Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJoseph Gilbert <ascotan@gmail.com>2005-07-14 07:34:56 +0400
committerJoseph Gilbert <ascotan@gmail.com>2005-07-14 07:34:56 +0400
commitb89035906daa352ac8eae4c157c3dd6f61b7ad62 (patch)
treed3e3312fb8e282c327b6cb4f7b1f780ce299afa2
parent1bfd0eae148af20ed97992d44a66f5a6ec34571c (diff)
Mathutils update
- also included is some fixes for preprocessor inclues and some clean up of the previous commit -rewrite and bugfixes ---------------------------------- Here's my changelog: -fixed Rand() so that it doesn't seed everytime and should generate better random numbers - changed a few error return types to something more appropriate - clean up of uninitialized variables & removal of unneccessary objects - NMesh returns wrapped vectors now - World returns wrapped matrices now - Object.getEuler() and Object.getBoundingBox() return Wrapped data when data is present - Object.getMatrix() returns wrapped data if it's worldspace, 'localspace' returns a new matrix - Vector, Euler, Mat, Quat, call all now internally wrap object without destroying internal datablocks - Removed memory allocation (unneeded) from all methods - Vector's resize methods are only applicable to new vectors not wrapped data. - Matrix(), Quat(), Euler(), Vector() now accepts ANY sequence list, including tuples, list, or a self object to copy - matrices accept multiple sequences - Fixed Slerp() so that it now works correctly values are clamped between 0 and 1 - Euler.rotate does internal rotation now - Slice assignment now works better for all types - Vector * Vector and Quat * Quat are defined and return the DOT product - Mat * Vec and Vec * Mat are defined now - Moved #includes to .c file from headers. Also fixed prototypes in mathutils - Added new helper functions for incref'ing to genutils - Major cleanup of header files includes - include Mathutils.h for access to math types - matrix.toQuat() and .toEuler() now fixed take appropriate matrix sizes - Matrix() with no parameters now returns an identity matrix by default not a zero matrix - printf() now prints with 6 digits instead of 4 - printf() now prints output with object descriptor - Matrices now support [x][y] assignment (e.g. matrix[x][y] = 5.4) - Matrix[index] = value now expectes a sequence not an integer. This will now set a ROW of the matrix through a sequence. index cannot go above the row size of the matrix. - slice operations on matrices work with sequences now (rows of the matrix) example: mymatrix[0:2] returns a list of 2 wrapped vectors with access to the matrix data. - slice assignment will no longer modify the data if the assignment operation fails - fixed error in matrix * scalar multiplication - euler.toMatrix(), toQuat() no longer causes "creep" from repeated use - Wrapped data will generate wrapped objects when toEuler(), toQuat(), toMatrix() is used - Quats can be created with angle/axis, axis/angle - 4x4 matrices can be multiplied by 3D vectors (by popular demand :)) - vec *quat / quat * vec is now defined - vec.magnitude alias for vec.length - all self, internal methods return a pointer to self now so you can do print vector.internalmethod() or vector.internalmethod().nextmethod() (no more print matrix.inverse() returning 'none') - these methods have been deprecated (still functioning but suggested to use the corrected functionality): * CopyVec() - replaced by Vector() functionality * CopyMat() - replaced by Matrix() functionality * CopyQuat() - replace by Quaternion() functionality * CopyEuler() - replaced by Euler() functionality * RotateEuler() - replaced by Euler.rotate() funtionality * MatMultVec() - replaced by matrix * vector * VecMultMat() - replaced by vector * matrix - New struct containers references to python object data or internally allocated blender data for wrapping * Explaination here: math structs now function as a 'simple wrapper' or a 'py_object' - data that is created on the fly will now be a 'py_object' with its memory managed by python * otherwise if the data is returned by blender's G.main then the math object is a 'simple wrapper' and data can be accessed directly from the struct just like other python objects.
-rw-r--r--source/blender/python/api2_2x/Blender.c45
-rw-r--r--source/blender/python/api2_2x/Bone.c179
-rw-r--r--source/blender/python/api2_2x/Mathutils.c2195
-rw-r--r--source/blender/python/api2_2x/Mathutils.h38
-rw-r--r--source/blender/python/api2_2x/NMesh.c10
-rw-r--r--source/blender/python/api2_2x/Object.c62
-rw-r--r--source/blender/python/api2_2x/Object.h49
-rw-r--r--source/blender/python/api2_2x/Window.c50
-rw-r--r--source/blender/python/api2_2x/euler.c545
-rw-r--r--source/blender/python/api2_2x/euler.h32
-rw-r--r--source/blender/python/api2_2x/gen_utils.c33
-rw-r--r--source/blender/python/api2_2x/gen_utils.h22
-rw-r--r--source/blender/python/api2_2x/matrix.c1467
-rw-r--r--source/blender/python/api2_2x/matrix.h43
-rw-r--r--source/blender/python/api2_2x/quat.c875
-rw-r--r--source/blender/python/api2_2x/quat.h36
-rw-r--r--source/blender/python/api2_2x/vector.c1153
-rw-r--r--source/blender/python/api2_2x/vector.h38
18 files changed, 3145 insertions, 3727 deletions
diff --git a/source/blender/python/api2_2x/Blender.c b/source/blender/python/api2_2x/Blender.c
index 75e84f9d140..d0a0bea3ae6 100644
--- a/source/blender/python/api2_2x/Blender.c
+++ b/source/blender/python/api2_2x/Blender.c
@@ -41,30 +41,27 @@
#include <io.h>
#endif
-#ifndef O_BINARY
-# define O_BINARY 0
-#endif
-
-#include <BDR_editobject.h> /* exit_editmode() */
-#include <BIF_usiblender.h>
-#include <BLI_blenlib.h>
-#include <BLO_writefile.h>
-#include <BKE_exotic.h>
-#include <BKE_global.h>
-#include <BKE_packedFile.h>
-#include <BKE_object.h>
-#include <BKE_text.h>
-#include <BPI_script.h>
-#include <BSE_headerbuttons.h>
-#include <DNA_ID.h>
-#include <DNA_object_types.h>
-#include <DNA_scene_types.h>
-#include <DNA_screen_types.h> /* for SPACE_VIEW3D */
-#include <DNA_space_types.h> /* for SPACE_VIEW3D */
-#include <DNA_scriptlink_types.h>
-#include <DNA_userdef_types.h>
-#include <BKE_ipo.h>
-#include <blendef.h>
+#include "BKE_utildefines.h"
+#include "BDR_editobject.h" /* exit_editmode() */
+#include "BIF_usiblender.h"
+#include "BLI_blenlib.h"
+#include "BLO_writefile.h"
+#include "BKE_exotic.h"
+#include "BKE_global.h"
+#include "BKE_packedFile.h"
+#include "BKE_object.h"
+#include "BKE_text.h"
+#include "BPI_script.h"
+#include "BSE_headerbuttons.h"
+#include "DNA_ID.h"
+#include "DNA_object_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_screen_types.h" /* for SPACE_VIEW3D */
+#include "DNA_space_types.h" /* for SPACE_VIEW3D */
+#include "DNA_scriptlink_types.h"
+#include "DNA_userdef_types.h"
+#include "BKE_ipo.h"
+#include "blendef.h"
#include "EXPP_interface.h" /* for bpy_gethome() */
#include "gen_utils.h"
diff --git a/source/blender/python/api2_2x/Bone.c b/source/blender/python/api2_2x/Bone.c
index 7c96a02d595..87ae85db99f 100644
--- a/source/blender/python/api2_2x/Bone.c
+++ b/source/blender/python/api2_2x/Bone.c
@@ -32,26 +32,30 @@
#include "Bone.h"
-#include <BKE_main.h>
-#include <BKE_global.h>
-#include <BKE_object.h>
-#include <BKE_armature.h>
-#include <BKE_library.h>
-#include <BLI_blenlib.h>
-#include <DNA_action_types.h>
-#include <DNA_armature_types.h>
-#include <DNA_ipo_types.h>
-#include <BIF_poseobject.h>
-#include <BKE_action.h>
-#include <BSE_editaction.h>
-#include <BKE_constraint.h>
-#include <MEM_guardedalloc.h>
+#include "BKE_main.h"
+#include "BKE_global.h"
+#include "BKE_object.h"
+#include "BKE_armature.h"
+#include "BKE_library.h"
+#include "BLI_blenlib.h"
+#include "DNA_action_types.h"
+#include "DNA_armature_types.h"
+#include "DNA_ipo_types.h"
+#include "BIF_poseobject.h"
+#include "BKE_action.h"
+#include "BSE_editaction.h"
+#include "BKE_constraint.h"
+#include "MEM_guardedalloc.h"
+#include "BKE_utildefines.h"
+#include "BLI_arithb.h"
#include "constant.h"
#include "gen_utils.h"
#include "NLA.h"
#include "quat.h"
#include "matrix.h"
#include "vector.h"
+#include "Types.h"
+
//--------------------Python API function prototypes for the Bone module----
static PyObject *M_Bone_New( PyObject * self, PyObject * args );
@@ -237,7 +241,6 @@ PyObject *Bone_Init( void )
//--------------- updatePyBone------------------------------------
static int updatePyBone( BPy_Bone * self )
{
- int x, y;
char *parent_str = "";
if( !self->bone ) {
@@ -540,45 +543,19 @@ PyObject *Bone_CreatePyObject( struct Bone * bone )
//allocate space for python vars
blen_bone->name = PyMem_Malloc( 32 + 1 );
blen_bone->parent = PyMem_Malloc( 32 + 1 );
- blen_bone->head =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- blen_bone->tail =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- blen_bone->loc =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- blen_bone->dloc =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- blen_bone->size =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- blen_bone->dsize =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- blen_bone->quat =
- ( QuaternionObject * )
- newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
- blen_bone->dquat =
- ( QuaternionObject * )
- newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
- blen_bone->obmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- blen_bone->parmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- blen_bone->defmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- blen_bone->irestmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- blen_bone->posemat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ blen_bone->head = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ blen_bone->tail = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ blen_bone->loc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ blen_bone->dloc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ blen_bone->size = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ blen_bone->dsize = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ blen_bone->quat = blen_bone->quat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
+ blen_bone->dquat = blen_bone->quat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
+ blen_bone->obmat = blen_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ blen_bone->parmat = blen_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ blen_bone->defmat = blen_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ blen_bone->irestmat = blen_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ blen_bone->posemat = blen_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
if( !updatePyBone( blen_bone ) )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
@@ -627,45 +604,19 @@ static PyObject *M_Bone_New( PyObject * self, PyObject * args )
//allocate space for python vars
py_bone->name = PyMem_Malloc( 32 + 1 );
py_bone->parent = PyMem_Malloc( 32 + 1 );
- py_bone->head =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- py_bone->tail =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- py_bone->loc =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- py_bone->dloc =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- py_bone->size =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- py_bone->dsize =
- ( VectorObject * )
- newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
- py_bone->quat =
- ( QuaternionObject * )
- newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
- py_bone->dquat =
- ( QuaternionObject * )
- newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
- py_bone->obmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- py_bone->parmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- py_bone->defmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- py_bone->irestmat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
- py_bone->posemat =
- ( MatrixObject * )
- newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ py_bone->head = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ py_bone->tail = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ py_bone->loc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ py_bone->dloc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ py_bone->size = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ py_bone->dsize = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
+ py_bone->quat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
+ py_bone->dquat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
+ py_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ py_bone->parmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ py_bone->defmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ py_bone->irestmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ py_bone->posemat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
//default py values
BLI_strncpy( py_bone->name, name_str, strlen( name_str ) + 1 );
@@ -762,19 +713,17 @@ static PyObject *Bone_getWeight( BPy_Bone * self )
static PyObject *Bone_getHead( BPy_Bone * self )
{
PyObject *attr = NULL;
- float *vec;
+ float vec[3];
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
- vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->head->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3 );
+ attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
} else {
//use bone datastruct
- attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
- 3 );
+ attr = newVectorObject( NULL, 3, Py_NEW );
( ( VectorObject * ) attr )->vec[0] = self->bone->head[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->head[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->head[2];
@@ -790,19 +739,17 @@ static PyObject *Bone_getHead( BPy_Bone * self )
static PyObject *Bone_getTail( BPy_Bone * self )
{
PyObject *attr = NULL;
- float *vec;
+ float vec[3];
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
- vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->tail->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3 );
+ attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
} else {
//use bone datastruct
- attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
- 3 );
+ attr = newVectorObject( NULL, 3, Py_NEW );
( ( VectorObject * ) attr )->vec[0] = self->bone->tail[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->tail[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->tail[2];
@@ -818,19 +765,17 @@ static PyObject *Bone_getTail( BPy_Bone * self )
static PyObject *Bone_getLoc( BPy_Bone * self )
{
PyObject *attr = NULL;
- float *vec;
+ float vec[3];
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
- vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->loc->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3 );
+ attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
} else {
//use bone datastruct
- attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
- 3 );
+ attr = newVectorObject( NULL, 3, Py_NEW );
// ( ( VectorObject * ) attr )->vec[0] = self->bone->loc[0];
// ( ( VectorObject * ) attr )->vec[1] = self->bone->loc[1];
@@ -847,19 +792,17 @@ static PyObject *Bone_getLoc( BPy_Bone * self )
static PyObject *Bone_getSize( BPy_Bone * self )
{
PyObject *attr = NULL;
- float *vec;
+ float vec[3];
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
- vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->size->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3 );
+ attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
} else {
//use bone datastruct
- attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
- 3 );
+ attr = newVectorObject( NULL, 3, Py_NEW );
// ( ( VectorObject * ) attr )->vec[0] = self->bone->size[0];
// ( ( VectorObject * ) attr )->vec[1] = self->bone->size[1];
// ( ( VectorObject * ) attr )->vec[2] = self->bone->size[2];
@@ -875,20 +818,18 @@ static PyObject *Bone_getSize( BPy_Bone * self )
static PyObject *Bone_getQuat( BPy_Bone * self )
{
PyObject *attr = NULL;
- float *quat;
+ float quat[4];
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars - p.s. - you must return a copy or else
//python will trash the internal var
- quat = PyMem_Malloc( 4 * sizeof( float ) );
for( x = 0; x < 4; x++ )
quat[x] = self->quat->quat[x];
- attr = ( PyObject * ) newQuaternionObject( quat );
+ attr = ( PyObject * ) newQuaternionObject( quat, Py_NEW );
} else {
//use bone datastruct
- attr = newQuaternionObject( PyMem_Malloc
- ( 4 * sizeof( float ) ) );
+ attr = newQuaternionObject( NULL, Py_NEW );
// ( ( QuaternionObject * ) attr )->quat[0] = self->bone->quat[0];
// ( ( QuaternionObject * ) attr )->quat[1] = self->bone->quat[1];
// ( ( QuaternionObject * ) attr )->quat[2] = self->bone->quat[2];
@@ -1697,7 +1638,7 @@ static PyObject *Bone_getRestMatrix( BPy_Bone * self, PyObject * args )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected 'bonespace' or 'worldspace'" ) );
- matrix = newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ matrix = newMatrixObject( NULL, 4, 4 , Py_NEW);
if( !self->bone ) { //test to see if linked to armature
//use python vars
diff --git a/source/blender/python/api2_2x/Mathutils.c b/source/blender/python/api2_2x/Mathutils.c
index 8c8a69f7a1d..9d0d22641a1 100644
--- a/source/blender/python/api2_2x/Mathutils.c
+++ b/source/blender/python/api2_2x/Mathutils.c
@@ -30,799 +30,570 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include <Python.h>
-#include <BKE_main.h>
-#include <BKE_global.h>
-#include <BKE_library.h>
-#include <BKE_utildefines.h>
-#include <BLI_blenlib.h>
-#include <BLI_arithb.h>
-#include <PIL_time.h>
-#include <BLI_rand.h>
#include <math.h>
-#include "vector.h"
-#include "euler.h"
-#include "quat.h"
-#include "matrix.h"
+#include "BKE_main.h"
+#include "BKE_global.h"
+#include "BKE_library.h"
+#include "BKE_utildefines.h"
+#include "BLI_blenlib.h"
+#include "BLI_arithb.h"
+#include "PIL_time.h"
+#include "BLI_rand.h"
#include "blendef.h"
#include "mydevice.h"
#include "constant.h"
#include "gen_utils.h"
#include "Mathutils.h"
-
-
-/*****************************************************************************/
-// Python API function prototypes for the Mathutils module.
-/*****************************************************************************/
-static PyObject *M_Mathutils_Rand( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_Vector( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_CrossVecs( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_DotVecs( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_AngleBetweenVecs( PyObject * self,
- PyObject * args );
-static PyObject *M_Mathutils_MidpointVecs( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_VecMultMat( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_ProjectVecs( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_CopyVec( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_RotationMatrix( PyObject * self,
- PyObject * args );
-static PyObject *M_Mathutils_ScaleMatrix( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_OrthoProjectionMatrix( PyObject * self,
- PyObject * args );
-static PyObject *M_Mathutils_ShearMatrix( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_TranslationMatrix( PyObject * self,
- PyObject * args );
-static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_CopyMat( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_Quaternion( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_CrossQuats( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_DotQuats( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_CopyQuat( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_DifferenceQuats( PyObject * self,
- PyObject * args );
-static PyObject *M_Mathutils_Slerp( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_Euler( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_CopyEuler( PyObject * self, PyObject * args );
-static PyObject *M_Mathutils_RotateEuler( PyObject * self, PyObject * args );
-
-/*****************************************************************************/
-// The following string definitions are used for documentation strings.
-// In Python these will be written to the console when doing a
-// Blender.Mathutils.__doc__
-/* Mathutils Module strings */
-/****************************************************************************/
+//-------------------------DOC STRINGS ---------------------------
static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n";
-static char M_Mathutils_Vector_doc[] =
- "() - create a new vector object from a list of floats";
-static char M_Mathutils_Matrix_doc[] =
- "() - create a new matrix object from a list of floats";
-static char M_Mathutils_Quaternion_doc[] =
- "() - create a quaternion from a list or an axis of rotation and an angle";
-static char M_Mathutils_Euler_doc[] =
- "() - create and return a new euler object";
+static char M_Mathutils_Vector_doc[] = "() - create a new vector object from a list of floats";
+static char M_Mathutils_Matrix_doc[] = "() - create a new matrix object from a list of floats";
+static char M_Mathutils_Quaternion_doc[] = "() - create a quaternion from a list or an axis of rotation and an angle";
+static char M_Mathutils_Euler_doc[] = "() - create and return a new euler object";
static char M_Mathutils_Rand_doc[] = "() - return a random number";
-static char M_Mathutils_CrossVecs_doc[] =
- "() - returns a vector perpedicular to the 2 vectors crossed";
+static char M_Mathutils_CrossVecs_doc[] = "() - returns a vector perpedicular to the 2 vectors crossed";
static char M_Mathutils_CopyVec_doc[] = "() - create a copy of vector";
-static char M_Mathutils_DotVecs_doc[] =
- "() - return the dot product of two vectors";
-static char M_Mathutils_AngleBetweenVecs_doc[] =
- "() - returns the angle between two vectors in degrees";
-static char M_Mathutils_MidpointVecs_doc[] =
- "() - return the vector to the midpoint between two vectors";
-static char M_Mathutils_MatMultVec_doc[] =
- "() - multiplies a matrix by a column vector";
-static char M_Mathutils_VecMultMat_doc[] =
- "() - multiplies a row vector by a matrix";
-static char M_Mathutils_ProjectVecs_doc[] =
- "() - returns the projection vector from the projection of vecA onto vecB";
-static char M_Mathutils_RotationMatrix_doc[] =
- "() - construct a rotation matrix from an angle and axis of rotation";
-static char M_Mathutils_ScaleMatrix_doc[] =
- "() - construct a scaling matrix from a scaling factor";
-static char M_Mathutils_OrthoProjectionMatrix_doc[] =
- "() - construct a orthographic projection matrix from a selected plane";
-static char M_Mathutils_ShearMatrix_doc[] =
- "() - construct a shearing matrix from a plane of shear and a shear factor";
+static char M_Mathutils_DotVecs_doc[] = "() - return the dot product of two vectors";
+static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees";
