Welcome to mirror list, hosted at ThFree Co, Russian Federation.

archipack_2d.py « archipack - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e286e730c1608c8884fa9685f3cb0ae3d9388df8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
# -*- coding:utf-8 -*-

# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110- 1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>

# ----------------------------------------------------------
# Author: Stephen Leger (s-leger)
#
# ----------------------------------------------------------
from mathutils import Vector, Matrix
from math import sin, cos, pi, atan2, sqrt, acos
import bpy
# allow to draw parts with gl for debug puropses
from .archipack_gl import GlBaseLine


class Projection(GlBaseLine):

    def __init__(self):
        GlBaseLine.__init__(self)

    def proj_xy(self, t, next=None):
        """
            length of projection of sections at crossing line / circle intersections
            deformation unit vector for profil in xy axis
            so f(x_profile) = position of point in xy plane
        """
        if next is None:
            return self.normal(t).v.normalized(), 1
        v0 = self.normal(1).v.normalized()
        v1 = next.normal(0).v.normalized()
        direction = v0 + v1
        adj = (v0 * self.length) * (v1 * next.length)
        hyp = (self.length * next.length)
        c = min(1, max(-1, adj / hyp))
        size = 1 / cos(0.5 * acos(c))
        return direction.normalized(), min(3, size)

    def proj_z(self, t, dz0, next=None, dz1=0):
        """
            length of projection along crossing line / circle
            deformation unit vector for profil in z axis at line / line intersection
            so f(y) = position of point in yz plane
        """
        return Vector((0, 1)), 1
        """
            NOTE (to myself):
              In theory this is how it has to be done so sections follow path,
              but in real world results are better when sections are z-up.
              So return a dumb 1 so f(y) = y
        """
        if next is None:
            dz = dz0 / self.length
        else:
            dz = (dz1 + dz0) / (self.length + next.length)
        return Vector((0, 1)), sqrt(1 + dz * dz)
        # 1 / sqrt(1 + (dz0 / self.length) * (dz0 / self.length))
        if next is None:
            return Vector((-dz0, self.length)).normalized(), 1
        v0 = Vector((self.length, dz0))
        v1 = Vector((next.length, dz1))
        direction = Vector((-dz0, self.length)).normalized() + Vector((-dz1, next.length)).normalized()
        adj = v0 * v1
        hyp = (v0.length * v1.length)
        c = min(1, max(-1, adj / hyp))
        size = -cos(pi - 0.5 * acos(c))
        return direction.normalized(), size


class Line(Projection):
    """
        2d Line
        Internally stored as p: origin and v:size and direction
        moving p will move both ends of line
        moving p0 or p1 move only one end of line
            p1
            ^
            | v
            p0 == p
    """
    def __init__(self, p=None, v=None, p0=None, p1=None):
        """
            Init by either
            p: Vector or tuple origin
            v: Vector or tuple size and direction
            or
            p0: Vector or tuple 1 point location
            p1: Vector or tuple 2 point location
            Will convert any into Vector 2d
            both optionnals
        """
        Projection.__init__(self)
        if p is not None and v is not None:
            self.p = Vector(p).to_2d()
            self.v = Vector(v).to_2d()
        elif p0 is not None and p1 is not None:
            self.p = Vector(p0).to_2d()
            self.v = Vector(p1).to_2d() - self.p
        else:
            self.p = Vector((0, 0))
            self.v = Vector((0, 0))
        self.line = None

    @property
    def copy(self):
        return Line(self.p.copy(), self.v.copy())

    @property
    def p0(self):
        return self.p

    @property
    def p1(self):
        return self.p + self.v

    @p0.setter
    def p0(self, p0):
        """
            Note: setting p0
            move p0 only
        """
        p1 = self.p1
        self.p = Vector(p0).to_2d()
        self.v = p1 - p0

    @p1.setter
    def p1(self, p1):
        """
            Note: setting p1
            move p1 only
        """
        self.v = Vector(p1).to_2d() - self.p

    @property
    def length(self):
        """
            3d length
        """
        return self.v.length

    @property
    def angle(self):
        """
            2d angle on xy plane
        """
        return atan2(self.v.y, self.v.x)

