Welcome to mirror list, hosted at ThFree Co, Russian Federation.

triquad.py « mesh_inset - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 88affa8985e4b04f4f880da071ab81e7886b572b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>


from . import geom
import math
import random
from math import sqrt

# Points are 3-tuples or 2-tuples of reals: (x,y,z) or (x,y)
# Faces are lists of integers (vertex indices into coord lists)
# After triangulation/quadrangulation, the tris and quads will
# be tuples instead of lists.
# Vmaps are lists taking vertex index -> Point

TOL = 1e-7     # a tolerance for fuzzy equality
GTHRESH = 75   # threshold above which use greedy to _Quandrangulate
ANGFAC = 1.0   # weighting for angles in quad goodness measure
DEGFAC = 10.0  # weighting for degree in quad goodness measure

# Angle kind constants
Ang0 = 1
Angconvex = 2
Angreflex = 3
Angtangential = 4
Ang360 = 5


def TriangulateFace(face, points):
    """Triangulate the given face.

    Uses an easy triangulation first, followed by a constrained delauney
    triangulation to get better shaped triangles.

    Args:
      face: list of int - indices in points, assumed CCW-oriented
      points: geom.Points - holds coordinates for vertices
    Returns:
      list of (int, int, int) - 3-tuples are CCW-oriented vertices of
          triangles making up the triangulation
    """

    if len(face) <= 3:
        return [tuple(face)]
    tris = EarChopTriFace(face, points)
    bord = _BorderEdges([face])
    triscdt = _CDT(tris, bord, points)
    return triscdt


def TriangulateFaceWithHoles(face, holes, points):
    """Like TriangulateFace, but with holes inside the face.

    Works by making one complex polygon that has segments to
    and from the holes ("islands"), and then using the same method
    as TriangulateFace.

    Args:
      face: list of int - indices in points, assumed CCW-oriented
      holes: list of list of int - each sublist is like face
          but CW-oriented and assumed to be inside face
      points: geom.Points - holds coordinates for vertices
    Returns:
      list of (int, int, int) - 3-tuples are CCW-oriented vertices of
          triangles making up the triangulation
    """

    if len(holes) == 0:
        return TriangulateFace(face, points)
    allfaces = [face] + holes
    sholes = [_SortFace(h, points) for h in holes]
    joinedface = _JoinIslands(face, sholes, points)
    tris = EarChopTriFace(joinedface, points)
    bord = _BorderEdges(allfaces)
    triscdt = _CDT(tris, bord, points)
    return triscdt


def QuadrangulateFace(face, points):
    """Quadrangulate the face (subdivide into convex quads and tris).

    Like TriangulateFace, but after triangulating, join as many pairs
    of triangles as possible into convex quadrilaterals.

    Args:
      face: list of int - indices in points, assumed CCW-oriented
      points: geom.Points - holds coordinates for vertices
    Returns:
      list of 3-tuples or 4-tuples of ints - CCW-oriented vertices of
          quadrilaterals and triangles making up the quadrangulation.
    """

    if len(face) <= 3:
        return [tuple(face)]
    tris = EarChopTriFace(face, points)
    bord = _BorderEdges([face])
    triscdt = _CDT(tris, bord, points)
    qs = _Quandrangulate(triscdt, bord, points)
    return qs


def QuadrangulateFaceWithHoles(face, holes, points):
    """Like QuadrangulateFace, but with holes inside the faces.

    Args:
      face: list of int - indices in points, assumed CCW-oriented
      holes: list of list of int - each sublist is like face
          but CW-oriented and assumed to be inside face
      points: geom.Points - holds coordinates for vertices
    Returns:
      list of 3-tuples or 4-tuples of ints - CCW-oriented vertices of
          quadrilaterals and triangles making up the quadrangulation.
    """

    if len(holes) == 0:
        return QuadrangulateFace(face, points)
    allfaces = [face] + holes
    sholes = [_SortFace(h, points) for h in holes]
    joinedface = _JoinIslands(face, sholes, points)
    tris = EarChopTriFace(joinedface, points)
    bord = _BorderEdges(allfaces)
    triscdt = _CDT(tris, bord, points)
    qs = _Quandrangulate(triscdt, bord, points)
    return qs


def _SortFace(face, points):
    """Rotate face so leftmost vertex is first, where face is
    list of indices in points."""

    n = len(face)
    if n <= 1:
        return face
    lefti = 0
    leftv = face[0]
    for i in range(1, n):
        # following comparison is lexicographic on n-tuple
        # so sorts on x first, using lower y as tie breaker.
        if points.pos[face[i]] < points.pos[leftv]:
            lefti = i
            leftv = face[i]
    return face[lefti:] + face[0:lefti]


def EarChopTriFace(face, points):
    """Triangulate given face, with coords given by indexing into points.
    Return list of faces, each of which will be a triangle.
    Use the ear-chopping method."""