+static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors";
+static char M_Mathutils_MatMultVec_doc[] = "() - multiplies a matrix by a column vector";
+static char M_Mathutils_VecMultMat_doc[] = "() - multiplies a row vector by a matrix";
+static char M_Mathutils_ProjectVecs_doc[] = "() - returns the projection vector from the projection of vecA onto vecB";
+static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation";
+static char M_Mathutils_ScaleMatrix_doc[] = "() - construct a scaling matrix from a scaling factor";
+static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane";
+static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor";
static char M_Mathutils_CopyMat_doc[] = "() - create a copy of a matrix";
-static char M_Mathutils_TranslationMatrix_doc[] =
- "() - create a translation matrix from a vector";
+static char M_Mathutils_TranslationMatrix_doc[] = "() - create a translation matrix from a vector";
static char M_Mathutils_CopyQuat_doc[] = "() - copy quatB to quatA";
static char M_Mathutils_CopyEuler_doc[] = "() - copy eulB to eultA";
-static char M_Mathutils_CrossQuats_doc[] =
- "() - return the mutliplication of two quaternions";
-static char M_Mathutils_DotQuats_doc[] =
- "() - return the dot product of two quaternions";
-static char M_Mathutils_Slerp_doc[] =
- "() - returns the interpolation between two quaternions";
-static char M_Mathutils_DifferenceQuats_doc[] =
- "() - return the angular displacment difference between two quats";
-static char M_Mathutils_RotateEuler_doc[] =
- "() - rotate euler by an axis and angle";
-
-
-/****************************************************************************/
-// Python method structure definition for Blender.Mathutils module:
-/****************************************************************************/
+static char M_Mathutils_CrossQuats_doc[] = "() - return the mutliplication of two quaternions";
+static char M_Mathutils_DotQuats_doc[] = "() - return the dot product of two quaternions";
+static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions";
+static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats";
+static char M_Mathutils_RotateEuler_doc[] = "() - rotate euler by an axis and angle";
+//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef M_Mathutils_methods[] = {
- {"Rand", ( PyCFunction ) M_Mathutils_Rand, METH_VARARGS,
- M_Mathutils_Rand_doc},
- {"Vector", ( PyCFunction ) M_Mathutils_Vector, METH_VARARGS,
- M_Mathutils_Vector_doc},
- {"CrossVecs", ( PyCFunction ) M_Mathutils_CrossVecs, METH_VARARGS,
- M_Mathutils_CrossVecs_doc},
- {"DotVecs", ( PyCFunction ) M_Mathutils_DotVecs, METH_VARARGS,
- M_Mathutils_DotVecs_doc},
- {"AngleBetweenVecs", ( PyCFunction ) M_Mathutils_AngleBetweenVecs,
- METH_VARARGS,
- M_Mathutils_AngleBetweenVecs_doc},
- {"MidpointVecs", ( PyCFunction ) M_Mathutils_MidpointVecs,
- METH_VARARGS,
- M_Mathutils_MidpointVecs_doc},
- {"VecMultMat", ( PyCFunction ) M_Mathutils_VecMultMat, METH_VARARGS,
- M_Mathutils_VecMultMat_doc},
- {"ProjectVecs", ( PyCFunction ) M_Mathutils_ProjectVecs, METH_VARARGS,
- M_Mathutils_ProjectVecs_doc},
- {"CopyVec", ( PyCFunction ) M_Mathutils_CopyVec, METH_VARARGS,
- M_Mathutils_CopyVec_doc},
- {"Matrix", ( PyCFunction ) M_Mathutils_Matrix, METH_VARARGS,
- M_Mathutils_Matrix_doc},
- {"RotationMatrix", ( PyCFunction ) M_Mathutils_RotationMatrix,
- METH_VARARGS,
- M_Mathutils_RotationMatrix_doc},
- {"ScaleMatrix", ( PyCFunction ) M_Mathutils_ScaleMatrix, METH_VARARGS,
- M_Mathutils_ScaleMatrix_doc},
- {"ShearMatrix", ( PyCFunction ) M_Mathutils_ShearMatrix, METH_VARARGS,
- M_Mathutils_ShearMatrix_doc},
- {"TranslationMatrix", ( PyCFunction ) M_Mathutils_TranslationMatrix,
- METH_VARARGS,
- M_Mathutils_TranslationMatrix_doc},
- {"CopyMat", ( PyCFunction ) M_Mathutils_CopyMat, METH_VARARGS,
- M_Mathutils_CopyMat_doc},
- {"OrthoProjectionMatrix",
- ( PyCFunction ) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS,
- M_Mathutils_OrthoProjectionMatrix_doc},
- {"MatMultVec", ( PyCFunction ) M_Mathutils_MatMultVec, METH_VARARGS,
- M_Mathutils_MatMultVec_doc},
- {"Quaternion", ( PyCFunction ) M_Mathutils_Quaternion, METH_VARARGS,
- M_Mathutils_Quaternion_doc},
- {"CopyQuat", ( PyCFunction ) M_Mathutils_CopyQuat, METH_VARARGS,
- M_Mathutils_CopyQuat_doc},
- {"CrossQuats", ( PyCFunction ) M_Mathutils_CrossQuats, METH_VARARGS,
- M_Mathutils_CrossQuats_doc},
- {"DotQuats", ( PyCFunction ) M_Mathutils_DotQuats, METH_VARARGS,
- M_Mathutils_DotQuats_doc},
- {"DifferenceQuats", ( PyCFunction ) M_Mathutils_DifferenceQuats,
- METH_VARARGS,
- M_Mathutils_DifferenceQuats_doc},
- {"Slerp", ( PyCFunction ) M_Mathutils_Slerp, METH_VARARGS,
- M_Mathutils_Slerp_doc},
- {"Euler", ( PyCFunction ) M_Mathutils_Euler, METH_VARARGS,
- M_Mathutils_Euler_doc},
- {"CopyEuler", ( PyCFunction ) M_Mathutils_CopyEuler, METH_VARARGS,
- M_Mathutils_CopyEuler_doc},
- {"RotateEuler", ( PyCFunction ) M_Mathutils_RotateEuler, METH_VARARGS,
- M_Mathutils_RotateEuler_doc},
+ {"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc},
+ {"Vector", (PyCFunction) M_Mathutils_Vector, METH_VARARGS, M_Mathutils_Vector_doc},
+ {"CrossVecs", (PyCFunction) M_Mathutils_CrossVecs, METH_VARARGS, M_Mathutils_CrossVecs_doc},
+ {"DotVecs", (PyCFunction) M_Mathutils_DotVecs, METH_VARARGS, M_Mathutils_DotVecs_doc},
+ {"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc},
+ {"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc},
+ {"VecMultMat", (PyCFunction) M_Mathutils_VecMultMat, METH_VARARGS, M_Mathutils_VecMultMat_doc},
+ {"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc},
+ {"CopyVec", (PyCFunction) M_Mathutils_CopyVec, METH_VARARGS, M_Mathutils_CopyVec_doc},
+ {"Matrix", (PyCFunction) M_Mathutils_Matrix, METH_VARARGS, M_Mathutils_Matrix_doc},
+ {"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
+ {"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
+ {"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
+ {"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_VARARGS, M_Mathutils_TranslationMatrix_doc},
+ {"CopyMat", (PyCFunction) M_Mathutils_CopyMat, METH_VARARGS, M_Mathutils_CopyMat_doc},
+ {"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
+ {"MatMultVec", (PyCFunction) M_Mathutils_MatMultVec, METH_VARARGS, M_Mathutils_MatMultVec_doc},
+ {"Quaternion", (PyCFunction) M_Mathutils_Quaternion, METH_VARARGS, M_Mathutils_Quaternion_doc},
+ {"CopyQuat", (PyCFunction) M_Mathutils_CopyQuat, METH_VARARGS, M_Mathutils_CopyQuat_doc},
+ {"CrossQuats", (PyCFunction) M_Mathutils_CrossQuats, METH_VARARGS, M_Mathutils_CrossQuats_doc},
+ {"DotQuats", (PyCFunction) M_Mathutils_DotQuats, METH_VARARGS, M_Mathutils_DotQuats_doc},
+ {"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc},
+ {"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc},
+ {"Euler", (PyCFunction) M_Mathutils_Euler, METH_VARARGS, M_Mathutils_Euler_doc},
+ {"CopyEuler", (PyCFunction) M_Mathutils_CopyEuler, METH_VARARGS, M_Mathutils_CopyEuler_doc},
+ {"RotateEuler", (PyCFunction) M_Mathutils_RotateEuler, METH_VARARGS, M_Mathutils_RotateEuler_doc},
{NULL, NULL, 0, NULL}
};
+//----------------------------MODULE INIT-------------------------
+PyObject *Mathutils_Init(void)
+{
+ PyObject *submodule;
+
+ //seed the generator for the rand function
+ BLI_srand((unsigned int) (PIL_check_seconds_timer() *
+ 0x7FFFFFFF));
+
+ submodule = Py_InitModule3("Blender.Mathutils",
+ M_Mathutils_methods, M_Mathutils_doc);
+ return (submodule);
+}
+//-----------------------------METHODS----------------------------
+//----------------column_vector_multiplication (internal)---------
+//COLUMN VECTOR Multiplication (Matrix X Vector)
+// [1][2][3] [a]
+// [4][5][6] * [b]
+// [7][8][9] [c]
+//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
+PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
+{
+ float vecNew[4], vecCopy[4];
+ double dot = 0.0f;
+ int x, y, z = 0;
+
+ if(mat->rowSize != vec->size){
+ if(mat->rowSize == 4 && vec->size != 3){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "matrix * vector: matrix row size and vector size must be the same\n");
+ }else{
+ vecCopy[3] = 0.0f;
+ }
+ }
+ for(x = 0; x < vec->size; x++){
+ vecCopy[x] = vec->vec[x];
+ }
-//***************************************************************************
-// Function: M_Mathutils_Rand
-//***************************************************************************
-static PyObject *M_Mathutils_Rand( PyObject * self, PyObject * args )
+ for(x = 0; x < mat->rowSize; x++) {
+ for(y = 0; y < mat->colSize; y++) {
+ dot += mat->matrix[x][y] * vecCopy[y];
+ }
+ vecNew[z++] = dot;
+ dot = 0.0f;
+ }
+ return (PyObject *) newVectorObject(vecNew, vec->size, Py_NEW);
+}
+//-----------------row_vector_multiplication (internal)-----------
+//ROW VECTOR Multiplication - Vector X Matrix
+//[x][y][z] * [1][2][3]
+// [4][5][6]
+// [7][8][9]
+//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
+PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
{
+ float vecNew[4], vecCopy[4];
+ double dot = 0.0f;
+ int x, y, z = 0, size;
+
+ if(mat->colSize != vec->size){
+ if(mat->rowSize == 4 && vec->size != 3){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "vector * matrix: matrix column size and the vector size must be the same\n");
+ }else{
+ vecCopy[3] = 0.0f;
+ }
+ }
+ size = vec->size;
+ for(x = 0; x < vec->size; x++){
+ vecCopy[x] = vec->vec[x];
+ }
+ //muliplication
+ for(x = 0; x < mat->colSize; x++) {
+ for(y = 0; y < mat->rowSize; y++) {
+ dot += mat->matrix[y][x] * vecCopy[y];
+ }
+ vecNew[z++] = dot;
+ dot = 0.0f;
+ }
+ return (PyObject *) newVectorObject(vecNew, size, Py_NEW);
+}
+//----------------------------------Mathutils.Rand() --------------------
+//returns a random number between a high and low value
+PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)
+{
float high, low, range;
double rand;
+ //initializers
high = 1.0;
low = 0.0;
- if( !PyArg_ParseTuple( args, "|ff", &low, &high ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected optional float & float\n" ) );
+ if(!PyArg_ParseTuple(args, "|ff", &low, &high))
+ return (EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Rand(): expected nothing or optional (float, float)\n"));
- if( ( high < low ) || ( high < 0 && low > 0 ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "high value should be larger than low value\n" ) );
-
- //seed the generator
- BLI_srand( ( unsigned int ) ( PIL_check_seconds_timer( ) *
- 0x7FFFFFFF ) );
+ if((high < low) || (high < 0 && low > 0))
+ return (EXPP_ReturnPyObjError(PyExc_ValueError,
+ "Mathutils.Rand(): high value should be larger than low value\n"));
//get the random number 0 - 1
- rand = BLI_drand( );
+ rand = BLI_drand();
//set it to range
range = high - low;
rand = rand * range;
rand = rand + low;
- return PyFloat_FromDouble( ( double ) rand );
+ return PyFloat_FromDouble(rand);
}
-
-//***************************************************************************
-// Function: M_Mathutils_Vector
-// Python equivalent: Blender.Mathutils.Vector
+//----------------------------------VECTOR FUNCTIONS---------------------
+//----------------------------------Mathutils.Vector() ------------------
// Supports 2D, 3D, and 4D vector objects both int and float values
-// accepted. Mixed float and int values accepted. Ints are parsed to float
