Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_edgetools.py « mesh_tools - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 15ba0a3642fc4968a507d6b84a2597a234f2cd67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright 2012 Paul Marshall.

# The Blender Edgetools is to bring CAD tools to Blender.

bl_info = {
    "name": "EdgeTools",
    "author": "Paul Marshall",
    "version": (0, 9, 2),
    "blender": (2, 80, 0),
    "location": "View3D > Toolbar and View3D > Specials (W-key)",
    "warning": "",
    "description": "CAD style edge manipulation tools",
    "doc_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
               "Scripts/Modeling/EdgeTools",
    "category": "Mesh",
}


import bpy
import bmesh
from bpy.types import (
        Operator,
        Menu,
        )
from math import acos, pi, radians, sqrt
from mathutils import Matrix, Vector
from mathutils.geometry import (
        distance_point_to_plane,
        interpolate_bezier,
        intersect_point_line,
        intersect_line_line,
        intersect_line_plane,
        )
from bpy.props import (
        BoolProperty,
        IntProperty,
        FloatProperty,
        EnumProperty,
       )

"""
Blender EdgeTools
This is a toolkit for edge manipulation based on mesh manipulation
abilities of several CAD/CAE packages, notably CATIA's Geometric Workbench
from which most of these tools have a functional basis.

The GUI and Blender add-on structure shamelessly coded in imitation of the
LoopTools addon.

Examples:
- "Ortho" inspired from CATIA's line creation tool which creates a line of a
   user specified length at a user specified angle to a curve at a chosen
   point.  The user then selects the plane the line is to be created in.
- "Shaft" is inspired from CATIA's tool of the same name.  However, instead
   of a curve around an axis, this will instead shaft a line, a point, or
   a fixed radius about the selected axis.
- "Slice" is from CATIA's ability to split a curve on a plane.  When
   completed this be a Python equivalent with all the same basic
   functionality, though it will sadly be a little clumsier to use due
   to Blender's selection limitations.

Notes:
- Fillet operator and related functions removed as they didn't work
- Buggy parts have been hidden behind ENABLE_DEBUG global (set it to True)
   Example: Shaft with more than two edges selected

Paul "BrikBot" Marshall
Created: January 28, 2012
Last Modified: October 6, 2012

Coded in IDLE, tested in Blender 2.6.
Search for "@todo" to quickly find sections that need work

Note: lijenstina - modified this script in preparation for merging
fixed the needless jumping to object mode for bmesh creation
causing the crash with the Slice > Rip operator
Removed the test operator since version 0.9.2
added general error handling
"""

# Enable debug
# Set to True to have the debug prints available
ENABLE_DEBUG = False


# Quick an dirty method for getting the sign of a number:
def sign(number):
    return (number > 0) - (number < 0)


# is_parallel
# Checks to see if two lines are parallel

def is_parallel(v1, v2, v3, v4):
    result = intersect_line_line(v1, v2, v3, v4)
    return result is None


# Handle error notifications
def error_handlers(self, op_name, error, reports="ERROR", func=False):
    if self and reports:
        self.report({'WARNING'}, reports + " (See Console for more info)")

    is_func = "Function" if func else "Operator"
    print("\n[Mesh EdgeTools]\n{}: {}\nError: {}\n".format(is_func, op_name, error))


def flip_edit_mode():
    bpy.ops.object.editmode_toggle()
    bpy.ops.object.editmode_toggle()


# check the appropriate selection condition
# to prevent crashes with the index out of range errors
# pass the bEdges and bVerts based selection tables here
# types: Edge, Vertex, All
def is_selected_enough(self, bEdges, bVerts, edges_n=1, verts_n=0, types="Edge"):
    check = False
    try:
        if bEdges and types == "Edge":
            check = (len(bEdges) >= edges_n)
        elif bVerts and types == "Vertex":
            check = (len(bVerts) >= verts_n)
        elif bEdges and bVerts and types == "All":
            check = (len(bEdges) >= edges_n and len(bVerts) >= verts_n)

        if check is False:
            strings = "%s Vertices and / or " % verts_n if verts_n != 0 else ""
            self.report({'WARNING'},
                        "Needs at least " + strings + "%s Edge(s) selected. "
                        "Operation Cancelled" % edges_n)
            flip_edit_mode()

        return check

    except Exception as e:
        error_handlers(self, "is_selected_enough", e,
                      "No appropriate selection. Operation Cancelled", func=True)
        return False

    return False


# is_axial
# This is for the special case where the edge is parallel to an axis.
# The projection onto the XY plane will fail so it will have to be handled differently

def is_axial(v1, v2, error=0.000002):
    vector = v2 - v1
    # Don't need to store, but is easier to read:
    vec0 = vector[0] > -error and vector[0] < error
    vec1 = vector[1] > -error and vector[1] < error
    vec2 = vector[2] > -error and vector[2] < error
    if (vec0 or vec1) and vec2:
        return 'Z'
    elif vec0 and vec1:
        return 'Y'
    return None


# is_same_co
# For some reason "Vector = Vector" does not seem to look at the actual coordinates

def is_same_co(v1, v2):
    if len(v1) != len(v2):
        return False
    else:
        for co1, co2 in zip(v1, v2):
            if co1 != co2:
                return False
    return True


def is_face_planar(face, error=0.0005):
    for v in face.verts:
        d = distance_point_to_plane(v.co, face.verts[0].co, face.normal)
        if ENABLE_DEBUG:
            print("Distance: " + str(d))
        if d < -error or d > error:
            return False
    return True


# other_joined_edges
# Starts with an edge. Then scans for linked, selected edges and builds a
# list with them in "order", starting at one end and moving towards the other

def order_joined_edges(edge, edges=[], direction=1):
    if len(edges) == 0:
        edges.append(edge)
        edges[0] = edge

    if ENABLE_DEBUG:
        print(edge, end=", ")
        print(edges, end=", ")
        print(direction, end="; ")

    # Robustness check: direction cannot be zero
    if direction == 0:
        direction = 1

    newList = []
    for e in edge.verts[0].link_edges:
        if e.select and edges.count(e) == 0:
            if direction > 0:
                edges.insert(0, e)
                newList.extend(order_joined_edges(e, edges, direction + 1))
                newList.extend(edges)
            else:
                edges.append(e)
                newList.extend(edges)
                newList.extend(order_joined_edges(e, edges, direction - 1))

    # This will only matter at the first level:
    direction = direction * -1

    for e in edge.verts[1].link_edges:
        if e.select and edges.count(e) == 0:
            if direction > 0:
                edges.insert(0, e)
                newList.extend(order_joined_edges(e, edges, direction + 2))
                newList.extend(edges)
            else:
                edges.append(e)
                newList.extend(edges)
                newList.extend(order_joined_edges(e, edges, direction))

    if ENABLE_DEBUG:
        print(newList, end=", ")
        print(direction)

    return newList


# --------------- GEOMETRY CALCULATION METHODS --------------

# distance_point_line
# I don't know why the mathutils.geometry API does not already have this, but
# it is trivial to code using the structures already in place. Instead of
# returning a float, I also want to know the direction vector defining the
# distance. Distance can be found with "Vector.length"

def distance_point_line(pt, line_p1, line_p2):
    int_co = intersect_point_line(pt, line_p1, line_p2)
    distance_vector = int_co[0] - pt
    return distance_vector