    # start with lowest coord in 2d space to try
    # to get a pleasing uniform triangulation if starting with
    # a regular structure (like a grid)
    start = _GetLeastIndex(face, points)
    ans = []
    incr = 1
    n = len(face)
    while n > 3:
        i = _FindEar(face, n, start, incr, points)
        vm1 = face[(i - 1) % n]
        v0 = face[i]
        v1 = face[(i + 1) % n]
        face = _ChopEar(face, i)
        n = len(face)
        incr = - incr
        if incr == 1:
            start = i % n
        else:
            start = (i - 1) % n
        ans.append((vm1, v0, v1))
    ans.append(tuple(face))
    return ans


def _GetLeastIndex(face, points):
    """Return index of coordinate that is leftmost, lowest in face."""

    bestindex = 0
    bestpos = points.pos[face[0]]
    for i in range(1, len(face)):
        pos = points.pos[face[i]]
        if pos[0] < bestpos[0] or \
                (pos[0] == bestpos[0] and pos[1] < bestpos[1]):
            bestindex = i
            bestpos = pos
    return bestindex


def _FindEar(face, n, start, incr, points):
    """An ear of a polygon consists of three consecutive vertices
    v(-1), v0, v1 such that v(-1) can connect to v1 without intersecting
    the polygon.
    Finds an ear, starting at index 'start' and moving
    in direction incr. (We attempt to alternate directions, to find
    'nice' triangulations for simple convex polygons.)
    Returns index into faces of v0 (will always find one, because
    uses a desperation mode if fails to find one with above rule)."""

    angk = _ClassifyAngles(face, n, points)
    for mode in range(0, 5):
        i = start
        while True:
            if _IsEar(face, i, n, angk, points, mode):
                return i
            i = (i + incr) % n
            if i == start:
                break  # try next higher desperation mode


def _IsEar(face, i, n, angk, points, mode):
    """Return true, false depending on ear status of vertices
    with indices i-1, i, i+1.
    mode is amount of desperation: 0 is Normal mode,
    mode 1 allows degenerate triangles (with repeated vertices)
    mode 2 allows local self crossing (folded) ears
    mode 3 allows any convex vertex (should always be one)
    mode 4 allows anything (just to be sure loop terminates!)"""

    k = angk[i]
    vm2 = face[(i - 2) % n]
    vm1 = face[(i - 1) % n]
    v0 = face[i]
    v1 = face[(i + 1) % n]
    v2 = face[(i + 2) % n]
    if vm1 == v0 or v0 == v1:
        return (mode > 0)
    b = (k == Angconvex or k == Angtangential or k == Ang0)
    c = _InCone(vm1, v0, v1, v2, angk[(i + 1) % n], points) and \
        _InCone(v1, vm2, vm1, v0, angk[(i - 1) % n], points)
    if b and c:
        return _EarCheck(face, n, angk, vm1, v0, v1, points)
    if mode < 2:
        return False
    if mode == 3:
        return SegsIntersect(vm2, vm1, v0, v1, points)
    if mode == 4:
        return b
    return True


def _EarCheck(face, n, angk, vm1, v0, v1, points):
    """Return True if the successive vertices vm1, v0, v1
    forms an ear.  We already know that it is not a reflex
    Angle, and that the local cone containment is ok.
    What remains to check is that the edge vm1-v1 doesn't
    intersect any other edge of the face (besides vm1-v0
    and v0-v1).  Equivalently, there can't be a reflex Angle
    inside the triangle vm1-v0-v1.  (Well, there are
    messy cases when other points of the face coincide with
    v0 or touch various lines involved in the ear.)"""
    for j in range(0, n):
        fv = face[j]
        k = angk[j]
        b = (k == Angreflex or k == Ang360) \
            and not(fv == vm1 or fv == v0 or fv == v1)
        if b:
            # Is fv inside closure of triangle (vm1,v0,v1)?
            c = not(Ccw(v0, vm1, fv, points) \
                          or Ccw(vm1, v1, fv, points) \
                          or Ccw(v1, v0, fv, points))
            fvm1 = face[(j - 1) % n]
            fv1 = face[(j + 1) % n]
            # To try to deal with some degenerate cases,
            # also check to see if either segment attached to fv
            # intersects either segment of potential ear.
            d = SegsIntersect(fvm1, fv, vm1, v0, points) or \
                      SegsIntersect(fvm1, fv, v0, v1, points) or \
                      SegsIntersect(fv, fv1, vm1, v0, points) or \
                      SegsIntersect(fv, fv1, v0, v1, points)
            if c or d:
                return False
    return True


def _ChopEar(face, i):
    """Return a copy of face (of length n), omitting element i."""