    @property
    def a0(self):
        return self.angle

    @property
    def angle_normal(self):
        """
            2d angle of perpendicular
            lie on the right side
            p1
            |--x
            p0
        """
        return atan2(-self.v.x, self.v.y)

    @property
    def reversed(self):
        return Line(self.p, -self.v)

    @property
    def oposite(self):
        return Line(self.p + self.v, -self.v)

    @property
    def cross_z(self):
        """
            2d Vector perpendicular on plane xy
            lie on the right side
            p1
            |--x
            p0
        """
        return Vector((self.v.y, -self.v.x))

    @property
    def cross(self):
        return Vector((self.v.y, -self.v.x))

    def signed_angle(self, u, v):
        """
            signed angle between two vectors range [-pi, pi]
        """
        return atan2(u.x * v.y - u.y * v.x, u.x * v.x + u.y * v.y)

    def delta_angle(self, last):
        """
            signed delta angle between end of line and start of this one
            this value is object's a0 for segment = self
        """
        if last is None:
            return self.angle
        return self.signed_angle(last.straight(1, 1).v, self.straight(1, 0).v)

    def normal(self, t=0):
        """
            2d Line perpendicular on plane xy
            at position t in current segment
            lie on the right side
            p1
            |--x
            p0
        """
        return Line(self.lerp(t), self.cross_z)

    def sized_normal(self, t, size):
        """
            2d Line perpendicular on plane xy
            at position t in current segment
            and of given length
            lie on the right side when size > 0
            p1
            |--x
            p0
        """
        return Line(self.lerp(t), size * self.cross_z.normalized())

    def lerp(self, t):
        """
            3d interpolation
        """
        return self.p + self.v * t

    def intersect(self, line):
        """
            2d intersection on plane xy
            return
            True if intersect
            p: point of intersection
            t: param t of intersection on current line
        """
        c = line.cross_z
        d = self.v.dot(c)
        if d == 0:
            return False, 0, 0
        t = c.dot(line.p - self.p) / d
        return True, self.lerp(t), t

    def intersect_ext(self, line):
        """
            same as intersect, but return param t on both lines
        """
        c = line.cross_z
        d = self.v.dot(c)
        if d == 0:
            return False, 0, 0, 0
        dp = line.p - self.p
        c2 = self.cross_z
        u = c.dot(dp) / d
        v = c2.dot(dp) / d
        return u > 0 and v > 0 and u < 1 and v < 1, self.lerp(u), u, v

    def point_sur_segment(self, pt):
        """ _point_sur_segment
            point: Vector 2d
            t: param t de l'intersection sur le segment courant
            d: distance laterale perpendiculaire positif a droite
        """
        dp = pt - self.p
        dl = self.length
        if dl == 0:
            return dp.length < 0.00001, 0, 0
        d = (self.v.x * dp.y - self.v.y * dp.x) / dl
        t = self.v.dot(dp) / (dl * dl)
        return t > 0 and t < 1, d, t

    def steps(self, len):
        steps = max(1, round(self.length / len, 0))
        return 1 / steps, int(steps)

    def in_place_offset(self, offset):
        """
            Offset current line
            offset > 0 on the right part
        """
        self.p += offset * self.cross_z.normalized()

    def offset(self, offset):
        """
            Return a new line
            offset > 0 on the right part
        """
        return Line(self.p + offset * self.cross_z.normalized(), self.v)

    def tangeant(self, t, da, radius):
        p = self.lerp(t)
        if da < 0:
            c = p + radius * self.cross_z.normalized()
        else:
            c = p - radius * self.cross_z.normalized()
        return Arc(c, radius, self.angle_normal, da)

    def straight(self, length, t=1):
        return Line(self.lerp(t), self.v.normalized() * length)

    def translate(self, dp):
        self.p += dp

    def rotate(self, a):
        """
            Rotate segment ccw arroud p0
        """
        ca = cos(a)
        sa = sin(a)
        self.v = Matrix([
            [ca, -sa],
            [sa, ca]
            ]) @ self.v
        return self

    def scale(self, length):
        self.v = length * self.v.normalized()
        return self

