Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mocap_tools.py « mocap - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 91c92a98d5b2e7dde78b19346ffed903ada7b749 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>

from math import sqrt, radians
import bpy
import time
from mathutils import Vector, Matrix


# A Python implementation of n sized Vectors.
# Mathutils has a max size of 4, and we need at least 5 for Simplify Curves and even more for Cross Correlation.
# Vector utility functions
class NdVector:
    vec = []

    def __init__(self, vec):
        self.vec = vec[:]

    def __len__(self):
        return len(self.vec)

    def __mul__(self, otherMember):
        # assume anything with list access is a vector
        if isinstance(otherMember, NdVector):
            a = self.vec
            b = otherMember.vec
            n = len(self)
            return sum([a[i] * b[i] for i in range(n)])
        else:
            # int/float
            return NdVector([otherMember * x for x in self.vec])

    def __sub__(self, otherVec):
        a = self.vec
        b = otherVec.vec
        n = len(self)
        return NdVector([a[i] - b[i] for i in range(n)])

    def __add__(self, otherVec):
        a = self.vec
        b = otherVec.vec
        n = len(self)
        return NdVector([a[i] + b[i] for i in range(n)])

    def __div__(self, scalar):
        return NdVector([x / scalar for x in self.vec])

    @property
    def length(self):
        return sqrt(self * self)

    @property
    def lengthSq(self):
        return (self * self)

    def normalize(self):
        len = self.length
        self.vec = [x / len for x in self.vec]

    def copy(self):
        return NdVector(self.vec)

    def __getitem__(self, i):
        return self.vec[i]

    @property
    def x(self):
        return self.vec[0]

    @property
    def y(self):
        return self.vec[1]

    def resize_2d(self):
        return Vector((self.x, self.y))


#Sampled Data Point class for Simplify Curves
class dataPoint:
    index = 0
    # x,y1,y2,y3 coordinate of original point
    co = NdVector((0, 0, 0, 0, 0))
    #position according to parametric view of original data, [0,1] range
    u = 0
    #use this for anything
    temp = 0

    def __init__(self, index, co, u=0):
        self.index = index
        self.co = co
        self.u = u


#Cross Correlation Function
#http://en.wikipedia.org/wiki/Cross_correlation
#IN:   curvesA, curvesB - bpy_collection/list of fcurves to analyze. Auto-Correlation is when they are the same.
#        margin - When searching for the best "start" frame, how large a neighborhood of frames should we inspect (similar to epsilon in Calculus)
#OUT:   startFrame, length of new anim, and curvesA
def crossCorrelationMatch(curvesA, curvesB, margin):
    dataA = []
    dataB = []
    start = int(max(curvesA[0].range()[0], curvesB[0].range()[0]))
    end = int(min(curvesA[0].range()[1], curvesB[0].range()[1]))

    #transfer all fcurves data on each frame to a single NdVector.
    for i in range(1, end):
        vec = []
        for fcurve in curvesA:
            if fcurve.data_path in [otherFcurve.data_path for otherFcurve in curvesB]:
                vec.append(fcurve.evaluate(i))
        dataA.append(NdVector(vec))
        vec = []
        for fcurve in curvesB:
            if fcurve.data_path in [otherFcurve.data_path for otherFcurve in curvesA]:
                vec.append(fcurve.evaluate(i))
        dataB.append(NdVector(vec))

    #Comparator for Cross Correlation. "Classic" implementation uses dot product, as do we.
    def comp(a, b):
        return a * b

    #Create Rxy, which holds the Cross Correlation data.
    N = len(dataA)
    Rxy = [0.0] * N
    for i in range(N):
        for j in range(i, min(i + N, N)):
            Rxy[i] += comp(dataA[j], dataB[j - i])
        for j in range(i):
            Rxy[i] += comp(dataA[j], dataB[j - i + N])
        Rxy[i] /= float(N)

    #Find the Local maximums in the Cross Correlation data via numerical derivative.
    def LocalMaximums(Rxy):
        Rxyd = [Rxy[i] - Rxy[i - 1] for i in range(1, len(Rxy))]
        maxs = []
        for i in range(1, len(Rxyd) - 1):
            a = Rxyd[i - 1]
            b = Rxyd[i]
            #sign change (zerocrossing) at point i, denoting max point (only)
            if (a >= 0 and b < 0) or (a < 0 and b >= 0):
                maxs.append((i, max(Rxy[i], Rxy[i - 1])))
        return [x[0] for x in maxs]
        #~ return max(maxs, key=lambda x: x[1])[0]

