Welcome to mirror list, hosted at ThFree Co, Russian Federation.

XALL.py « mesh_tiny_cad - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 331827897c57dba903779608c86e572855c08860 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# SPDX-License-Identifier: GPL-2.0-or-later


import bpy
import bmesh
from mathutils.geometry import intersect_line_line as LineIntersect

import itertools
from collections import defaultdict
from . import cad_module as cm


def order_points(edge, point_list):
    ''' order these edges from distance to v1, then
    sandwich the sorted list with v1, v2 '''
    v1, v2 = edge

    def dist(co):
        return (v1 - co).length
    point_list = sorted(point_list, key=dist)
    return [v1] + point_list + [v2]


def remove_permutations_that_share_a_vertex(bm, permutations):
    ''' Get useful Permutations '''
    final_permutations = []
    for edges in permutations:
        raw_vert_indices = cm.vertex_indices_from_edges_tuple(bm, edges)
        if cm.duplicates(raw_vert_indices):
            continue

        # reaches this point if they do not share.
        final_permutations.append(edges)

    return final_permutations


def get_valid_permutations(bm, edge_indices):
    raw_permutations = itertools.permutations(edge_indices, 2)
    permutations = [r for r in raw_permutations if r[0] < r[1]]
    return remove_permutations_that_share_a_vertex(bm, permutations)


def can_skip(closest_points, vert_vectors):
    '''this checks if the intersection lies on both edges, returns True
    when criteria are not met, and thus this point can be skipped'''
    if not closest_points:
        return True
    if not isinstance(closest_points[0].x, float):
        return True
    if cm.num_edges_point_lies_on(closest_points[0], vert_vectors) < 2:
        return True

    # if this distance is larger than than VTX_PRECISION, we can skip it.
    cpa, cpb = closest_points
    return (cpa - cpb).length > cm.CAD_prefs.VTX_PRECISION


def get_intersection_dictionary(bm, edge_indices):

    bm.verts.ensure_lookup_table()
    bm.edges.ensure_lookup_table()

    permutations = get_valid_permutations(bm, edge_indices)

    k = defaultdict(list)
    d = defaultdict(list)

    for edges in permutations:
        raw_vert_indices = cm.vertex_indices_from_edges_tuple(bm, edges)
        vert_vectors = cm.vectors_from_indices(bm, raw_vert_indices)

        points = LineIntersect(*vert_vectors)

        # some can be skipped.    (NaN, None, not on both edges)
        if can_skip(points, vert_vectors):
            continue

        # reaches this point only when an intersection happens on both edges.
        [k[edge].append(points[0]) for edge in edges]

    # k will contain a dict of edge indices and points found on those edges.
    for edge_idx, unordered_points in k.items():
        tv1, tv2 = bm.edges[edge_idx].verts
        v1 = bm.verts[tv1.index].co
        v2 = bm.verts[tv2.index].co
        ordered_points = order_points((v1, v2), unordered_points)
        d[edge_idx].extend(ordered_points)

    return d


def update_mesh(bm, d):
    ''' Make new geometry (delete old first) '''

    oe = bm.edges
    ov = bm.verts

    new_verts = []
    collect = new_verts.extend
    for old_edge, point_list in d.items():
        num_edges_to_add = len(point_list)-1
        for i in range(num_edges_to_add):
            a = ov.new(point_list[i])
            b = ov.new(point_list[i+1])
            oe.new((a, b))
            bm.normal_update()
            collect([a, b])

    bmesh.ops.delete(bm, geom=[edge for edge in bm.edges if edge.select], context='EDGES')

    #bpy.ops.mesh.remove_doubles(
    #    threshold=cm.CAD_prefs.VTX_DOUBLES_THRSHLD,
    #    use_unselected=False)

    bmesh.ops.remove_doubles(bm, verts=new_verts, dist=cm.CAD_prefs.VTX_DOUBLES_THRSHLD)


def unselect_nonintersecting(bm, d_edges, edge_indices):
    if len(edge_indices) > len(d_edges):
        reserved_edges = set(edge_indices) - set(d_edges)
        for edge in reserved_edges:
            bm.edges[edge].select = False
        print("unselected {}, non intersecting edges".format(reserved_edges))


class TCIntersectAllEdges(bpy.types.Operator):
    '''Adds a vertex at the intersections of all selected edges'''
    bl_idname = 'tinycad.intersectall'
    bl_label = 'XALL intersect all edges'
    bl_options = {'REGISTER', 'UNDO'}

    @classmethod
    def poll(cls, context):
        obj = context.active_object
        return obj is not None and obj.type == 'MESH' and obj.mode == 'EDIT'

    def execute(self, context):
        # must force edge selection mode here
        bpy.context.tool_settings.mesh_select_mode = (False, True, False)

        obj = context.active_object
        if obj.mode == "EDIT":
            bm = bmesh.from_edit_mesh(obj.data)

            selected_edges = [edge for edge in bm.edges if edge.select]
            edge_indices = [i.index for i in selected_edges]

            d = get_intersection_dictionary(bm, edge_indices)

            unselect_nonintersecting(bm, d.keys(), edge_indices)
            update_mesh(bm, d)

            bmesh.update_edit_mesh(obj.data)
        else:
            print('must be in edit mode')

        return {'FINISHED'}