( 0.38, 1.0, 0.78, 1.0), 1.85, 1.85, 2.56 , 2 , 1.09 , 3 , 0.95 ),
+(64, "Gadolinium", "Gd", ( 0.27, 1.0, 0.78, 1.0), 1.61, 1.61, 2.54 , 3 , 0.93 ),
+(65, "Terbium", "Tb", ( 0.18, 1.0, 0.78, 1.0), 1.59, 1.59, 2.51 , 3 , 0.92 , 4 , 0.84 ),
+(66, "Dysprosium", "Dy", ( 0.12, 1.0, 0.78, 1.0), 1.59, 1.59, 2.49 , 3 , 0.90 ),
+(67, "Holmium", "Ho", ( 0.0, 1.0, 0.61, 1.0), 1.58, 1.58, 2.47 , 3 , 0.89 ),
+(68, "Erbium", "Er", ( 0.0, 0.90, 0.45, 1.0), 1.57, 1.57, 2.45 , 3 , 0.88 ),
+(69, "Thulium", "Tm", ( 0.0, 0.83, 0.32, 1.0), 1.56, 1.56, 2.42 , 3 , 0.87 ),
+(70, "Ytterbium", "Yb", ( 0.0, 0.74, 0.21, 1.0), 1.74, 1.74, 2.40 , 2 , 0.93 , 3 , 0.85 ),
+(71, "Lutetium", "Lu", ( 0.0, 0.67, 0.14, 1.0), 1.56, 1.56, 2.25 , 3 , 0.85 ),
+(72, "Hafnium", "Hf", ( 0.30, 0.76, 1.0, 1.0), 1.44, 1.44, 2.16 , 4 , 0.78 ),
+(73, "Tantalum", "Ta", ( 0.30, 0.65, 1.0, 1.0), 1.34, 1.34, 2.09 , 5 , 0.68 ),
+(74, "Tungsten", "W", ( 0.12, 0.58, 0.83, 1.0), 1.30, 1.30, 2.02 , 4 , 0.70 , 6 , 0.62 ),
+(75, "Rhenium", "Re", ( 0.14, 0.49, 0.67, 1.0), 1.28, 1.28, 1.97 , 4 , 0.72 , 7 , 0.56 ),
+(76, "Osmium", "Os", ( 0.14, 0.4, 0.58, 1.0), 1.26, 1.26, 1.92 , 4 , 0.88 , 6 , 0.69 ),
+(77, "Iridium", "Ir", ( 0.09, 0.32, 0.52, 1.0), 1.27, 1.27, 1.87 , 4 , 0.68 ),
+(78, "Platinum", "Pt", ( 0.81, 0.81, 0.87, 1.0), 1.30, 1.30, 1.83 , 2 , 0.80 , 4 , 0.65 ),
+(79, "Gold", "Au", ( 1.0, 0.81, 0.13, 1.0), 1.34, 1.34, 1.79 , 1 , 1.37 , 3 , 0.85 ),
+(80, "Mercury", "Hg", ( 0.72, 0.72, 0.81, 1.0), 1.49, 1.49, 1.76 , 1 , 1.27 , 2 , 1.10 ),
+(81, "Thallium", "Tl", ( 0.65, 0.32, 0.30, 1.0), 1.48, 1.48, 2.08 , 1 , 1.47 , 3 , 0.95 ),
+(82, "Lead", "Pb", ( 0.34, 0.34, 0.38, 1.0), 1.47, 1.47, 1.81 , 2 , 1.20 , 4 , 0.84 ),
+(83, "Bismuth", "Bi", ( 0.61, 0.30, 0.70, 1.0), 1.46, 1.46, 1.63 , 1 , 0.98 , 3 , 0.96 , 5 , 0.74 ),
+(84, "Polonium", "Po", ( 0.67, 0.36, 0.0, 1.0), 1.46, 1.46, 1.53 , 6 , 0.67 ),
+(85, "Astatine", "At", ( 0.45, 0.30, 0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 , 3 , 0.85 , 5 , 0.46 ),
+(86, "Radon", "Rn", ( 0.25, 0.50, 0.58, 1.0), 1.00, 1.00, 1.34 ),
+(87, "Francium", "Fr", ( 0.25, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 , 1 , 1.80 ),
+(88, "Radium", "Ra", ( 0.0, 0.49, 0.0, 1.0), 1.00, 1.00, 1.00 , 2 , 1.43 ),
+(89, "Actinium", "Ac", ( 0.43, 0.67, 0.98, 1.0), 1.00, 1.00, 1.00 , 3 , 1.18 ),
+(90, "Thorium", "Th", ( 0.0, 0.72, 1.0, 1.0), 1.65, 1.65, 1.00 , 4 , 1.02 ),
+(91, "Protactinium", "Pa", ( 0.0, 0.63, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.13 , 4 , 0.98 , 5 , 0.89 ),
+(92, "Uranium", "U", ( 0.0, 0.56, 1.0, 1.0), 1.42, 1.42, 1.00 , 4 , 0.97 , 6 , 0.80 ),
+(93, "Neptunium", "Np", ( 0.0, 0.50, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.10 , 4 , 0.95 , 7 , 0.71 ),
+(94, "Plutonium", "Pu", ( 0.0, 0.41, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.08 , 4 , 0.93 ),
+(95, "Americium", "Am", ( 0.32, 0.36, 0.94, 1.0), 1.00, 1.00, 1.00 , 3 , 1.07 , 4 , 0.92 ),
+(96, "Curium", "Cm", ( 0.47, 0.36, 0.89, 1.0), 1.00, 1.00, 1.00 ),