# interpolate_line_line
# This is an experiment into a cubic Hermite spline (c-spline) for connecting
# two edges with edges that obey the general equation.
# This will return a set of point coordinates (Vectors)
#
# A good, easy to read background on the mathematics can be found at:
# http://cubic.org/docs/hermite.htm
#
# Right now this is . . . less than functional :P
# @todo
#   - C-Spline and Bezier curves do not end on p2_co as they are supposed to.
#   - B-Spline just fails.  Epically.
#   - Add more methods as I come across them.  Who said flexibility was bad?

def interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, segments, tension=1,
                          typ='BEZIER', include_ends=False):
    pieces = []
    fraction = 1 / segments

    # Form: p1, tangent 1, p2, tangent 2
    if typ == 'HERMITE':
        poly = [[2, -3, 0, 1], [1, -2, 1, 0],
                [-2, 3, 0, 0], [1, -1, 0, 0]]
    elif typ == 'BEZIER':
        poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
                [1, 0, 0, 0], [-3, 3, 0, 0]]
        p1_dir = p1_dir + p1_co
        p2_dir = -p2_dir + p2_co
    elif typ == 'BSPLINE':
        # Supposed poly matrix for a cubic b-spline:
        # poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
        #         [-3, 0, 3, 0], [1, 4, 1, 0]]
        # My own invention to try to get something that somewhat acts right
        # This is semi-quadratic rather than fully cubic:
        poly = [[0, -1, 0, 1], [1, -2, 1, 0],
                [0, -1, 2, 0], [1, -1, 0, 0]]

    if include_ends:
        pieces.append(p1_co)

    # Generate each point:
    for i in range(segments - 1):
        t = fraction * (i + 1)
        if ENABLE_DEBUG:
            print(t)
        s = [t ** 3, t ** 2, t, 1]
        h00 = (poly[0][0] * s[0]) + (poly[0][1] * s[1]) + (poly[0][2] * s[2]) + (poly[0][3] * s[3])
        h01 = (poly[1][0] * s[0]) + (poly[1][1] * s[1]) + (poly[1][2] * s[2]) + (poly[1][3] * s[3])
        h10 = (poly[2][0] * s[0]) + (poly[2][1] * s[1]) + (poly[2][2] * s[2]) + (poly[2][3] * s[3])
        h11 = (poly[3][0] * s[0]) + (poly[3][1] * s[1]) + (poly[3][2] * s[2]) + (poly[3][3] * s[3])
        pieces.append((h00 * p1_co) + (h01 * p1_dir) + (h10 * p2_co) + (h11 * p2_dir))
    if include_ends:
        pieces.append(p2_co)

    # Return:
    if len(pieces) == 0:
        return None
    else:
        if ENABLE_DEBUG:
            print(pieces)
        return pieces


# intersect_line_face

# Calculates the coordinate of intersection of a line with a face.  It returns
# the coordinate if one exists, otherwise None.  It can only deal with tris or
# quads for a face. A quad does NOT have to be planar
"""
Quad math and theory:
A quad may not be planar. Therefore the treated definition of the surface is
that the surface is composed of all lines bridging two other lines defined by
the given four points. The lines do not "cross"

The two lines in 3-space can defined as:
┌  ┐         ┌   ┐     ┌   ┐  ┌  ┐         ┌   ┐     ┌   ┐
│x1│         │a11│     │b11│  │x2│         │a21│     │b21│
│y1│ = (1-t1)│a12│ + t1│b12│, │y2│ = (1-t2)│a22│ + t2│b22│
│z1│         │a13│     │b13│  │z2│         │a23│     │b23│
└  ┘         └   ┘     └   ┘  └  ┘         └   ┘     └   ┘
Therefore, the surface is the lines defined by every point alone the two
lines with a same "t" value (t1 = t2). This is basically R = V1 + tQ, where
Q = V2 - V1 therefore R = V1 + t(V2 - V1) -> R = (1 - t)V1 + tV2:
┌   ┐            ┌                  ┐      ┌                  ┐
│x12│            │(1-t)a11 + t * b11│      │(1-t)a21 + t * b21│
│y12│ = (1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│
│z12│            │(1-t)a13 + t * b13│      │(1-t)a23 + t * b23│
└   ┘            └                  ┘      └                  ┘
Now, the equation of our line can be likewise defined:
┌  ┐   ┌   ┐     ┌   ┐
│x3│   │a31│     │b31│
│y3│ = │a32│ + t3│b32│
│z3│   │a33│     │b33│
└  ┘   └   ┘     └   ┘
Now we just have to find a valid solution for the two equations.  This should
be our point of intersection. Therefore, x12 = x3 -> x, y12 = y3 -> y,
z12 = z3 -> z.  Thus, to find that point we set the equation defining the
surface as equal to the equation for the line:
        ┌                  ┐      ┌                  ┐   ┌   ┐     ┌   ┐
        │(1-t)a11 + t * b11│      │(1-t)a21 + t * b21│   │a31│     │b31│
(1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│ = │a32│ + t3│b32│
        │(1-t)a13 + t * b13│      │(1-t)a23 + t * b23│   │a33│     │b33│
        └                  ┘      └                  ┘   └   ┘     └   ┘
This leaves us with three equations, three unknowns.  Solving the system by
hand is practically impossible, but using Mathematica we are given an insane
series of three equations (not reproduced here for the sake of space: see
http://www.mediafire.com/file/cc6m6ba3sz2b96m/intersect_line_surface.nb and
http://www.mediafire.com/file/0egbr5ahg14talm/intersect_line_surface2.nb for
Mathematica computation).

Additionally, the resulting series of equations may result in a div by zero
exception if the line in question if parallel to one of the axis or if the
quad is planar and parallel to either the XY, XZ, or YZ planes. However, the
system is still solvable but must be dealt with a little differently to avaid
these special cases. Because the resulting equations are a little different,
we have to code them differently. 00Hence the special cases.

Tri math and theory:
A triangle must be planar (three points define a plane). So we just
have to make sure that the line intersects inside the triangle.

If the point is within the triangle, then the angle between the lines that
connect the point to the each individual point of the triangle will be
equal to 2 * PI. Otherwise, if the point is outside the triangle, then the
sum of the angles will be less.
"""
# @todo
# - Figure out how to deal with n-gons
# How the heck is a face with 8 verts defined mathematically?
# How do I then find the intersection point of a line with said vert?
# How do I know if that point is "inside" all the verts?
# I have no clue, and haven't been able to find anything on it so far
# Maybe if someone (actually reads this and) who knows could note?


def intersect_line_face(edge, face, is_infinite=False, error=0.000002):
    int_co = None

