Welcome to mirror list, hosted at ThFree Co, Russian Federation.

carver_utils.py « object_carver - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b026c1d141c7613db2fe30f1aba23edb91ec12de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

import bpy
import bgl
import gpu
from gpu_extras.batch import batch_for_shader
import math
import sys
import random
import bmesh
from mathutils import (
    Euler,
    Matrix,
    Vector,
    Quaternion,
)
from mathutils.geometry import (
    intersect_line_plane,
)

from math import (
    sin,
    cos,
    pi,
    )

import bpy_extras

from bpy_extras import view3d_utils
from bpy_extras.view3d_utils import (
    region_2d_to_vector_3d,
    region_2d_to_location_3d,
    location_3d_to_region_2d,
)

# Cut Square
def CreateCutSquare(self, context):
    """ Create a rectangle mesh """
    far_limit = 10000.0
    faces=[]

    # Get the mouse coordinates
    coord = self.mouse_path[0][0], self.mouse_path[0][1]

    # New mesh
    me = bpy.data.meshes.new('CMT_Square')
    bm = bmesh.new()
    bm.from_mesh(me)

    # New object and link it to the scene
    ob = bpy.data.objects.new('CMT_Square', me)
    self.CurrentObj = ob
    context.collection.objects.link(ob)

    # Scene information
    region = context.region
    rv3d = context.region_data
    depth_location = region_2d_to_vector_3d(region, rv3d, coord)
    self.ViewVector = depth_location

    # Get a point on a infinite plane and its direction
    plane_normal = depth_location
    plane_direction = plane_normal.normalized()

    if self.snapCursor:
        plane_point = context.scene.cursor.location
    else:
        plane_point = self.OpsObj.location if self.OpsObj is not None else Vector((0.0, 0.0, 0.0))

    # Find the intersection of a line going thru each vertex and the infinite plane
    for v_co in self.rectangle_coord:
        vec = region_2d_to_vector_3d(region, rv3d, v_co)
        p0 = region_2d_to_location_3d(region, rv3d,v_co, vec)
        p1 = region_2d_to_location_3d(region, rv3d,v_co, vec) + plane_direction * far_limit
        faces.append(bm.verts.new(intersect_line_plane(p0, p1, plane_point, plane_direction)))

    # Update vertices index
    bm.verts.index_update()
    # New faces
    t_face = bm.faces.new(faces)
    # Set mesh
    bm.to_mesh(me)


# Cut Line
def CreateCutLine(self, context):
    """ Create a polygon mesh """
    far_limit = 10000.0
    vertices = []
    faces = []
    loc = []

    # Get the mouse coordinates
    coord = self.mouse_path[0][0], self.mouse_path[0][1]

    # New mesh
    me = bpy.data.meshes.new('CMT_Line')
    bm = bmesh.new()
    bm.from_mesh(me)

    # New object and link it to the scene
    ob = bpy.data.objects.new('CMT_Line', me)
    self.CurrentObj = ob
    context.collection.objects.link(ob)

    # Scene information
    region = context.region
    rv3d = context.region_data
    depth_location = region_2d_to_vector_3d(region, rv3d, coord)
    self.ViewVector = depth_location

    # Get a point on a infinite plane and its direction
    plane_normal = depth_location
    plane_direction = plane_normal.normalized()

    if self.snapCursor:
        plane_point = context.scene.cursor.location
    else:
        plane_point = self.OpsObj.location if self.OpsObj is not None else Vector((0.0, 0.0, 0.0))

    # Use dict to remove doubles
    # Find the intersection of a line going thru each vertex and the infinite plane
    for idx, v_co in enumerate(list(dict.fromkeys(self.mouse_path))):
        vec = region_2d_to_vector_3d(region, rv3d, v_co)
        p0 = region_2d_to_location_3d(region, rv3d,v_co, vec)
        p1 = region_2d_to_location_3d(region, rv3d,v_co, vec) + plane_direction * far_limit
        loc.append(intersect_line_plane(p0, p1, plane_point, plane_direction))
        vertices.append(bm.verts.new(loc[idx]))

        if idx > 0:
            bm.edges.new([vertices[idx-1],vertices[idx]])

        faces.append(vertices[idx])