    return face[0:i] + face[i + 1:]


def _InCone(vtest, a, b, c, bkind, points):
    """Return true if point with index vtest is in Cone of points with
    indices a, b, c, where Angle ABC has AngleKind Bkind.
    The Cone is the set of points inside the left face defined by
    segments ab and bc, disregarding all other segments of polygon for
    purposes of inside test."""

    if bkind == Angreflex or bkind == Ang360:
        if _InCone(vtest, c, b, a, Angconvex, points):
            return False
        return not((not(Ccw(b, a, vtest, points)) \
                             and not(Ccw(b, vtest, a, points)) \
                             and Ccw(b, a, vtest, points))
                            or
                            (not(Ccw(b, c, vtest, points)) \
                             and not(Ccw(b, vtest, c, points)) \
                             and Ccw(b, a, vtest, points)))
    else:
        return Ccw(a, b, vtest, points) and Ccw(b, c, vtest, points)


def _JoinIslands(face, holes, points):
    """face is a CCW face containing the CW faces in the holes list,
    where each hole is sorted so the leftmost-lowest vertex is first.
    faces and holes are given as lists of indices into points.
    The holes should be sorted by softface.
    Add edges to make a new face that includes the holes (a Ccw traversal
    of the new face will have the inside always on the left),
    and return the new face."""

    while len(holes) > 0:
        (hole, holeindex) = _LeftMostFace(holes, points)
        holes = holes[0:holeindex] + holes[holeindex + 1:]
        face = _JoinIsland(face, hole, points)
    return face


def _JoinIsland(face, hole, points):
    """Return a modified version of face that splices in the
    vertices of hole (which should be sorted)."""

    if len(hole) == 0:
        return face
    hv0 = hole[0]
    d = _FindDiag(face, hv0, points)
    newface = face[0:d + 1] + hole + [hv0] + face[d:]
    return newface


def _LeftMostFace(holes, points):
    """Return (hole,index of hole in holes) where hole has
    the leftmost first vertex.  To be able to handle empty
    holes gracefully, call an empty hole 'leftmost'.
    Assumes holes are sorted by softface."""

    assert(len(holes) > 0)
    lefti = 0
    lefthole = holes[0]
    if len(lefthole) == 0:
        return (lefthole, lefti)
    leftv = lefthole[0]
    for i in range(1, len(holes)):
        ihole = holes[i]
        if len(ihole) == 0:
            return (ihole, i)
        iv = ihole[0]
        if points.pos[iv] < points.pos[leftv]:
            (lefti, lefthole, leftv) = (i, ihole, iv)
    return (lefthole, lefti)


def _FindDiag(face, hv, points):
    """Find a vertex in face that can see vertex hv, if possible,
    and return the index into face of that vertex.
    Should be able to find a diagonal that connects a vertex of face
    left of v to hv without crossing face, but try two
    more desperation passes after that to get SOME diagonal, even if
    it might cross some edge somewhere.
    First desperation pass (mode == 1): allow points right of hv.
    Second desperation pass (mode == 2): allow crossing boundary poly"""

    besti = - 1
    bestdist = 1e30
    for mode in range(0, 3):
        for i in range(0, len(face)):
            v = face[i]
            if mode == 0 and points.pos[v] > points.pos[hv]:
                continue  # in mode 0, only want points left of hv
            dist = _DistSq(v, hv, points)
            if dist < bestdist:
                if _IsDiag(i, v, hv, face, points) or mode == 2:
                    (besti, bestdist) = (i, dist)
        if besti >= 0:
            break  # found one, so don't need other modes
    assert(besti >= 0)
    return besti


def _IsDiag(i, v, hv, face, points):
    """Return True if vertex v (at index i in face) can see vertex hv.
    v and hv are indices into points.
    (v, hv) is a diagonal if hv is in the cone of the Angle at index i on face
    and no segment in face intersects (h, hv).
    """

    n = len(face)
    vm1 = face[(i - 1) % n]
    v1 = face[(i + 1) % n]
    k = _AngleKind(vm1, v, v1, points)
    if not _InCone(hv, vm1, v, v1, k, points):
        return False
    for j in range(0, n):
        vj = face[j]
        vj1 = face[(j + 1) % n]
        if SegsIntersect(v, hv, vj, vj1, points):
            return False
    return True


def _DistSq(a, b, points):
    """Return distance squared between coords with indices a and b in points.
    """

    diff = Sub2(points.pos[a], points.pos[b])
    return Dot2(diff, diff)


def _BorderEdges(facelist):
    """Return a set of (u,v) where u and v are successive vertex indices
    in some face in the list in facelist."""