    def tangeant_unit_vector(self, t):
        return self.v.normalized()

    def as_curve(self, context):
        """
            Draw Line with open gl in screen space
            aka: coords are in pixels
        """
        curve = bpy.data.curves.new('LINE', type='CURVE')
        curve.dimensions = '2D'
        spline = curve.splines.new('POLY')
        spline.use_endpoint_u = False
        spline.use_cyclic_u = False
        pts = self.pts
        spline.points.add(len(pts) - 1)
        for i, p in enumerate(pts):
            x, y, z = p
            spline.points[i].co = (x, y, 0, 1)
        curve_obj = bpy.data.objects.new('LINE', curve)
        context.scene.collection.objects.link(curve_obj)
        curve_obj.select_set(state=True)

    def make_offset(self, offset, last=None):
        """
            Return offset between last and self.
            Adjust last and self start to match
            intersection point
        """
        line = self.offset(offset)
        if last is None:
            return line

        if hasattr(last, "r"):
            res, d, t = line.point_sur_segment(last.c)
            c = (last.r * last.r) - (d * d)
            # print("t:%s" % t)
            if c <= 0:
                # no intersection !
                p0 = line.lerp(t)
            else:
                # center is past start of line
                if t > 0:
                    p0 = line.lerp(t) - line.v.normalized() * sqrt(c)
                else:
                    p0 = line.lerp(t) + line.v.normalized() * sqrt(c)
            # compute da of arc
            u = last.p0 - last.c
            v = p0 - last.c
            da = self.signed_angle(u, v)
            # da is ccw
            if last.ccw:
                # da is cw
                if da < 0:
                    # so take inverse
                    da = 2 * pi + da
            elif da > 0:
                # da is ccw
                da = 2 * pi - da
            last.da = da
            line.p0 = p0
        else:
            # intersect line / line
            # 1 line -> 2 line
            c = line.cross_z
            d = last.v.dot(c)
            if d == 0:
                return line
            v = line.p - last.p
            t = c.dot(v) / d
            c2 = last.cross_z
            u = c2.dot(v) / d
            # intersect past this segment end
            # or before last segment start
            # print("u:%s t:%s" % (u, t))
            if u > 1 or t < 0:
                return line
            p = last.lerp(t)
            line.p0 = p
            last.p1 = p

        return line

    @property
    def pts(self):
        return [self.p0.to_3d(), self.p1.to_3d()]


class Circle(Projection):
    def __init__(self, c, radius):
        Projection.__init__(self)
        self.r = radius
        self.r2 = radius * radius
        self.c = c

    def intersect(self, line):
        v = line.p - self.c
        A = line.v.dot(line.v)
        B = 2 * v.dot(line.v)
        C = v.dot(v) - self.r2
        d = B * B - 4 * A * C
        if A <= 0.0000001 or d < 0:
            # dosent intersect, find closest point of line
            res, d, t = line.point_sur_segment(self.c)
            return False, line.lerp(t), t
        elif d == 0:
            t = -B / 2 * A
            return True, line.lerp(t), t
        else:
            AA = 2 * A
            dsq = sqrt(d)
            t0 = (-B + dsq) / AA
            t1 = (-B - dsq) / AA
            if abs(t0) < abs(t1):
                return True, line.lerp(t0), t0
            else:
                return True, line.lerp(t1), t1

    def translate(self, dp):
        self.c += dp


class Arc(Circle):
    """
        Represent a 2d Arc
        TODO:
            make it possible to define an arc by start point end point and center
    """
    def __init__(self, c, radius, a0, da):
        """
            a0 and da arguments are in radians
            c Vector 2d center
            radius float radius
            a0 radians start angle
            da radians delta angle from start to end
            a0 = 0   on the right side
            a0 = pi on the left side
            da > 0 CCW contrary-clockwise
            da < 0 CW  clockwise
            stored internally as radians
        """
        Circle.__init__(self, Vector(c).to_2d(), radius)
        self.line = None
        self.a0 = a0
        self.da = da

    @property
    def angle(self):
        """
            angle of vector p0 p1
        """
        v = self.p1 - self.p0
        return atan2(v.y, v.x)