    # Update vertices index
    bm.verts.index_update()

    # Nothing is selected, create close geometry
    if self.CreateMode:
        if self.Closed and len(vertices) > 1:
            bm.edges.new([vertices[-1], vertices[0]])
            bm.faces.new(faces)
    else:
        # Create faces if more than 2 vertices
        if len(vertices) > 1 :
            bm.edges.new([vertices[-1], vertices[0]])
            bm.faces.new(faces)

    bm.to_mesh(me)

# Cut Circle
def CreateCutCircle(self, context):
    """ Create a circle mesh """
    far_limit = 10000.0
    FacesList = []

    # Get the mouse coordinates
    mouse_pos_x = self.mouse_path[0][0]
    mouse_pos_y = self.mouse_path[0][1]
    coord = self.mouse_path[0][0], self.mouse_path[0][1]

    # Scene information
    region = context.region
    rv3d = context.region_data
    depth_location = region_2d_to_vector_3d(region, rv3d, coord)
    self.ViewVector = depth_location

    # Get a point on a infinite plane and its direction
    plane_point = context.scene.cursor.location if self.snapCursor else Vector((0.0, 0.0, 0.0))
    plane_normal = depth_location
    plane_direction = plane_normal.normalized()

    # New mesh
    me = bpy.data.meshes.new('CMT_Circle')
    bm = bmesh.new()
    bm.from_mesh(me)

    # New object and link it to the scene
    ob = bpy.data.objects.new('CMT_Circle', me)
    self.CurrentObj = ob
    context.collection.objects.link(ob)

    # Create a circle using a tri fan
    tris_fan, indices = draw_circle(self, mouse_pos_x, mouse_pos_y)

    # Remove the vertex in the center to get the outer line of the circle
    verts = tris_fan[1:]

    # Find the intersection of a line going thru each vertex and the infinite plane
    for vert in verts:
        vec = region_2d_to_vector_3d(region, rv3d, vert)
        p0 = region_2d_to_location_3d(region, rv3d, vert, vec)
        p1 = p0 + plane_direction * far_limit
        loc0 = intersect_line_plane(p0, p1, plane_point, plane_direction)
        t_v0 = bm.verts.new(loc0)
        FacesList.append(t_v0)

    bm.verts.index_update()
    bm.faces.new(FacesList)
    bm.to_mesh(me)


def create_2d_circle(self, step, radius, rotation = 0):
    """ Create the vertices of a 2d circle at (0,0) """
    verts = []
    for angle in range(0, 360, step):
        verts.append(math.cos(math.radians(angle + rotation)) * radius)
        verts.append(math.sin(math.radians(angle + rotation)) * radius)
        verts.append(0.0)
    verts.append(math.cos(math.radians(0.0 + rotation)) * radius)
    verts.append(math.sin(math.radians(0.0 + rotation)) * radius)
    verts.append(0.0)
    return(verts)


def draw_circle(self, mouse_pos_x, mouse_pos_y):
    """ Return the coordinates + indices of a circle using a triangle fan """
    tris_verts = []
    indices = []
    segments = int(360 / self.stepAngle[self.step])
    radius = self.mouse_path[1][0] - self.mouse_path[0][0]
    rotation = (self.mouse_path[1][1] - self.mouse_path[0][1]) / 2

    # Get the vertices of a 2d circle
    verts = create_2d_circle(self, self.stepAngle[self.step], radius, rotation)

    # Create the first vertex at mouse position for the center of the circle
    tris_verts.append(Vector((mouse_pos_x + self.xpos , mouse_pos_y + self.ypos)))

    # For each vertex of the circle, add the mouse position and the translation
    for idx in range(int(len(verts) / 3) - 1):
        tris_verts.append(Vector((verts[idx * 3] + mouse_pos_x + self.xpos, \
                                  verts[idx * 3 + 1] + mouse_pos_y + self.ypos)))
        i1 = idx+1
        i2 = idx+2 if idx+2 <= segments else 1
        indices.append((0,i1,i2))

    return(tris_verts, indices)

