Welcome to mirror list, hosted at ThFree Co, Russian Federation.

vefm_271.py « add_mesh_geodesic_domes - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f7b71dfdbc6b45ea580c5b71f3417d15dc1bd8c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
# SPDX-License-Identifier: GPL-2.0-or-later

# vert class and overloading experiments
import bpy
# PKHG>NEEDED?
import bmesh
from math import acos, pi, sin, cos, atan, tan
from mathutils import Vector
from bpy_extras.object_utils import AddObjectHelper

# PKHG>DBG change the DBG_info and use extra_DBG_info
DBG_info = {"MeshInfo": False, "StrutMesh": False, "HubMesh": False}


def extra_DBG_info(name="value from DBG_info", info_text="default\n", info_obj=None):
    global DBG_info
    DBG_keys = DBG_info.keys()
    if name in DBG_keys:
        if DBG_info[name]:
            print(info_text, info_obj)

sgn = lambda x: (x > 0) - (x < 0)  # missing signum function in Python


def vefm_add_object(selfobj):
    for i in range(len(selfobj.verts)):
        selfobj.verts[i].index = i
    v = [el.vector for el in selfobj.verts]

    e = [[edge.a.index, edge.b.index] for edge in selfobj.edges]

    if type(selfobj.faces[0]) == type([]):
        # PKHG should be a list of vertices, which have an index
        f = [[v.index for v in face] for face in selfobj.faces]
    else:
        f = [[v.index for v in face.vertices] for face in selfobj.faces]

    m = bpy.data.meshes.new(name=selfobj.name)
    m.from_pydata(v, e, f)
    # useful for development when the mesh may be invalid.
    m.validate(verbose=False)
    return m


# extra test phase

class vertex:
    def __init__(self, vec=(0, 0, 0)):  # default x = 0, y = 0, z = 0):
        self.vector = Vector(vec)
        self.length = self.vector.length
        self.index = 0
        self.normal = 0
        self.edges = []
        self.faces = []
        self.boundary = 0

    def findlength(self):
        self.length = self.vector.length

    def normalize(self):
        self.findlength()
        if self.length > 0:
            tmp = 1.0 / self.length
            self.vector = tmp * self.vector
            self.length = 1.0

    def findnormal(self):
        target = []
        if self.faces[:] == []:
            print("vefm vertex L68 pkhg:*****ERROR**** findnormal has no faces")
            return
        for currentface in self.faces:
            target.append(currentface.normal)
        self.normal = average(target).centroid()
        self.normal.findlength()
        if self.length == 0:
            print("******ERROR*** length zero in findnormal, j = (0,1,0) replaced")
            self.normal = vertex((0, 1, 0))
        self.normal.normalize()

    def clockwise(self):  # PKHG self is a vertex
        if self.boundary:
            start = self.boundarystart()
        else:
            start = self.faces[0]

        self.tempedges = []
        self.tempfaces = []
        for i in range(len(self.edges)):

            self.tempfaces.append(start)
            for corner in start.corners:
                if corner[0] is not self:
                    pass
                elif corner[0] is self:
                    self.tempedges.append(corner[1])
                    nextedge = corner[2]
            for facey in nextedge.faces:
                if facey is not start:
                    start = facey
                    break
        self.edges = self.tempedges
        self.faces = self.tempfaces

    def boundarystart(self):

        pass

    def __add__(self, other):
        if isinstance(other, Vector):
            tmp = self.vector + other
        else:
            tmp = self.vector + other.vector
        return vertex(tmp)

    def __sub__(self, other):
        if isinstance(other, Vector):
            tmp = self.vector - other
        else:
            tmp = self.vector - other.vector
        return vertex(tmp)

    def __mul__(self, other):
        tmp = self.vector * other
        return vertex(tmp)

    def __truediv__(self, other):
        denom = 1.0 / other
        tmp = self.vector * denom
        return (tmp)

    def negative(self):
        return vertex(-self.vector)


class crossp:
    # Takes in two vertices(vectors), returns the cross product.
    def __init__(self, v1, v2):
        self.v1 = v1
        self.v2 = v2

    def docrossproduct(self):
        tmp = self.v1.vector.cross(self.v2.vector)
        return vertex(tmp)


class average:
    # Takes a list of vertices and returns the average. If two verts are passed, returns midpoint.
    def __init__(self, vertlist):
        self.vertlist = vertlist