    # If we are dealing with a non-planar quad:
    if len(face.verts) == 4 and not is_face_planar(face):
        edgeA = face.edges[0]
        edgeB = None
        flipB = False

        for i in range(len(face.edges)):
            if face.edges[i].verts[0] not in edgeA.verts and \
               face.edges[i].verts[1] not in edgeA.verts:

                edgeB = face.edges[i]
                break

        # I haven't figured out a way to mix this in with the above. Doing so might remove a
        # few extra instructions from having to be executed saving a few clock cycles:
        for i in range(len(face.edges)):
            if face.edges[i] == edgeA or face.edges[i] == edgeB:
                continue
            if ((edgeA.verts[0] in face.edges[i].verts and
               edgeB.verts[1] in face.edges[i].verts) or
               (edgeA.verts[1] in face.edges[i].verts and edgeB.verts[0] in face.edges[i].verts)):

                flipB = True
                break

        # Define calculation coefficient constants:
        # "xx1" is the x coordinate, "xx2" is the y coordinate, and "xx3" is the z coordinate
        a11, a12, a13 = edgeA.verts[0].co[0], edgeA.verts[0].co[1], edgeA.verts[0].co[2]
        b11, b12, b13 = edgeA.verts[1].co[0], edgeA.verts[1].co[1], edgeA.verts[1].co[2]

        if flipB:
            a21, a22, a23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
            b21, b22, b23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
        else:
            a21, a22, a23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
            b21, b22, b23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
        a31, a32, a33 = edge.verts[0].co[0], edge.verts[0].co[1], edge.verts[0].co[2]
        b31, b32, b33 = edge.verts[1].co[0], edge.verts[1].co[1], edge.verts[1].co[2]

        # There are a bunch of duplicate "sub-calculations" inside the resulting
        # equations for t, t12, and t3.  Calculate them once and store them to
        # reduce computational time:
        m01 = a13 * a22 * a31
        m02 = a12 * a23 * a31
        m03 = a13 * a21 * a32
        m04 = a11 * a23 * a32
        m05 = a12 * a21 * a33
        m06 = a11 * a22 * a33
        m07 = a23 * a32 * b11
        m08 = a22 * a33 * b11
        m09 = a23 * a31 * b12
        m10 = a21 * a33 * b12
        m11 = a22 * a31 * b13
        m12 = a21 * a32 * b13
        m13 = a13 * a32 * b21
        m14 = a12 * a33 * b21
        m15 = a13 * a31 * b22
        m16 = a11 * a33 * b22
        m17 = a12 * a31 * b23
        m18 = a11 * a32 * b23
        m19 = a13 * a22 * b31
        m20 = a12 * a23 * b31
        m21 = a13 * a32 * b31
        m22 = a23 * a32 * b31
        m23 = a12 * a33 * b31
        m24 = a22 * a33 * b31
        m25 = a23 * b12 * b31
        m26 = a33 * b12 * b31
        m27 = a22 * b13 * b31
        m28 = a32 * b13 * b31
        m29 = a13 * b22 * b31
        m30 = a33 * b22 * b31
        m31 = a12 * b23 * b31
        m32 = a32 * b23 * b31
        m33 = a13 * a21 * b32
        m34 = a11 * a23 * b32
        m35 = a13 * a31 * b32
        m36 = a23 * a31 * b32
        m37 = a11 * a33 * b32
        m38 = a21 * a33 * b32
        m39 = a23 * b11 * b32
        m40 = a33 * b11 * b32
        m41 = a21 * b13 * b32
        m42 = a31 * b13 * b32
        m43 = a13 * b21 * b32
        m44 = a33 * b21 * b32
        m45 = a11 * b23 * b32
        m46 = a31 * b23 * b32
        m47 = a12 * a21 * b33
        m48 = a11 * a22 * b33
        m49 = a12 * a31 * b33
        m50 = a22 * a31 * b33
        m51 = a11 * a32 * b33
        m52 = a21 * a32 * b33
        m53 = a22 * b11 * b33
        m54 = a32 * b11 * b33
        m55 = a21 * b12 * b33
        m56 = a31 * b12 * b33
        m57 = a12 * b21 * b33
        m58 = a32 * b21 * b33
        m59 = a11 * b22 * b33
        m60 = a31 * b22 * b33
        m61 = a33 * b12 * b21
        m62 = a32 * b13 * b21
        m63 = a33 * b11 * b22
        m64 = a31 * b13 * b22
        m65 = a32 * b11 * b23
        m66 = a31 * b12 * b23
        m67 = b13 * b22 * b31
        m68 = b12 * b23 * b31
        m69 = b13 * b21 * b32
        m70 = b11 * b23 * b32
        m71 = b12 * b21 * b33
        m72 = b11 * b22 * b33
        n01 = m01 - m02 - m03 + m04 + m05 - m06
        n02 = -m07 + m08 + m09 - m10 - m11 + m12 + m13 - m14 - m15 + m16 + m17 - m18 - \
              m25 + m27 + m29 - m31 + m39 - m41 - m43 + m45 - m53 + m55 + m57 - m59
        n03 = -m19 + m20 + m33 - m34 - m47 + m48
        n04 = m21 - m22 - m23 + m24 - m35 + m36 + m37 - m38 + m49 - m50 - m51 + m52
        n05 = m26 - m28 - m30 + m32 - m40 + m42 + m44 - m46 + m54 - m56 - m58 + m60
        n06 = m61 - m62 - m63 + m64 + m65 - m66 - m67 + m68 + m69 - m70 - m71 + m72
        n07 = 2 * n01 + n02 + 2 * n03 + n04 + n05
        n08 = n01 + n02 + n03 + n06

        # Calculate t, t12, and t3:
        t = (n07 - sqrt(pow(-n07, 2) - 4 * (n01 + n03 + n04) * n08)) / (2 * n08)

        # t12 can be greatly simplified by defining it with t in it:
        # If block used to help prevent any div by zero error.
        t12 = 0

        if a31 == b31:
            # The line is parallel to the z-axis:
            if a32 == b32:
                t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
            # The line is parallel to the y-axis:
            elif a33 == b33:
                t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
            # The line is along the y/z-axis but is not parallel to either:
            else:
                t12 = -(-(a33 - b33) * (-a32 + a12 * (1 - t) + b12 * t) + (a32 - b32) *
                        (-a33 + a13 * (1 - t) + b13 * t)) / (-(a33 - b33) *
                        ((a22 - a12) * (1 - t) + (b22 - b12) * t) + (a32 - b32) *
                        ((a23 - a13) * (1 - t) + (b23 - b13) * t))
        elif a32 == b32:
            # The line is parallel to the x-axis:
            if a33 == b33:
                t12 = ((a12 - a32) + (b12 - a12) * t) / ((a22 - a12) + (a12 - a22 - b12 + b22) * t)
            # The line is along the x/z-axis but is not parallel to either:
            else:
                t12 = -(-(a33 - b33) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a33 + a13 *
                      (1 - t) + b13 * t)) / (-(a33 - b33) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) +
                      (a31 - b31) * ((a23 - a13) * (1 - t) + (b23 - b13) * t))
        # The line is along the x/y-axis but is not parallel to either:
        else:
            t12 = -(-(a32 - b32) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a32 + a12 *
                  (1 - t) + b12 * t)) / (-(a32 - b32) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) +
                  (a31 - b31) * ((a22 - a21) * (1 - t) + (b22 - b12) * t))

        # Likewise, t3 is greatly simplified by defining it in terms of t and t12:
        # If block used to prevent a div by zero error.
        t3 = 0
        if a31 != b31:
            t3 = (-a11 + a31 + (a11 - b11) * t + (a11 - a21) *
                t12 + (a21 - a11 + b11 - b21) * t * t12) / (a31 - b31)
        elif a32 != b32:
            t3 = (-a12 + a32 + (a12 - b12) * t + (a12 - a22) *
                t12 + (a22 - a12 + b12 - b22) * t * t12) / (a32 - b32)
        elif a33 != b33:
            t3 = (-a13 + a33 + (a13 - b13) * t + (a13 - a23) *
                t12 + (a23 - a13 + b13 - b23) * t * t12) / (a33 - b33)
        else:
            if ENABLE_DEBUG:
                print("The second edge is a zero-length edge")
            return None