# Object dimensions (SCULPT Tools tips)
def objDiagonal(obj):
    return ((obj.dimensions[0]**2) + (obj.dimensions[1]**2) + (obj.dimensions[2]**2))**0.5


# Bevel Update
def update_bevel(context):
    selection = context.selected_objects.copy()
    active = context.active_object

    if len(selection) > 0:
        for obj in selection:
            bpy.ops.object.select_all(action='DESELECT')
            obj.select_set(True)
            context.view_layer.objects.active = obj

            # Test object name
            # Subdive mode : Only bevel weight
            if obj.data.name.startswith("S_") or obj.data.name.startswith("S "):
                bpy.ops.object.mode_set(mode='EDIT')
                bpy.ops.mesh.region_to_loop()
                bpy.ops.transform.edge_bevelweight(value=1)
                bpy.ops.object.mode_set(mode='OBJECT')

            else:
                # No subdiv mode : bevel weight + Crease + Sharp
                CreateBevel(context, obj)

    bpy.ops.object.select_all(action='DESELECT')

    for obj in selection:
        obj.select_set(True)
    context.view_layer.objects.active = active

# Create bevel
def CreateBevel(context, CurrentObject):
    # Save active object
    SavActive = context.active_object

    # Test if initial object has bevel
    bevel_modifier = False
    for modifier in SavActive.modifiers:
        if modifier.name == 'Bevel':
            bevel_modifier = True

    if bevel_modifier:
        # Active "CurrentObject"
        context.view_layer.objects.active = CurrentObject

        bpy.ops.object.mode_set(mode='EDIT')

        # Edge mode
        bpy.ops.mesh.select_mode(use_extend=False, use_expand=False, type='EDGE')
        # Clear all
        bpy.ops.mesh.select_all(action='SELECT')
        bpy.ops.mesh.mark_sharp(clear=True)
        bpy.ops.transform.edge_crease(value=-1)
        bpy.ops.transform.edge_bevelweight(value=-1)

        bpy.ops.mesh.select_all(action='DESELECT')

        # Select (in radians) all 30° sharp edges
        bpy.ops.mesh.edges_select_sharp(sharpness=0.523599)
        # Apply bevel weight + Crease + Sharp to the selected edges
        bpy.ops.mesh.mark_sharp()
        bpy.ops.transform.edge_crease(value=1)
        bpy.ops.transform.edge_bevelweight(value=1)

        bpy.ops.mesh.select_all(action='DESELECT')

        bpy.ops.object.mode_set(mode='OBJECT')

        CurrentObject.data.use_customdata_edge_bevel = True

        for i in range(len(CurrentObject.data.edges)):
            if CurrentObject.data.edges[i].select is True:
                CurrentObject.data.edges[i].bevel_weight = 1.0
                CurrentObject.data.edges[i].use_edge_sharp = True

        bevel_modifier = False
        for m in CurrentObject.modifiers:
            if m.name == 'Bevel':
                bevel_modifier = True

        if bevel_modifier is False:
            bpy.ops.object.modifier_add(type='BEVEL')
            mod = context.object.modifiers[-1]
            mod.limit_method = 'WEIGHT'
            mod.width = 0.01
            mod.profile = 0.699099
            mod.use_clamp_overlap = False
            mod.segments = 3
            mod.loop_slide = False

        bpy.ops.object.shade_smooth()

        context.object.data.use_auto_smooth = True
        context.object.data.auto_smooth_angle = 1.0471975

        # Restore the active object
        context.view_layer.objects.active = SavActive


def MoveCursor(qRot, location, self):
    """ In brush mode : Draw a circle around the brush """
    if qRot is not None:
        verts = create_2d_circle(self, 10, 1)
        self.CLR_C.clear()
        vc = Vector()
        for idx in range(int(len(verts) / 3)):
            vc.x = verts[idx * 3]
            vc.y = verts[idx * 3 + 1]
            vc.z = verts[idx * 3 + 2]
            vc = qRot @ vc
            self.CLR_C.append(vc.x)
            self.CLR_C.append(vc.y)
            self.CLR_C.append(vc.z)