    def centroid(self):
        tmp = Vector()
        # PKHG avoid emptylist problems
        divisor = 1.0
        nr_vertices = len(self.vertlist)
        if nr_vertices > 1:
            divisor = 1.0 / len(self.vertlist)
        elif nr_vertices == 0:
            print("\n***WARNING*** empty list in vefm_271.centroid! L158")
        for vert in self.vertlist:
            tmp = tmp + vert.vector
        tmp = tmp * divisor
        return vertex(tmp)


class edge:
    def __init__(self, a=0, b=0):
        self.a = a
        self.b = b
        self.index = 0
        self.normal = 0
        self.cross = 0
        self.unit = 0
        self.faces = []
        self.vect = 0   # PKHG becomes  b - a
        self.vectb = 0  # PKHG becomes  a - b
        self.boundary = 0
        self.findvect()
        self.findlength()

    def findvect(self):
        self.vect = self.b - self.a
        self.vectb = self.a - self.b

    def findlength(self):
        self.vect.findlength()
        self.vectb.length = self.vect.length

    def findnormal(self):
        if self.boundary:
            self.normal = self.faces[0].normal    # average([self.a, self.b]).centroid()
        else:
            self.normal = average([self.faces[0].normal, self.faces[1].normal]).centroid()
        self.normal.normalize()


class face:
    def __init__(self, vertices=[]):
        # PKHG ok good for tri's at least
        self.vertices = vertices    # List of vertex instances
        self.edges = []             # Will be filled with the sides of the face
        self.boundary = 0           # When set will have bool and id of edge concerned
        self.normal = 0             # Face normal found through cross product
        self.corners = []
        self.spokes = []            # Vectors of the bisecting angles from each corner to the centre + dotproduct

        self.index = 0

    # dotproduct is misleading name, it is the hook between two vectors!
    def dotproduct(self, v1, v2):
        v1.findlength()
        v2.findlength()
        if v1.length == 0 or v2.length == 0:
            print("\nPKHG warning, ===== vefm_271 dotproduct L212 ======"
                  " at least one zero vector 0 used")
            return 0
        dot = v1.vector.dot(v2.vector)
        costheta = dot / (v1.length * v2.length)
        tmp = acos(costheta)
        return tmp

    def orderedges(self):
        temp = []
        finish = len(self.vertices)
        for i in range(finish):
            current = self.vertices[i]
            if i == finish - 1:
                next = self.vertices[0]
            else:
                next = self.vertices[i + 1]
            for edge in face.edges:
                if edge.a == current and edge.b == next:
                    face.clockw.append(edge.vect)
                    face.aclockw.append(edge.vectb)
                    temp.append(edge)
                if edge.b == current and edge.a == next:
                    face.clockw.append(edge.vectb)
                    face.aclockw.append(edge.vect)
                    temp.append(edge)
            for edge in face.edges:
                if edge.a == current and edge.b == next:
                    face.clockw.append(edge.vect)
                    face.aclockw.append(edge.vectb)
                    temp.append(edge)
                if edge.b == current and edge.a == next:
                    face.clockw.append(edge.vectb)
                    face.aclockw.append(edge.vect)
                    temp.append(edge)
            face.vertices = temp

    def docorners(self):
        # This function identifies and stores the vectors coming from each vertex
        # allowing easier calculation of cross and dot products.
        finish = len(self.vertices)

        for i in range(finish):
            current = self.vertices[i]
            if i == finish - 1:
                next = self.vertices[0]
            else:
                next = self.vertices[i + 1]
            if i == 0:
                previous = self.vertices[-1]
            else:
                previous = self.vertices[i - 1]
            corner = [current]  # PKHG new for each vertex = current
            # corner = current
            rightedge = None
            leftedge = None
            teller = -1
            for edge in self.edges:
                if finish == 3 and len(self.edges) == 2 and i == 2:
                    return
                teller += 1
                # next and previous are vertex with respect to ith vertex
                if edge.a is current or edge.b is current:    # does this edge contain our current vert
                    if edge.a is current:
                        if edge.b is next:
                            rightedge = edge
                            rightvect = edge.vect
                        if edge.b is previous:
                            leftedge = edge
                            leftvect = edge.vect
                    elif edge.b is current:
                        if edge.a is next:
                            rightedge = edge
                            rightvect = edge.vectb
                        if edge.a is previous:
                            leftedge = edge
                            leftvect = edge.vectb
            corner.append(rightedge)
            corner.append(leftedge)
            if rightedge and leftedge:

                dotty = self.dotproduct(rightvect, leftvect)
                corner.append(dotty)
            self.corners.append(corner)