    #flms - the possible offsets of the first part of the animation. In Auto-Corr, this is the length of the loop.
    flms = LocalMaximums(Rxy[0:int(len(Rxy))])
    ss = []

    #for every local maximum, find the best one - i.e. also has the best start frame.
    for flm in flms:
        diff = []

        for i in range(len(dataA) - flm):
            diff.append((dataA[i] - dataB[i + flm]).lengthSq)

        def lowerErrorSlice(diff, e):
            #index, error at index
            bestSlice = (0, 100000)
            for i in range(e, len(diff) - e):
                errorSlice = sum(diff[i - e:i + e + 1])
                if errorSlice < bestSlice[1]:
                    bestSlice = (i, errorSlice, flm)
            return bestSlice

        s = lowerErrorSlice(diff, margin)
        ss.append(s)

    #Find the best result and return it.
    ss.sort(key=lambda x: x[1])
    return ss[0][2], ss[0][0], dataA


#Uses auto correlation (cross correlation of the same set of curves) and trims the active_object's fcurves
#Except for location curves (which in mocap tend to be not cyclic, e.g. a walk cycle forward)
#Transfers the fcurve data to a list of NdVector (length of list is number of fcurves), and calls the cross correlation function.
#Then trims the fcurve accordingly.
#IN: Nothing, set the object you want as active and call. Assumes object has animation_data.action!
#OUT: Trims the object's fcurves (except location curves).
def autoloop_anim():
    context = bpy.context
    obj = context.active_object

    def locCurve(x):
        x.data_path == "location"

    fcurves = [x for x in obj.animation_data.action.fcurves if not locCurve(x)]

    margin = 10

    flm, s, data = crossCorrelationMatch(fcurves, fcurves, margin)
    loop = data[s:s + flm]

    #performs blending with a root falloff on the seam's neighborhood to ensure good tiling.
    for i in range(1, margin + 1):
        w1 = sqrt(float(i) / margin)
        loop[-i] = (loop[-i] * w1) + (loop[0] * (1 - w1))

    for curve in fcurves:
        pts = curve.keyframe_points
        for i in range(len(pts) - 1, -1, -1):
            pts.remove(pts[i])

    for c, curve in enumerate(fcurves):
        pts = curve.keyframe_points
        for i in range(len(loop)):
            pts.insert(i + 2, loop[i][c])

    context.scene.frame_end = flm


#simplifyCurves: performes the bulk of the samples to bezier conversion.
#IN:    curveGroup - which can be a collection of singleFcurves, or grouped (via nested lists) .
#         error - threshold of permittable error (max distance) of the new beziers to the original data
#         reparaError - threshold of error where we should try to fix the parameterization rather than split the existing curve. > error, usually by a small constant factor for best performance.
#         maxIterations - maximum number of iterations of reparameterizations we should attempt. (Newton-Rahpson is not guarenteed to converge, so this is needed).
#         group_mode - boolean, indicating wether we should place bezier keyframes on the same x (frame), or optimize each individual curve.
#OUT: None. Deletes the existing curves and creates the new beziers.
def simplifyCurves(curveGroup, error, reparaError, maxIterations, group_mode):

    #Calculates the unit tangent of point v
    def unitTangent(v, data_pts):
        tang = NdVector((0, 0, 0, 0, 0))
        if v != 0:
            #If it's not the first point, we can calculate a leftside tangent
            tang += data_pts[v].co - data_pts[v - 1].co
        if v != len(data_pts) - 1:
            #If it's not the last point, we can calculate a rightside tangent
            tang += data_pts[v + 1].co - data_pts[v].co
        tang.normalize()
        return tang

    #assign parametric u value for each point in original data, via relative arc length
    #http://en.wikipedia.org/wiki/Arc_length
    def chordLength(data_pts, s, e):
        totalLength = 0
        for pt in data_pts[s:e + 1]:
            i = pt.index
            if i == s:
                chordLength = 0
            else:
                chordLength = (data_pts[i].co - data_pts[i - 1].co).length
            totalLength += chordLength
            pt.temp = totalLength
        for pt in data_pts[s:e + 1]:
            if totalLength == 0:
                print(s, e)
            pt.u = (pt.temp / totalLength)

    # get binomial coefficient lookup table, this function/table is only called with args
    # (3,0),(3,1),(3,2),(3,3),(2,0),(2,1),(2,2)!
    binomDict = {(3, 0): 1,
                 (3, 1): 3,
                 (3, 2): 3,
                 (3, 3): 1,
                 (2, 0): 1,
                 (2, 1): 2,
                 (2, 2): 1,
                 }