def rot_axis_quat(vector1, vector2):
    """ Find the rotation (quaternion) from vector 1 to vector 2"""
    vector1 = vector1.normalized()
    vector2 = vector2.normalized()
    cosTheta = vector1.dot(vector2)
    rotationAxis = Vector((0.0, 0.0, 0.0))
    if (cosTheta < -1 + 0.001):
        v = Vector((0.0, 1.0, 0.0))
        #Get the vector at the right angles to both
        rotationAxis = vector1.cross(v)
        rotationAxis = rotationAxis.normalized()
        q = Quaternion()
        q.w = 0.0
        q.x = rotationAxis.x
        q.y = rotationAxis.y
        q.z = rotationAxis.z
    else:
        rotationAxis = vector1.cross(vector2)
        s = math.sqrt((1.0 + cosTheta) * 2.0)
        invs = 1 / s
        q = Quaternion()
        q.w = s * 0.5
        q.x = rotationAxis.x * invs
        q.y = rotationAxis.y * invs
        q.z = rotationAxis.z * invs
    return q


# Picking (template)
def Picking(context, event):
    """ Put the 3d cursor on the closest object"""

    # get the context arguments
    scene = context.scene
    region = context.region
    rv3d = context.region_data
    coord = event.mouse_region_x, event.mouse_region_y

    # get the ray from the viewport and mouse
    view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, coord)
    ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, coord)
    ray_target = ray_origin + view_vector

    def visible_objects_and_duplis():
        depsgraph = context.evaluated_depsgraph_get()
        for dup in depsgraph.object_instances:
            if dup.is_instance:  # Real dupli instance
                obj = dup.instance_object.original
                yield (obj, dup.matrix.copy())
            else:  # Usual object
                obj = dup.object.original
                yield (obj, obj.matrix_world.copy())

    def obj_ray_cast(obj, matrix):
        # get the ray relative to the object
        matrix_inv = matrix.inverted()
        ray_origin_obj = matrix_inv @ ray_origin
        ray_target_obj = matrix_inv @ ray_target
        ray_direction_obj = ray_target_obj - ray_origin_obj
        # cast the ray
        success, location, normal, face_index = obj.ray_cast(ray_origin_obj, ray_direction_obj)
        if success:
            return location, normal, face_index
        return None, None, None

    # cast rays and find the closest object
    best_length_squared = -1.0
    best_obj = None

    # cast rays and find the closest object
    for obj, matrix in visible_objects_and_duplis():
        if obj.type == 'MESH':
            hit, normal, face_index = obj_ray_cast(obj, matrix)
            if hit is not None:
                hit_world = matrix @ hit
                length_squared = (hit_world - ray_origin).length_squared
                if best_obj is None or length_squared < best_length_squared:
                    scene.cursor.location = hit_world
                    best_length_squared = length_squared
                    best_obj = obj
            else:
                if best_obj is None:
                    depth_location = region_2d_to_vector_3d(region, rv3d, coord)
                    loc = region_2d_to_location_3d(region, rv3d, coord, depth_location)
                    scene.cursor.location = loc


def Pick(context, event, self, ray_max=10000.0):
    region = context.region
    rv3d = context.region_data
    coord = event.mouse_region_x, event.mouse_region_y
    view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, coord)
    ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, coord)
    ray_target = ray_origin + (view_vector * ray_max)

    def obj_ray_cast(obj, matrix):
        matrix_inv = matrix.inverted()
        ray_origin_obj = matrix_inv @ ray_origin
        ray_target_obj = matrix_inv @ ray_target
        success, hit, normal, face_index = obj.ray_cast(ray_origin_obj, ray_target_obj)
        if success:
            return hit, normal, face_index
        return None, None, None

    best_length_squared = ray_max * ray_max
    best_obj = None
    for obj in self.CList:
        matrix = obj.matrix_world
        hit, normal, face_index = obj_ray_cast(obj, matrix)
        rotation = obj.rotation_euler.to_quaternion()
        if hit is not None:
            hit_world = matrix @ hit
            length_squared = (hit_world - ray_origin).length_squared
            if length_squared < best_length_squared:
                best_length_squared = length_squared
                best_obj = obj
                hits = hit_world
                ns = normal
                fs = face_index

    if best_obj is not None:
        return hits, ns, rotation

    return None, None, None

def SelectObject(self, copyobj):
    copyobj.select_set(True)

    for child in copyobj.children:
        SelectObject(self, child)

    if copyobj.parent is None:
        bpy.context.view_layer.objects.active = copyobj