-//***************************************************************************
-static PyObject *M_Mathutils_Vector( PyObject * self, PyObject * args )
+// accepted. Mixed float and int values accepted. Ints are parsed to float
+PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args)
{
PyObject *listObject = NULL;
int size, i;
float vec[4];
size = PySequence_Length(args);
- if ( size == 1 ) {
+ if (size == 1) {
listObject = PySequence_GetItem(args, 0);
- if ( PySequence_Check(listObject) ) {
+ if (PySequence_Check(listObject)) {
size = PySequence_Length(listObject);
- } else {
- goto bad_args; // Single argument was not a sequence
+ } else { // Single argument was not a sequence
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
}
- } else if ( size == 0 ) {
- return ( PyObject * ) newVectorObject( NULL, 3 );
+ } else if (size == 0) {
+ //returns a new empty 3d vector
+ return (PyObject *) newVectorObject(NULL, 3, Py_NEW);
} else {
- Py_INCREF(args);
- listObject = args;
+ listObject = EXPP_incr_ret(args);
}
- if (size<2 || size>4) {
- goto bad_args; // Invalid vector size
+ if (size<2 || size>4) { // Invalid vector size
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
}
for (i=0; i<size; i++) {
PyObject *v, *f;
v=PySequence_GetItem(listObject, i);
- if (v==NULL) {
- Py_DECREF(listObject);
- return NULL; // Failed to read sequence
+ if (v==NULL) { // Failed to read sequence
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_RuntimeError,
+ "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
}
f=PyNumber_Float(v);
- if(f==NULL) {
+ if(f==NULL) { // parsed item not a number
Py_DECREF(v);
- goto bad_args;
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
}
vec[i]=PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
- Py_DECREF(v);
+ EXPP_decr2(f,v);
}
Py_DECREF(listObject);
- return ( PyObject * ) newVectorObject( vec, size );
-
-bad_args:
- Py_XDECREF(listObject);
- PyErr_SetString( PyExc_TypeError, "2-4 floats expected (optionally in a sequence)");
- return NULL;
+ return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
-
-//***************************************************************************
-//Begin Vector Utils
-
-static PyObject *M_Mathutils_CopyVec( PyObject * self, PyObject * args )
-{
- VectorObject *vector;
- float *vec;
- int x;
- PyObject *retval;
-
- if( !PyArg_ParseTuple( args, "O!", &vector_Type, &vector ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected vector type\n" ) );
-
- vec = PyMem_Malloc( vector->size * sizeof( float ) );
- for( x = 0; x < vector->size; x++ ) {
- vec[x] = vector->vec[x];
- }
-
- retval = ( PyObject * ) newVectorObject( vec, vector->size );
-
- PyMem_Free( vec );
- return retval;
-}
-
+//----------------------------------Mathutils.CrossVecs() ---------------
//finds perpendicular vector - only 3D is supported
-static PyObject *M_Mathutils_CrossVecs( PyObject * self, PyObject * args )
+PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args)
{
- PyObject *vecCross;
- VectorObject *vec1;
- VectorObject *vec2;
-
- if( !PyArg_ParseTuple
- ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected 2 vector types\n" ) );
- if( vec1->size != 3 || vec2->size != 3 )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "only 3D vectors are supported\n" ) );
-
- vecCross = newVectorObject( NULL, 3 );
- Crossf( ( ( VectorObject * ) vecCross )->vec, vec1->vec, vec2->vec );
-
+ PyObject *vecCross = NULL;
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+
+ if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
+ if(vec1->size != 3 || vec2->size != 3)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
+
+ vecCross = newVectorObject(NULL, 3, Py_NEW);
+ Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec);
return vecCross;
}
-
-static PyObject *M_Mathutils_DotVecs( PyObject * self, PyObject * args )
+//----------------------------------Mathutils.DotVec() -------------------
+//calculates the dot product of two vectors
+PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args)
{
- VectorObject *vec1;
- VectorObject *vec2;
- float dot;
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+ double dot = 0.0f;
int x;
- dot = 0;
- if( !PyArg_ParseTuple
- ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected vector types\n" ) );
- if( vec1->size != vec2->size )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
+ if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.DotVec(): expects (2) vector objects of the same size\n");
+ if(vec1->size != vec2->size)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.DotVec(): expects (2) vector objects of the same size\n");
- for( x = 0; x < vec1->size; x++ ) {
+ for(x = 0; x < vec1->size; x++) {
dot += vec1->vec[x] * vec2->vec[x];
}
-
- return PyFloat_FromDouble( ( double ) dot );
+ return PyFloat_FromDouble(dot);
}
-
-static PyObject *M_Mathutils_AngleBetweenVecs( PyObject * self,
- PyObject * args )
+//----------------------------------Mathutils.AngleBetweenVecs() ---------
+//calculates the angle between 2 vectors
+PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
{
- // original vectors, makea copy of these
- VectorObject *vec1;
- VectorObject *vec2;
-
- /* copy of the 2 input vectors, these can be normalized
- without input vectors being normalized. bugfix
- no need to use vector objects, just use floats
- No Chance of 4D vectors getting in.
-
- Use doubles, since floats will return nan when input vecs are large.*/
- double vec1copy[3];
- double vec2copy[3];
-
- float norm;
- double dot, angleRads;
- int x;
-
- dot = 0.0f;
- if( !PyArg_ParseTuple
- ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected 2 vector types\n" ) );
- if( vec1->size != vec2->size )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
- if( vec1->size > 3 || vec2->size > 3 )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "only 2D,3D vectors are supported\n" ) );
-
- /* Check for 2 vectors being the same */
- if (vec1->size == 3 &&
- vec1->vec[0] == vec2->vec[0] &&
- vec1->vec[1] == vec2->vec[1] &&
- vec1->vec[2] == vec2->vec[2])
- return PyFloat_FromDouble( dot ); /* 2 points are the same, return zero */
- else if (vec1->size == 2 &&
- vec1->vec[0] == vec2->vec[0] &&
- vec1->vec[1] == vec2->vec[1])
- return PyFloat_FromDouble( dot ); /* 2 points are the same, return zero */
-
- //normalize vec1copy
- norm = 0.0f;
- for( x = 0; x < vec1->size; x++ ) {
- vec1copy[x] = vec1->vec[x]; /* Assign new vector in the loop */
- norm += vec1copy[x] * vec1copy[x];
- }
- norm = ( float ) sqrt( norm );
- for( x = 0; x < vec1->size; x++ ) {
- vec1copy[x] /= norm;
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+ double dot = 0.0f, angleRads;
+ double norm_a = 0.0f, norm_b = 0.0f;
+ double vec_a[4], vec_b[4];
+ int x, size;
+
+ if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.AngleBetweenVecs(): expects (2) vector objects of the same size\n");
+ if(vec1->size != vec2->size)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.AngleBetweenVecs(): expects (2) vector objects of the same size\n");
+
+ //since size is the same....
+ size = vec1->size;
+
+ //copy vector info
+ for (x = 0; x < vec1->size; x++){
+ vec_a[x] = vec1->vec[x];
+ vec_b[x] = vec2->vec[x];
}
- //normalize vec2copy
- norm = 0.0f;
- for( x = 0; x < vec2->size; x++ ) {
- vec2copy[x] = vec2->vec[x]; /* Assign new vector in the loop */
- norm += vec2copy[x] * vec2copy[x];
+ //normalize vectors
+ for(x = 0; x < size; x++) {
+ norm_a += vec_a[x] * vec_a[x];
+ norm_b += vec_b[x] * vec_b[x];
}
- norm = ( float ) sqrt( norm );
- for( x = 0; x < vec2->size; x++ ) {
- vec2copy[x] /= norm;
+ norm_a = (double)sqrt(norm_a);
+ norm_b = (double)sqrt(norm_b);
+ for(x = 0; x < size; x++) {
+ vec_a[x] /= norm_a;
+ vec_b[x] /= norm_b;
}
-
//dot product
- for( x = 0; x < vec1->size; x++ ) {
- dot += vec1copy[x] * vec2copy[x];
+ for(x = 0; x < size; x++) {
+ dot += vec_a[x] * vec_b[x];
}
-
//I believe saacos checks to see if the vectors are normalized
- angleRads = (double)acos( dot );
+ angleRads = (double)acos(dot);
- return PyFloat_FromDouble( angleRads * ( 180 / Py_PI ) );
+ return PyFloat_FromDouble(angleRads * (180 / Py_PI));
}
-
-static PyObject *M_Mathutils_MidpointVecs( PyObject * self, PyObject * args )
+//----------------------------------Mathutils.MidpointVecs() -------------
+//calculates the midpoint between 2 vectors
+PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
{
-
- VectorObject *vec1;
- VectorObject *vec2;
- float *vec;
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+ float vec[4];
int x;
- PyObject *retval;
-
- if( !PyArg_ParseTuple
- ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected vector types\n" ) );
- if( vec1->size != vec2->size )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
-
- vec = PyMem_Malloc( vec1->size * sizeof( float ) );
-
- for( x = 0; x < vec1->size; x++ ) {
- vec[x] = 0.5f * ( vec1->vec[x] + vec2->vec[x] );
- }
- retval = ( PyObject * ) newVectorObject( vec, vec1->size );
- PyMem_Free( vec );
- return retval;
-}
-
-//row vector multiplication
-static PyObject *M_Mathutils_VecMultMat( PyObject * self, PyObject * args )
-{
- PyObject *ob1 = NULL;
- PyObject *ob2 = NULL;
- MatrixObject *mat;
- VectorObject *vec;
- PyObject *retval;
- float *vecNew;
- int x, y;
- int z = 0;
- float dot = 0.0f;
-
- //get pyObjects
- if( !PyArg_ParseTuple
- ( args, "O!O!", &vector_Type, &ob1, &matrix_Type, &ob2 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "vector and matrix object expected - in that order\n" ) );
-
- mat = ( MatrixObject * ) ob2;
- vec = ( VectorObject * ) ob1;
- if( mat->colSize != vec->size )
- return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
- "matrix col size and vector size must be the same\n" ) );
-
- vecNew = PyMem_Malloc( vec->size * sizeof( float ) );
-
- for( x = 0; x < mat->colSize; x++ ) {
- for( y = 0; y < mat->rowSize; y++ ) {
- dot += mat->matrix[y][x] * vec->vec[y];
- }
- vecNew[z] = dot;
- z++;
- dot = 0;
+ if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
+ if(vec1->size != vec2->size)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
+
+ for(x = 0; x < vec1->size; x++) {
+ vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
}
-
- retval = ( PyObject * ) newVectorObject( vecNew, vec->size );
-
- PyMem_Free( vecNew );
- return retval;
+ return (PyObject *) newVectorObject(vec, vec1->size, Py_NEW);
}
-
-static PyObject *M_Mathutils_ProjectVecs( PyObject * self, PyObject * args )
+//----------------------------------Mathutils.ProjectVecs() -------------
+//projects vector 1 onto vector 2
+PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
{
- VectorObject *vec1;
- VectorObject *vec2;
- PyObject *retval;
- float *vec;
- float dot = 0.0f;
- float dot2 = 0.0f;
- int x;
-
- if( !PyArg_ParseTuple
- ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError, "expected vector types\n" ) );
- if( vec1->size != vec2->size )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "vectors must be of the same size\n" ) );
-
- vec = PyMem_Malloc( vec1->size * sizeof( float ) );
-
- //dot of vec1 & vec2
- for( x = 0; x < vec1->size; x++ ) {
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+ float vec[4];
+ double dot = 0.0f, dot2 = 0.0f;
+ int x, size;
+
+ if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
+ if(vec1->size != vec2->size)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
+
+ //since they are the same size...