    def findnormal(self):
        one = self.corners[1][2]
        two = self.corners[1][1]
        if one.a is self.corners[1][0]:
            one = one.vect
        elif one.b is self.corners[1][0]:
            one = one.vectb
        if two.a is self.corners[1][0]:
            two = two.vect
        elif two.b is self.corners[1][0]:
            two = two.vectb
        self.normal = crossp(one, two).docrossproduct()
        self.normal.findlength()
        self.normal.normalize()

    def dospokes(self):
        for corner in self.corners:
            vert = corner[0]
            right = corner[1]
            left = corner[2]
            if right.a is vert:
                one = vertex(right.vect.vector)
            elif right.b is vert:
                one = vertex(right.vectb.vector)
            if left.a is vert:
                two = vertex(left.vect.vector)
            elif left.b is vert:
                two = vertex(left.vectb.vector)

            one.normalize()
            two.normalize()
            spoke = one + two
            spoke.normalize()
            self.spokes.append(spoke)

    def artspokes(self):
        centre = average(self.vertices).centroid()
        for point in self.vertices:
            newedge = edge(point, centre)
            self.spokes.append(newedge)


class mesh:
    def __init__(self, name="GD_mesh"):
        self.name = name
        self.verts = []
        self.edges = []
        self.faces = []
        self.edgeflag = 0
        self.faceflag = 0
        self.vertexflag = 0
        self.vertedgeflag = 0
        self.vertfaceflag = 0
        self.faceedgeflag = 0
        self.boundaryflag = 0
        self.vertnormalflag = 0
        self.edgenormalflag = 0
        self.facenormalflag = 0
        self.a45 = pi * 0.25
        self.a90 = pi * 0.5
        self.a180 = pi
        self.a270 = pi * 1.5
        self.a360 = pi * 2

    def power(self, a, b):  # Returns a power, including negative numbers
        result = sgn(a) * (abs(a) ** b)
        return result

    def sign(self, d):      # Works out the sign of a number.
        return sgn(d)

    def ellipsecomp(self, efactor, theta):
        if theta == self.a90:
            result = self.a90
        elif theta == self.a180:
            result = self.a180
        elif theta == self.a270:
            result = self.a270
        elif theta == self.a360:
            result = 0.0
        else:
            result = atan(tan(theta) / efactor ** 0.5)
            if result < 0.0:
                if theta > self.a180:
                    result = result + self.a180
                elif theta < self.a180:
                    result = result + self.a180

            if result > 0.0:
                if theta > self.a180:
                    result = result + self.a180
                elif theta < self.a180:
                    result = result
        return result

    def connectivity(self):
        self.dovertedge()
        self.dovertface()
        self.dofaceedge()
        self.boundary()

    def superell(self, n1, uv, turn):
        t1 = sin(uv + turn)
        t1 = abs(t1)
        t1 = t1 ** n1
        t2 = cos(uv + turn)
        t2 = abs(t2)
        t2 = t2 ** n1
        r = self.power(1.0 / (t1 + t2), (1.0 / n1))
        return r

    def superform(self, m, n1, n2, n3, uv, a, b, twist):
        t1 = cos(m * (uv + twist) * .25) * a
        t1 = abs(t1)
        t1 = t1 ** n2
        t2 = sin(m * (uv + twist) * .25) * b
        t2 = abs(t2)
        t2 = t2 ** n3
        r = self.power(1.0 / (t1 + t2), n1)
        return r

    def dovertedge(self):
        if not self.vertedgeflag:
            for vert in self.verts:
                vert.edges = []
            for currentedge in self.edges:
                currentedge.a.edges.append(currentedge)
                currentedge.b.edges.append(currentedge)
        self.vertedgeflag = 1

    def dovertface(self):
        if not self.vertfaceflag:
            for vert in self.verts:
                vert.faces = []
            for face in self.faces:
                for vert in face.vertices:
                    vert.faces.append(face)
        self.vertfaceflag = 1

    def dofaceedge(self):
        self.dovertedge()    # just in case they haven't been done
        self.dovertface()
        if not self.faceedgeflag:
            for edge in self.edges:
                edge.faces = []
            for face in self.faces:
                face.edges = []
            for face in self.faces:
                finish = len(face.vertices)
                for i in range(finish):
                    current = face.vertices[i]
                    if i == finish - 1:
                        next = face.vertices[0]
                    else:
                        next = face.vertices[i + 1]
                    for edge in current.edges:
                        if edge.a is current or edge.b is current:
                            if edge.b is next or edge.a is next:
                                edge.faces.append(face)
                                face.edges.append(edge)
        self.faceedgeflag = 1

    def boundary(self):
        if not self.boundaryflag:
            for edge in self.edges:
                if len(edge.faces) < 2:
                    edge.boundary = 1
                    edge.faces[0].boundary = 1
                    edge.a.boundary = 1
                    edge.b.boundary = 1