# Undo
def printUndo(self):
    for l in self.UList:
        print(l)


def UndoAdd(self, type, obj):
    """ Create a backup mesh before apply the action to the object """
    if obj is None:
        return

    if type != "DUPLICATE":
        bm = bmesh.new()
        bm.from_mesh(obj.data)
        self.UndoOps.append((obj, type, bm))
    else:
        self.UndoOps.append((obj, type, None))


def UndoListUpdate(self):
    self.UList.append((self.UndoOps.copy()))
    self.UList_Index += 1
    self.UndoOps.clear()


def Undo(self):
    if self.UList_Index < 0:
        return
    # get previous mesh
    for o in self.UList[self.UList_Index]:
        if o[1] == "MESH":
            bm = o[2]
            bm.to_mesh(o[0].data)

    SelectObjList = bpy.context.selected_objects.copy()
    Active_Obj = bpy.context.active_object
    bpy.ops.object.select_all(action='TOGGLE')

    for o in self.UList[self.UList_Index]:
        if o[1] == "REBOOL":
            o[0].select_set(True)
            o[0].hide_viewport = False

        if o[1] == "DUPLICATE":
            o[0].select_set(True)
            o[0].hide_viewport = False

    bpy.ops.object.delete(use_global=False)

    for so in SelectObjList:
        bpy.data.objects[so.name].select_set(True)
    bpy.context.view_layer.objects.active = Active_Obj

    self.UList_Index -= 1
    self.UList[self.UList_Index + 1:] = []


def duplicateObject(self):
    if self.Instantiate:
        bpy.ops.object.duplicate_move_linked(
            OBJECT_OT_duplicate={
                "linked": True,
                "mode": 'TRANSLATION',
            },
            TRANSFORM_OT_translate={
                "value": (0, 0, 0),
            },
        )
    else:
        bpy.ops.object.duplicate_move(
            OBJECT_OT_duplicate={
                "linked": False,
                "mode": 'TRANSLATION',
            },
            TRANSFORM_OT_translate={
                "value": (0, 0, 0),
            },
        )

    ob_new = bpy.context.active_object

    ob_new.location = self.CurLoc
    v = Vector()
    v.x = v.y = 0.0
    v.z = self.BrushDepthOffset
    ob_new.location += self.qRot * v

    if self.ObjectMode:
        ob_new.scale = self.ObjectBrush.scale
    if self.ProfileMode:
        ob_new.scale = self.ProfileBrush.scale

    e = Euler()
    e.x = e.y = 0.0
    e.z = self.aRotZ / 25.0

    # If duplicate with a grid, no random rotation (each mesh in the grid is already rotated randomly)
    if (self.alt is True) and ((self.nbcol + self.nbrow) < 3):
        if self.RandomRotation:
            e.z += random.random()

    qe = e.to_quaternion()
    qRot = self.qRot * qe
    ob_new.rotation_mode = 'QUATERNION'
    ob_new.rotation_quaternion = qRot
    ob_new.rotation_mode = 'XYZ'

    if (ob_new.display_type == "WIRE") and (self.BrushSolidify is False):
        ob_new.hide_viewport = True

    if self.BrushSolidify:
        ob_new.display_type = "SOLID"
        ob_new.show_in_front = False

    for o in bpy.context.selected_objects:
        UndoAdd(self, "DUPLICATE", o)

    if len(bpy.context.selected_objects) > 0:
        bpy.ops.object.select_all(action='TOGGLE')
    for o in self.all_sel_obj_list:
        o.select_set(True)

    bpy.context.view_layer.objects.active = self.OpsObj


def update_grid(self, context):
    """
    Thanks to batFINGER for his help :
    source : http://blender.stackexchange.com/questions/55864/multiple-meshes-not-welded-with-pydata
    """
    verts = []
    edges = []
    faces = []
    numface = 0

    if self.nbcol < 1:
        self.nbcol = 1
    if self.nbrow < 1:
        self.nbrow = 1
    if self.gapx < 0:
        self.gapx = 0
    if self.gapy < 0:
        self.gapy = 0