+ size = vec1->size;
+
+ //get dot products
+ for(x = 0; x < size; x++) {
dot += vec1->vec[x] * vec2->vec[x];
- }
- //dot of vec2 & vec2
- for( x = 0; x < vec2->size; x++ ) {
dot2 += vec2->vec[x] * vec2->vec[x];
}
+ //projection
dot /= dot2;
- for( x = 0; x < vec1->size; x++ ) {
- vec[x] = dot * vec2->vec[x];
+ for(x = 0; x < size; x++) {
+ vec[x] = (float)(dot * vec2->vec[x]);
}
-
- retval = ( PyObject * ) newVectorObject( vec, vec1->size );
- PyMem_Free( vec );
- return retval;
+ return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
-
-//End Vector Utils
-
-//***************************************************************************
-// Function: M_Mathutils_Matrix // Python equivalent: Blender.Mathutils.Matrix
-//***************************************************************************
+//----------------------------------MATRIX FUNCTIONS--------------------
+//----------------------------------Mathutils.Matrix() -----------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args )
+//create a new matrix type
+PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args)
{
-
- PyObject *rowA = NULL;
- PyObject *rowB = NULL;
- PyObject *rowC = NULL;
- PyObject *rowD = NULL;
- PyObject *checkOb = NULL;
- PyObject *retval = NULL;
- int x, rowSize, colSize;
- float *mat;
- int OK;
-
- if( !PyArg_ParseTuple( args, "|O!O!O!O!", &PyList_Type, &rowA,
- &PyList_Type, &rowB,
- &PyList_Type, &rowC, &PyList_Type, &rowD ) ) {
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected 0, 2,3 or 4 lists\n" ) );
- }
-
- if( !rowA )
- return newMatrixObject( NULL, 4, 4 );
-
- if( !rowB )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected 0, 2,3 or 4 lists\n" ) );
-
- //get rowSize
- if( rowC ) {
- if( rowD ) {
- rowSize = 4;
- } else {
- rowSize = 3;
+ PyObject *listObject = NULL;
+ int argSize, seqSize = 0, i, j;
+ float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ argSize = PySequence_Length(args);
+ if(argSize > 4){ //bad arg nums
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ } else if (argSize == 0) { //return empty 4D matrix
+ return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW);
+ }else if (argSize == 1){
+ //copy constructor for matrix objects
+ PyObject *argObject;
+ argObject = PySequence_GetItem(args, 0);
+ Py_INCREF(argObject);
+ if(MatrixObject_Check(argObject)){
+ MatrixObject *mat;
+ mat = (MatrixObject*)argObject;
+ argSize = mat->rowSize; //rows
+ seqSize = mat->colSize; //cols
+ for(i = 0; i < (seqSize * argSize); i++){
+ matrix[i] = mat->contigPtr[i];
+ }
}
- } else {
- rowSize = 2;
- }
-
- //check size and get colSize
- OK = 0;
- if( ( PyList_Size( rowA ) == PyList_Size( rowB ) ) ) {
- if( rowC ) {
- if( ( PyList_Size( rowA ) == PyList_Size( rowC ) ) ) {
- if( rowD ) {
- if( ( PyList_Size( rowA ) ==
- PyList_Size( rowD ) ) ) {
- OK = 1;
+ Py_DECREF(argObject);
+ }else{ //2-4 arguments (all seqs? all same size?)
+ for(i =0; i < argSize; i++){
+ PyObject *argObject;
+ argObject = PySequence_GetItem(args, i);
+ if (PySequence_Check(argObject)) { //seq?
+ if(seqSize){ //0 at first
+ if(PySequence_Length(argObject) != seqSize){ //seq size not same
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
}
}
- OK = 1;
+ seqSize = PySequence_Length(argObject);
+ }else{ //arg not a sequence
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
}
- } else
- OK = 1;
- }
-
- if( !OK )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "each row of vector must contain the same number of parameters\n" );
- colSize = PyList_Size( rowA );
-
- //check for numeric types
- /* PyList_GetItem() returns borrowed ref */
- for( x = 0; x < colSize; x++ ) {
- checkOb = PyList_GetItem( rowA, x );
- if( !PyInt_Check( checkOb ) && !PyFloat_Check( checkOb ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "1st list - expected list of numbers\n" ) );
- checkOb = PyList_GetItem( rowB, x );
- if( !PyInt_Check( checkOb ) && !PyFloat_Check( checkOb ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "2nd list - expected list of numbers\n" ) );
- if( rowC ) {
- checkOb = PyList_GetItem( rowC, x );
- if( !PyInt_Check( checkOb )
- && !PyFloat_Check( checkOb ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "3rd list - expected list of numbers\n" ) );
- }
- if( rowD ) {
- checkOb = PyList_GetItem( rowD, x );
- if( !PyInt_Check( checkOb )
- && !PyFloat_Check( checkOb ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "4th list - expected list of numbers\n" ) );
+ Py_XDECREF(argObject);
}
- }
-
- //allocate space for 1D array
- mat = PyMem_Malloc( rowSize * colSize * sizeof( float ) );
-
- //parse rows
- for( x = 0; x < colSize; x++ ) {
- if( !PyArg_Parse( PyList_GetItem( rowA, x ), "f", &mat[x] ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "rowA - python list not parseable\n" );
- }
- for( x = 0; x < colSize; x++ ) {
- if( !PyArg_Parse
- ( PyList_GetItem( rowB, x ), "f", &mat[( colSize + x )] ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "rowB - python list not parseable\n" );
- }
- if( rowC ) {
- for( x = 0; x < colSize; x++ ) {
- if( !PyArg_Parse
- ( PyList_GetItem( rowC, x ), "f",
- &mat[( ( 2 * colSize ) + x )] ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "rowC - python list not parseable\n" );
- }
- }
- if( rowD ) {
- for( x = 0; x < colSize; x++ ) {
- if( !PyArg_Parse
- ( PyList_GetItem( rowD, x ), "f",
- &mat[( ( 3 * colSize ) + x )] ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "rowD - python list not parseable\n" );
+ //all is well... let's continue parsing
+ listObject = EXPP_incr_ret(args);
+ for (i = 0; i < argSize; i++){
+ PyObject *m;
+
+ m = PySequence_GetItem(listObject, i);
+ if (m == NULL) { // Failed to read sequence
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_RuntimeError,
+ "Mathutils.Matrix(): failed to parse arguments...\n");
+ }
+ for (j = 0; j < seqSize; j++) {
+ PyObject *s, *f;
+
+ s = PySequence_GetItem(m, j);
+ if (s == NULL) { // Failed to read sequence
+ Py_DECREF(m);
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_RuntimeError,
+ "Mathutils.Matrix(): failed to parse arguments...\n");
+ }
+ f = PyNumber_Float(s);
+ if(f == NULL) { // parsed item is not a number
+ EXPP_decr2(m,s);
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ }
+ matrix[(seqSize*i)+j]=PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(f,s);
+ }
+ Py_DECREF(m);
}
+ Py_DECREF(listObject);
}
- //pass to matrix creation
- retval = newMatrixObject( mat, rowSize, colSize );
-
- PyMem_Free( mat);
- return retval;
+ return (PyObject *)newMatrixObject(matrix, argSize, seqSize, Py_NEW);
}
-
-//***************************************************************************
-// Function: M_Mathutils_RotationMatrix
-// Python equivalent: Blender.Mathutils.RotationMatrix
-//***************************************************************************
+//----------------------------------Mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static PyObject *M_Mathutils_RotationMatrix( PyObject * self, PyObject * args )
+//creates a rotation matrix
+PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
{
- PyObject *retval;
- float *mat;
- float angle = 0.0f;
- char *axis = NULL;
VectorObject *vec = NULL;
+ char *axis = NULL;
int matSize;
- float norm = 0.0f;
- float cosAngle = 0.0f;
- float sinAngle = 0.0f;
-
- if( !PyArg_ParseTuple
- ( args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec ) ) {
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "expected float int and optional string and vector\n" ) );
+ float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple
+ (args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) {
+ return EXPP_ReturnPyObjError (PyExc_TypeError,
+ "Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
}
- if( angle < -360.0f || angle > 360.0f )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "angle size not appropriate\n" );
- if( matSize != 2 && matSize != 3 && matSize != 4 )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "can only return a 2x2 3x3 or 4x4 matrix\n" );
- if( matSize == 2 && ( axis != NULL || vec != NULL ) )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "cannot create a 2x2 rotation matrix around arbitrary axis\n" );
- if( ( matSize == 3 || matSize == 4 ) && axis == NULL )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "please choose an axis of rotation\n" );
- if( axis ) {
- if( ( ( strcmp( axis, "r" ) == 0 ) ||
- ( strcmp( axis, "R" ) == 0 ) ) && vec == NULL )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "please define the arbitrary axis of rotation\n" );
+ if(angle < -360.0f || angle > 360.0f)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.RotationMatrix(): angle size not appropriate\n");
+ if(matSize != 2 && matSize != 3 && matSize != 4)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ if(matSize == 2 && (axis != NULL || vec != NULL))
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
+ if((matSize == 3 || matSize == 4) && axis == NULL)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
+ if(axis) {
+ if(((strcmp(axis, "r") == 0) ||
+ (strcmp(axis, "R") == 0)) && vec == NULL)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n");
}
- if( vec ) {
- if( vec->size != 3 )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "the arbitrary axis must be a 3D vector\n" );
+ if(vec) {
+ if(vec->size != 3)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
}
-
- mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
-
//convert to radians
- angle = angle * ( float ) ( Py_PI / 180 );
-
- if( axis == NULL && matSize == 2 ) {
+ angle = angle * (float) (Py_PI / 180);
+ if(axis == NULL && matSize == 2) {
//2D rotation matrix
- mat[0] = ( ( float ) cos( ( double ) ( angle ) ) );
- mat[1] = ( ( float ) sin( ( double ) ( angle ) ) );
- mat[2] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
- mat[3] = ( ( float ) cos( ( double ) ( angle ) ) );
- } else if( ( strcmp( axis, "x" ) == 0 ) ||
- ( strcmp( axis, "X" ) == 0 ) ) {
+ mat[0] = (float) cosf (angle);
+ mat[1] = (float) sin (angle);
+ mat[2] = -((float) sin(angle));
+ mat[3] = (float) cos(angle);
+ } else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) {
//rotation around X
mat[0] = 1.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
- mat[3] = 0.0f;
- mat[4] = ( ( float ) cos( ( double ) ( angle ) ) );
- mat[5] = ( ( float ) sin( ( double ) ( angle ) ) );
- mat[6] = 0.0f;
- mat[7] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
- mat[8] = ( ( float ) cos( ( double ) ( angle ) ) );