+(97, "Berkelium", "Bk", ( 0.54, 0.30, 0.89, 1.0), 1.00, 1.00, 1.00 ),
+(98, "Californium", "Cf", ( 0.63, 0.21, 0.83, 1.0), 1.00, 1.00, 1.00 ),
+(99, "Einsteinium", "Es", ( 0.70, 0.12, 0.83, 1.0), 1.00, 1.00, 1.00 ),
+(100, "Fermium", "Fm", ( 0.70, 0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ),
+(101, "Mendelevium", "Md", ( 0.70, 0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ),
+(102, "Nobelium", "No", ( 0.74, 0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ),
+(103, "Lawrencium", "Lr", ( 0.78, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 ),
+(104, "Vacancy", "Vac", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
+(105, "Default", "Default", ( 1.0, 1.0, 1.0, 1.0), 1.00, 1.00, 1.00),
+(106, "Stick", "Stick", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
+)
+
+# This list here contains all data of the elements and will be used during
+# runtime. It is a list of classes.
+# During executing Atomic Blender, the list will be initialized with the fixed
+# data from above via the class structure below (ElementProp). We
+# have then one fixed list (above), which will never be changed, and a list of
+# classes with same data. The latter can be modified via loading a separate
+# custom data file for instance.
+ELEMENTS = []
+
+# This is the list, which contains all atoms of all frames! Each item is a
+# list which contains the atoms of a single frame. It is a list of
+# 'AtomProp'.
+ALL_FRAMES = []
+
+# A list of ALL balls which are put into the scene
+STRUCTURE = []
+
+
+# This is the class, which stores the properties for one element.
+class ElementProp(object):
+ __slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
+ def __init__(self, number, name, short_name, color, radii, radii_ionic):
+ self.number = number
+ self.name = name
+ self.short_name = short_name
+ self.color = color
+ self.radii = radii
+ self.radii_ionic = radii_ionic
+
+# This is the class, which stores the properties of one atom.
+class AtomProp(object):
+ __slots__ = ('element', 'name', 'location', 'radius', 'color', 'material')
+ def __init__(self, element, name, location, radius, color, material):
+ self.element = element
+ self.name = name
+ self.location = location
+ self.radius = radius
+ self.color = color
+ self.material = material
+
+
+# -----------------------------------------------------------------------------
+# Some basic routines
+
+def read_elements():
+
+ del ELEMENTS[:]
+
+ for item in ELEMENTS_DEFAULT:
+
+ # All three radii into a list
+ radii = [item[4],item[5],item[6]]
+ # The handling of the ionic radii will be done later. So far, it is an
+ # empty list.
+ radii_ionic = []
+
+ li = ElementProp(item[0],item[1],item[2],item[3],
+ radii,radii_ionic)
+ ELEMENTS.append(li)
+
+
+# filepath_pdb: path to pdb file
+# radiustype : '0' default
+# '1' atomic radii
+# '2' van der Waals
+def read_xyz_file(filepath_xyz,radiustype):
+
+ number_frames = 0
+ total_number_atoms = 0
+
+ # Open the file ...
+ filepath_xyz_p = open(filepath_xyz, "r")
+
+ #Go through the whole file.
