Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mathematics.py « curve_tools - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4a61af4d556b24527be788e58fba82c8ab410953 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from mathutils import *


def IsSamePoint(v31, v32, limitDistance):
    if (v31 - v32).magnitude < limitDistance: return True

    return False


class Plane:
    @staticmethod
    def XY():
        p1 = Vector((0, 0, 0))
        p2 = Vector((1, 0, 0))
        p3 = Vector((0, 1, 0))

        return Plane(p1, p2, p3)


    # plane equation: (p - position).dot(normal) = 0
    def __init__(self, P1, P2, P3):
        self.normal = (P2 - P1).cross(P3 - P1)
        self.normal.normalize()

        self.position = P1


    def CalcIntersectionPointLineSegment(self, PL1, PL2):
        DL = PL2 - PL1

        try: rvPar = ((self.position - PL1).dot(self.normal)) / (DL.dot(self.normal))
        except: return None

        return rvPar


    def CalcNormalParameter(self, vector):
        return (vector - self.position).dot(self.normal)


    def CalcProjection(self, vector):
        normalParameter = self.CalcNormalParameter(vector)

        rvv3 = vector - (self.normal * normalParameter)

        return [normalParameter, rvv3]



# http://geomalgorithms.com/a07-_distance.html
def CalcClosestPointLineSegments(v3P0, v3P1, v3Q0, v3Q1):
    u = v3P1 - v3P0
    v = v3Q1 - v3Q0

    w0 = v3P0 - v3Q0
    a = u.dot(u)
    b = u.dot(v)
    c = v.dot(v)
    d = u.dot(w0)
    e = v.dot(w0)


    try: parP = (b * e - c * d) / (a * c - b * b)
    except: return None

    try: parQ = (a * e - b * d) / (a * c - b * b)
    except: return None


    return [parP, parQ]


def CalcIntersectionPointLineSegments(v3P0, v3P1, v3Q0, v3Q1, limitDistance):
    rvList = CalcClosestPointLineSegments(v3P0, v3P1, v3Q0, v3Q1)
    if rvList is None: return None


    parP = rvList[0]
    if parP < 0.0: return None
    if parP > 1.0: return None

    parQ = rvList[1]
    if parQ < 0.0: return None
    if parQ > 1.0: return None


    pointP = v3P0 + ((v3P1 - v3P0) * parP)
    pointQ = v3Q0 + ((v3Q1 - v3Q0) * parQ)
    if not IsSamePoint(pointP, pointQ, limitDistance): return None

    return [parP, parQ, pointP, pointQ]


def CalcIntersectionPointsLineSegmentsPOV(v3P0, v3P1, v3Q0, v3Q1, v3POV):
    planeQ = Plane(v3POV, v3Q0, v3Q1)
    parP = planeQ.CalcIntersectionPointLineSegment(v3P0, v3P1)
    if parP is None: return None
    if parP < 0.0: return None
    if parP > 1.0: return None

    planeP = Plane(v3POV, v3P0, v3P1)
    parQ = planeP.CalcIntersectionPointLineSegment(v3Q0, v3Q1)
    if parQ is None: return None
    if parQ < 0.0: return None
    if parQ > 1.0: return None

    return [parP, parQ]


def CalcIntersectionPointsLineSegmentsDIR(v3P0, v3P1, v3Q0, v3Q1, v3DIR):
    v3POV = v3Q0 + v3DIR
    planeQ = Plane(v3POV, v3Q0, v3Q1)
    parP = planeQ.CalcIntersectionPointLineSegment(v3P0, v3P1)
    if parP is None: return None
    if parP < 0.0: return None
    if parP > 1.0: return None

    v3POV = v3P0 + v3DIR
    planeP = Plane(v3POV, v3P0, v3P1)
    parQ = planeP.CalcIntersectionPointLineSegment(v3Q0, v3Q1)
    if parQ is None: return None
    if parQ < 0.0: return None
    if parQ > 1.0: return None

    return [parP, parQ]



def CalcRotationMatrix(v3From, v3To):
    cross = v3From.cross(v3To)

    try: angle = v3From.angle(v3To)
    except: return Matrix.Identity(4)

    return Matrix.Rotation(angle, 4, cross)        # normalize axis?


def subdivide_cubic_bezier(p1, p2, p3, p4, t):
    p12 = (p2 - p1) * t + p1
    p23 = (p3 - p2) * t + p2
    p34 = (p4 - p3) * t + p3
    p123 = (p23 - p12) * t + p12
    p234 = (p34 - p23) * t + p23
    p1234 = (p234 - p123) * t + p123
    return [p12, p123, p1234, p234, p34]