    ans = set()
    for i in range(0, len(facelist)):
        f = facelist[i]
        for j in range(1, len(f)):
            ans.add((f[j - 1], f[j]))
        ans.add((f[-1], f[0]))
    return ans


def _CDT(tris, bord, points):
    """Tris is a list of triangles ((a,b,c), CCW-oriented indices into points)
    Bord is a set of border edges (u,v), oriented so that tris
    is a triangulation of the left face of the border(s).
    Make the triangulation "Constrained Delaunay" by flipping "reversed"
    quadrangulaterals until can flip no more.
    Return list of triangles in new triangulation."""

    td = _TriDict(tris)
    re = _ReveresedEdges(tris, td, bord, points)
    ts = set(tris)
    # reverse the reversed edges until done.
    # reversing and edge adds new edges, which may or
    # may not be reversed or border edges, to re for
    # consideration, but the process will stop eventually.
    while len(re) > 0:
        (a, b) = e = re.pop()
        if e in bord or not _IsReversed(e, td, points):
            continue
        # rotate e in quad adbc to get other diagonal
        erev = (b, a)
        tl = td.get(e)
        tr = td.get(erev)
        if not tl or not tr:
            continue  # shouldn't happen
        c = _OtherVert(tl, a, b)
        d = _OtherVert(tr, a, b)
        if c is None or d is None:
            continue  # shouldn't happen
        newt1 = (c, d, b)
        newt2 = (c, a, d)
        del td[e]
        del td[erev]
        td[(c, d)] = newt1
        td[(d, b)] = newt1
        td[(b, c)] = newt1
        td[(d, c)] = newt2
        td[(c, a)] = newt2
        td[(a, d)] = newt2
        if tl in ts:
            ts.remove(tl)
        if tr in ts:
            ts.remove(tr)
        ts.add(newt1)
        ts.add(newt2)
        re.extend([(d, b), (b, c), (c, a), (a, d)])
    return list(ts)


def _TriDict(tris):
    """tris is a list of triangles (a,b,c), CCW-oriented indices.
    Return dict mapping all edges in the triangles to the containing
    triangle list."""

    ans = dict()
    for i in range(0, len(tris)):
        (a, b, c) = t = tris[i]
        ans[(a, b)] = t
        ans[(b, c)] = t
        ans[(c, a)] = t
    return ans


def _ReveresedEdges(tris, td, bord, points):
    """Return list of reversed edges in tris.
    Only want edges not in bord, and only need one representative
    of (u,v)/(v,u), so choose the one with u < v.
    td is dictionary from _TriDict, and is used to find left and right
    triangles of edges."""

    ans = []
    for i in range(0, len(tris)):
        (a, b, c) = tris[i]
        for e in [(a, b), (b, c), (c, a)]:
            if e in bord:
                continue
            (u, v) = e
            if u < v:
                if _IsReversed(e, td, points):
                    ans.append(e)
    return ans


def _IsReversed(e, td, points):
    """If e=(a,b) is a non-border edge, with left-face triangle tl and
    right-face triangle tr, then it is 'reversed' if the circle through
    a, b, and (say) the other vertex of tl containts the other vertex of tr.
    td is a _TriDict, for finding triangles containing edges, and points
    gives the coordinates for vertex indices used in edges."""

    tl = td.get(e)
    if not tl:
        return False
    (a, b) = e
    tr = td.get((b, a))
    if not tr:
        return False
    c = _OtherVert(tl, a, b)
    d = _OtherVert(tr, a, b)
    if c is None or d is None:
        return False
    return InCircle(a, b, c, d, points)


def _OtherVert(tri, a, b):
    """tri should be a tuple of 3 vertex indices, two of which are a and b.
    Return the third index, or None if all vertices are a or b"""

    for v in tri:
        if v != a and v != b:
            return v
    return None


def _ClassifyAngles(face, n, points):
    """Return vector of anglekinds of the Angle around each point in face."""

    return [_AngleKind(face[(i - 1) % n], face[i], face[(i + 1) % n], points) \
        for i in list(range(0, n))]


def _AngleKind(a, b, c, points):
    """Return one of the Ang... constants to classify Angle formed by ABC,
    in a counterclockwise traversal of a face,
    where a, b, c are indices into points."""

    if Ccw(a, b, c, points):
        return Angconvex
    elif Ccw(a, c, b, points):
        return Angreflex
    else:
        vb = points.pos[b]
        udotv = Dot2(Sub2(vb, points.pos[a]), Sub2(points.pos[c], vb))
        if udotv > 0.0:
            return Angtangential
        else:
            return Ang0   # to fix: return Ang360 if "inside" spur


def _Quandrangulate(tris, bord, points):
    """Tris is list of triangles, forming a triangulation of region whose
    border edges are in set bord.
    Combine adjacent triangles to make quads, trying for "good" quads where
    possible. Some triangles will probably remain uncombined"""

    (er, td) = _ERGraph(tris, bord, points)
    if len(er) == 0:
        return tris
    if len(er) > GTHRESH:
        match = _GreedyMatch(er)
    else:
        match = _MaxMatch(er)
    return _RemoveEdges(tris, match)


def _RemoveEdges(tris, match):
    """tris is list of triangles.
    er is as returned from _MaxMatch or _GreedyMatch.