    @property
    def ccw(self):
        return self.da > 0

    def signed_angle(self, u, v):
        """
            signed angle between two vectors
        """
        return atan2(u.x * v.y - u.y * v.x, u.x * v.x + u.y * v.y)

    def delta_angle(self, last):
        """
            signed delta angle between end of line and start of this one
            this value is object's a0 for segment = self
        """
        if last is None:
            return self.a0
        return self.signed_angle(last.straight(1, 1).v, self.straight(1, 0).v)

    def scale_rot_matrix(self, u, v):
        """
            given vector u and v (from and to p0 p1)
            apply scale factor to radius and
            return a matrix to rotate and scale
            the center around u origin so
            arc fit v
        """
        # signed angle old new vectors (rotation)
        a = self.signed_angle(u, v)
        # scale factor
        scale = v.length / u.length
        ca = scale * cos(a)
        sa = scale * sin(a)
        return scale, Matrix([
            [ca, -sa],
            [sa, ca]
            ])

    @property
    def p0(self):
        """
            start point of arc
        """
        return self.lerp(0)

    @property
    def p1(self):
        """
            end point of arc
        """
        return self.lerp(1)

    @p0.setter
    def p0(self, p0):
        """
            rotate and scale arc so it intersect p0 p1
            da is not affected
        """
        u = self.p0 - self.p1
        v = p0 - self.p1
        scale, rM = self.scale_rot_matrix(u, v)
        self.c = self.p1 + rM @ (self.c - self.p1)
        self.r *= scale
        self.r2 = self.r * self.r
        dp = p0 - self.c
        self.a0 = atan2(dp.y, dp.x)

    @p1.setter
    def p1(self, p1):
        """
            rotate and scale arc so it intersect p0 p1
            da is not affected
        """
        p0 = self.p0
        u = self.p1 - p0
        v = p1 - p0

        scale, rM = self.scale_rot_matrix(u, v)
        self.c = p0 + rM @ (self.c - p0)
        self.r *= scale
        self.r2 = self.r * self.r
        dp = p0 - self.c
        self.a0 = atan2(dp.y, dp.x)

    @property
    def length(self):
        """
            arc length
        """
        return self.r * abs(self.da)

    @property
    def oposite(self):
        a0 = self.a0 + self.da
        if a0 > pi:
            a0 -= 2 * pi
        if a0 < -pi:
            a0 += 2 * pi
        return Arc(self.c, self.r, a0, -self.da)

    def normal(self, t=0):
        """
            Perpendicular line starting at t
            always on the right side
        """
        p = self.lerp(t)
        if self.da < 0:
            return Line(p, self.c - p)
        else:
            return Line(p, p - self.c)

    def sized_normal(self, t, size):
        """
            Perpendicular line starting at t and of a length size
            on the right side when size > 0
        """
        p = self.lerp(t)
        if self.da < 0:
            v = self.c - p
        else:
            v = p - self.c
        return Line(p, size * v.normalized())

    def lerp(self, t):
        """
            Interpolate along segment
            t parameter [0, 1] where 0 is start of arc and 1 is end
        """
        a = self.a0 + t * self.da
        return self.c + Vector((self.r * cos(a), self.r * sin(a)))

    def steps(self, length):
        """
            Compute step count given desired step length
        """
        steps = max(1, round(self.length / length, 0))
        return 1.0 / steps, int(steps)

    def intersect_ext(self, line):
        """
            same as intersect, but return param t on both lines
        """
        res, p, v = self.intersect(line)
        v0 = self.p0 - self.c
        v1 = p - self.c
        u = self.signed_angle(v0, v1) / self.da
        return res and u > 0 and v > 0 and u < 1 and v < 1, p, u, v