        # Calculate the point of intersection:
        x = (1 - t3) * a31 + t3 * b31
        y = (1 - t3) * a32 + t3 * b32
        z = (1 - t3) * a33 + t3 * b33
        int_co = Vector((x, y, z))

        if ENABLE_DEBUG:
            print(int_co)

        # If the line does not intersect the quad, we return "None":
        if (t < -1 or t > 1 or t12 < -1 or t12 > 1) and not is_infinite:
            int_co = None

    elif len(face.verts) == 3:
        p1, p2, p3 = face.verts[0].co, face.verts[1].co, face.verts[2].co
        int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co, p1, face.normal)

        # Only check if the triangle is not being treated as an infinite plane:
        # Math based from http://paulbourke.net/geometry/linefacet/
        if int_co is not None and not is_infinite:
            pA = p1 - int_co
            pB = p2 - int_co
            pC = p3 - int_co
            # These must be unit vectors, else we risk a domain error:
            pA.length = 1
            pB.length = 1
            pC.length = 1
            aAB = acos(pA.dot(pB))
            aBC = acos(pB.dot(pC))
            aCA = acos(pC.dot(pA))
            sumA = aAB + aBC + aCA

            # If the point is outside the triangle:
            if (sumA > (pi + error) and sumA < (pi - error)):
                int_co = None

    # This is the default case where we either have a planar quad or an n-gon
    else:
        int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co,
                                      face.verts[0].co, face.normal)
    return int_co


# project_point_plane
# Projects a point onto a plane. Returns a tuple of the projection vector
# and the projected coordinate

def project_point_plane(pt, plane_co, plane_no):
    if ENABLE_DEBUG:
        print("project_point_plane was called")
    proj_co = intersect_line_plane(pt, pt + plane_no, plane_co, plane_no)
    proj_ve = proj_co - pt
    if ENABLE_DEBUG:
        print("project_point_plane: proj_co is {}\nproj_ve is {}".format(proj_co, proj_ve))
    return (proj_ve, proj_co)


# ------------ CHAMPHER HELPER METHODS -------------

def is_planar_edge(edge, error=0.000002):
    angle = edge.calc_face_angle()
    return ((angle < error and angle > -error) or
            (angle < (180 + error) and angle > (180 - error)))


# ------------- EDGE TOOL METHODS -------------------

# Extends an "edge" in two directions:
#   - Requires two vertices to be selected. They do not have to form an edge
#   - Extends "length" in both directions

class Extend(Operator):
    bl_idname = "mesh.edgetools_extend"
    bl_label = "Extend"
    bl_description = "Extend the selected edges of vertex pairs"
    bl_options = {'REGISTER', 'UNDO'}

    di1: BoolProperty(
            name="Forwards",
            description="Extend the edge forwards",
            default=True
            )
    di2: BoolProperty(
            name="Backwards",
            description="Extend the edge backwards",
            default=False
            )
    length: FloatProperty(
            name="Length",
            description="Length to extend the edge",
            min=0.0, max=1024.0,
            default=1.0
            )

    def draw(self, context):
        layout = self.layout

        row = layout.row(align=True)
        row.prop(self, "di1", toggle=True)
        row.prop(self, "di2", toggle=True)

        layout.prop(self, "length")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bEdges = bm.edges
            bVerts = bm.verts

            edges = [e for e in bEdges if e.select]
            verts = [v for v in bVerts if v.select]

            if not is_selected_enough(self, edges, 0, edges_n=1, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            if len(edges) > 0:
                for e in edges:
                    vector = e.verts[0].co - e.verts[1].co
                    vector.length = self.length

                    if self.di1:
                        v = bVerts.new()
                        if (vector[0] + vector[1] + vector[2]) < 0:
                            v.co = e.verts[1].co - vector
                            newE = bEdges.new((e.verts[1], v))
                            bEdges.ensure_lookup_table()
                        else:
                            v.co = e.verts[0].co + vector
                            newE = bEdges.new((e.verts[0], v))
                            bEdges.ensure_lookup_table()
                    if self.di2:
                        v = bVerts.new()
                        if (vector[0] + vector[1] + vector[2]) < 0:
                            v.co = e.verts[0].co + vector
                            newE = bEdges.new((e.verts[0], v))
                            bEdges.ensure_lookup_table()
                        else:
                            v.co = e.verts[1].co - vector
                            newE = bEdges.new((e.verts[1], v))
                            bEdges.ensure_lookup_table()
            else:
                vector = verts[0].co - verts[1].co
                vector.length = self.length

                if self.di1:
                    v = bVerts.new()
                    if (vector[0] + vector[1] + vector[2]) < 0:
                        v.co = verts[1].co - vector
                        e = bEdges.new((verts[1], v))
                        bEdges.ensure_lookup_table()
                    else:
                        v.co = verts[0].co + vector
                        e = bEdges.new((verts[0], v))
                        bEdges.ensure_lookup_table()
                if self.di2:
                    v = bVerts.new()
                    if (vector[0] + vector[1] + vector[2]) < 0:
                        v.co = verts[0].co + vector
                        e = bEdges.new((verts[0], v))
                        bEdges.ensure_lookup_table()
                    else:
                        v.co = verts[1].co - vector
                        e = bEdges.new((verts[1], v))
                        bEdges.ensure_lookup_table()

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_extend", e,
                           reports="Extend Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# Creates a series of edges between two edges using spline interpolation.
# This basically just exposes existing functionality in addition to some
# other common methods: Hermite (c-spline), Bezier, and b-spline. These
# alternates I coded myself after some extensive research into spline theory
#
# @todo Figure out what's wrong with the Blender bezier interpolation

class Spline(Operator):
    bl_idname = "mesh.edgetools_spline"
    bl_label = "Spline"
    bl_description = "Create a spline interplopation between two edges"
    bl_options = {'REGISTER', 'UNDO'}

    alg: EnumProperty(
            name="Spline Algorithm",
            items=[('Blender', "Blender", "Interpolation provided through mathutils.geometry"),
                    ('Hermite', "C-Spline", "C-spline interpolation"),
                    ('Bezier', "Bezier", "Bezier interpolation"),
                    ('B-Spline', "B-Spline", "B-Spline interpolation")],
            default='Bezier'
            )
    segments: IntProperty(
            name="Segments",
            description="Number of segments to use in the interpolation",
            min=2, max=4096,
            soft_max=1024,
            default=32
            )
    flip1: BoolProperty(
            name="Flip Edge",
            description="Flip the direction of the spline on Edge 1",
            default=False
            )
    flip2: BoolProperty(
            name="Flip Edge",
            description="Flip the direction of the spline on Edge 2",
            default=False
            )
    ten1: FloatProperty(
            name="Tension",
            description="Tension on Edge 1",
            min=-4096.0, max=4096.0,
            soft_min=-8.0, soft_max=8.0,
            default=1.0
            )
    ten2: FloatProperty(
            name="Tension",
            description="Tension on Edge 2",
            min=-4096.0, max=4096.0,
            soft_min=-8.0, soft_max=8.0,
            default=1.0
            )

    def draw(self, context):
        layout = self.layout

        layout.prop(self, "alg")
        layout.prop(self, "segments")

        layout.label(text="Edge 1:")
        split = layout.split(factor=0.8, align=True)
        split.prop(self, "ten1")
        split.prop(self, "flip1", text="Flip1", toggle=True)

        layout.label(text="Edge 2:")
        split = layout.split(factor=0.8, align=True)
        split.prop(self, "ten2")
        split.prop(self, "flip2", text="Flip2", toggle=True)