+ FLAG = False
+ for line in filepath_xyz_p:
+
+ # ... the loop is broken here (EOF) ...
+ if line == "":
+ continue
+
+ split_list = line.rsplit()
+
+ if len(split_list) == 1:
+ number_atoms = int(split_list[0])
+ FLAG = True
+
+ if FLAG == True:
+
+ line = filepath_xyz_p.readline()
+ line = line.rstrip()
+
+ all_atoms= []
+ for i in range(number_atoms):
+
+
+ # This is a guarantee that only the total number of atoms of the
+ # first frame is used. Condition is, so far, that the number of
+ # atoms in a xyz file is constant. However, sometimes the number
+ # may increase (or decrease). If it decreases, the addon crashes.
+ # If it increases, only the tot number of atoms of the first frame
+ # is used.
+ # By time, I will allow varying atom numbers ... but this takes
+ # some time ...
+ if number_frames != 0:
+ if i >= total_number_atoms:
+ break
+
+
+ line = filepath_xyz_p.readline()
+ line = line.rstrip()
+ split_list = line.rsplit()
+ short_name = str(split_list[0])
+
+ # Go through all elements and find the element of the current atom.
+ FLAG_FOUND = False
+ for element in ELEMENTS:
+ if str.upper(short_name) == str.upper(element.short_name):
+ # Give the atom its proper name, color and radius:
+ name = element.name
+ # int(radiustype) => type of radius:
+ # pre-defined (0), atomic (1) or van der Waals (2)
+ radius = float(element.radii[int(radiustype)])
+ color = element.color
+ FLAG_FOUND = True
+ break
+
+ # Is it a vacancy or an 'unknown atom' ?
+ if FLAG_FOUND == False:
+ # Give this atom also a name. If it is an 'X' then it is a
+ # vacancy. Otherwise ...
+ if "X" in short_name:
+ short_name = "VAC"
+ name = "Vacancy"
+ radius = float(ELEMENTS[-3].radii[int(radiustype)])
+ color = ELEMENTS[-3].color
+ # ... take what is written in the xyz file. These are somewhat
+ # unknown atoms. This should never happen, the element list is
+ # almost complete. However, we do this due to security reasons.
+ else:
+ name = str.upper(short_name)
+ radius = float(ELEMENTS[-2].radii[int(radiustype)])
+ color = ELEMENTS[-2].color
+
+ x = float(split_list[1])
+ y = float(split_list[2])
+ z = float(split_list[3])
+
+ location = Vector((x,y,z))
+
+ all_atoms.append([short_name, name, location, radius, color])
+
+ # We note here all elements. This needs to be done only once.
+ if number_frames == 0:
+
+ # This is a guarantee that only the total number of atoms of the
+ # first frame is used. Condition is, so far, that the number of
+ # atoms in a xyz file is constant. However, sometimes the number
+ # may increase (or decrease). If it decreases, the addon crashes.
+ # If it increases, only the tot number of atoms of the first frame
+ # is used.
+ # By time, I will allow varying atom numbers ... but this takes
+ # some time ...
+ total_number_atoms = number_atoms
+
+
+ elements = []
+ for atom in all_atoms:
+ FLAG_FOUND = False
+ for element in elements:
+ # If the atom name is already in the list,
+ # FLAG on 'True'.
+ if element == atom[1]:
+ FLAG_FOUND = True
+ break
+ # No name in the current list has been found? => New entry.
+ if FLAG_FOUND == False:
+ # Stored are: Atom label (e.g. 'Na'), the corresponding
+ # atom name (e.g. 'Sodium') and its color.
+ elements.append(atom[1])
+
+ # Sort the atoms: create lists of atoms of one type
+ structure = []
+ for element in elements:
+ atoms_one_type = []
+ for atom in all_atoms:
+ if atom[1] == element:
+ atoms_one_type.append(AtomProp(atom[0],
+ atom[1],
+ atom[2],
+ atom[3],
+ atom[4],[]))
+ structure.append(atoms_one_type)
+
+ ALL_FRAMES.append(structure)
+ number_frames += 1
+ FLAG = False
+
+ filepath_xyz_p.close()
+
+ return total_number_atoms
+
+
+# Rotate an object.
+def rotate_object(rot_mat, obj):
+
+ bpy.ops.object.select_all(action='DESELECT')
+ obj.select_set(True)
+
+ # Decompose world_matrix's components, and from them assemble 4x4 matrices.