    # Get the data from the profils or the object
    if self.ProfileMode:
        brush = bpy.data.objects.new(
                    self.Profils[self.nProfil][0],
                    bpy.data.meshes[self.Profils[self.nProfil][0]]
                    )
        obj = bpy.data.objects["CT_Profil"]
        obfaces = brush.data.polygons
        obverts = brush.data.vertices
        lenverts = len(obverts)
    else:
        brush = bpy.data.objects["CarverBrushCopy"]
        obj = context.selected_objects[0]
        obverts = brush.data.vertices
        obfaces = brush.data.polygons
        lenverts = len(brush.data.vertices)

    # Gap between each row / column
    gapx = self.gapx
    gapy = self.gapy

    # Width of each row / column
    widthx = brush.dimensions.x * self.scale_x
    widthy = brush.dimensions.y * self.scale_y

    # Compute the corners so the new object will be always at the center
    left = -((self.nbcol - 1) * (widthx + gapx)) / 2
    start = -((self.nbrow - 1) * (widthy + gapy)) / 2

    for i in range(self.nbrow * self.nbcol):
        row = i % self.nbrow
        col = i // self.nbrow
        startx = left + ((widthx + gapx) * col)
        starty = start + ((widthy + gapy) * row)

        # Add random rotation
        if (self.RandomRotation) and not (self.GridScaleX or self.GridScaleY):
            rotmat = Matrix.Rotation(math.radians(360 * random.random()), 4, 'Z')
            for v in obverts:
                v.co = v.co @ rotmat

        verts.extend([((v.co.x - startx, v.co.y - starty, v.co.z)) for v in obverts])
        faces.extend([[v + numface * lenverts for v in p.vertices] for p in obfaces])
        numface += 1

    # Update the mesh
    # Create mesh data
    mymesh = bpy.data.meshes.new("CT_Profil")
    # Generate mesh data
    mymesh.from_pydata(verts, edges, faces)
    # Calculate the edges
    mymesh.update(calc_edges=True)
    # Update data
    obj.data = mymesh
    # Make the object active to remove doubles
    context.view_layer.objects.active = obj


def boolean_operation(bool_type="DIFFERENCE"):
    ActiveObj = bpy.context.active_object
    sel_index = 0 if bpy.context.selected_objects[0] != bpy.context.active_object else 1

    # bpy.ops.object.modifier_apply(modifier="CT_SOLIDIFY")
    bool_name = "CT_" + bpy.context.selected_objects[sel_index].name
    BoolMod = ActiveObj.modifiers.new(bool_name, "BOOLEAN")
    BoolMod.object = bpy.context.selected_objects[sel_index]
    BoolMod.operation = bool_type
    bpy.context.selected_objects[sel_index].display_type = 'WIRE'
    while ActiveObj.modifiers.find(bool_name) > 0:
        bpy.ops.object.modifier_move_up(modifier=bool_name)


def Rebool(context, self):

    target_obj = context.active_object

    Brush = context.selected_objects[1]
    Brush.display_type = "WIRE"

    #Deselect all
    bpy.ops.object.select_all(action='TOGGLE')

    target_obj.display_type = "SOLID"
    target_obj.select_set(True)
    bpy.ops.object.duplicate()

    rebool_obj = context.active_object

    m = rebool_obj.modifiers.new("CT_INTERSECT", "BOOLEAN")
    m.operation = "INTERSECT"
    m.object = Brush

    m = target_obj.modifiers.new("CT_DIFFERENCE", "BOOLEAN")
    m.operation = "DIFFERENCE"
    m.object = Brush

    for mb in target_obj.modifiers:
        if mb.type == 'BEVEL':
            mb.show_viewport = False

    if self.ObjectBrush or self.ProfileBrush:
        rebool_obj.show_in_front = False
        try:
            bpy.ops.object.modifier_apply(modifier="CT_SOLIDIFY")
        except:
            exc_type, exc_value, exc_traceback = sys.exc_info()
            self.report({'ERROR'}, str(exc_value))