    #value at pt t of a single bernstein Polynomial
    def bernsteinPoly(n, i, t):
        binomCoeff = binomDict[(n, i)]
        return binomCoeff * pow(t, i) * pow(1 - t, n - i)

    # fit a single cubic to data points in range [s(tart),e(nd)].
    def fitSingleCubic(data_pts, s, e):

        # A - matrix used for calculating C matrices for fitting
        def A(i, j, s, e, t1, t2):
            if j == 1:
                t = t1
            if j == 2:
                t = t2
            u = data_pts[i].u
            return t * bernsteinPoly(3, j, u)

        # X component, used for calculating X matrices for fitting
        def xComponent(i, s, e):
            di = data_pts[i].co
            u = data_pts[i].u
            v0 = data_pts[s].co
            v3 = data_pts[e].co
            a = v0 * bernsteinPoly(3, 0, u)
            b = v0 * bernsteinPoly(3, 1, u)
            c = v3 * bernsteinPoly(3, 2, u)
            d = v3 * bernsteinPoly(3, 3, u)
            return (di - (a + b + c + d))

        t1 = unitTangent(s, data_pts)
        t2 = unitTangent(e, data_pts)
        c11 = sum([A(i, 1, s, e, t1, t2) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
        c12 = sum([A(i, 1, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
        c21 = c12
        c22 = sum([A(i, 2, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])

        x1 = sum([xComponent(i, s, e) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
        x2 = sum([xComponent(i, s, e) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])

        # calculate Determinate of the 3 matrices
        det_cc = c11 * c22 - c21 * c12
        det_cx = c11 * x2 - c12 * x1
        det_xc = x1 * c22 - x2 * c12

        # if matrix is not homogenous, fudge the data a bit
        if det_cc == 0:
            det_cc = 0.01

        # alpha's are the correct offset for bezier handles
        alpha0 = det_xc / det_cc   # offset from right (first) point
        alpha1 = det_cx / det_cc   # offset from left (last) point

        sRightHandle = data_pts[s].co.copy()
        sTangent = t1 * abs(alpha0)
        sRightHandle += sTangent  # position of first pt's handle
        eLeftHandle = data_pts[e].co.copy()
        eTangent = t2 * abs(alpha1)
        eLeftHandle += eTangent  # position of last pt's handle.

        # return a 4 member tuple representing the bezier
        return (data_pts[s].co,
              sRightHandle,
              eLeftHandle,
              data_pts[e].co)

    # convert 2 given data points into a cubic bezier.
    # handles are offset along the tangent at
    # a 3rd of the length between the points.
    def fitSingleCubic2Pts(data_pts, s, e):
        alpha0 = alpha1 = (data_pts[s].co - data_pts[e].co).length / 3

        sRightHandle = data_pts[s].co.copy()
        sTangent = unitTangent(s, data_pts) * abs(alpha0)
        sRightHandle += sTangent  # position of first pt's handle
        eLeftHandle = data_pts[e].co.copy()
        eTangent = unitTangent(e, data_pts) * abs(alpha1)
        eLeftHandle += eTangent  # position of last pt's handle.

        #return a 4 member tuple representing the bezier
        return (data_pts[s].co,
          sRightHandle,
          eLeftHandle,
          data_pts[e].co)

    #evaluate bezier, represented by a 4 member tuple (pts) at point t.
    def bezierEval(pts, t):
        sumVec = NdVector((0, 0, 0, 0, 0))
        for i in range(4):
            sumVec += pts[i] * bernsteinPoly(3, i, t)
        return sumVec

    #calculate the highest error between bezier and original data
    #returns the distance and the index of the point where max error occurs.
    def maxErrorAmount(data_pts, bez, s, e):
        maxError = 0
        maxErrorPt = s
        if e - s < 3:
            return 0, None
        for pt in data_pts[s:e + 1]:
            bezVal = bezierEval(bez, pt.u)
            normalize_error = pt.co.length
            if normalize_error == 0:
                normalize_error = 1
            tmpError = (pt.co - bezVal).length / normalize_error
            if tmpError >= maxError:
                maxError = tmpError
                maxErrorPt = pt.index
        return maxError, maxErrorPt

    #calculated bezier derivative at point t.
    #That is, tangent of point t.
    def getBezDerivative(bez, t):
        n = len(bez) - 1
        sumVec = NdVector((0, 0, 0, 0, 0))
        for i in range(n - 1):
            sumVec += (bez[i + 1] - bez[i]) * bernsteinPoly(n - 1, i, t)
        return sumVec