+ orig_loc, orig_rot, orig_scale = obj.matrix_world.decompose()
+
+ orig_loc_mat = Matrix.Translation(orig_loc)
+ orig_rot_mat = orig_rot.to_matrix().to_4x4()
+ orig_scale_mat = (Matrix.Scale(orig_scale[0],4,(1,0,0)) @
+ Matrix.Scale(orig_scale[1],4,(0,1,0)) @
+ Matrix.Scale(orig_scale[2],4,(0,0,1)))
+
+ # Assemble the new matrix.
+ obj.matrix_world = orig_loc_mat @ rot_mat @ orig_rot_mat @ orig_scale_mat
+
+
+# Function, which puts a camera and light source into the 3D scene
+def camera_light_source(use_camera,
+ use_light,
+ object_center_vec,
+ object_size):
+
+ camera_factor = 15.0
+
+ # If chosen a camera is put into the scene.
+ if use_camera == True:
+
+ # Assume that the object is put into the global origin. Then, the
+ # camera is moved in x and z direction, not in y. The object has its
+ # size at distance sqrt(object_size) from the origin. So, move the
+ # camera by this distance times a factor of camera_factor in x and z.
+ # Then add x, y and z of the origin of the object.
+ object_camera_vec = Vector((sqrt(object_size) * camera_factor,
+ 0.0,
+ sqrt(object_size) * camera_factor))
+ camera_xyz_vec = object_center_vec + object_camera_vec
+
+ # Create the camera
+ camera_data = bpy.data.cameras.new("A_camera")
+ camera_data.lens = 45
+ camera_data.clip_end = 500.0
+ camera = bpy.data.objects.new("A_camera", camera_data)
+ camera.location = camera_xyz_vec
+ bpy.context.collection.objects.link(camera)
+
+ # Here the camera is rotated such it looks towards the center of
+ # the object. The [0.0, 0.0, 1.0] vector along the z axis
+ z_axis_vec = Vector((0.0, 0.0, 1.0))
+ # The angle between the last two vectors
+ angle = object_camera_vec.angle(z_axis_vec, 0)
+ # The cross-product of z_axis_vec and object_camera_vec
+ axis_vec = z_axis_vec.cross(object_camera_vec)
+ # Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
+ # 4 is the size of the matrix.
+ camera.rotation_euler = Matrix.Rotation(angle, 4, axis_vec).to_euler()
+
+ # Rotate the camera around its axis by 90° such that we have a nice
+ # camera position and view onto the object.
+ bpy.ops.object.select_all(action='DESELECT')
+ camera.select_set(True)
+
+ # Rotate the camera around its axis 'object_camera_vec' by 90° such
+ # that we have a nice camera view onto the object.
+ matrix_rotation = Matrix.Rotation(90/360*2*pi, 4, object_camera_vec)
+ rotate_object(matrix_rotation, camera)
+
+ # Here a lamp is put into the scene, if chosen.
+ if use_light == True:
+
+ # This is the distance from the object measured in terms of %
+ # of the camera distance. It is set onto 50% (1/2) distance.
+ light_dl = sqrt(object_size) * 15 * 0.5
+ # This is a factor to which extend the lamp shall go to the right
+ # (from the camera point of view).
+ light_dy_right = light_dl * (3.0/4.0)
+
+ # Create x, y and z for the lamp.
+ object_light_vec = Vector((light_dl,light_dy_right,light_dl))
+ light_xyz_vec = object_center_vec + object_light_vec
+
+ # Create the lamp
+ light_data = bpy.data.lights.new(name="A_light", type="SUN")
+ light_data.distance = 500.0
+ light_data.energy = 3.0
+ lamp = bpy.data.objects.new("A_light", light_data)
+ lamp.location = light_xyz_vec
+ bpy.context.collection.objects.link(lamp)
+
+ # Some settings for the World: a bit ambient occlusion
+ bpy.context.scene.world.light_settings.use_ambient_occlusion = True
+ bpy.context.scene.world.light_settings.ao_factor = 0.2
+ # Some properties for cycles
+ lamp.data.use_nodes = True
+ lmp_P_BSDF = lamp.data.node_tree.nodes['Emission']
+ lmp_P_BSDF.inputs['Strength'].default_value = 5
+
+# -----------------------------------------------------------------------------
+# The main routine
+
+def import_xyz(Ball_type,
+ Ball_azimuth,
+ Ball_zenith,
+ Ball_radius_factor,
+ radiustype,
+ Ball_distance_factor,
+ put_to_center,
+ put_to_center_all,
+ use_camera,
+ use_light,
+ filepath_xyz):
+
+ # List of materials
+ atom_material_list = []
+
+ # ------------------------------------------------------------------------
+ # INITIALIZE THE ELEMENT LIST
+
+ read_elements()
+
+ # ------------------------------------------------------------------------
+ # READING DATA OF ATOMS
+
+ Number_of_total_atoms = read_xyz_file(filepath_xyz, radiustype)
+
+ # We show the atoms of the first frame.