    if self.dont_apply_boolean is False:
        try:
            bpy.ops.object.modifier_apply(modifier="CT_INTERSECT")
        except:
            exc_type, exc_value, exc_traceback = sys.exc_info()
            self.report({'ERROR'}, str(exc_value))

    bpy.ops.object.select_all(action='TOGGLE')

    for mb in target_obj.modifiers:
        if mb.type == 'BEVEL':
            mb.show_viewport = True

    context.view_layer.objects.active = target_obj
    target_obj.select_set(True)
    if self.dont_apply_boolean is False:
        try:
            bpy.ops.object.modifier_apply(modifier="CT_DIFFERENCE")
        except:
            exc_type, exc_value, exc_traceback = sys.exc_info()
            self.report({'ERROR'}, str(exc_value))

    bpy.ops.object.select_all(action='TOGGLE')

    rebool_obj.select_set(True)

def createMeshFromData(self):
    if self.Profils[self.nProfil][0] not in bpy.data.meshes:
        # Create mesh and object
        me = bpy.data.meshes.new(self.Profils[self.nProfil][0])
        # Create mesh from given verts, faces.
        me.from_pydata(self.Profils[self.nProfil][2], [], self.Profils[self.nProfil][3])
        me.validate(verbose=True, clean_customdata=True)
        # Update mesh with new data
        me.update()

    if "CT_Profil" not in bpy.data.objects:
        ob = bpy.data.objects.new("CT_Profil", bpy.data.meshes[self.Profils[self.nProfil][0]])
        ob.location = Vector((0.0, 0.0, 0.0))

        # Link object to scene and make active
        bpy.context.collection.objects.link(ob)
        bpy.context.view_layer.update()
        bpy.context.view_layer.objects.active = ob
        ob.select_set(True)
        ob.location = Vector((10000.0, 0.0, 0.0))
        ob.display_type = "WIRE"

        self.SolidifyPossible = True
    else:
        bpy.data.objects["CT_Profil"].data = bpy.data.meshes[self.Profils[self.nProfil][0]]

def Selection_Save_Restore(self):
    if "CT_Profil" in bpy.data.objects:
        Selection_Save(self)
        bpy.ops.object.select_all(action='DESELECT')
        bpy.data.objects["CT_Profil"].select_set(True)
        bpy.context.view_layer.objects.active = bpy.data.objects["CT_Profil"]
        if bpy.data.objects["CT_Profil"] in self.all_sel_obj_list:
            self.all_sel_obj_list.remove(bpy.data.objects["CT_Profil"])
        bpy.ops.object.delete(use_global=False)
        Selection_Restore(self)

def Selection_Save(self):
    obj_name = getattr(bpy.context.active_object, "name", None)
    self.all_sel_obj_list = bpy.context.selected_objects.copy()
    self.save_active_obj = obj_name


def Selection_Restore(self):
    for o in self.all_sel_obj_list:
        o.select_set(True)
    if self.save_active_obj:
        bpy.context.view_layer.objects.active = bpy.data.objects.get(self.save_active_obj, None)

def Snap_Cursor(self, context, event, mouse_pos):
    """ Find the closest position on the overlay grid and snap the mouse on it """
    # Get the context arguments
    region = context.region
    rv3d = context.region_data

    # Get the VIEW3D area
    for i, a in enumerate(context.screen.areas):
        if a.type == 'VIEW_3D':
            space = context.screen.areas[i].spaces.active

    # Get the grid overlay for the VIEW_3D
    grid_scale = space.overlay.grid_scale
    grid_subdivisions = space.overlay.grid_subdivisions

    # Use the grid scale and subdivision to get the increment
    increment = (grid_scale / grid_subdivisions)
    half_increment = increment / 2

    # Convert the 2d location of the mouse in 3d
    for index, loc in enumerate(reversed(mouse_pos)):
        mouse_loc_3d = region_2d_to_location_3d(region, rv3d, loc, (0, 0, 0))

        # Get the remainder from the mouse location and the ratio
        # Test if the remainder > to the half of the increment
        for i in range(3):
            modulo = mouse_loc_3d[i] % increment
            if modulo < half_increment:
                modulo = - modulo
            else:
                modulo = increment - modulo