    Return list of (A,D,B,C) resulting from deleting edge (A,B) causing a merge
    of two triangles; append to that list the remaining unmatched triangles."""

    ans = []
    triset = set(tris)
    while len(match) > 0:
        (_, e, tl, tr) = match.pop()
        (a, b) = e
        if tl in triset:
            triset.remove(tl)
        if tr in triset:
            triset.remove(tr)
        c = _OtherVert(tl, a, b)
        d = _OtherVert(tr, a, b)
        if c is None or d is None:
            continue
        ans.append((a, d, b, c))
    return ans + list(triset)


def _ERGraph(tris, bord, points):
    """Make an 'Edge Removal Graph'.

    Given a list of triangles, the 'Edge Removal Graph' is a graph whose
    nodes are the triangles (think of a point in the center of them),
    and whose edges go between adjacent triangles (they share a non-border
    edge), such that it would be possible to remove the shared edge
    and form a convex quadrilateral.  Forming a quadrilateralization
    is then a matter of finding a matching (set of edges that don't
    share a vertex - remember, these are the 'face' vertices).
    For better quadrilaterlization, we'll make the Edge Removal Graph
    edges have weights, with higher weights going to the edges that
    are more desirable to remove.  Then we want a maximum weight matching
    in this graph.

    We'll return the graph in a kind of implicit form, using edges of
    the original triangles as a proxy for the edges between the faces
    (i.e., the edge of the triangle is the shared edge). We'll arbitrarily
    pick the triangle graph edge with lower-index start vertex.
    Also, to aid in traversing the implicit graph, we'll keep the left
    and right triangle triples with edge 'ER edge'.
    Finally, since we calculate it anyway, we'll return a dictionary
    mapping edges of the triangles to the triangle triples they're in.

    Args:
      tris: list of (int, int, int) giving a triple of vertex indices for
          triangles, assumed CCW oriented
      bord: set of (int, int) giving vertex indices for border edges
      points: geom.Points - for mapping vertex indices to coords
    Returns:
      (list of (weight,e,tl,tr), dict)
        where edge e=(a,b) is non-border edge
        with left face tl and right face tr (each a triple (i,j,k)),
        where removing the edge would form an "OK" quad (no concave angles),
        with weight representing the desirability of removing the edge
        The dict maps int pairs (a,b) to int triples (i,j,k), that is,
        mapping edges to their containing triangles.
    """

    td = _TriDict(tris)
    dd = _DegreeDict(tris)
    ans = []
    ctris = tris[:]  # copy, so argument not affected
    while len(ctris) > 0:
        (i, j, k) = tl = ctris.pop()
        for e in [(i, j), (j, k), (k, i)]:
            if e in bord:
                continue
            (a, b) = e
            # just consider one of (a,b) and (b,a), to avoid dups
            if a > b:
                continue
            erev = (b, a)
            tr = td.get(erev)
            if not tr:
                continue
            c = _OtherVert(tl, a, b)
            d = _OtherVert(tr, a, b)
            if c is None or d is None:
                continue
            # calculate amax, the max of the new angles that would
            # be formed at a and b if tl and tr were combined
            amax = max(Angle(c, a, b, points) + Angle(d, a, b, points),
                       Angle(c, b, a, points) + Angle(d, b, a, points))
            if amax > 180.0:
                continue
            weight = ANGFAC * (180.0 - amax) + DEGFAC * (dd[a] + dd[b])
            ans.append((weight, e, tl, tr))
    return (ans, td)


def _GreedyMatch(er):
    """er is list of (weight,e,tl,tr).

    Find maximal set so that each triangle appears in at most
    one member of set"""

    # sort in order of decreasing weight
    er.sort(key=lambda v: v[0], reverse=True)
    match = set()
    ans = []
    while len(er) > 0:
        (_, _, tl, tr) = q = er.pop()
        if tl not in match and tr not in match:
            match.add(tl)
            match.add(tr)
            ans.append(q)
    return ans


def _MaxMatch(er):
    """Like _GreedyMatch, but use divide and conquer to find best possible set.

    Args:
      er: list of (weight,e,tl,tr)  - see _ERGraph
    Returns:
      list that is a subset of er giving a maximum weight match
    """

    (ans, _) = _DCMatch(er)
    return ans


def _DCMatch(er):
    """Recursive helper for _MaxMatch.

    Divide and Conquer approach to finding max weight matching.
    If we're lucky, there's an edge in er that separates the edge removal
    graph into (at least) two separate components.  Then the max weight
    is either one that includes that edge or excludes it - and we can
    use a recursive call to _DCMatch to handle each component separately
    on what remains of the graph after including/excluding the separating edge.
    If we're not lucky, we fall back on _EMatch (see below).