+ first_frame = ALL_FRAMES[0]
+
+ # ------------------------------------------------------------------------
+ # MATERIAL PROPERTIES FOR ATOMS
+
+ # Create first a new list of materials for each type of atom
+ # (e.g. hydrogen)
+ for atoms_of_one_type in first_frame:
+ # Take the first atom
+ atom = atoms_of_one_type[0]
+ material = bpy.data.materials.new(atom.name)
+ material.name = atom.name
+ material.diffuse_color = atom.color
+ atom_material_list.append(material)
+
+ # Now, we go through all atoms and give them a material. For all atoms ...
+ for atoms_of_one_type in first_frame:
+ for atom in atoms_of_one_type:
+ # ... and all materials ...
+ for material in atom_material_list:
+ # ... select the correct material for the current atom via
+ # comparison of names ...
+ if atom.name in material.name:
+ # ... and give the atom its material properties.
+ # However, before we check if it is a vacancy
+ # The vacancy is represented by a transparent cube.
+ if atom.name == "Vacancy":
+ material.metallic = 0.8
+ material.specular_intensity = 0.5
+ material.roughness = 0.3
+ material.blend_method = 'ADD'
+ material.show_transparent_back = False
+ # Some properties for cycles
+ material.use_nodes = True
+ mat_P_BSDF = material.node_tree.nodes['Principled BSDF']
+ mat_P_BSDF.inputs['Metallic'].default_value = 0.1
+ mat_P_BSDF.inputs['Roughness'].default_value = 0.2
+ mat_P_BSDF.inputs['Transmission'].default_value = 0.97
+ mat_P_BSDF.inputs['IOR'].default_value = 0.8
+ # The atom gets its properties.
+ atom.material = material
+
+ # ------------------------------------------------------------------------
+ # TRANSLATION OF THE STRUCTURE TO THE ORIGIN
+
+ # It may happen that the structure in a XYZ file already has an offset
+
+
+ # If chosen, the structure is put into the center of the scene
+ # (only the first frame).
+ if put_to_center == True and put_to_center_all == False:
+
+ sum_vec = Vector((0.0,0.0,0.0))
+
+ # Sum of all atom coordinates
+ for atoms_of_one_type in first_frame:
+ sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)
+
+ # Then the average is taken
+ sum_vec = sum_vec / Number_of_total_atoms
+
+ # After, for each atom the center of gravity is substracted
+ for atoms_of_one_type in first_frame:
+ for atom in atoms_of_one_type:
+ atom.location -= sum_vec
+
+ # If chosen, the structure is put into the center of the scene
+ # (all frames).
+ if put_to_center_all == True:
+
+ # For all frames
+ for frame in ALL_FRAMES:
+
+ sum_vec = Vector((0.0,0.0,0.0))
+
+ # Sum of all atom coordinates
+ for (i, atoms_of_one_type) in enumerate(frame):
+
+ # This is a guarantee that only the total number of atoms of the
+ # first frame is used. Condition is, so far, that the number of
+ # atoms in a xyz file is constant. However, sometimes the number
+ # may increase (or decrease). If it decreases, the addon crashes.
+ # If it increases, only the tot number of atoms of the first frame
+ # is used.
+ # By time, I will allow varying atom numbers ... but this takes
+ # some time ...
+ if i >= Number_of_total_atoms:
+ break
+
+ sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)
+
+ # Then the average is taken
+ sum_vec = sum_vec / Number_of_total_atoms
+
+ # After, for each atom the center of gravity is substracted
+ for atoms_of_one_type in frame:
+ for atom in atoms_of_one_type:
+ atom.location -= sum_vec
+
+
+ # ------------------------------------------------------------------------
+ # SCALING
+
+ # Take all atoms and adjust their radii and scale the distances.