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bEdges = bm.edges
            bVerts = bm.verts

            seg = self.segments
            edges = [e for e in bEdges if e.select]

            if not is_selected_enough(self, edges, 0, edges_n=2, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            verts = [edges[v // 2].verts[v % 2] for v in range(4)]

            if self.flip1:
                v1 = verts[1]
                p1_co = verts[1].co
                p1_dir = verts[1].co - verts[0].co
            else:
                v1 = verts[0]
                p1_co = verts[0].co
                p1_dir = verts[0].co - verts[1].co
            if self.ten1 < 0:
                p1_dir = -1 * p1_dir
                p1_dir.length = -self.ten1
            else:
                p1_dir.length = self.ten1

            if self.flip2:
                v2 = verts[3]
                p2_co = verts[3].co
                p2_dir = verts[2].co - verts[3].co
            else:
                v2 = verts[2]
                p2_co = verts[2].co
                p2_dir = verts[3].co - verts[2].co
            if self.ten2 < 0:
                p2_dir = -1 * p2_dir
                p2_dir.length = -self.ten2
            else:
                p2_dir.length = self.ten2

            # Get the interploted coordinates:
            if self.alg == 'Blender':
                pieces = interpolate_bezier(
                                p1_co, p1_dir, p2_dir, p2_co, self.segments
                                )
            elif self.alg == 'Hermite':
                pieces = interpolate_line_line(
                                p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'HERMITE'
                                )
            elif self.alg == 'Bezier':
                pieces = interpolate_line_line(
                                p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BEZIER'
                                )
            elif self.alg == 'B-Spline':
                pieces = interpolate_line_line(
                                p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BSPLINE'
                                )

            verts = []
            verts.append(v1)
            # Add vertices and set the points:
            for i in range(seg - 1):
                v = bVerts.new()
                v.co = pieces[i]
                bVerts.ensure_lookup_table()
                verts.append(v)
            verts.append(v2)
            # Connect vertices:
            for i in range(seg):
                e = bEdges.new((verts[i], verts[i + 1]))
                bEdges.ensure_lookup_table()

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_spline", e,
                           reports="Spline Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# Creates edges normal to planes defined between each of two edges and the
# normal or the plane defined by those two edges.
#   - Select two edges.  The must form a plane.
#   - On running the script, eight edges will be created.  Delete the
#     extras that you don't need.
#   - The length of those edges is defined by the variable "length"
#
# @todo Change method from a cross product to a rotation matrix to make the
#   angle part work.
#   --- todo completed 2/4/2012, but still needs work ---
# @todo Figure out a way to make +/- predictable
#   - Maybe use angle between edges and vector direction definition?
#   --- TODO COMPLETED ON 2/9/2012 ---

class Ortho(Operator):
    bl_idname = "mesh.edgetools_ortho"
    bl_label = "Angle Off Edge"
    bl_description = "Creates new edges within an angle from vertices of selected edges"
    bl_options = {'REGISTER', 'UNDO'}

    vert1: BoolProperty(
            name="Vertice 1",
            description="Enable edge creation for Vertice 1",
            default=True
            )
    vert2: BoolProperty(
            name="Vertice 2",
            description="Enable edge creation for Vertice 2",
            default=True
            )
    vert3: BoolProperty(
            name="Vertice 3",
            description="Enable edge creation for Vertice 3",
            default=True
            )
    vert4: BoolProperty(
            name="Vertice 4",
            description="Enable edge creation for Vertice 4",
            default=True
            )
    pos: BoolProperty(
            name="Positive",
            description="Enable creation of positive direction edges",
            default=True
            )
    neg: BoolProperty(
            name="Negative",
            description="Enable creation of negative direction edges",
            default=True
            )
    angle: FloatProperty(
            name="Angle",
            description="Define the angle off of the originating edge",
            min=0.0, max=180.0,
            default=90.0
            )
    length: FloatProperty(
            name="Length",
            description="Length of created edges",
            min=0.0, max=1024.0,
            default=1.0
            )
    # For when only one edge is selected (Possible feature to be testd):
    plane: EnumProperty(
            name="Plane",
            items=[("XY", "X-Y Plane", "Use the X-Y plane as the plane of creation"),
                   ("XZ", "X-Z Plane", "Use the X-Z plane as the plane of creation"),
                   ("YZ", "Y-Z Plane", "Use the Y-Z plane as the plane of creation")],
            default="XY"
            )

    def draw(self, context):
        layout = self.layout

        layout.label(text="Creation:")
        split = layout.split()
        col = split.column()

        col.prop(self, "vert1", toggle=True)
        col.prop(self, "vert2", toggle=True)

        col = split.column()
        col.prop(self, "vert3", toggle=True)
        col.prop(self, "vert4", toggle=True)

        layout.label(text="Direction:")
        row = layout.row(align=False)
        row.alignment = 'EXPAND'
        row.prop(self, "pos")
        row.prop(self, "neg")

        layout.separator()

        col = layout.column(align=True)
        col.prop(self, "angle")
        col.prop(self, "length")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bVerts = bm.verts
            bEdges = bm.edges
            edges = [e for e in bEdges if e.select]
            vectors = []

            if not is_selected_enough(self, edges, 0, edges_n=2, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            verts = [edges[0].verts[0],
                     edges[0].verts[1],
                     edges[1].verts[0],
                     edges[1].verts[1]]

            cos = intersect_line_line(verts[0].co, verts[1].co, verts[2].co, verts[3].co)

            # If the two edges are parallel:
            if cos is None:
                self.report({'WARNING'},
                            "Selected lines are parallel: results may be unpredictable")
                vectors.append(verts[0].co - verts[1].co)
                vectors.append(verts[0].co - verts[2].co)
                vectors.append(vectors[0].cross(vectors[1]))
                vectors.append(vectors[2].cross(vectors[0]))
                vectors.append(-vectors[3])
            else:
                # Warn the user if they have not chosen two planar edges:
                if not is_same_co(cos[0], cos[1]):
                    self.report({'WARNING'},
                                "Selected lines are not planar: results may be unpredictable")

                # This makes the +/- behavior predictable:
                if (verts[0].co - cos[0]).length < (verts[1].co - cos[0]).length:
                    verts[0], verts[1] = verts[1], verts[0]
                if (verts[2].co - cos[0]).length < (verts[3].co - cos[0]).length:
                    verts[2], verts[3] = verts[3], verts[2]

                vectors.append(verts[0].co - verts[1].co)
                vectors.append(verts[2].co - verts[3].co)

                # Normal of the plane formed by vector1 and vector2:
                vectors.append(vectors[0].cross(vectors[1]))

                # Possible directions:
                vectors.append(vectors[2].cross(vectors[0]))
                vectors.append(vectors[1].cross(vectors[2]))

            # Set the length:
            vectors[3].length = self.length
            vectors[4].length = self.length

            # Perform any additional rotations:
            matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
            vectors.append(matrix @ -vectors[3])    # vectors[5]
            matrix = Matrix.Rotation(radians(90 - self.angle), 3, vectors[2])
            vectors.append(matrix @ vectors[4])     # vectors[6]
            vectors.append(matrix @ vectors[3])     # vectors[7]
            matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
            vectors.append(matrix @ -vectors[4])    # vectors[8]