    #use Newton-Raphson to find a better paramterization of datapoints,
    #one that minimizes the distance (or error)
    # between bezier and original data.
    def newtonRaphson(data_pts, s, e, bez):
        for pt in data_pts[s:e + 1]:
            if pt.index == s:
                pt.u = 0
            elif pt.index == e:
                pt.u = 1
            else:
                u = pt.u
                qu = bezierEval(bez, pt.u)
                qud = getBezDerivative(bez, u)
                #we wish to minimize f(u),
                #the squared distance between curve and data
                fu = (qu - pt.co).length ** 2
                fud = (2 * (qu.x - pt.co.x) * (qud.x)) - (2 * (qu.y - pt.co.y) * (qud.y))
                if fud == 0:
                    fu = 0
                    fud = 1
                pt.u = pt.u - (fu / fud)

    #Create data_pts, a list of dataPoint type, each is assigned index i, and an NdVector
    def createDataPts(curveGroup, group_mode):
        data_pts = []
        if group_mode:
            print([x.data_path for x in curveGroup])
            for i in range(len(curveGroup[0].keyframe_points)):
                x = curveGroup[0].keyframe_points[i].co.x
                y1 = curveGroup[0].evaluate(i)
                y2 = curveGroup[1].evaluate(i)
                y3 = curveGroup[2].evaluate(i)
                y4 = 0
                if len(curveGroup) == 4:
                    y4 = curveGroup[3].evaluate(i)
                data_pts.append(dataPoint(i, NdVector((x, y1, y2, y3, y4))))
        else:
            for i in range(len(curveGroup.keyframe_points)):
                x = curveGroup.keyframe_points[i].co.x
                y1 = curveGroup.keyframe_points[i].co.y
                y2 = 0
                y3 = 0
                y4 = 0
                data_pts.append(dataPoint(i, NdVector((x, y1, y2, y3, y4))))
        return data_pts

    #Recursively fit cubic beziers to the data_pts between s and e
    def fitCubic(data_pts, s, e):
        # if there are less than 3 points, fit a single basic bezier
        if e - s < 3:
            bez = fitSingleCubic2Pts(data_pts, s, e)
        else:
            #if there are more, parameterize the points
            # and fit a single cubic bezier
            chordLength(data_pts, s, e)
            bez = fitSingleCubic(data_pts, s, e)

        #calculate max error and point where it occurs
        maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)
        #if error is small enough, reparameterization might be enough
        if maxError < reparaError and maxError > error:
            for i in range(maxIterations):
                newtonRaphson(data_pts, s, e, bez)
                if e - s < 3:
                    bez = fitSingleCubic2Pts(data_pts, s, e)
                else:
                    bez = fitSingleCubic(data_pts, s, e)

        #recalculate max error and point where it occurs
        maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)

        #repara wasn't enough, we need 2 beziers for this range.
        #Split the bezier at point of maximum error
        if maxError > error:
            fitCubic(data_pts, s, maxErrorPt)
            fitCubic(data_pts, maxErrorPt, e)
        else:
            #error is small enough, return the beziers.
            beziers.append(bez)
            return

    # deletes the sampled points and creates beziers.
    def createNewCurves(curveGroup, beziers, group_mode):
        #remove all existing data points
        if group_mode:
            for fcurve in curveGroup:
                for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
                    fcurve.keyframe_points.remove(fcurve.keyframe_points[i])
        else:
            fcurve = curveGroup
            for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
                fcurve.keyframe_points.remove(fcurve.keyframe_points[i])

        #insert the calculated beziers to blender data.\
        if group_mode:
            for fullbez in beziers:
                for i, fcurve in enumerate(curveGroup):
                    bez = [Vector((vec[0], vec[i + 1])) for vec in fullbez]
                    newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y)
                    newKey.handle_right = (bez[1].x, bez[1].y)

                    newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y)
                    newKey.handle_left = (bez[2].x, bez[2].y)
        else:
            for bez in beziers:
                for vec in bez:
                    vec.resize_2d()
                newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y)
                newKey.handle_right = (bez[1].x, bez[1].y)

                newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y)
                newKey.handle_left = (bez[2].x, bez[2].y)

    # indices are detached from data point's frame (x) value and
    # stored in the dataPoint object, represent a range

    data_pts = createDataPts(curveGroup, group_mode)

    s = 0  # start
    e = len(data_pts) - 1  # end

    beziers = []