+ for atoms_of_one_type in first_frame:
+ for atom in atoms_of_one_type:
+ atom.location *= Ball_distance_factor
+
+ # ------------------------------------------------------------------------
+ # DETERMINATION OF SOME GEOMETRIC PROPERTIES
+
+ # In the following, some geometric properties of the whole object are
+ # determined: center, size, etc.
+ sum_vec = Vector((0.0,0.0,0.0))
+
+ # First the center is determined. All coordinates are summed up ...
+ for atoms_of_one_type in first_frame:
+ sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)
+
+ # ... and the average is taken. This gives the center of the object.
+ object_center_vec = sum_vec / Number_of_total_atoms
+
+ # Now, we determine the size.The farthest atom from the object center is
+ # taken as a measure. The size is used to place well the camera and light
+ # into the scene.
+
+ object_size_vec = []
+ for atoms_of_one_type in first_frame:
+ object_size_vec += [atom.location - object_center_vec for atom in atoms_of_one_type]
+
+ object_size = 0.0
+ object_size = max(object_size_vec).length
+
+ # ------------------------------------------------------------------------
+ # COLLECTION
+
+ # Before we start to draw the atoms, we first create a collection for the
+ # atomic structure. All atoms (balls) are put into this collection.
+ coll_structure_name = os.path.basename(filepath_xyz)
+ scene = bpy.context.scene
+ coll_structure = bpy.data.collections.new(coll_structure_name)
+ scene.collection.children.link(coll_structure)
+
+ # ------------------------------------------------------------------------
+ # DRAWING THE ATOMS
+
+ bpy.ops.object.select_all(action='DESELECT')
+
+ # For each list of atoms of ONE type (e.g. Hydrogen)
+ for atoms_of_one_type in first_frame:
+
+ # Create first the vertices composed of the coordinates of all
+ # atoms of one type
+ atom_vertices = []
+ for atom in atoms_of_one_type:
+ # In fact, the object is created in the World's origin.
+ # This is why 'object_center_vec' is substracted. At the end
+ # the whole object is translated back to 'object_center_vec'.
+ atom_vertices.append( atom.location - object_center_vec )
+
+ # First, we create a collection of the element, which
+ # contains the atoms (balls + mesh)!
+ coll_element_name = atom.name # the element name
+ # Create the new collection and ...
+ coll_element = bpy.data.collections.new(coll_element_name)
+ # ... link it to the collection, which contains all parts of the
+ # structure.
+ coll_structure.children.link(coll_element)
+
+ # Now, create a collection for the atoms, which includes the
+ # representative ball and the mesh.
+ coll_atom_name = atom.name + "_atom"
+ # Create the new collection and ...
+ coll_atom = bpy.data.collections.new(coll_atom_name)
+ # ... link it to the collection, which contains all parts of the
+ # element (ball and mesh).
+ coll_element.children.link(coll_atom)
+
+ # Build the mesh
+ atom_mesh = bpy.data.meshes.new("Mesh_"+atom.name)
+ atom_mesh.from_pydata(atom_vertices, [], [])
+ atom_mesh.update()
+ new_atom_mesh = bpy.data.objects.new(atom.name + "_mesh", atom_mesh)
+
+ # Link active object to the new collection
+ coll_atom.objects.link(new_atom_mesh)
+
+ # Now, build a representative sphere (atom)
+ if atom.name == "Vacancy":
+ bpy.ops.mesh.primitive_cube_add(
+ view_align=False, enter_editmode=False,
+ location=(0.0, 0.0, 0.0),
+ rotation=(0.0, 0.0, 0.0))
+ else:
+ # NURBS balls
+ if Ball_type == "0":
+ bpy.ops.surface.primitive_nurbs_surface_sphere_add(
+ view_align=False, enter_editmode=False,
+ location=(0,0,0), rotation=(0.0, 0.0, 0.0))
+ # UV balls
+ elif Ball_type == "1":
+ bpy.ops.mesh.primitive_uv_sphere_add(
+ segments=Ball_azimuth, ring_count=Ball_zenith,
+ size=1, view_align=False, enter_editmode=False,
+ location=(0,0,0), rotation=(0, 0, 0))
+ # Meta balls
+ elif Ball_type == "2":
+ bpy.ops.object.metaball_add(type='BALL', view_align=False,
+ enter_editmode=False, location=(0, 0, 0),
+ rotation=(0, 0, 0))
+
+ ball = bpy.context.view_layer.objects.active
+ # Hide this ball because its appearance has no meaning. It is just the
+ # representative ball. The ball is visible at the vertices of the mesh.