    # The functions below turn the basic triangular faces into
    # hexagonal faces, creating the buckyball effect.
    # PKHG seems to work only for meshes with tri's ;-)
    def hexify(self):
        self.hexverts = []
        self.hexedges = []
        self.hexfaces = []
        # PKHG renumbering the index of the verts
        for i in range(len(self.verts)):
            self.verts[i].index = i
        # PKHG renumbering the index of the edges
        for i in range(len(self.edges)):
            self.edges[i].index = i

        self.connectivity()
        hexvert_counter = 0
        for edge in self.edges:

            self.hexshorten(edge, hexvert_counter)
            hexvert_counter += 2  # PKHG two new vertices done

        for face in self.faces:
            self.makehexfaces(face)

        for vert in self.verts:
            vert.clockwise()
            self.hexvertface(vert)
        self.verts = self.hexverts
        self.edges = self.hexedges
        self.faces = self.hexfaces
        self.vertedgeflag = 0
        self.vertfaceflag = 0
        self.faceedgeflag = 0

    def hexshorten(self, currentedge, hexvert_counter):
        third = vertex(currentedge.vect / 3.0)
        newvert1 = vertex(currentedge.a.vector)
        newvert2 = vertex(currentedge.b.vector)
        newvert1 = newvert1 + third
        newvert1.index = hexvert_counter
        newvert2 = newvert2 - third
        newvert2.index = hexvert_counter + 1  # PKHG caller adjusts +=2
        newedge = edge(newvert1, newvert2)
        newedge.index = currentedge.index
        self.hexverts.append(newvert1)
        self.hexverts.append(newvert2)
        self.hexedges.append(newedge)

    def makehexfaces(self, currentface):
        vertices = []
        currentface.docorners()
        for corner in currentface.corners:
            vert = corner[0]
            rightedge = corner[1]
            leftedge = corner[2]
            lid = leftedge.index
            rid = rightedge.index

            if leftedge.a is vert:
                vertices.append(self.hexedges[lid].a)
            elif leftedge.b is vert:
                vertices.append(self.hexedges[lid].b)

            if rightedge.a is vert:
                vertices.append(self.hexedges[rid].a)
            elif rightedge.b is vert:
                vertices.append(self.hexedges[rid].b)

        newface = face(vertices)
        newedge1 = edge(vertices[0], vertices[1])
        newedge2 = edge(vertices[2], vertices[3])
        newedge3 = edge(vertices[4], vertices[5])
        self.hexfaces.append(newface)
        self.hexedges.append(newedge1)
        self.hexedges.append(newedge2)
        self.hexedges.append(newedge3)

    def hexvertface(self, vert):
        vertices = []
        for edge in vert.edges:
            eid = edge.index
            if edge.a is vert:
                vertices.append(self.hexedges[eid].a)
            elif edge.b is vert:
                vertices.append(self.hexedges[eid].b)
        newface = face(vertices)
        self.hexfaces.append(newface)

    def starify(self):
        self.starverts = []
        self.staredges = []
        self.starfaces = []
        for i in range(len(self.verts)):
            self.verts[i].index = i
        for i in range(len(self.edges)):
            self.edges[i].index = i
        self.connectivity()
        star_vert_counter = 0
        for currentedge in self.edges:
            newvert = average([currentedge.a, currentedge.b]).centroid()
            newvert.index = star_vert_counter
            star_vert_counter += 1
            self.starverts.append(newvert)
        star_face_counter = 0
        star_edge_counter = 0
        for currentface in self.faces:
            currentface.docorners()
            vertices = []
            for corner in currentface.corners:
                vert = self.starverts[corner[1].index]
                vertices.append(vert)
            newface = face(vertices)
            newface.index = star_face_counter
            star_face_counter += 1
            newedge1 = edge(vertices[0], vertices[1])
            newedge1.index = star_edge_counter
            newedge2 = edge(vertices[1], vertices[2])
            newedge2.index = star_edge_counter + 1
            newedge3 = edge(vertices[2], vertices[0])
            newedge3.index = star_edge_counter + 2
            star_edge_counter += 3
            self.starfaces.append(newface)
            self.staredges.append(newedge1)
            self.staredges.append(newedge2)
            self.staredges.append(newedge3)
        for vert in self.verts:
            vertices = []
            vert.clockwise()
            for currentedge in vert.edges:
                eid = currentedge.index
                vertices.append(self.starverts[eid])
            newface = face(vertices)
            newface.index = star_face_counter
            star_face_counter += 1
            self.starfaces.append(newface)
        self.verts = self.starverts
        self.edges = self.staredges
        self.faces = self.starfaces
        self.vertedgeflag = 0
        self.vertfaceflag = 0
        self.faceedgeflag = 0