- } else if( ( strcmp( axis, "y" ) == 0 ) ||
- ( strcmp( axis, "Y" ) == 0 ) ) {
+ mat[4] = (float) cos(angle);
+ mat[5] = (float) sin(angle);
+ mat[7] = -((float) sin(angle));
+ mat[8] = (float) cos(angle);
+ } else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) {
//rotation around Y
- mat[0] = ( ( float ) cos( ( double ) ( angle ) ) );
- mat[1] = 0.0f;
- mat[2] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
- mat[3] = 0.0f;
+ mat[0] = (float) cos(angle);
+ mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
- mat[5] = 0.0f;
- mat[6] = ( ( float ) sin( ( double ) ( angle ) ) );
- mat[7] = 0.0f;
- mat[8] = ( ( float ) cos( ( double ) ( angle ) ) );
- } else if( ( strcmp( axis, "z" ) == 0 ) ||
- ( strcmp( axis, "Z" ) == 0 ) ) {
+ mat[6] = (float) sin(angle);
+ mat[8] = (float) cos(angle);
+ } else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) {
//rotation around Z
- mat[0] = ( ( float ) cos( ( double ) ( angle ) ) );
- mat[1] = ( ( float ) sin( ( double ) ( angle ) ) );
- mat[2] = 0.0f;
- mat[3] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
- mat[4] = ( ( float ) cos( ( double ) ( angle ) ) );
- mat[5] = 0.0f;
- mat[6] = 0.0f;
- mat[7] = 0.0f;
+ mat[0] = (float) cos(angle);
+ mat[1] = (float) sin(angle);
+ mat[3] = -((float) sin(angle));
+ mat[4] = (float) cos(angle);
mat[8] = 1.0f;
- } else if( ( strcmp( axis, "r" ) == 0 ) ||
- ( strcmp( axis, "R" ) == 0 ) ) {
+ } else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) {
//arbitrary rotation
//normalize arbitrary axis
- norm = ( float ) sqrt( vec->vec[0] * vec->vec[0] +
+ norm = (float) sqrt(vec->vec[0] * vec->vec[0] +
vec->vec[1] * vec->vec[1] +
- vec->vec[2] * vec->vec[2] );
+ vec->vec[2] * vec->vec[2]);
vec->vec[0] /= norm;
vec->vec[1] /= norm;
vec->vec[2] /= norm;
//create matrix
- cosAngle = ( ( float ) cos( ( double ) ( angle ) ) );
- sinAngle = ( ( float ) sin( ( double ) ( angle ) ) );
- mat[0] = ( ( vec->vec[0] * vec->vec[0] ) * ( 1 - cosAngle ) ) +
+ cosAngle = (float) cos(angle);
+ sinAngle = (float) sin(angle);
+ mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
cosAngle;
- mat[1] = ( ( vec->vec[0] * vec->vec[1] ) * ( 1 - cosAngle ) ) +
- ( vec->vec[2] * sinAngle );
- mat[2] = ( ( vec->vec[0] * vec->vec[2] ) * ( 1 - cosAngle ) ) -
- ( vec->vec[1] * sinAngle );
- mat[3] = ( ( vec->vec[0] * vec->vec[1] ) * ( 1 - cosAngle ) ) -
- ( vec->vec[2] * sinAngle );
- mat[4] = ( ( vec->vec[1] * vec->vec[1] ) * ( 1 - cosAngle ) ) +
+ mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
+ (vec->vec[2] * sinAngle);
+ mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
+ (vec->vec[1] * sinAngle);
+ mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
+ (vec->vec[2] * sinAngle);
+ mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
cosAngle;
- mat[5] = ( ( vec->vec[1] * vec->vec[2] ) * ( 1 - cosAngle ) ) +
- ( vec->vec[0] * sinAngle );
- mat[6] = ( ( vec->vec[0] * vec->vec[2] ) * ( 1 - cosAngle ) ) +
- ( vec->vec[1] * sinAngle );
- mat[7] = ( ( vec->vec[1] * vec->vec[2] ) * ( 1 - cosAngle ) ) -
- ( vec->vec[0] * sinAngle );
- mat[8] = ( ( vec->vec[2] * vec->vec[2] ) * ( 1 - cosAngle ) ) +
+ mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
+ (vec->vec[0] * sinAngle);
+ mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
+ (vec->vec[1] * sinAngle);
+ mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
+ (vec->vec[0] * sinAngle);
+ mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
cosAngle;
} else {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "unrecognizable axis of rotation type - expected x,y,z or r\n" );
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n");
}
- if( matSize == 4 ) {
+ if(matSize == 4) {
//resize matrix
- mat[15] = 1.0f;
- mat[14] = 0.0f;
- mat[13] = 0.0f;
- mat[12] = 0.0f;
- mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -833,146 +604,93 @@ static PyObject *M_Mathutils_RotationMatrix( PyObject * self, PyObject * args )
mat[3] = 0.0f;
}
//pass to matrix creation
- retval = newMatrixObject( mat, matSize, matSize );
-
- PyMem_Free( mat );
- return retval;
+ return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
-
-//***************************************************************************
-// Function: M_Mathutils_TranslationMatrix
-// Python equivalent: Blender.Mathutils.TranslationMatrix
-//***************************************************************************
-static PyObject *M_Mathutils_TranslationMatrix( PyObject * self,
- PyObject * args )
+//----------------------------------Mathutils.TranslationMatrix() -------
+//creates a translation matrix
+PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args)
{
- VectorObject *vec;
- PyObject *retval;
- float *mat;
+ VectorObject *vec = NULL;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- if( !PyArg_ParseTuple( args, "O!", &vector_Type, &vec ) ) {
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected vector\n" ) );
+ if(!PyArg_ParseTuple(args, "O!", &vector_Type, &vec)) {
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.TranslationMatrix(): expected vector\n");
}
- if( vec->size != 3 && vec->size != 4 ) {
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "vector must be 3D or 4D\n" );
+ if(vec->size != 3 && vec->size != 4) {
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
}
-
- mat = PyMem_Malloc( 4 * 4 * sizeof( float ) );
- Mat4One( ( float ( * )[4] ) mat );
-
+ //create a identity matrix and add translation
+ Mat4One((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
- retval = newMatrixObject( mat, 4, 4 );
-
- PyMem_Free( mat );
- return retval;
+ return newMatrixObject(mat, 4, 4, Py_NEW);
}
-
-
-//***************************************************************************
-// Function: M_Mathutils_ScaleMatrix
-// Python equivalent: Blender.Mathutils.ScaleMatrix
-//***************************************************************************
+//----------------------------------Mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static PyObject *M_Mathutils_ScaleMatrix( PyObject * self, PyObject * args )
+//creates a scaling matrix
+PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
{
- float factor;
- int matSize;
VectorObject *vec = NULL;
- float *mat;
- float norm = 0.0f;
- int x;
- PyObject *retval;
-
- if( !PyArg_ParseTuple
- ( args, "fi|O!", &factor, &matSize, &vector_Type, &vec ) ) {
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "expected float int and optional vector\n" ) );
+ float norm = 0.0f, factor;
+ int matSize, x;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple
+ (args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
}
- if( matSize != 2 && matSize != 3 && matSize != 4 )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "can only return a 2x2 3x3 or 4x4 matrix\n" );
- if( vec ) {
- if( vec->size > 2 && matSize == 2 )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "please use 2D vectors when scaling in 2D\n" );
+ if(matSize != 2 && matSize != 3 && matSize != 4)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ if(vec) {
+ if(vec->size > 2 && matSize == 2)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
}
- mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
-
- if( vec == NULL ) { //scaling along axis
- if( matSize == 2 ) {
+ if(vec == NULL) { //scaling along axis
+ if(matSize == 2) {
mat[0] = factor;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
mat[3] = factor;
} else {
mat[0] = factor;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
- mat[3] = 0.0f;
mat[4] = factor;
- mat[5] = 0.0f;
- mat[6] = 0.0f;
- mat[7] = 0.0f;
mat[8] = factor;
}
- } else { //scaling in arbitrary direction
-
+ } else { //scaling in arbitrary direction
//normalize arbitrary axis
- for( x = 0; x < vec->size; x++ ) {
+ for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
- norm = ( float ) sqrt( norm );
- for( x = 0; x < vec->size; x++ ) {
+ norm = (float) sqrt(norm);
+ for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
- if( matSize == 2 ) {
- mat[0] = 1 +
- ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[0] ) );
- mat[1] = ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[1] ) );
- mat[2] = ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[1] ) );
- mat[3] = 1 +
- ( ( factor -
- 1 ) * ( vec->vec[1] * vec->vec[1] ) );
+ if(matSize == 2) {
+ mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
+ mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
- mat[0] = 1 +
- ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[0] ) );
- mat[1] = ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[1] ) );
- mat[2] = ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[2] ) );
- mat[3] = ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[1] ) );
- mat[4] = 1 +
- ( ( factor -
- 1 ) * ( vec->vec[1] * vec->vec[1] ) );
- mat[5] = ( ( factor -
- 1 ) * ( vec->vec[1] * vec->vec[2] ) );
- mat[6] = ( ( factor -
- 1 ) * ( vec->vec[0] * vec->vec[2] ) );
- mat[7] = ( ( factor -
- 1 ) * ( vec->vec[1] * vec->vec[2] ) );
- mat[8] = 1 +
- ( ( factor -
- 1 ) * ( vec->vec[2] * vec->vec[2] ) );
+ mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
+ mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
+ mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
+ mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
+ mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
+ mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
+ mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
- if( matSize == 4 ) {
+ if(matSize == 4) {
//resize matrix
- mat[15] = 1.0f;
- mat[14] = 0.0f;
- mat[13] = 0.0f;
- mat[12] = 0.0f;
- mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -983,152 +701,94 @@ static PyObject *M_Mathutils_ScaleMatrix( PyObject * self, PyObject * args )
mat[3] = 0.0f;
}
//pass to matrix creation
- retval = newMatrixObject( mat, matSize, matSize );
-
- PyMem_Free( mat );
- return retval;
+ return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
-
-//***************************************************************************
-// Function: M_Mathutils_OrthoProjectionMatrix
-// Python equivalent: Blender.Mathutils.OrthoProjectionMatrix
-//***************************************************************************
+//----------------------------------Mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static PyObject *M_Mathutils_OrthoProjectionMatrix( PyObject * self,
- PyObject * args )
+//creates an ortho projection matrix
+PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
{
- char *plane;
- int matSize;
- float *mat;
VectorObject *vec = NULL;
+ char *plane;
+ int matSize, x;
float norm = 0.0f;
- int x;
- PyObject *retval;
-
- if( !PyArg_ParseTuple
- ( args, "si|O!", &plane, &matSize, &vector_Type, &vec ) ) {
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "expected string and int and optional vector\n" ) );
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple
+ (args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
}
- if( matSize != 2 && matSize != 3 && matSize != 4 )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "can only return a 2x2 3x3 or 4x4 matrix\n" );
- if( vec ) {
- if( vec->size > 2 && matSize == 2 )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "please use 2D vectors when scaling in 2D\n" );
+ if(matSize != 2 && matSize != 3 && matSize != 4)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ if(vec) {
+ if(vec->size > 2 && matSize == 2)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
}
- if( vec == NULL ) { //ortho projection onto cardinal plane
- if( ( ( strcmp( plane, "x" ) == 0 )
- || ( strcmp( plane, "X" ) == 0 ) ) && matSize == 2 ) {
- mat = PyMem_Malloc( matSize * matSize *
- sizeof( float ) );
+ if(vec == NULL) { //ortho projection onto cardinal plane
+ if(((strcmp(plane, "x") == 0)
+ || (strcmp(plane, "X") == 0)) && matSize == 2) {
mat[0] = 1.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
- mat[3] = 0.0f;
- } else if( ( ( strcmp( plane, "y" ) == 0 )
- || ( strcmp( plane, "Y" ) == 0 ) )
- && matSize == 2 ) {
- mat = PyMem_Malloc( matSize * matSize *
- sizeof( float ) );
- mat[0] = 0.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
+ } else if(((strcmp(plane, "y") == 0)
+ || (strcmp(plane, "Y") == 0))
+ && matSize == 2) {
mat[3] = 1.0f;
- } else if( ( ( strcmp( plane, "xy" ) == 0 )
- || ( strcmp( plane, "XY" ) == 0 ) )
- && matSize > 2 ) {
- mat = PyMem_Malloc( matSize * matSize *
- sizeof( float ) );
+ } else if(((strcmp(plane, "xy") == 0)
+ || (strcmp(plane, "XY") == 0))
+ && matSize > 2) {
mat[0] = 1.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
- mat[3] = 0.0f;
mat[4] = 1.0f;
- mat[5] = 0.0f;
- mat[6] = 0.0f;
- mat[7] = 0.0f;
- mat[8] = 0.0f;
- } else if( ( ( strcmp( plane, "xz" ) == 0 )
- || ( strcmp( plane, "XZ" ) == 0 ) )
- && matSize > 2 ) {
- mat = PyMem_Malloc( matSize * matSize *
- sizeof( float ) );
+ } else if(((strcmp(plane, "xz") == 0)
+ || (strcmp(plane, "XZ") == 0))
+ && matSize > 2) {
mat[0] = 1.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
- mat[3] = 0.0f;
- mat[4] = 0.0f;
- mat[5] = 0.0f;
- mat[6] = 0.0f;
- mat[7] = 0.0f;
mat[8] = 1.0f;
- } else if( ( ( strcmp( plane, "yz" ) == 0 )
- || ( strcmp( plane, "YZ" ) == 0 ) )
- && matSize > 2 ) {
- mat = PyMem_Malloc( matSize * matSize *
- sizeof( float ) );
- mat[0] = 0.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
- mat[3] = 0.0f;
+ } else if(((strcmp(plane, "yz") == 0)
+ || (strcmp(plane, "YZ") == 0))
+ && matSize > 2) {
mat[4] = 1.0f;
- mat[5] = 0.0f;
- mat[6] = 0.0f;
- mat[7] = 0.0f;
mat[8] = 1.0f;
} else {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "unknown plane - expected: x, y, xy, xz, yz\n" );
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n");
}
- } else { //arbitrary plane
+ } else { //arbitrary plane
//normalize arbitrary axis
- for( x = 0; x < vec->size; x++ ) {
+ for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
- norm = ( float ) sqrt( norm );
-
- for( x = 0; x < vec->size; x++ ) {
+ norm = (float) sqrt(norm);
+ for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
-
- if( ( ( strcmp( plane, "r" ) == 0 )
- || ( strcmp( plane, "R" ) == 0 ) ) && matSize == 2 ) {
- mat = PyMem_Malloc( matSize * matSize *
- sizeof( float ) );
- mat[0] = 1 - ( vec->vec[0] * vec->vec[0] );
- mat[1] = -( vec->vec[0] * vec->vec[1] );
- mat[2] = -( vec->vec[0] * vec->vec[1] );
- mat[3] = 1 - ( vec->vec[1] * vec->vec[1] );
- } else if( ( ( strcmp( plane, "r" ) == 0 )
- || ( strcmp( plane, "R" ) == 0 ) )
- && matSize > 2 ) {
- mat = PyMem_Malloc( matSize * matSize *
- sizeof( float ) );
- mat[0] = 1 - ( vec->vec[0] * vec->vec[0] );
- mat[1] = -( vec->vec[0] * vec->vec[1] );
- mat[2] = -( vec->vec[0] * vec->vec[2] );
- mat[3] = -( vec->vec[0] * vec->vec[1] );
- mat[4] = 1 - ( vec->vec[1] * vec->vec[1] );
- mat[5] = -( vec->vec[1] * vec->vec[2] );
- mat[6] = -( vec->vec[0] * vec->vec[2] );
- mat[7] = -( vec->vec[1] * vec->vec[2] );
- mat[8] = 1 - ( vec->vec[2] * vec->vec[2] );
+ if(((strcmp(plane, "r") == 0)
+ || (strcmp(plane, "R") == 0)) && matSize == 2) {
+ mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
+ mat[1] = -(vec->vec[0] * vec->vec[1]);
+ mat[2] = -(vec->vec[0] * vec->vec[1]);
+ mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
+ } else if(((strcmp(plane, "r") == 0)
+ || (strcmp(plane, "R") == 0))
+ && matSize > 2) {
+ mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
+ mat[1] = -(vec->vec[0] * vec->vec[1]);
+ mat[2] = -(vec->vec[0] * vec->vec[2]);
+ mat[3] = -(vec->vec[0] * vec->vec[1]);
+ mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
+ mat[5] = -(vec->vec[1] * vec->vec[2]);
+ mat[6] = -(vec->vec[0] * vec->vec[2]);
+ mat[7] = -(vec->vec[1] * vec->vec[2]);
+ mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "unknown plane - expected: 'r' expected for axis designation\n" );
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
}
}
-
- if( matSize == 4 ) {
+ if(matSize == 4) {
//resize matrix
- mat[15] = 1.0f;
- mat[14] = 0.0f;
- mat[13] = 0.0f;
- mat[12] = 0.0f;
- mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -1139,95 +799,62 @@ static PyObject *M_Mathutils_OrthoProjectionMatrix( PyObject * self,
mat[3] = 0.0f;
}
//pass to matrix creation
- retval = newMatrixObject( mat, matSize, matSize );
-
- PyMem_Free( mat );
- return retval;
+ return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
-
-//***************************************************************************
-// Function: M_Mathutils_ShearMatrix
-// Python equivalent: Blender.Mathutils.ShearMatrix
-//***************************************************************************
-static PyObject *M_Mathutils_ShearMatrix( PyObject * self, PyObject * args )
+//----------------------------------Mathutils.ShearMatrix() -------------
+//creates a shear matrix
+PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
{
- float factor;
int matSize;
char *plane;
- float *mat;
- PyObject *retval;
+ float factor;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- if( !PyArg_ParseTuple( args, "sfi", &plane, &factor, &matSize ) ) {
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected string float and int\n" ) );
+ if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.ShearMatrix(): expected string float and int\n");
}
+ if(matSize != 2 && matSize != 3 && matSize != 4)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if( matSize != 2 && matSize != 3 && matSize != 4 )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "can only return a 2x2 3x3 or 4x4 matrix\n" );
-
- if( ( ( strcmp( plane, "x" ) == 0 ) || ( strcmp( plane, "X" ) == 0 ) )
- && matSize == 2 ) {
- mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
+ if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0))
+ && matSize == 2) {
mat[0] = 1.0f;
- mat[1] = 0.0f;
mat[2] = factor;
mat[3] = 1.0f;
- } else if( ( ( strcmp( plane, "y" ) == 0 )
- || ( strcmp( plane, "Y" ) == 0 ) ) && matSize == 2 ) {
- mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
+ } else if(((strcmp(plane, "y") == 0)
+ || (strcmp(plane, "Y") == 0)) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
- mat[2] = 0.0f;
mat[3] = 1.0f;
- } else if( ( ( strcmp( plane, "xy" ) == 0 )
- || ( strcmp( plane, "XY" ) == 0 ) ) && matSize > 2 ) {
- mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
+ } else if(((strcmp(plane, "xy") == 0)
+ || (strcmp(plane, "XY") == 0)) && matSize > 2) {
mat[0] = 1.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
- mat[3] = 0.0f;
mat[4] = 1.0f;
- mat[5] = 0.0f;
mat[6] = factor;
mat[7] = factor;
- mat[8] = 0.0f;
- } else if( ( ( strcmp( plane, "xz" ) == 0 )
- || ( strcmp( plane, "XZ" ) == 0 ) ) && matSize > 2 ) {
- mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
+ } else if(((strcmp(plane, "xz") == 0)
+ || (strcmp(plane, "XZ") == 0)) && matSize > 2) {
mat[0] = 1.0f;
- mat[1] = 0.0f;
- mat[2] = 0.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
- mat[6] = 0.0f;
- mat[7] = 0.0f;
mat[8] = 1.0f;
- } else if( ( ( strcmp( plane, "yz" ) == 0 )
- || ( strcmp( plane, "YZ" ) == 0 ) ) && matSize > 2 ) {
- mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
+ } else if(((strcmp(plane, "yz") == 0)
+ || (strcmp(plane, "YZ") == 0)) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
- mat[3] = 0.0f;
mat[4] = 1.0f;
- mat[5] = 0.0f;
- mat[6] = 0.0f;
- mat[7] = 0.0f;
mat[8] = 1.0f;
} else {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n" );
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
}
-
- if( matSize == 4 ) {
+ if(matSize == 4) {
//resize matrix
- mat[15] = 1.0f;
- mat[14] = 0.0f;
- mat[13] = 0.0f;
- mat[12] = 0.0f;
- mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -1238,388 +865,398 @@ static PyObject *M_Mathutils_ShearMatrix( PyObject * self, PyObject * args )
mat[3] = 0.0f;
}
//pass to matrix creation
- retval = newMatrixObject( mat, matSize, matSize );
-
- PyMem_Free( mat );
- return retval;
+ return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
-
-//***************************************************************************
-//Begin Matrix Utils
-
-static PyObject *M_Mathutils_CopyMat( PyObject * self, PyObject * args )
+//----------------------------------QUATERNION FUNCTIONS-----------------
+//----------------------------------Mathutils.Quaternion() --------------
+PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args)
{
- MatrixObject *matrix;
- float *mat;
- int x, y, z;
- PyObject *retval;
-
- if( !PyArg_ParseTuple( args, "O!", &matrix_Type, &matrix ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected matrix\n" ) );
-
- mat = PyMem_Malloc( matrix->rowSize * matrix->colSize *
- sizeof( float ) );
-
- z = 0;
- for( x = 0; x < matrix->rowSize; x++ ) {
- for( y = 0; y < matrix->colSize; y++ ) {
- mat[z] = matrix->matrix[x][y];
- z++;
+ PyObject *listObject = NULL, *n, *q, *f;
+ int size, i;
+ float quat[4];
+ double norm = 0.0f, angle = 0.0f;
+
+ size = PySequence_Length(args);
+ if (size == 1 || size == 2) { //seq?