+ # Rememmber, this is a dupliverts construct!
+ ball.hide_set(True)
+ # Scale up/down the ball radius.
+ ball.scale = (atom.radius*Ball_radius_factor,) * 3
+
+ if atom.name == "Vacancy":
+ ball.name = atom.name + "_cube"
+ else:
+ ball.name = atom.name + "_ball"
+ ball.active_material = atom.material
+ ball.parent = new_atom_mesh
+ new_atom_mesh.instance_type = 'VERTS'
+ # The object is back translated to 'object_center_vec'.
+ new_atom_mesh.location = object_center_vec
+ STRUCTURE.append(new_atom_mesh)
+
+ # Note the collection where the ball was placed into.
+ coll_all = ball.users_collection
+ if len(coll_all) > 0:
+ coll_past = coll_all[0]
+ else:
+ coll_past = bpy.context.scene.collection
+
+ # Put the atom into the new collection 'atom' and ...
+ coll_atom.objects.link(ball)
+ # ... unlink the atom from the other collection.
+ coll_past.objects.unlink(ball)
+
+ # ------------------------------------------------------------------------
+ # CAMERA and LIGHT SOURCES
+
+ camera_light_source(use_camera,
+ use_light,
+ object_center_vec,
+ object_size)
+
+ # ------------------------------------------------------------------------
+ # SELECT ALL LOADED OBJECTS
+
+ bpy.ops.object.select_all(action='DESELECT')
+ obj = None
+ for obj in STRUCTURE:
+ obj.select_set(True)
+ # activate the last selected object (perhaps another should be active?)
+ if obj:
+ bpy.context.view_layer.objects.active = obj
+
+
+
+def build_frames(frame_delta, frame_skip):
+
+ scn = bpy.context.scene
+
+ # Introduce the basis for all elements that appear in the structure.
+ for element in STRUCTURE:
+
+ bpy.ops.object.select_all(action='DESELECT')
+ bpy.context.view_layer.objects.active = element
+ element.select_set(True)
+ bpy.ops.object.shape_key_add(True)
+
+ frame_skip += 1
+
+ # Introduce the keys and reference the atom positions for each key.
+ i = 0
+ for j, frame in enumerate(ALL_FRAMES):
+
+ if j % frame_skip == 0:
+
+ for elements_frame, elements_structure in zip(frame,STRUCTURE):
+
+ key = elements_structure.shape_key_add()
+
+ for atom_frame, atom_structure in zip(elements_frame, key.data):
+
+ atom_structure.co = (atom_frame.location
+ - elements_structure.location)
+
+ key.name = atom_frame.name + "_frame_" + str(i)
+
+ i += 1
+
+ num_frames = i
+
+ scn.frame_start = 0
+ scn.frame_end = frame_delta * num_frames
+
+ # Manage the values of the keys
+ for element in STRUCTURE:
+
+ scn.frame_current = 0
+
+ element.data.shape_keys.key_blocks[1].value = 1.0
+ element.data.shape_keys.key_blocks[2].value = 0.0
+ element.data.shape_keys.key_blocks[1].keyframe_insert("value")
+ element.data.shape_keys.key_blocks[2].keyframe_insert("value")
+
+ scn.frame_current += frame_delta
+
+ number = 0
+
+ for number in range(num_frames)[2:]:#-1]:
+
+ element.data.shape_keys.key_blocks[number-1].value = 0.0
+ element.data.shape_keys.key_blocks[number].value = 1.0
+ element.data.shape_keys.key_blocks[number+1].value = 0.0
+ element.data.shape_keys.key_blocks[number-1].keyframe_insert("value")
+ element.data.shape_keys.key_blocks[number].keyframe_insert("value")
+ element.data.shape_keys.key_blocks[number+1].keyframe_insert("value")
+
+ scn.frame_current += frame_delta
+
+ number += 1
+
+ element.data.shape_keys.key_blocks[number].value = 1.0
+ element.data.shape_keys.key_blocks[number-1].value = 0.0
+ element.data.shape_keys.key_blocks[number].keyframe_insert("value")
+ element.data.shape_keys.key_blocks[number-1].keyframe_insert("value")