    def class2(self):
        self.class2verts = []
        self.class2edges = []
        self.class2faces = []

        newvertstart = len(self.verts)
        newedgestart = len(self.edges)
        counter_verts = len(self.verts)
        for i in range(counter_verts):
            self.verts[i].index = i
        for i in range(len(self.edges)):
            self.edges[i].index = i
        for i in range(len(self.faces)):
            self.faces[i].index = i
        self.connectivity()
        for currentface in self.faces:
            currentface.docorners()
            newvert = average(currentface.vertices).centroid()
            newvert.index = counter_verts

            counter_verts += 1
            self.verts.append(newvert)
            newedge1 = edge(currentface.vertices[0], newvert)
            newedge2 = edge(currentface.vertices[1], newvert)
            newedge3 = edge(currentface.vertices[2], newvert)

            self.edges.append(newedge1)
            self.edges.append(newedge2)
            self.edges.append(newedge3)
        for currentedge in range(newedgestart):
            self.edges[currentedge].a = self.verts[self.edges[currentedge].faces[0].index + newvertstart]
            self.edges[currentedge].b = self.verts[self.edges[currentedge].faces[1].index + newvertstart]
            self.edges[currentedge].findvect()

        for currentvert in range(newvertstart):
            vert = self.verts[currentvert]
            vertices = []
            vert.clockwise()
            for currentface in vert.faces:
                eid = currentface.index
                vertices.append(self.verts[newvertstart + eid])

            for i in range(len(vertices)):
                if i == len(vertices) - 1:
                    next = vertices[0]
                else:
                    next = vertices[i + 1]

                newface = face([vert, vertices[i], next])
                self.class2faces.append(newface)

        self.faces = self.class2faces
        self.vertedgeflag = 0
        self.vertfaceflag = 0
        self.faceedgeflag = 0

    def dual(self):
        self.dualverts = []

        self.dualfaces = []

        counter_verts = len(self.verts)
        for i in range(counter_verts):
            self.verts[i].index = i
        for i in range(len(self.edges)):
            self.edges[i].index = i
        for i in range(len(self.faces)):
            self.faces[i].index = i
        self.connectivity()
        counter_verts = 0
        for currentface in self.faces:
            currentface.docorners()
            newvert = average(currentface.vertices).centroid()
            newvert.index = counter_verts  # PKHG needed in >= 2.59
            counter_verts += 1
            self.dualverts.append(newvert)
        for vert in self.verts:
            vertices = []
            vert.clockwise()
            for currentface in vert.faces:
                eid = currentface.index
                vertices.append(self.dualverts[eid])
            newface = face(vertices)
            self.dualfaces.append(newface)
        for currentedge in self.edges:
            currentedge.a = self.dualverts[currentedge.faces[0].index]
            currentedge.b = self.dualverts[currentedge.faces[1].index]
        self.verts = self.dualverts

        self.faces = self.dualfaces
        self.vertedgeflag = 0
        self.vertfaceflag = 0
        self.faceedgeflag = 0


class facetype(mesh):
    def __init__(self, basegeodesic, parameters, width, height, relative):
        mesh.__init__(self)
        self.detach = parameters[0]
        self.endtype = parameters[1]
        self.coords = parameters[2]
        self.base = basegeodesic
        self.relative = relative
        self.width = width

        if not self.relative:
            newwidth = self.findrelative()
            self.width = width * newwidth
        self.height = height
        self.base.connectivity()
        for coord in self.coords:
            coord[0] = coord[0] * self.width
            coord[1] = coord[1] * self.height
        if not self.base.facenormalflag:
            for currentface in self.base.faces:

                currentface.docorners()
                currentface.findnormal()

            self.base.facenormalflag = 1
        if self.endtype == 4 and not self.base.vertnormalflag:
            for currentvert in self.base.verts:
                currentvert.findnormal()
            self.base.vertnormalflag = 1
        self.createfaces()

    def findrelative(self):
        centre = average(self.base.faces[0].vertices).centroid()
        edgelist = []
        for point in self.base.faces[0].vertices:
            newedge = edge(centre, point)
            edgelist.append(newedge)
        length = 0
        for edg in edgelist:
            extra = edg.vect.length
            length = length + extra