    #begin the recursive fitting algorithm.
    fitCubic(data_pts, s, e)
    #remove old Fcurves and insert the new ones
    createNewCurves(curveGroup, beziers, group_mode)


#Main function of simplification, which called by Operator
#IN:
#       sel_opt- either "sel" (selected) or "all" for which curves to effect
#       error- maximum error allowed, in fraction (20% = 0.0020, which is the default),
#       i.e. divide by 10000 from percentage wanted.
#       group_mode- boolean, to analyze each curve seperately or in groups,
#       where a group is all curves that effect the same property/RNA path
def fcurves_simplify(context, obj, sel_opt="all", error=0.002, group_mode=True):
    # main vars
    fcurves = obj.animation_data.action.fcurves

    if sel_opt == "sel":
        sel_fcurves = [fcurve for fcurve in fcurves if fcurve.select]
    else:
        sel_fcurves = fcurves[:]

    #Error threshold for Newton Raphson reparamatizing
    reparaError = error * 32
    maxIterations = 16

    if group_mode:
        fcurveDict = {}
        #this loop sorts all the fcurves into groups of 3 or 4,
        #based on their RNA Data path, which corresponds to
        #which property they effect
        for curve in sel_fcurves:
            if curve.data_path in fcurveDict:  # if this bone has been added, append the curve to its list
                fcurveDict[curve.data_path].append(curve)
            else:
                fcurveDict[curve.data_path] = [curve]  # new bone, add a new dict value with this first curve
        fcurveGroups = fcurveDict.values()
    else:
        fcurveGroups = sel_fcurves

    if error > 0.00000:
        #simplify every selected curve.
        totalt = 0
        for i, fcurveGroup in enumerate(fcurveGroups):
            print("Processing curve " + str(i + 1) + "/" + str(len(fcurveGroups)))
            t = time.clock()
            simplifyCurves(fcurveGroup, error, reparaError, maxIterations, group_mode)
            t = time.clock() - t
            print(str(t)[:5] + " seconds to process last curve")
            totalt += t
            print(str(totalt)[:5] + " seconds, total time elapsed")

    return


def detect_min_max(v):
    """
    Converted from MATLAB script at http://billauer.co.il/peakdet.html

    Yields indices of peaks, i.e. local minima/maxima.

    % Eli Billauer, 3.4.05 (Explicitly not copyrighted).
    % This function is released to the public domain; Any use is allowed.
    """

    min_val, max_val = float('inf'), -float('inf')

    check_max = True

    for i, val in enumerate(v):
        if val > max_val:
            max_val = val
        if val < min_val:
            min_val = val

        if check_max:
            if val < max_val:
                yield i
                min_val = val
                check_max = False
        else:
            if val > min_val:
                yield i
                max_val = val
                check_max = True


def denoise(obj, fcurves):
    """
    Implementation of non-linear blur filter.
    Finds spikes in the fcurve, and replaces spikes that are too big with the average of the surrounding keyframes.
    """
    for fcurve in fcurves:
        org_pts = fcurve.keyframe_points[:]

        for idx in detect_min_max(pt.co.y for pt in fcurve.keyframe_points[1:-1]):
            # Find the neighbours
            prev_pt = org_pts[idx - 1].co.y
            next_pt = org_pts[idx + 1].co.y
            this_pt = org_pts[idx]

            # Check the distance from the min/max to the average of the surrounding points.
            avg = (prev_pt + next_pt) / 2
            is_peak = abs(this_pt.co.y - avg) > avg * 0.02

            if is_peak:
                diff = avg - fcurve.keyframe_points[idx].co.y
                fcurve.keyframe_points[idx].co.y = avg
                fcurve.keyframe_points[idx].handle_left.y += diff
                fcurve.keyframe_points[idx].handle_right.y += diff

        # Important to update the curve after modifying it!
        fcurve.update()


# Recieves armature, and rotations all bones by 90 degrees along the X axis
# This fixes the common axis issue BVH files have when importing.
# IN: Armature (bpy.types.Armature)
def rotate_fix_armature(arm_data):
    global_matrix = Matrix.Rotation(radians(90), 4, "X")
    bpy.ops.object.mode_set(mode='EDIT', toggle=False)
    #disconnect all bones for ease of global rotation
    connectedBones = []
    for bone in arm_data.edit_bones:
        if bone.use_connect:
            connectedBones.append(bone.name)
            bone.use_connect = False

    #rotate all the bones around their center
    for bone in arm_data.edit_bones:
        bone.transform(global_matrix)