    # this is for wall
    def steps_by_angle(self, step_angle):
        steps = max(1, round(abs(self.da) / step_angle, 0))
        return 1.0 / steps, int(steps)

    def as_lines(self, steps):
        """
            convert Arc to lines
        """
        res = []
        p0 = self.lerp(0)
        for step in range(steps):
            p1 = self.lerp((step + 1) / steps)
            s = Line(p0=p0, p1=p1)
            res.append(s)
            p0 = p1

        if self.line is not None:
            p0 = self.line.lerp(0)
            for step in range(steps):
                p1 = self.line.lerp((step + 1) / steps)
                res[step].line = Line(p0=p0, p1=p1)
                p0 = p1
        return res

    def offset(self, offset):
        """
            Offset circle
            offset > 0 on the right part
        """
        if self.da > 0:
            radius = self.r + offset
        else:
            radius = self.r - offset
        return Arc(self.c, radius, self.a0, self.da)

    def tangeant(self, t, length):
        """
            Tangent line so we are able to chain Circle and lines
            Beware, counterpart on Line does return an Arc !
        """
        a = self.a0 + t * self.da
        ca = cos(a)
        sa = sin(a)
        p = self.c + Vector((self.r * ca, self.r * sa))
        v = Vector((length * sa, -length * ca))
        if self.da > 0:
            v = -v
        return Line(p, v)

    def tangeant_unit_vector(self, t):
        """
            Return Tangent vector of length 1
        """
        a = self.a0 + t * self.da
        ca = cos(a)
        sa = sin(a)
        v = Vector((sa, -ca))
        if self.da > 0:
            v = -v
        return v

    def straight(self, length, t=1):
        """
            Return a tangent Line
            Counterpart on Line also return a Line
        """
        return self.tangeant(t, length)

    def point_sur_segment(self, pt):
        """
            Point pt lie on arc ?
            return
            True when pt lie on segment
            t [0, 1] where it lie (normalized between start and end)
            d distance from arc
        """
        dp = pt - self.c
        d = dp.length - self.r
        a = atan2(dp.y, dp.x)
        t = (a - self.a0) / self.da
        return t > 0 and t < 1, d, t

    def rotate(self, a):
        """
            Rotate center so we rotate ccw around p0
        """
        ca = cos(a)
        sa = sin(a)
        rM = Matrix([
            [ca, -sa],
            [sa, ca]
            ])
        p0 = self.p0
        self.c = p0 + rM @ (self.c - p0)
        dp = p0 - self.c
        self.a0 = atan2(dp.y, dp.x)
        return self

    # make offset for line / arc, arc / arc
    def make_offset(self, offset, last=None):

        line = self.offset(offset)

        if last is None:
            return line

        if hasattr(last, "v"):
            # intersect line / arc
            # 1 line -> 2 arc
            res, d, t = last.point_sur_segment(line.c)
            c = line.r2 - (d * d)
            if c <= 0:
                # no intersection !
                p0 = last.lerp(t)
            else:

                # center is past end of line
                if t > 1:
                    # Arc take precedence
                    p0 = last.lerp(t) - last.v.normalized() * sqrt(c)
                else:
                    # line take precedence
                    p0 = last.lerp(t) + last.v.normalized() * sqrt(c)

            # compute a0 and da of arc
            u = p0 - line.c
            v = line.p1 - line.c
            line.a0 = atan2(u.y, u.x)
            da = self.signed_angle(u, v)
            # da is ccw
            if self.ccw:
                # da is cw
                if da < 0:
                    # so take inverse
                    da = 2 * pi + da
            elif da > 0:
                # da is ccw
                da = 2 * pi - da
            line.da = da
            last.p1 = p0
        else:
            # intersect arc / arc x1 = self x0 = last
            # rule to determine right side ->
            # same side of d as p0 of self
            dc = line.c - last.c
            tmp = Line(last.c, dc)
            res, d, t = tmp.point_sur_segment(self.p0)
            r = line.r + last.r
            dist = dc.length
            if dist > r or \
                dist < abs(last.r - self.r):
                # no intersection
                return line
            if dist == r:
                # 1 solution
                p0 = dc * -last.r / r + self.c
            else:
                # 2 solutions
                a = (last.r2 - line.r2 + dist * dist) / (2.0 * dist)
                v2 = last.c + dc * a / dist
                h = sqrt(last.r2 - a * a)
                r = Vector((-dc.y, dc.x)) * (h / dist)
                p0 = v2 + r
                res, d1, t = tmp.point_sur_segment(p0)
                # take other point if we are not on the same side
                if d1 > 0:
                    if d < 0:
                        p0 = v2 - r
                elif d > 0:
                    p0 = v2 - r