        length = length / len(edgelist)

        return length

    def createfaces(self):
        if not self.detach:
            for point in self.base.verts:
                self.verts.append(point)
        if self.endtype == 4:
            self.createghostverts()
        for currentface in self.base.faces:
            self.doface(currentface)

    def createghostverts(self):
        self.ghoststart = len(self.verts)
        for vert in self.base.verts:
            newvert = vert + (vert.normal * self.coords[-1][1])
            self.verts.append(newvert)

    def doface(self, candidate):
        grid = []
        candidate.dospokes()

        if not self.detach:
            line = []
            for vert in candidate.vertices:
                line.append(vert)
            grid.append(line)
        else:
            line = []
            for point in candidate.vertices:
                newvert = vertex(point.vector)
                self.verts.append(newvert)
                line.append(newvert)
            grid.append(line)
        finish = len(self.coords)
        if self.endtype == 1 or self.endtype == 4:
            finish = finish - 1
        for i in range(finish):
            up = candidate.normal * self.coords[i][1]
            line = []
            for j in range(len(candidate.vertices)):
                dotfac = candidate.corners[j][3] * 0.5
                vec = (candidate.spokes[j] * (self.coords[i][0] / sin(dotfac)))

                newvert = candidate.vertices[j] + vec + up
                line.append(newvert)
                self.verts.append(newvert)
            grid.append(line)
        if self.endtype == 4:
            line = []
            for i in range(len(candidate.vertices)):
                vert = self.verts[candidate.vertices[i].index + self.ghoststart]
                line.append(vert)

            grid.append(line)
        for line in grid:
            line.append(line[0])
        if self.endtype == 3:
            grid.append(grid[0])
        for i in range(len(grid) - 1):
            for j in range(len(grid[i]) - 1):
                one = grid[i][j]
                two = grid[i][j + 1]
                three = grid[i + 1][j + 1]
                four = grid[i + 1][j]
                newface = face([one, two, three, four])
                self.faces.append(newface)
        if self.endtype == 2:
            finalfaceverts = grid[-1]
            newface = face(finalfaceverts[:-1])
            self.faces.append(newface)
        if self.endtype == 1:
            lastvert = average(candidate.vertices).centroid()
            up = candidate.normal * self.coords[-1][1]
            newvert = lastvert + up
            self.verts.append(newvert)
            ring = grid[-1]
            for i in range(len(ring) - 1):
                newface = face([newvert, ring[i], ring[i + 1]])
                self.faces.append(newface)


class importmesh(mesh):
    def __init__(self, meshname, breakquadflag):
        mesh.__init__(self)

        obj = bpy.data.objects[meshname]
        bpy.context.view_layer.objects.active = obj
        obj.select_set(True)
        impmesh = None
        if not breakquadflag:
            bpy.ops.object.mode_set(mode='EDIT')
            impmesh = bmesh.new()           # create an empty BMesh
            impmesh.from_mesh(obj.data)     # fill it in from a Mesh
            bpy.ops.object.mode_set(mode='OBJECT')

        if breakquadflag:
            bpy.ops.object.mode_set(mode='EDIT')
            bpy.ops.mesh.quads_convert_to_tris()
            impmesh = bmesh.new()         # create an empty BMesh
            impmesh.from_mesh(obj.data)   # fill it in from a Mesh
            bpy.ops.object.mode_set(mode='OBJECT')

        for v in impmesh.verts:
            vert = vertex(v.co)
            vert.index = v.index
            self.verts.append(vert)
            # PKHG verts is now a list of vertex, so to say a copy of the Vectors

        # PKHG edges
        for e in impmesh.edges:
            tmp = []
            for vert in e.verts:
                a = self.verts[vert.index]
                tmp.append(a)
            newedge = edge(tmp[0], tmp[1])
            newedge.index = e.index
            self.edges.append(newedge)
        # PKHG faces
        extra_DBG_info("MeshInfo", "vefm L868 the mesh impmesh", impmesh.faces[:])

        for f in impmesh.faces:
            temp = []
            for vert in f.verts:            # PKHG a list! of indices ??? PKHG>???
                a = self.verts[vert.index]  # PKHG verts contains already vertex objects
                temp.append(a)
            newface = face(temp)
            newface.index = f.index  # indexcount
            self.faces.append(newface)
        self.dovertedge()
        self.dovertface()
        self.temp = []