    #reconnect the bones
    for bone in connectedBones:
        arm_data.edit_bones[bone].use_connect = True
    bpy.ops.object.mode_set(mode='OBJECT', toggle=False)


#Roughly scales the performer armature to match the enduser armature
#IN: perfromer_obj, enduser_obj, Blender objects whose .data is an armature.
def scale_fix_armature(performer_obj, enduser_obj):
    perf_bones = performer_obj.data.bones
    end_bones = enduser_obj.data.bones

    def calculateBoundingRadius(bones):
        # Calculate the average position of each bone
        center = sum((bone.head_local for bone in bones), Vector())
        center /= len(bones)

        # The radius is defined as the max distance from the center.
        radius = max((bone.head_local - center).length for bone in bones)
        return radius

    perf_rad = calculateBoundingRadius(performer_obj.data.bones)
    end_rad = calculateBoundingRadius(enduser_obj.data.bones)

    factor = end_rad / perf_rad
    performer_obj.scale = factor * Vector((1, 1, 1))


#Guess Mapping
#Given a performer and enduser armature, attempts to guess the hiearchy mapping
def guessMapping(performer_obj, enduser_obj):
    perf_bones = performer_obj.data.bones
    end_bones = enduser_obj.data.bones

    root = perf_bones[0]

    def findBoneSide(bone):
        if "Left" in bone:
            return "Left", bone.replace("Left", "").lower().replace(".", "")
        if "Right" in bone:
            return "Right", bone.replace("Right", "").lower().replace(".", "")
        if "L" in bone:
            return "Left", bone.replace("Left", "").lower().replace(".", "")
        if "R" in bone:
            return "Right", bone.replace("Right", "").lower().replace(".", "")
        return "", bone

    def nameMatch(bone_a, bone_b):
        # nameMatch - recieves two strings, returns 2 if they are relatively the same, 1 if they are the same but R and L and 0 if no match at all
        side_a, noside_a = findBoneSide(bone_a)
        side_b, noside_b = findBoneSide(bone_b)
        if side_a == side_b:
            if noside_a in noside_b or noside_b in noside_a:
                return 2
        else:
            if noside_a in noside_b or noside_b in noside_a:
                return 1
        return 0

    def guessSingleMapping(perf_bone):
        possible_bones = [end_bones[0]]

        while possible_bones:
            for end_bone in possible_bones:
                match = nameMatch(perf_bone.name, end_bone.name)
                if match == 2 and not perf_bone.map:
                    perf_bone.map = end_bone.name
                #~ elif match == 1 and not perf_bone.map:
                    #~ oppo = perf_bones[oppositeBone(perf_bone)].map
                    # if oppo:
                    #   perf_bone = oppo
            newPossibleBones = []
            for end_bone in possible_bones:
                newPossibleBones += list(end_bone.children)
            possible_bones = newPossibleBones

        for child in perf_bone.children:
            guessSingleMapping(child)

    guessSingleMapping(root)


# Creates limit rotation constraints on the enduser armature based on range of motion (max min of fcurves) of the performer.
# IN: context (bpy.context, etc.), and 2 blender objects which are armatures
# OUT: creates the limit constraints.
def limit_dof(context, performer_obj, enduser_obj):
    limitDict = {}
    perf_bones = [bone for bone in performer_obj.pose.bones if bone.bone.map]
    c_frame = context.scene.frame_current
    for bone in perf_bones:
        limitDict[bone.bone.map] = [1000, 1000, 1000, -1000, -1000, -1000]
    for t in range(context.scene.frame_start, context.scene.frame_end):
        context.scene.frame_set(t)
        for bone in perf_bones:
            end_bone = enduser_obj.pose.bones[bone.bone.map]
            bake_matrix = bone.matrix
            rest_matrix = end_bone.bone.matrix_local

            if end_bone.parent and end_bone.bone.use_inherit_rotation:
                srcParent = bone.parent
                parent_mat = srcParent.matrix
                parent_rest = end_bone.parent.bone.matrix_local
                parent_rest_inv = parent_rest.inverted()
                parent_mat_inv = parent_mat.inverted()
                bake_matrix = parent_mat_inv * bake_matrix
                rest_matrix = parent_rest_inv * rest_matrix

            rest_matrix_inv = rest_matrix.inverted()
            bake_matrix = rest_matrix_inv * bake_matrix