    Args:
      er: list of (weight, e, tl, tr) (see _ERGraph)
    Returns:
      (list of (weight, e, tl, tr), float) - the subset forming a maximum
          matching, and the total weight of the match.
    """

    if not er:
        return ([], 0.0)
    if len(er) == 1:
        return (er, er[0][0])
    match = []
    matchw = 0.0
    for i in range(0, len(er)):
        (nc, comp) = _FindComponents(er, i)
        if nc == 1:
            # er[i] doesn't separate er
            continue
        (wi, _, tl, tr) = er[i]
        if comp[tl] != comp[tr]:
            # case 1: er separates graph
            # compare the matches that include er[i] versus
            # those that exclude it
            (a, b) = _PartitionComps(er, comp, i, comp[tl], comp[tr])
            ax = _CopyExcluding(a, tl, tr)
            bx = _CopyExcluding(b, tl, tr)
            (axmatch, wax) = _DCMatch(ax)
            (bxmatch, wbx) = _DCMatch(bx)
            if len(ax) == len(a):
                wa = wax
                amatch = axmatch
            else:
                (amatch, wa) = _DCMatch(a)
            if len(bx) == len(b):
                wb = wbx
                bmatch = bxmatch
            else:
                (bmatch, wb) = _DCMatch(b)
            w = wa + wb
            wx = wax + wbx + wi
            if w > wx:
                match = amatch + bmatch
                matchw = w
            else:
                match = [er[i]] + axmatch + bxmatch
                matchw = wx
        else:
            # case 2: er not needed to separate graph
            (a, b) = _PartitionComps(er, comp, -1, 0, 0)
            (amatch, wa) = _DCMatch(a)
            (bmatch, wb) = _DCMatch(b)
            match = amatch + bmatch
            matchw = wa + wb
        if match:
            break
    if not match:
        return _EMatch(er)
    return (match, matchw)


def _EMatch(er):
    """Exhaustive match helper for _MaxMatch.

    This is the case when we were unable to find a single edge
    separating the edge removal graph into two components.
    So pick a single edge and try _DCMatch on the two cases of
    including or excluding that edge.  We may be lucky in these
    subcases (say, if the graph is currently a simple cycle, so
    only needs one more edge after the one we pick here to separate
    it into components).  Otherwise, we'll end up back in _EMatch
    again, and the worse case will be exponential.

    Pick a random edge rather than say, the first, to hopefully
    avoid some pathological cases.

    Args:
      er: list of (weight, el, tl, tr) (see _ERGraph)
    Returns:
       (list of (weight, e, tl, tr), float) - the subset forming a maximum
          matching, and the total weight of the match.
    """

    if not er:
        return ([], 0.0)
    if len(er) == 1:
        return (er, er[1][1])
    i = random.randint(0, len(er) - 1)
    eri = (wi, _, tl, tr) = er[i]
    # case a: include eri.  exlude other edges that touch tl or tr
    a = _CopyExcluding(er, tl, tr)
    a.append(eri)
    (amatch, wa) = _DCMatch(a)
    wa += wi
    if len(a) == len(er) - 1:
        # if a excludes only eri, then er didn't touch anything else
        # in the graph, and the best match will always include er
        # and we can skip the call for case b
        wb = -1.0
        bmatch = []
    else:
        b = er[:i] + er[i + 1:]
        (bmatch, wb) = _DCMatch(b)
    if wa > wb:
        match = amatch
        match.append(eri)
        matchw = wa
    else:
        match = bmatch
        matchw = wb
    return (match, matchw)


def _FindComponents(er, excepti):
    """Find connected components induced by edges, excluding one edge.

    Args:
      er: list of (weight, el, tl, tr) (see _ERGraph)
      excepti: index in er of edge to be excluded
    Returns:
      (int, dict): int is number of connected components found,
          dict maps triangle triple ->
              connected component index (starting at 1)
     """

    ncomps = 0
    comp = dict()
    for i in range(0, len(er)):
        (_, _, tl, tr) = er[i]
        for t in [tl, tr]:
            if t not in comp:
                ncomps += 1
                _FCVisit(er, excepti, comp, t, ncomps)
    return (ncomps, comp)


def _FCVisit(er, excepti, comp, t, compnum):
    """Helper for _FindComponents depth-first-search."""

    comp[t] = compnum
    for i in range(0, len(er)):
        if i == excepti:
            continue
        (_, _, tl, tr) = er[i]
        if tl == t or tr == t:
            s = tl
            if s == t:
                s = tr
            if s not in comp:
                _FCVisit(er, excepti, comp, s, compnum)


def _PartitionComps(er, comp, excepti, compa, compb):
    """Partition the edges of er by component number, into two lists.