            # compute da of last
            u = last.p0 - last.c
            v = p0 - last.c
            last.da = self.signed_angle(u, v)

            # compute a0 and da of current
            u, v = v, line.p1 - line.c
            line.a0 = atan2(u.y, u.x)
            line.da = self.signed_angle(u, v)
        return line

    # DEBUG
    @property
    def pts(self):
        n_pts = max(1, int(round(abs(self.da) / pi * 30, 0)))
        t_step = 1 / n_pts
        return [self.lerp(i * t_step).to_3d() for i in range(n_pts + 1)]

    def as_curve(self, context):
        """
            Draw 2d arc with open gl in screen space
            aka: coords are in pixels
        """
        curve = bpy.data.curves.new('ARC', type='CURVE')
        curve.dimensions = '2D'
        spline = curve.splines.new('POLY')
        spline.use_endpoint_u = False
        spline.use_cyclic_u = False
        pts = self.pts
        spline.points.add(len(pts) - 1)
        for i, p in enumerate(pts):
            x, y = p
            spline.points[i].co = (x, y, 0, 1)
        curve_obj = bpy.data.objects.new('ARC', curve)
        context.scene.collection.objects.link(curve_obj)
        curve_obj.select_set(state=True)


class Line3d(Line):
    """
        3d Line
        mostly a gl enabled for future use in manipulators
        coords are in world space
    """
    def __init__(self, p=None, v=None, p0=None, p1=None, z_axis=None):
        """
            Init by either
            p: Vector or tuple origin
            v: Vector or tuple size and direction
            or
            p0: Vector or tuple 1 point location
            p1: Vector or tuple 2 point location
            Will convert any into Vector 3d
            both optionnals
        """
        if p is not None and v is not None:
            self.p = Vector(p).to_3d()
            self.v = Vector(v).to_3d()
        elif p0 is not None and p1 is not None:
            self.p = Vector(p0).to_3d()
            self.v = Vector(p1).to_3d() - self.p
        else:
            self.p = Vector((0, 0, 0))
            self.v = Vector((0, 0, 0))
        if z_axis is not None:
            self.z_axis = z_axis
        else:
            self.z_axis = Vector((0, 0, 1))

    @property
    def p0(self):
        return self.p

    @property
    def p1(self):
        return self.p + self.v

    @p0.setter
    def p0(self, p0):
        """
            Note: setting p0
            move p0 only
        """
        p1 = self.p1
        self.p = Vector(p0).to_3d()
        self.v = p1 - p0

    @p1.setter
    def p1(self, p1):
        """
            Note: setting p1
            move p1 only
        """
        self.v = Vector(p1).to_3d() - self.p

    @property
    def cross_z(self):
        """
            3d Vector perpendicular on plane xy
            lie on the right side
            p1
            |--x
            p0
        """
        return self.v.cross(Vector((0, 0, 1)))

    @property
    def cross(self):
        """
            3d Vector perpendicular on plane defined by z_axis
            lie on the right side
            p1
            |--x
            p0
        """
        return self.v.cross(self.z_axis)

    def normal(self, t=0):
        """
            3d Vector perpendicular on plane defined by z_axis
            lie on the right side
            p1
            |--x
            p0
        """
        n = Line3d()
        n.p = self.lerp(t)
        n.v = self.cross
        return n

    def sized_normal(self, t, size):
        """
            3d Line perpendicular on plane defined by z_axis and of given size
            positioned at t in current line
            lie on the right side
            p1
            |--x
            p0
        """
        p = self.lerp(t)
        v = size * self.cross.normalized()
        return Line3d(p, v, z_axis=self.z_axis)

    def offset(self, offset):
        """
            offset > 0 on the right part
        """
        return Line3d(self.p + offset * self.cross.normalized(), self.v)

    # unless override, 2d methods should raise NotImplementedError
    def intersect(self, line):
        raise NotImplementedError

    def point_sur_segment(self, pt):
        raise NotImplementedError

    def tangeant(self, t, da, radius):
        raise NotImplementedError