            mat = bake_matrix
            euler = mat.to_euler()
            limitDict[bone.bone.map][0] = min(limitDict[bone.bone.map][0], euler.x)
            limitDict[bone.bone.map][1] = min(limitDict[bone.bone.map][1], euler.y)
            limitDict[bone.bone.map][2] = min(limitDict[bone.bone.map][2], euler.z)
            limitDict[bone.bone.map][3] = max(limitDict[bone.bone.map][3], euler.x)
            limitDict[bone.bone.map][4] = max(limitDict[bone.bone.map][4], euler.y)
            limitDict[bone.bone.map][5] = max(limitDict[bone.bone.map][5], euler.z)
    for bone in enduser_obj.pose.bones:
        existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
        if existingConstraint:
            bone.constraints.remove(existingConstraint[0])
    end_bones = [bone for bone in enduser_obj.pose.bones if bone.name in limitDict.keys()]
    for bone in end_bones:
        #~ if not bone.is_in_ik_chain:
        newCons = bone.constraints.new("LIMIT_ROTATION")
        newCons.name = "DOF Limitation"
        newCons.owner_space = "LOCAL"
        newCons.min_x, newCons.min_y, newCons.min_z, newCons.max_x, newCons.max_y, newCons.max_z = limitDict[bone.name]
        newCons.use_limit_x = True
        newCons.use_limit_y = True
        newCons.use_limit_z = True
    context.scene.frame_set(c_frame)


# Removes the constraints that were added by limit_dof on the enduser_obj
def limit_dof_toggle_off(context, enduser_obj):
    for bone in enduser_obj.pose.bones:
        existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
        if existingConstraint:
            bone.constraints.remove(existingConstraint[0])


# Reparameterizes a blender path via keyframing it's eval_time to match a stride_object's forward velocity.
# IN: Context, stride object (blender object with location keyframes), path object.
def path_editing(context, stride_obj, path):
    y_fcurve = [fcurve for fcurve in stride_obj.animation_data.action.fcurves if fcurve.data_path == "location"][1]
    s, e = context.scene.frame_start, context.scene.frame_end  # y_fcurve.range()
    s = int(s)
    e = int(e)
    y_s = y_fcurve.evaluate(s)
    y_e = y_fcurve.evaluate(e)
    direction = (y_e - y_s) / abs(y_e - y_s)
    existing_cons = [constraint for constraint in stride_obj.constraints if constraint.type == "FOLLOW_PATH"]
    for cons in existing_cons:
        stride_obj.constraints.remove(cons)
    path_cons = stride_obj.constraints.new("FOLLOW_PATH")
    if direction < 0:
        path_cons.forward_axis = "TRACK_NEGATIVE_Y"
    else:
        path_cons.forward_axis = "FORWARD_Y"
    path_cons.target = path
    path_cons.use_curve_follow = True
    path.data.path_duration = e - s
    try:
        path.data.animation_data.action.fcurves
    except AttributeError:
        path.data.keyframe_insert("eval_time", frame=0)
    eval_time_fcurve = [fcurve for fcurve in path.data.animation_data.action.fcurves if fcurve.data_path == "eval_time"]
    eval_time_fcurve = eval_time_fcurve[0]
    totalLength = 0
    parameterization = {}
    print("evaluating curve")
    for t in range(s, e - 1):
        if s == t:
            chordLength = 0
        else:
            chordLength = (y_fcurve.evaluate(t) - y_fcurve.evaluate(t + 1))
        totalLength += chordLength
        parameterization[t] = totalLength
    for t in range(s + 1, e - 1):
        if totalLength == 0:
            print("no forward motion")
        parameterization[t] /= totalLength
        parameterization[t] *= e - s
    parameterization[e] = e - s
    for t in parameterization.keys():
        eval_time_fcurve.keyframe_points.insert(frame=t, value=parameterization[t])
    y_fcurve.mute = True
    print("finished path editing")