    Generally, put odd components into first list and even into second,
    except that component compa goes in the first and compb goes in the second,
    and we ignore edge er[excepti].

    Args:
      er: list of (weight, el, tl, tr) (see _ERGraph)
      comp: dict - mapping triangle triple -> connected component index
      excepti: int - index in er to ignore (unless excepti==-1)
      compa: int - component to go in first list of answer (unless 0)
      compb: int - component to go in second list of answer (unless 0)
    Returns:
      (list, list) - a partition of er according to above rules
    """

    parta = []
    partb = []
    for i in range(0, len(er)):

        if i == excepti:
            continue
        tl = er[i][2]
        c = comp[tl]
        if c == compa or (c != compb and (c & 1) == 1):
            parta.append(er[i])
        else:
            partb.append(er[i])
    return (parta, partb)


def _CopyExcluding(er, s, t):
    """Return a copy of er, excluding all those involving triangles s and t.

    Args:
      er: list of (weight, e, tl, tr) - see _ERGraph
      s: 3-tuple of int - a triangle
      t: 3-tuple of int - a triangle
    Returns:
      Copy of er excluding those with tl or tr == s or t
    """

    ans = []
    for e in er:
        (_, _, tl, tr) = e
        if tl == s or tr == s or tl == t or tr == t:
            continue
        ans.append(e)
    return ans


def _DegreeDict(tris):
    """Return a dictionary mapping vertices in tris to the number of triangles
    that they are touch."""

    ans = dict()
    for t in tris:
        for v in t:
            if v in ans:
                ans[v] = ans[v] + 1
            else:
                ans[v] = 1
    return ans


def PolygonPlane(face, points):
    """Return a Normal vector for the face with 3d coords given by indexing
    into points."""

    if len(face) < 3:
        return (0.0, 0.0, 1.0)    # arbitrary, we really have no idea
    else:
        coords = [points.pos[i] for i in face]
        return Normal(coords)


# This Normal appears to be on the CCW-traversing side of a polygon
def Normal(coords):
    """Return an average Normal vector for the point list, 3d coords."""

    if len(coords) < 3:
        return (0.0, 0.0, 1.0)    # arbitrary

    (ax, ay, az) = coords[0]
    (bx, by, bz) = coords[1]
    (cx, cy, cz) = coords[2]

    if len(coords) == 3:
        sx = (ay - by) * (az + bz) + \
            (by - cy) * (bz + cz) + \
            (cy - ay) * (cz + az)
        sy = (az - bz) * (ax + bx) + \
            (bz - cz) * (bx + cx) + \
            (cz - az) * (cx + ax)
        sz = (ax - bx) * (by + by) + \
            (bx - cx) * (by + cy) + \
            (cx - ax) * (cy + ay)
        return Norm3(sx, sy, sz)
    else:
        sx = (ay - by) * (az + bz) + (by - cy) * (bz + cz)
        sy = (az - bz) * (ax + bx) + (bz - cz) * (bx + cx)
        sz = (ax - bx) * (ay + by) + (bx - cx) * (by + cy)
        return _NormalAux(coords[3:], coords[0], sx, sy, sz)


def _NormalAux(rest, first, sx, sy, sz):
    (ax, ay, az) = rest[0]
    if len(rest) == 1:
        (bx, by, bz) = first
    else:
        (bx, by, bz) = rest[1]
    nx = sx + (ay - by) * (az + bz)
    ny = sy + (az - bz) * (ax + bx)
    nz = sz + (ax - bx) * (ay + by)
    if len(rest) == 1:
        return Norm3(nx, ny, nz)
    else:
        return _NormalAux(rest[1:], first, nx, ny, nz)


def Norm3(x, y, z):
    """Return vector (x,y,z) normalized by dividing by squared length.
    Return (0.0, 0.0, 1.0) if the result is undefined."""
    sqrlen = x * x + y * y + z * z
    if sqrlen < 1e-100:
        return (0.0, 0.0, 1.0)
    else:
        try:
            d = sqrt(sqrlen)
            return (x / d, y / d, z / d)
        except:
            return (0.0, 0.0, 1.0)


# We're using right-hand coord system, where
# forefinger=x, middle=y, thumb=z on right hand.
# Then, e.g., (1,0,0) x (0,1,0) = (0,0,1)
def Cross3(a, b):
    """Return the cross product of two vectors, a x b."""