            # Perform extrusions and displacements:
            # There will be a total of 8 extrusions.  One for each vert of each edge.
            # It looks like an extrusion will add the new vert to the end of the verts
            # list and leave the rest in the same location.
            # -- EDIT --
            # It looks like I might be able to do this within "bpy.data" with the ".add" function

            for v in range(len(verts)):
                vert = verts[v]
                if ((v == 0 and self.vert1) or (v == 1 and self.vert2) or
                   (v == 2 and self.vert3) or (v == 3 and self.vert4)):

                    if self.pos:
                        new = bVerts.new()
                        new.co = vert.co - vectors[5 + (v // 2) + ((v % 2) * 2)]
                        bVerts.ensure_lookup_table()
                        bEdges.new((vert, new))
                        bEdges.ensure_lookup_table()
                    if self.neg:
                        new = bVerts.new()
                        new.co = vert.co + vectors[5 + (v // 2) + ((v % 2) * 2)]
                        bVerts.ensure_lookup_table()
                        bEdges.new((vert, new))
                        bEdges.ensure_lookup_table()

            bmesh.update_edit_mesh(me)
        except Exception as e:
            error_handlers(self, "mesh.edgetools_ortho", e,
                           reports="Angle Off Edge Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# Usage:
# Select an edge and a point or an edge and specify the radius (default is 1 BU)
# You can select two edges but it might be unpredictable which edge it revolves
# around so you might have to play with the switch

class Shaft(Operator):
    bl_idname = "mesh.edgetools_shaft"
    bl_label = "Shaft"
    bl_description = "Create a shaft mesh around an axis"
    bl_options = {'REGISTER', 'UNDO'}

    # Selection defaults:
    shaftType = 0

    # For tracking if the user has changed selection:
    last_edge: IntProperty(
            name="Last Edge",
            description="Tracks if user has changed selected edges",
            min=0, max=1,
            default=0
            )
    last_flip = False

    edge: IntProperty(
            name="Edge",
            description="Edge to shaft around",
            min=0, max=1,
            default=0
            )
    flip: BoolProperty(
            name="Flip Second Edge",
            description="Flip the perceived direction of the second edge",
            default=False
            )
    radius: FloatProperty(
            name="Radius",
            description="Shaft Radius",
            min=0.0, max=1024.0,
            default=1.0
            )
    start: FloatProperty(
            name="Starting Angle",
            description="Angle to start the shaft at",
            min=-360.0, max=360.0,
            default=0.0
            )
    finish: FloatProperty(
            name="Ending Angle",
            description="Angle to end the shaft at",
            min=-360.0, max=360.0,
            default=360.0
            )
    segments: IntProperty(
            name="Shaft Segments",
            description="Number of segments to use in the shaft",
            min=1, max=4096,
            soft_max=512,
            default=32
            )

    def draw(self, context):
        layout = self.layout

        if self.shaftType == 0:
            layout.prop(self, "edge")
            layout.prop(self, "flip")
        elif self.shaftType == 3:
            layout.prop(self, "radius")

        layout.prop(self, "segments")
        layout.prop(self, "start")
        layout.prop(self, "finish")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        # Make sure these get reset each time we run:
        self.last_edge = 0
        self.edge = 0

        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bFaces = bm.faces
            bEdges = bm.edges
            bVerts = bm.verts

            active = None
            edges, verts = [], []

            # Pre-caclulated values:
            rotRange = [radians(self.start), radians(self.finish)]
            rads = radians((self.finish - self.start) / self.segments)

            numV = self.segments + 1
            numE = self.segments

            edges = [e for e in bEdges if e.select]

            # Robustness check: there should at least be one edge selected
            if not is_selected_enough(self, edges, 0, edges_n=1, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            # If two edges are selected:
            if len(edges) == 2:
                # default:
                edge = [0, 1]
                vert = [0, 1]

                # By default, we want to shaft around the last selected edge (it
                # will be the active edge). We know we are using the default if
                # the user has not changed which edge is being shafted around (as
                # is tracked by self.last_edge). When they are not the same, then
                # the user has changed selection.
                # We then need to make sure that the active object really is an edge
                # (robustness check)
                # Finally, if the active edge is not the initial one, we flip them
                # and have the GUI reflect that
                if self.last_edge == self.edge:
                    if isinstance(bm.select_history.active, bmesh.types.BMEdge):
                        if bm.select_history.active != edges[edge[0]]:
                            self.last_edge, self.edge = edge[1], edge[1]
                            edge = [edge[1], edge[0]]
                    else:
                        flip_edit_mode()
                        self.report({'WARNING'},
                                    "Active geometry is not an edge. Operation Cancelled")
                        return {'CANCELLED'}
                elif self.edge == 1:
                    edge = [1, 0]

                verts.append(edges[edge[0]].verts[0])
                verts.append(edges[edge[0]].verts[1])

                if self.flip:
                    verts = [1, 0]

                verts.append(edges[edge[1]].verts[vert[0]])
                verts.append(edges[edge[1]].verts[vert[1]])

                self.shaftType = 0
            # If there is more than one edge selected:
            # There are some issues with it ATM, so don't expose is it to normal users
            # @todo Fix edge connection ordering issue
            elif ENABLE_DEBUG and len(edges) > 2:
                if isinstance(bm.select_history.active, bmesh.types.BMEdge):
                    active = bm.select_history.active
                    edges.remove(active)
                    # Get all the verts:
                    # edges = order_joined_edges(edges[0])
                    verts = []
                    for e in edges:
                        if verts.count(e.verts[0]) == 0:
                            verts.append(e.verts[0])
                        if verts.count(e.verts[1]) == 0:
                            verts.append(e.verts[1])
                else:
                    flip_edit_mode()
                    self.report({'WARNING'},
                                "Active geometry is not an edge. Operation Cancelled")
                    return {'CANCELLED'}
                self.shaftType = 1
            else:
                verts.append(edges[0].verts[0])
                verts.append(edges[0].verts[1])

                for v in bVerts:
                    if v.select and verts.count(v) == 0:
                        verts.append(v)
                    v.select = False
                if len(verts) == 2:
                    self.shaftType = 3
                else:
                    self.shaftType = 2

            # The vector denoting the axis of rotation:
            if self.shaftType == 1:
                axis = active.verts[1].co - active.verts[0].co
            else:
                axis = verts[1].co - verts[0].co

            # We will need a series of rotation matrices. We could use one which
            # would be faster but also might cause propagation of error
            # matrices = []
            # for i in range(numV):
            #    matrices.append(Matrix.Rotation((rads * i) + rotRange[0], 3, axis))
            matrices = [Matrix.Rotation((rads * i) + rotRange[0], 3, axis) for i in range(numV)]