#Animation Stitching
#Stitches two retargeted animations together via NLA settings.
#IN: enduser_obj, a blender armature that has had two retargets applied.
def anim_stitch(context, enduser_obj):
    stitch_settings = enduser_obj.data.stitch_settings
    action_1 = stitch_settings.first_action
    action_2 = stitch_settings.second_action
    if stitch_settings.stick_bone != "":
        selected_bone = enduser_obj.pose.bones[stitch_settings.stick_bone]
    else:
        selected_bone = enduser_obj.pose.bones[0]
    scene = context.scene
    TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
    TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
    enduser_obj.data.active_mocap = action_1
    anim_data = enduser_obj.animation_data
    # add tracks for action 2
    mocapAction = bpy.data.actions[TrackNamesB.base_track]
    mocapTrack = anim_data.nla_tracks.new()
    mocapTrack.name = TrackNamesB.base_track
    mocapStrip = mocapTrack.strips.new(TrackNamesB.base_track, stitch_settings.blend_frame, mocapAction)
    mocapStrip.extrapolation = "HOLD_FORWARD"
    mocapStrip.blend_in = stitch_settings.blend_amount
    mocapStrip.action_frame_start += stitch_settings.second_offset
    mocapStrip.action_frame_end += stitch_settings.second_offset
    constraintTrack = anim_data.nla_tracks.new()
    constraintTrack.name = TrackNamesB.auto_fix_track
    constraintAction = bpy.data.actions[TrackNamesB.auto_fix_track]
    constraintStrip = constraintTrack.strips.new(TrackNamesB.auto_fix_track, stitch_settings.blend_frame, constraintAction)
    constraintStrip.extrapolation = "HOLD_FORWARD"
    constraintStrip.blend_in = stitch_settings.blend_amount
    userTrack = anim_data.nla_tracks.new()
    userTrack.name = TrackNamesB.manual_fix_track
    userAction = bpy.data.actions[TrackNamesB.manual_fix_track]
    userStrip = userTrack.strips.new(TrackNamesB.manual_fix_track, stitch_settings.blend_frame, userAction)
    userStrip.extrapolation = "HOLD_FORWARD"
    userStrip.blend_in = stitch_settings.blend_amount
    #stride bone
    if enduser_obj.parent:
        if enduser_obj.parent.name == "stride_bone":
            stride_bone = enduser_obj.parent
            stride_anim_data = stride_bone.animation_data
            stride_anim_data.use_nla = True
            stride_anim_data.action = None
            for track in stride_anim_data.nla_tracks:
                stride_anim_data.nla_tracks.remove(track)
            actionATrack = stride_anim_data.nla_tracks.new()
            actionATrack.name = TrackNamesA.stride_action
            actionAStrip = actionATrack.strips.new(TrackNamesA.stride_action, 0, bpy.data.actions[TrackNamesA.stride_action])
            actionAStrip.extrapolation = "NOTHING"
            actionBTrack = stride_anim_data.nla_tracks.new()
            actionBTrack.name = TrackNamesB.stride_action
            actionBStrip = actionBTrack.strips.new(TrackNamesB.stride_action, stitch_settings.blend_frame, bpy.data.actions[TrackNamesB.stride_action])
            actionBStrip.action_frame_start += stitch_settings.second_offset
            actionBStrip.action_frame_end += stitch_settings.second_offset
            actionBStrip.extrapolation = "NOTHING"
            #we need to change the stride_bone's action to add the offset
            aStrideCurves = [fcurve for fcurve in bpy.data.actions[TrackNamesA.stride_action].fcurves if fcurve.data_path == "location"]
            bStrideCurves = [fcurve for fcurve in bpy.data.actions[TrackNamesB.stride_action].fcurves if fcurve.data_path == "location"]
            scene.frame_set(stitch_settings.blend_frame - 1)
            desired_pos = (enduser_obj.matrix_world * selected_bone.matrix.to_translation())
            scene.frame_set(stitch_settings.blend_frame)
            actual_pos = (enduser_obj.matrix_world * selected_bone.matrix.to_translation())
            print(desired_pos, actual_pos)
            offset = Vector(actual_pos) - Vector(desired_pos)

            for i, fcurve in enumerate(bStrideCurves):
                print(offset[i], i, fcurve.array_index)
                for pt in fcurve.keyframe_points:
                    pt.co.y -= offset[i]
                    pt.handle_left.y -= offset[i]
                    pt.handle_right.y -= offset[i]

            #actionBStrip.blend_in = stitch_settings.blend_amount


#Guesses setting for animation stitching via Cross Correlation
def guess_anim_stitch(context, enduser_obj):
    stitch_settings = enduser_obj.data.stitch_settings
    action_1 = stitch_settings.first_action
    action_2 = stitch_settings.second_action
    TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
    TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
    mocapA = bpy.data.actions[TrackNamesA.base_track]
    mocapB = bpy.data.actions[TrackNamesB.base_track]
    curvesA = mocapA.fcurves
    curvesB = mocapB.fcurves
    flm, s, data = crossCorrelationMatch(curvesA, curvesB, 10)
    print("Guessed the following for start and offset: ", s, flm)
    enduser_obj.data.stitch_settings.blend_frame = flm
    enduser_obj.data.stitch_settings.second_offset = s