            # Add the remainder to get the closest location on the grid
            mouse_loc_3d[i] = mouse_loc_3d[i] + modulo

        # Get the snapped 2d location
        snap_loc_2d = location_3d_to_region_2d(region, rv3d, mouse_loc_3d)

        # Replace the last mouse location by the snapped location
        if len(self.mouse_path) > 0:
            self.mouse_path[len(self.mouse_path) - (index + 1) ] = tuple(snap_loc_2d)

def mini_grid(self, context, color):
    """ Draw a snap mini grid around the cursor based on the overlay grid"""
    # Get the context arguments
    region = context.region
    rv3d = context.region_data

    # Get the VIEW3D area
    for i, a in enumerate(context.screen.areas):
        if a.type == 'VIEW_3D':
            space = context.screen.areas[i].spaces.active
            screen_height = context.screen.areas[i].height
            screen_width = context.screen.areas[i].width

    #Draw the snap grid, only in ortho view
    if not space.region_3d.is_perspective :
        grid_scale = space.overlay.grid_scale
        grid_subdivisions = space.overlay.grid_subdivisions
        increment = (grid_scale / grid_subdivisions)

        # Get the 3d location of the mouse forced to a snap value in the operator
        mouse_coord = self.mouse_path[len(self.mouse_path) - 1]

        snap_loc = region_2d_to_location_3d(region, rv3d, mouse_coord, (0, 0, 0))

        # Add the increment to get the closest location on the grid
        snap_loc[0] += increment
        snap_loc[1] += increment

        # Get the 2d location of the snap location
        snap_loc = location_3d_to_region_2d(region, rv3d, snap_loc)
        origin = location_3d_to_region_2d(region, rv3d, (0,0,0))

        # Get the increment value
        snap_value = snap_loc[0] - mouse_coord[0]

        grid_coords = []

        # Draw lines on X and Z axis from the cursor through the screen
        grid_coords = [
        (0, mouse_coord[1]), (screen_width, mouse_coord[1]),
        (mouse_coord[0], 0), (mouse_coord[0], screen_height)
        ]

        # Draw a mlini grid around the cursor to show the snap options
        grid_coords += [
        (mouse_coord[0] + snap_value, mouse_coord[1] + 25 + snap_value),
        (mouse_coord[0] + snap_value, mouse_coord[1] - 25 - snap_value),
        (mouse_coord[0] + 25 + snap_value, mouse_coord[1] + snap_value),
        (mouse_coord[0] - 25 - snap_value, mouse_coord[1] + snap_value),
        (mouse_coord[0] - snap_value, mouse_coord[1] + 25 + snap_value),
        (mouse_coord[0] - snap_value, mouse_coord[1] - 25 - snap_value),
        (mouse_coord[0] + 25 + snap_value, mouse_coord[1] - snap_value),
        (mouse_coord[0] - 25 - snap_value, mouse_coord[1] - snap_value),
        ]
        draw_shader(self, color, 0.3, 'LINES', grid_coords, size=2)


def draw_shader(self, color, alpha, type, coords, size=1, indices=None):
    """ Create a batch for a draw type """
    bgl.glEnable(bgl.GL_BLEND)
    bgl.glEnable(bgl.GL_LINE_SMOOTH)
    if type =='POINTS':
        bgl.glPointSize(size)
    else:
        bgl.glLineWidth(size)
    try:
        if len(coords[0])>2:
            shader = gpu.shader.from_builtin('3D_UNIFORM_COLOR')
        else:
            shader = gpu.shader.from_builtin('2D_UNIFORM_COLOR')
        batch = batch_for_shader(shader, type, {"pos": coords}, indices=indices)
        shader.bind()
        shader.uniform_float("color", (color[0], color[1], color[2], alpha))
        batch.draw(shader)
        bgl.glLineWidth(1)
        bgl.glPointSize(1)
        bgl.glDisable(bgl.GL_LINE_SMOOTH)
        bgl.glDisable(bgl.GL_BLEND)
    except:
        exc_type, exc_value, exc_traceback = sys.exc_info()
        self.report({'ERROR'}, str(exc_value))