            # New vertice coordinates:
            verts_out = []

            # If two edges were selected:
            #  - If the lines are not parallel, then it will create a cone-like shaft
            if self.shaftType == 0:
                for i in range(len(verts) - 2):
                    init_vec = distance_point_line(verts[i + 2].co, verts[0].co, verts[1].co)
                    co = init_vec + verts[i + 2].co
                    # These will be rotated about the origin so will need to be shifted:
                    for j in range(numV):
                        verts_out.append(co - (matrices[j] @ init_vec))
            elif self.shaftType == 1:
                for i in verts:
                    init_vec = distance_point_line(i.co, active.verts[0].co, active.verts[1].co)
                    co = init_vec + i.co
                    # These will be rotated about the origin so will need to be shifted:
                    for j in range(numV):
                        verts_out.append(co - (matrices[j] @ init_vec))
            # Else if a line and a point was selected:
            elif self.shaftType == 2:
                init_vec = distance_point_line(verts[2].co, verts[0].co, verts[1].co)
                # These will be rotated about the origin so will need to be shifted:
                verts_out = [
                    (verts[i].co - (matrices[j] @ init_vec)) for i in range(2) for j in range(numV)
                    ]
            else:
                # Else the above are not possible, so we will just use the edge:
                #  - The vector defined by the edge is the normal of the plane for the shaft
                #  - The shaft will have radius "radius"
                if is_axial(verts[0].co, verts[1].co) is None:
                    proj = (verts[1].co - verts[0].co)
                    proj[2] = 0
                    norm = proj.cross(verts[1].co - verts[0].co)
                    vec = norm.cross(verts[1].co - verts[0].co)
                    vec.length = self.radius
                elif is_axial(verts[0].co, verts[1].co) == 'Z':
                    vec = verts[0].co + Vector((0, 0, self.radius))
                else:
                    vec = verts[0].co + Vector((0, self.radius, 0))
                init_vec = distance_point_line(vec, verts[0].co, verts[1].co)
                # These will be rotated about the origin so will need to be shifted:
                verts_out = [
                    (verts[i].co - (matrices[j] @ init_vec)) for i in range(2) for j in range(numV)
                    ]

            # We should have the coordinates for a bunch of new verts
            # Now add the verts and build the edges and then the faces

            newVerts = []

            if self.shaftType == 1:
                # Vertices:
                for i in range(numV * len(verts)):
                    new = bVerts.new()
                    new.co = verts_out[i]
                    bVerts.ensure_lookup_table()
                    new.select = True
                    newVerts.append(new)
                # Edges:
                for i in range(numE):
                    for j in range(len(verts)):
                        e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * j) + 1]))
                        bEdges.ensure_lookup_table()
                        e.select = True
                for i in range(numV):
                    for j in range(len(verts) - 1):
                        e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * (j + 1))]))
                        bEdges.ensure_lookup_table()
                        e.select = True

                # Faces: There is a problem with this right now
                """
                for i in range(len(edges)):
                    for j in range(numE):
                        f = bFaces.new((newVerts[i], newVerts[i + 1],
                                       newVerts[i + (numV * j) + 1], newVerts[i + (numV * j)]))
                        f.normal_update()
                """
            else:
                # Vertices:
                for i in range(numV * 2):
                    new = bVerts.new()
                    new.co = verts_out[i]
                    new.select = True
                    bVerts.ensure_lookup_table()
                    newVerts.append(new)
                # Edges:
                for i in range(numE):
                    e = bEdges.new((newVerts[i], newVerts[i + 1]))
                    e.select = True
                    bEdges.ensure_lookup_table()
                    e = bEdges.new((newVerts[i + numV], newVerts[i + numV + 1]))
                    e.select = True
                    bEdges.ensure_lookup_table()
                for i in range(numV):
                    e = bEdges.new((newVerts[i], newVerts[i + numV]))
                    e.select = True
                    bEdges.ensure_lookup_table()
                # Faces:
                for i in range(numE):
                    f = bFaces.new((newVerts[i], newVerts[i + 1],
                                    newVerts[i + numV + 1], newVerts[i + numV]))
                    bFaces.ensure_lookup_table()
                    f.normal_update()

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_shaft", e,
                           reports="Shaft Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# "Slices" edges crossing a plane defined by a face

class Slice(Operator):
    bl_idname = "mesh.edgetools_slice"
    bl_label = "Slice"
    bl_description = "Cut edges at the plane defined by a selected face"
    bl_options = {'REGISTER', 'UNDO'}

    make_copy: BoolProperty(
            name="Make Copy",
            description="Make new vertices at intersection points instead of splitting the edge",
            default=False
            )
    rip: BoolProperty(
            name="Rip",
            description="Split into two edges that DO NOT share an intersection vertex",
            default=True
            )
    pos: BoolProperty(
            name="Positive",
            description="Remove the portion on the side of the face normal",
            default=False
            )
    neg: BoolProperty(
            name="Negative",
            description="Remove the portion on the side opposite of the face normal",
            default=False
            )

    def draw(self, context):
        layout = self.layout

        layout.prop(self, "make_copy")
        if not self.make_copy:
            layout.prop(self, "rip")
            layout.label(text="Remove Side:")
            layout.prop(self, "pos")
            layout.prop(self, "neg")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bVerts = bm.verts
            bEdges = bm.edges
            bFaces = bm.faces

            face, normal = None, None

            # Find the selected face. This will provide the plane to project onto:
            #  - First check to use the active face. Allows users to just
            #    select a bunch of faces with the last being the cutting plane
            #  - If that fails, then use the first found selected face in the BMesh face list
            if isinstance(bm.select_history.active, bmesh.types.BMFace):
                face = bm.select_history.active
                normal = bm.select_history.active.normal
                bm.select_history.active.select = False
            else:
                for f in bFaces:
                    if f.select:
                        face = f
                        normal = f.normal
                        f.select = False
                        break

            # If we don't find a selected face exit:
            if face is None:
                flip_edit_mode()
                self.report({'WARNING'},
                            "Please select a face as the cutting plane. Operation Cancelled")
                return {'CANCELLED'}

            # Warn the user if they are using an n-gon might lead to some odd results
            elif len(face.verts) > 4 and not is_face_planar(face):
                self.report({'WARNING'},
                            "Selected face is an N-gon.  Results may be unpredictable")

            if ENABLE_DEBUG:
                dbg = 0
                print("Number of Edges: ", len(bEdges))

            for e in bEdges:
                if ENABLE_DEBUG:
                    print("Looping through Edges - ", dbg)
                    dbg = dbg + 1

                # Get the end verts on the edge:
                v1 = e.verts[0]
                v2 = e.verts[1]

                # Make sure that verts are not a part of the cutting plane:
                if e.select and (v1 not in face.verts and v2 not in face.verts):
                    if len(face.verts) < 5:  # Not an n-gon
                        intersection = intersect_line_face(e, face, True)
                    else:
                        intersection = intersect_line_plane(v1.co, v2.co, face.verts[0].co, normal)

                    if ENABLE_DEBUG:
                        print("Intersection: ", intersection)

                    # If an intersection exists find the distance of each of the end
                    # points from the plane, with "positive" being in the direction
                    # of the cutting plane's normal. If the points are on opposite
                    # side of the plane, then it intersects and we need to cut it
                    if intersection is not None:
                        bVerts.ensure_lookup_table()
                        bEdges.ensure_lookup_table()
                        bFaces.ensure_lookup_table()

                        d1 = distance_point_to_plane(v1.co, face.verts[0].co, normal)
                        d2 = distance_point_to_plane(v2.co, face.verts[0].co, normal)
                        # If they have different signs, then the edge crosses the cutting plane:
                        if abs(d1 + d2) < abs(d1 - d2):
                            # Make the first vertex the positive one:
                            if d1 < d2:
                                v2, v1 = v1, v2