    (ax, ay, az) = a
    (bx, by, bz) = b
    return (ay * bz - az * by, az * bx - ax * bz, ax * by - ay * bx)


def Dot2(a, b):
    """Return the dot product of two 2d vectors, a . b."""

    return a[0] * b[0] + a[1] * b[1]


def Perp2(a, b):
    """Return a sort of 2d cross product."""

    return a[0] * b[1] - a[1] * b[0]


def Sub2(a, b):
    """Return difference of 2d vectors, a-b."""

    return (a[0] - b[0], a[1] - b[1])


def Add2(a, b):
    """Return the sum of 2d vectors, a+b."""

    return (a[0] + b[0], a[1] + b[1])


def Length2(v):
    """Return length of vector v=(x,y)."""

    return sqrt(v[0] * v[0] + v[1] * v[1])


def LinInterp2(a, b, alpha):
    """Return the point alpha of the way from a to b."""

    beta = 1 - alpha
    return (beta * a[0] + alpha * b[0], beta * a[1] + alpha * b[1])


def Normalized2(p):
    """Return vector p normlized by dividing by its squared length.
    Return (0.0, 1.0) if the result is undefined."""

    (x, y) = p
    sqrlen = x * x + y * y
    if sqrlen < 1e-100:
        return (0.0, 1.0)
    else:
        try:
            d = sqrt(sqrlen)
            return (x / d, y / d)
        except:
            return (0.0, 1.0)


def Angle(a, b, c, points):
    """Return Angle abc in degrees, in range [0,180),
    where a,b,c are indices into points."""

    u = Sub2(points.pos[c], points.pos[b])
    v = Sub2(points.pos[a], points.pos[b])
    n1 = Length2(u)
    n2 = Length2(v)
    if n1 == 0.0 or n2 == 0.0:
        return 0.0
    else:
        costheta = Dot2(u, v) / (n1 * n2)
        if costheta > 1.0:
            costheta = 1.0
        if costheta < - 1.0:
            costheta = - 1.0
        return math.acos(costheta) * 180.0 / math.pi


def SegsIntersect(ixa, ixb, ixc, ixd, points):
    """Return true if segment AB intersects CD,
    false if they just touch.  ixa, ixb, ixc, ixd are indices
    into points."""

    a = points.pos[ixa]
    b = points.pos[ixb]
    c = points.pos[ixc]
    d = points.pos[ixd]
    u = Sub2(b, a)
    v = Sub2(d, c)
    w = Sub2(a, c)
    pp = Perp2(u, v)
    if abs(pp) > TOL:
        si = Perp2(v, w) / pp
        ti = Perp2(u, w) / pp
        return 0.0 < si < 1.0 and 0.0 < ti < 1.0
    else:
        # parallel or overlapping
        if Dot2(u, u) == 0.0 or Dot2(v, v) == 0.0:
            return False
        else:
            pp2 = Perp2(w, v)
            if abs(pp2) > TOL:
                return False  # parallel, not collinear
            z = Sub2(b, c)
            (vx, vy) = v
            (wx, wy) = w
            (zx, zy) = z
            if vx == 0.0:
                (t0, t1) = (wy / vy, zy / vy)
            else:
                (t0, t1) = (wx / vx, zx / vx)
            return 0.0 < t0 < 1.0 and 0.0 < t1 < 1.0


def Ccw(a, b, c, points):
    """Return true if ABC is a counterclockwise-oriented triangle,
    where a, b, and c are indices into points.
    Returns false if not, or if colinear within TOL."""

    (ax, ay) = (points.pos[a][0], points.pos[a][1])
    (bx, by) = (points.pos[b][0], points.pos[b][1])
    (cx, cy) = (points.pos[c][0], points.pos[c][1])
    d = ax * by - bx * ay - ax * cy + cx * ay + bx * cy - cx * by
    return d > TOL


def InCircle(a, b, c, d, points):
    """Return true if circle through points with indices a, b, c
    contains point with index d (indices into points).
    Except: if ABC forms a counterclockwise oriented triangle
    then the test is reversed: return true if d is outside the circle.
    Will get false, no matter what orientation, if d is cocircular, with TOL^2.
      | xa ya xa^2+ya^2 1 |
      | xb yb xb^2+yb^2 1 | > 0
      | xc yc xc^2+yc^2 1 |
      | xd yd xd^2+yd^2 1 |
    """

    (xa, ya, za) = _Icc(points.pos[a])
    (xb, yb, zb) = _Icc(points.pos[b])
    (xc, yc, zc) = _Icc(points.pos[c])
    (xd, yd, zd) = _Icc(points.pos[d])
    det = xa * (yb * zc - yc * zb - yb * zd + yd * zb + yc * zd - yd * zc) \
          - xb * (ya * zc - yc * za - ya * zd + yd * za + yc * zd - yd * zc) \
          + xc * (ya * zb - yb * za - ya * zd + yd * za + yb * zd - yd * zb) \
          - xd * (ya * zb - yb * za - ya * zc + yc * za + yb * zc - yc * zb)
    return det > TOL * TOL


def _Icc(p):
    (x, y) = (p[0], p[1])
    return (x, y, x * x + y * y)