        for i in range(len(self.verts)):
            self.temp.append([])
            self.verts[i].index = i
        for i in range(len(self.verts)):
            target = self.surroundingverts(self.verts[i])
            for j in range(len(target)):                    # go through those verts
                temptarg = self.temp[target[j].index]
                flag = 0                                    # set a flag up

                for k in range(len(temptarg)):              # go through temp list for each of those verts

                    if temptarg[k] == i:                    # if we find a match to the current vert...
                        flag = 1                            # raise the flag

                if flag == 0:                               # if there is no flag after all that...
                    self.temp[target[j].index].append(i)    # add current vert to temp list of this surrounding vert
                    self.temp[i].append(target[j].index)    # add this surrounding vert to the current temp list
                    newedge = edge(self.verts[i], self.verts[target[j].index])
                    self.edges.append(newedge)              # add the newly found edge to the edges list

        for edg in self.edges:
            edg.findvect()
        self.vertedgeflag = 0
        self.vertedgeflag = 0
        self.connectivity()

    def surroundingverts(self, vert):
        ''' Find the verts surrounding vert'''
        surround = []                       # list to be filled and returned
        for faces in vert.faces:            # loop through faces attached to vert
            finish = len(faces.vertices)
            for i in range(finish):
                if i == finish - 1:
                    next = faces.vertices[0]
                else:
                    next = faces.vertices[i + 1]
                if vert == faces.vertices[i]:
                    surround.append(next)
        return surround

    def breakquad(self, quad_face):
        ''' turn quads into triangles'''
        distance1 = quad_face.vertices[0] - quad_face.vertices[2]
        distance2 = quad_face.vertices[1] - quad_face.vertices[3]
        distance1.findlength()
        distance2.findlength()
        if abs(distance1.length) < abs(distance2.length):
            self.faces[quad_face.index] = face([quad_face.vertices[0], quad_face.vertices[1], quad_face.vertices[2]])
            self.faces.append(face([quad_face.vertices[0], quad_face.vertices[2], quad_face.vertices[3]]))
        else:
            self.faces[quad_face.index] = face([quad_face.vertices[0], quad_face.vertices[1], quad_face.vertices[3]])
            self.faces.append(face([quad_face.vertices[1], quad_face.vertices[2], quad_face.vertices[3]]))


class strut(mesh):
    def __init__(self, base, struttype, width, height, length, widthtog, heighttog,
                 lengthtog, meshname, stretchflag, lift):

        extra_DBG_info(name="StrutMesh", info_text="vefm L940\nstrut called: ",
                        info_obj=[base, struttype, width, height, length, widthtog,
                        heighttog, lengthtog, meshname, stretchflag, lift])
        mesh.__init__(self)
        # put in strut prep stuff here
        if struttype is None:
            return
        total = 0
        divvy = len(base.faces[0].edges)
        for lengf in base.faces[0].edges:
            lengf.vect.findlength()
            total = total + lengf.vect.length
        yardstick = total / divvy
        if widthtog:
            self.width = width
        else:
            self.width = width * yardstick
        if heighttog:
            self.height = height
        else:
            self.height = height * yardstick
        if lengthtog:
            self.shrink = length
        else:
            self.shrink = length * yardstick
        if not base.facenormalflag:
            for currentface in base.faces:
                currentface.docorners()
                currentface.findnormal()
            base.facenormalflag = 1
        for edj in base.edges:
            edj.findnormal()
            side = edge(edj.a, edj.b)
            edj.unit = side.vect
            edj.unit.normalize()
            edj.cross = crossp(edj.normal, edj.unit).docrossproduct()
        template = importmesh(meshname, 0)
        maxx = 0
        minx = 0
        for vert in template.verts:
            if vert.vector.x > maxx:
                maxx = vert.vector.x
            if vert.vector.x < minx:
                minx = vert.vector.x
        for edj in base.edges:
            start = len(self.verts)
            centre = average([edj.a, edj.b]).centroid()
            split = edj.vect.length / 2
            # PKHG no division by zero!!
            tmp = 1.0
            if maxx != minx:
                tmp = 1.0 / (maxx - minx)
            dubbl = edj.vect.length * tmp
            # PKHG end no division by zero!!
            diffplus = split - maxx
            diffminus = -split - minx
            for point in template.verts:
                ay = (edj.normal * point.vector.z * self.height) + (edj.normal * lift)
                ce = edj.cross * point.vector.y * self.width