                            if self.make_copy:
                                new = bVerts.new()
                                new.co = intersection
                                new.select = True
                                bVerts.ensure_lookup_table()
                            elif self.rip:
                                if ENABLE_DEBUG:
                                    print("Branch rip engaged")
                                newV1 = bVerts.new()
                                newV1.co = intersection
                                bVerts.ensure_lookup_table()
                                if ENABLE_DEBUG:
                                    print("newV1 created", end='; ')

                                newV2 = bVerts.new()
                                newV2.co = intersection
                                bVerts.ensure_lookup_table()

                                if ENABLE_DEBUG:
                                    print("newV2 created", end='; ')

                                newE1 = bEdges.new((v1, newV1))
                                newE2 = bEdges.new((v2, newV2))
                                bEdges.ensure_lookup_table()

                                if ENABLE_DEBUG:
                                    print("new edges created", end='; ')

                                if e.is_valid:
                                    bEdges.remove(e)

                                bEdges.ensure_lookup_table()

                                if ENABLE_DEBUG:
                                    print("Old edge removed.\nWe're done with this edge")
                            else:
                                new = list(bmesh.utils.edge_split(e, v1, 0.5))
                                bEdges.ensure_lookup_table()
                                new[1].co = intersection
                                e.select = False
                                new[0].select = False
                                if self.pos:
                                    bEdges.remove(new[0])
                                if self.neg:
                                    bEdges.remove(e)
                                bEdges.ensure_lookup_table()

            if ENABLE_DEBUG:
                print("The Edge Loop has exited. Now to update the bmesh")
                dbg = 0

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_slice", e,
                           reports="Slice Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# This projects the selected edges onto the selected plane
# and/or both points on the selected edge

class Project(Operator):
    bl_idname = "mesh.edgetools_project"
    bl_label = "Project"
    bl_description = ("Projects the selected Vertices/Edges onto a selected plane\n"
                      "(Active is projected onto the rest)")
    bl_options = {'REGISTER', 'UNDO'}

    make_copy: BoolProperty(
            name="Make Copy",
            description="Make duplicates of the vertices instead of altering them",
            default=False
            )

    def draw(self, context):
        layout = self.layout
        layout.prop(self, "make_copy")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bFaces = bm.faces
            bVerts = bm.verts

            fVerts = []

            # Find the selected face.  This will provide the plane to project onto:
            # @todo Check first for an active face
            for f in bFaces:
                if f.select:
                    for v in f.verts:
                        fVerts.append(v)
                    normal = f.normal
                    f.select = False
                    break

            for v in bVerts:
                if v.select:
                    if v in fVerts:
                        v.select = False
                        continue
                    d = distance_point_to_plane(v.co, fVerts[0].co, normal)
                    if self.make_copy:
                        temp = v
                        v = bVerts.new()
                        v.co = temp.co
                        bVerts.ensure_lookup_table()
                    vector = normal
                    vector.length = abs(d)
                    v.co = v.co - (vector * sign(d))
                    v.select = False

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_project", e,
                           reports="Project Operator failed", func=False)

            return {'CANCELLED'}

        return {'FINISHED'}


# Project_End is for projecting/extending an edge to meet a plane
# This is used be selecting a face to define the plane then all the edges
# Then move the vertices in the edge that is closest to the
# plane to the coordinates of the intersection of the edge and the plane

class Project_End(Operator):
    bl_idname = "mesh.edgetools_project_end"
    bl_label = "Project (End Point)"
    bl_description = ("Projects the vertices of the selected\n"
                      "edges closest to a plane onto that plane")
    bl_options = {'REGISTER', 'UNDO'}

    make_copy: BoolProperty(
            name="Make Copy",
            description="Make a duplicate of the vertice instead of moving it",
            default=False
            )
    keep_length: BoolProperty(
            name="Keep Edge Length",
            description="Maintain edge lengths",
            default=False
            )
    use_force: BoolProperty(
            name="Use opposite vertices",
            description="Force the usage of the vertices at the other end of the edge",
            default=False
            )
    use_normal: BoolProperty(
            name="Project along normal",
            description="Use the plane's normal as the projection direction",
            default=False
            )

    def draw(self, context):
        layout = self.layout

        if not self.keep_length:
            layout.prop(self, "use_normal")
        layout.prop(self, "make_copy")
        layout.prop(self, "use_force")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bFaces = bm.faces
            bEdges = bm.edges
            bVerts = bm.verts

            fVerts = []

            # Find the selected face. This will provide the plane to project onto:
            for f in bFaces:
                if f.select:
                    for v in f.verts:
                        fVerts.append(v)
                    normal = f.normal
                    f.select = False
                    break

            for e in bEdges:
                if e.select:
                    v1 = e.verts[0]
                    v2 = e.verts[1]
                    if v1 in fVerts or v2 in fVerts:
                        e.select = False
                        continue
                    intersection = intersect_line_plane(v1.co, v2.co, fVerts[0].co, normal)
                    if intersection is not None:
                        # Use abs because we don't care what side of plane we're on:
                        d1 = distance_point_to_plane(v1.co, fVerts[0].co, normal)
                        d2 = distance_point_to_plane(v2.co, fVerts[0].co, normal)
                        # If d1 is closer than we use v1 as our vertice:
                        # "xor" with 'use_force':
                        if (abs(d1) < abs(d2)) is not self.use_force:
                            if self.make_copy:
                                v1 = bVerts.new()
                                v1.co = e.verts[0].co
                                bVerts.ensure_lookup_table()
                                bEdges.ensure_lookup_table()
                            if self.keep_length:
                                v1.co = intersection
                            elif self.use_normal:
                                vector = normal
                                vector.length = abs(d1)
                                v1.co = v1.co - (vector * sign(d1))
                            else:
                                v1.co = intersection
                        else:
                            if self.make_copy:
                                v2 = bVerts.new()
                                v2.co = e.verts[1].co
                                bVerts.ensure_lookup_table()
                                bEdges.ensure_lookup_table()
                            if self.keep_length:
                                v2.co = intersection
                            elif self.use_normal:
                                vector = normal
                                vector.length = abs(d2)
                                v2.co = v2.co - (vector * sign(d2))
                            else:
                                v2.co = intersection
                    e.select = False

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_project_end", e,
                           reports="Project (End Point) Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


class VIEW3D_MT_edit_mesh_edgetools(Menu):
    bl_label = "Edge Tools"
    bl_description = "Various tools for manipulating edges"

    def draw(self, context):
        layout = self.layout

        layout.operator("mesh.edgetools_extend")
        layout.operator("mesh.edgetools_spline")
        layout.operator("mesh.edgetools_ortho")
        layout.operator("mesh.edgetools_shaft")
        layout.operator("mesh.edgetools_slice")
        layout.separator()

        layout.operator("mesh.edgetools_project")
        layout.operator("mesh.edgetools_project_end")

def menu_func(self, context):
    self.layout.menu("VIEW3D_MT_edit_mesh_edgetools")

# define classes for registration
classes = (
    VIEW3D_MT_edit_mesh_edgetools,
    Extend,
    Spline,
    Ortho,
    Shaft,
    Slice,
    Project,
    Project_End,
    )


# registering and menu integration
def register():
    for cls in classes:
        bpy.utils.register_class(cls)
    bpy.types.VIEW3D_MT_edit_mesh_context_menu.prepend(menu_func)

# unregistering and removing menus
def unregister():
    for cls in classes:
        bpy.utils.unregister_class(cls)
    bpy.types.VIEW3D_MT_edit_mesh_context_menu.remove(menu_func)

if __name__ == "__main__":
    register()