                if stretchflag:
                    be = edj.unit * self.shrink * dubbl * point.vector.x
                else:
                    if point.vector.x > 0.0:
                        be = edj.unit * self.shrink * (point.vector.x + diffplus)
                    elif point.vector.x < 0.0:
                        be = edj.unit * self.shrink * (point.vector.x + diffminus)
                    elif point.vector.x == 0.0:
                        be = edj.unit * self.shrink * point.vector.x
                de = ay + be + ce
                newvert = centre + de
                self.verts.append(newvert)
            for edjy in template.edges:
                one = edjy.a.index + start
                two = edjy.b.index + start
                newedge = edge(self.verts[one], self.verts[two])
                self.edges.append(newedge)
            for facey in template.faces:
                faceverts = []
                for verty in facey.vertices:
                    index = verty.index + start
                    faceverts.append(self.verts[index])
                newface = face(faceverts)
                self.faces.append(newface)
        self.vertedgeflag = 0
        self.vertedgeflag = 0
        self.connectivity()


class hub(mesh):
    def __init__(self, base, hubtype, width, height, length,
                 widthtog, heighttog, lengthtog, meshname):
        mesh.__init__(self)
        self.width = 1.0
        self.height = 1.0
        self.shrink = 1.0
        # put in strut prep stuff here
        extra_DBG_info("vefm L1037 HubMesh", "base is ", str(dir(base)) + "\n and meshname = " + meshname)
        if hubtype is None:
            return
        total = 0
        divvy = len(base.faces[0].edges)
        for lengf in base.verts[0].edges:
            lengf.vect.findlength()
            total = total + lengf.vect.length
        yardstick = total / divvy
        if widthtog:
            self.width = width
        else:
            self.width = width * yardstick
        if heighttog:
            self.height = height
        else:
            self.height = height * yardstick
        if lengthtog:
            self.shrink = length
        else:
            self.shrink = length * yardstick

        if not base.facenormalflag:
            for currentface in base.faces:
                currentface.docorners()
                currentface.findnormal()
            base.facenormalflag = 1

        for apex in base.verts:
            apex.findnormal()
            side = edge(apex.edges[0].a, apex.edges[0].b)
            apex.unit = side.vect  # PKHG is Vector: b - a
            apex.unit.normalize()
            apex.cross = crossp(apex.normal, apex.unit).docrossproduct()
            apex.unit = crossp(apex.cross, apex.normal).docrossproduct()

        template = importmesh(meshname, 0)
        for apex in base.verts:
            start = len(self.verts)
            centre = apex
            for point in template.verts:
                ay = apex.normal * point.vector.z * self.height
                ce = apex.cross * point.vector.y * self.width
                be = apex.unit * point.vector.x * self.shrink
                de = ay + be + ce
                newvert = centre + de
                self.verts.append(newvert)
            for edjy in template.edges:
                one = edjy.a.index + start
                two = edjy.b.index + start
                newedge = edge(self.verts[one], self.verts[two])
                self.edges.append(newedge)
            for facey in template.faces:
                faceverts = []
                for verty in facey.vertices:
                    index = verty.index + start
                    faceverts.append(self.verts[index])
                newface = face(faceverts)
                self.faces.append(newface)
        self.vertedgeflag = 0
        self.vertedgeflag = 0
        self.connectivity()


# ???PKHG TODO Nmesh used yet wrong!
def finalfill(source, target):
    if source == target:  # PKHG: otherwise >infinite< loop
        print("\n***WARNING*** vefm_271.finalfill L1104 source == target empty mesh used")
        target = mesh()
    # PKHG_??? maybe renumverting and checking faces with >=4 5 vertices?
    count = 0

    for point in source.verts:
        newvert = vertex(point.vector)
        newvert.index = count
        target.verts.append(newvert)
        point.index = count  # PKHG_INFO source renumbered too!

        count += 1

    for facey in source.faces:
        row = len(facey.vertices)
        if row >= 5:
            tmp = Vector()
            for el in facey.vertices:
                tmp = tmp + target.verts[el.index].vector
            tmp = tmp / row
            centre = vertex(tmp)
            centre.index = count  # PKHG_??? give it a good index
            count += 1

            target.verts.append(centre)
            for i in range(row):
                if i == row - 1:
                    a = target.verts[facey.vertices[-1].index]
                    b = target.verts[facey.vertices[0].index]
                else:
                    a = target.verts[facey.vertices[i].index]
                    b = target.verts[facey.vertices[i + 1].index]
                target.faces.append([a, b, centre])
        else:
            f = []

            for j in range(len(facey.vertices)):
                a = facey.vertices[j]
                f.append(target.verts[a.index])

            target.faces.append(f)