+ listObject = PySequence_GetItem(args, 0);
+ if (PySequence_Check(listObject)) {
+ size = PySequence_Length(listObject);
+ if ((size == 4 && PySequence_Length(args) !=1) ||
+ (size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
+ // invalid args/size
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
+ if(size == 3){ //get angle in axis/angle
+ n = PyNumber_Float(PySequence_GetItem(args, 1));
+ if(n == NULL) { // parsed item not a number or getItem fail
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
+ angle = PyFloat_AS_DOUBLE(n);
+ Py_DECREF(n);
+ }
+ }else{
+ listObject = PySequence_GetItem(args, 1);
+ if (PySequence_Check(listObject)) {
+ size = PySequence_Length(listObject);
+ if (size != 3) {
+ // invalid args/size
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
+ n = PyNumber_Float(PySequence_GetItem(args, 0));
+ if(n == NULL) { // parsed item not a number or getItem fail
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
+ angle = PyFloat_AS_DOUBLE(n);
+ Py_DECREF(n);
+ } else { // argument was not a sequence
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
}
+ } else if (size == 0) { //returns a new empty quat
+ return (PyObject *) newQuaternionObject(NULL, Py_NEW);
+ } else {
+ listObject = EXPP_incr_ret(args);
}
- retval = ( PyObject * ) newMatrixObject( mat, matrix->rowSize,
- matrix->colSize );
- PyMem_Free( mat );
- return retval;
-}
-
-static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args )
-{
-
- PyObject *ob1 = NULL;
- PyObject *ob2 = NULL;
- MatrixObject *mat;
- VectorObject *vec;
- PyObject *retval;
- float *vecNew;
- int x, y;
- int z = 0;
- float dot = 0.0f;
-
- //get pyObjects
- if( !PyArg_ParseTuple
- ( args, "O!O!", &matrix_Type, &ob1, &vector_Type, &ob2 ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "matrix and vector object expected - in that order\n" ) );
-
- mat = ( MatrixObject * ) ob1;
- vec = ( VectorObject * ) ob2;
-
- if( mat->rowSize != vec->size )
- return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
- "matrix row size and vector size must be the same\n" ) );
-
- vecNew = PyMem_Malloc( vec->size * sizeof( float ) );
-
- for( x = 0; x < mat->rowSize; x++ ) {
- for( y = 0; y < mat->colSize; y++ ) {
- dot += mat->matrix[x][y] * vec->vec[y];
+ if (size == 3) { // invalid quat size
+ if(PySequence_Length(args) != 2){
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
+ }else{
+ if(size != 4){
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
}
- vecNew[z] = dot;
- z++;
- dot = 0;
}
-
- retval = ( PyObject * ) newVectorObject( vecNew, vec->size );
-
- PyMem_Free( vecNew );
- return retval;
-}
-
-//***************************************************************************
-// Function: M_Mathutils_Quaternion
-// Python equivalent: Blender.Mathutils.Quaternion
-//***************************************************************************
-static PyObject *M_Mathutils_Quaternion( PyObject * self, PyObject * args )
-{
- PyObject *listObject;
- float *vec = NULL;
- float *quat = NULL;
- float angle = 0.0f;
- int x;
- float norm;
- PyObject *retval;
-
- if( !PyArg_ParseTuple
- ( args, "O!|f", &PyList_Type, &listObject, &angle ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "expected list and optional float\n" ) );
-
- if( PyList_Size( listObject ) != 4 && PyList_Size( listObject ) != 3 )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "3 or 4 expected floats for the quaternion\n" ) );
-
- vec = PyMem_Malloc( PyList_Size( listObject ) * sizeof( float ) );
- for( x = 0; x < PyList_Size( listObject ); x++ ) {
- if( !PyArg_Parse
- ( PyList_GetItem( listObject, x ), "f", &vec[x] ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "python list not parseable\n" );
+ for (i=0; i<size; i++) { //parse
+ q = PySequence_GetItem(listObject, i);
+ if (q == NULL) { // Failed to read sequence
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_RuntimeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
+ f = PyNumber_Float(q);
+ if(f == NULL) { // parsed item not a number
+ Py_DECREF(q);
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ }
+ quat[i] = PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(f, q);
}
-
- if( PyList_Size( listObject ) == 3 ) { //an axis of rotation
- norm = ( float ) sqrt( vec[0] * vec[0] + vec[1] * vec[1] +
- vec[2] * vec[2] );
-
- vec[0] /= norm;
- vec[1] /= norm;
- vec[2] /= norm;
-
- angle = angle * ( float ) ( Py_PI / 180 );
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- quat[0] = ( float ) ( cos( ( double ) ( angle ) / 2 ) );
- quat[1] =
- ( float ) ( sin( ( double ) ( angle ) / 2 ) ) * vec[0];
- quat[2] =
- ( float ) ( sin( ( double ) ( angle ) / 2 ) ) * vec[1];
- quat[3] =
- ( float ) ( sin( ( double ) ( angle ) / 2 ) ) * vec[2];
-
- retval = newQuaternionObject( quat );
- } else
- retval = newQuaternionObject( vec );
-
- /* freeing a NULL ptr is ok */
- PyMem_Free( vec );
- PyMem_Free( quat );
-
- return retval;
+ if(size == 3){ //calculate the quat based on axis/angle
+ norm = sqrt(quat[0] * quat[0] + quat[1] * quat[1] + quat[2] * quat[2]);
+ quat[0] /= norm;
+ quat[1] /= norm;
+ quat[2] /= norm;
+
+ angle = angle * (Py_PI / 180);
+ quat[3] =(float) (sin(angle/ 2.0f)) * quat[2];
+ quat[2] =(float) (sin(angle/ 2.0f)) * quat[1];
+ quat[1] =(float) (sin(angle/ 2.0f)) * quat[0];
+ quat[0] =(float) (cos(angle/ 2.0f));
+ }
+ Py_DECREF(listObject);
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
-
-//***************************************************************************
-//Begin Quaternion Utils
-
-static PyObject *M_Mathutils_CopyQuat( PyObject * self, PyObject * args )
+//----------------------------------Mathutils.CrossQuats() ----------------
+//quaternion multiplication - associate not commutative
+PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args)
{
- QuaternionObject *quatU;
- float *quat = NULL;
- PyObject *retval;
-
- if( !PyArg_ParseTuple( args, "O!", &quaternion_Type, &quatU ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected Quaternion type" ) );
-
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- quat[0] = quatU->quat[0];
- quat[1] = quatU->quat[1];
- quat[2] = quatU->quat[2];
- quat[3] = quatU->quat[3];
-
- retval = ( PyObject * ) newQuaternionObject( quat );
- PyMem_Free( quat );
- return retval;
-}
+ QuaternionObject *quatU = NULL, *quatV = NULL;
+ float quat[4];
-static PyObject *M_Mathutils_CrossQuats( PyObject * self, PyObject * args )
-{
- QuaternionObject *quatU;
- QuaternionObject *quatV;
- float *quat = NULL;
- PyObject *retval;
-
- if( !PyArg_ParseTuple( args, "O!O!", &quaternion_Type, &quatU,
- &quaternion_Type, &quatV ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected Quaternion types" ) );
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- QuatMul( quat, quatU->quat, quatV->quat );
-
- retval = ( PyObject * ) newQuaternionObject( quat );
- PyMem_Free( quat );
- return retval;
-}
+ if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
+ &quaternion_Type, &quatV))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,"Mathutils.CrossQuats(): expected Quaternion types");
+ QuatMul(quat, quatU->quat, quatV->quat);
-static PyObject *M_Mathutils_DotQuats( PyObject * self, PyObject * args )
+ return (PyObject*) newQuaternionObject(quat, Py_NEW);
+}
+//----------------------------------Mathutils.DotQuats() ----------------
+//returns the dot product of 2 quaternions
+PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args)
{
- QuaternionObject *quatU;
- QuaternionObject *quatV;
+ QuaternionObject *quatU = NULL, *quatV = NULL;
+ double dot = 0.0f;
int x;
- float dot = 0.0f;
- if( !PyArg_ParseTuple( args, "O!O!", &quaternion_Type, &quatU,
- &quaternion_Type, &quatV ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected Quaternion types" ) );
+ if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
+ &quaternion_Type, &quatV))
+ return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DotQuats(): expected Quaternion types");
- for( x = 0; x < 4; x++ ) {
+ for(x = 0; x < 4; x++) {
dot += quatU->quat[x] * quatV->quat[x];
}
-
- return PyFloat_FromDouble( ( double ) ( dot ) );
+ return PyFloat_FromDouble(dot);
}
-
-static PyObject *M_Mathutils_DifferenceQuats( PyObject * self,
- PyObject * args )
+//----------------------------------Mathutils.DifferenceQuats() ---------
+//returns the difference between 2 quaternions
+PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
{
- QuaternionObject *quatU;
- QuaternionObject *quatV;
- float *quat = NULL;
- float *tempQuat = NULL;
- PyObject *retval;
+ QuaternionObject *quatU = NULL, *quatV = NULL;
+ float quat[4], tempQuat[4];
+ double dot = 0.0f;
int x;
- float dot = 0.0f;
- if( !PyArg_ParseTuple( args, "O!O!", &quaternion_Type,
- &quatU, &quaternion_Type, &quatV ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected Quaternion types" ) );
-
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- tempQuat = PyMem_Malloc( 4 * sizeof( float ) );
+ if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type,
+ &quatU, &quaternion_Type, &quatV))
+ return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");
tempQuat[0] = quatU->quat[0];
tempQuat[1] = -quatU->quat[1];
tempQuat[2] = -quatU->quat[2];
tempQuat[3] = -quatU->quat[3];
- dot = ( float ) sqrt( ( double ) tempQuat[0] * ( double ) tempQuat[0] +
- ( double ) tempQuat[1] * ( double ) tempQuat[1] +
- ( double ) tempQuat[2] * ( double ) tempQuat[2] +
- ( double ) tempQuat[3] *
- ( double ) tempQuat[3] );
+ dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] * tempQuat[1] +
+ tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
- for( x = 0; x < 4; x++ ) {
- tempQuat[x] /= ( dot * dot );
+ for(x = 0; x < 4; x++) {
+ tempQuat[x] /= (dot * dot);
}
- QuatMul( quat, tempQuat, quatV->quat );
-
- retval = ( PyObject * ) newQuaternionObject( quat );
-
- PyMem_Free( quat );
- PyMem_Free( tempQuat );
- return retval;
+ QuatMul(quat, tempQuat, quatV->quat);
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
-
-static PyObject *M_Mathutils_Slerp( PyObject * self, PyObject * args )
+//----------------------------------Mathutils.Slerp() ------------------
+//attemps to interpolate 2 quaternions and return the result
+PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
{
- QuaternionObject *quatU;
- QuaternionObject *quatV;
- float *quat = NULL;
- PyObject *retval;
- float param, x, y, cosD, sinD, deltaD, IsinD, val;
- int flag, z;
-
- if( !PyArg_ParseTuple( args, "O!O!f", &quaternion_Type,
- &quatU, &quaternion_Type, &quatV, &param ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected Quaternion types and float" ) );
-
- quat = PyMem_Malloc( 4 * sizeof( float ) );
-
- cosD = quatU->quat[0] * quatV->quat[0] +
- quatU->quat[1] * quatV->quat[1] +
- quatU->quat[2] * quatV->quat[2] +
- quatU->quat[3] * quatV->quat[3];
-
- flag = 0;
- if( cosD < 0.0f ) {
- flag = 1;
- cosD = -cosD;
+ QuaternionObject *quatU = NULL, *quatV = NULL;
+ float quat[4], quat_u[4], quat_v[4], param;
+ double x, y, dot, sinT, angle, IsinT;
+ int z;
+
+ if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type,
+ &quatU, &quaternion_Type, &quatV, &param))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Slerp(): expected Quaternion types and float");
+
+ if(param > 1.0f || param < 0.0f)
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
+
+ //copy quats
+ for(z = 0; z < 4; z++){
+ quat_u[z] = quatU->quat[z];
+ quat_v[z] = quatV->quat[z];
}
- if( cosD > .99999f ) {
+
+ //dot product
+ dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] +
+ quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3];
+
+ //if negative negate a quat (shortest arc)
+ if(dot < 0.0f) {
+ quat_v[0] = -quat_v[0];
+ quat_v[1] = -quat_v[1];
+ quat_v[2] = -quat_v[2];
+ quat_v[3] = -quat_v[3];
+ dot = -dot;
+ }
+ if(dot > .99999f) { //very close
x = 1.0f - param;
y = param;
} else {
- sinD = ( float ) sqrt( 1.0f - cosD * cosD );
- deltaD = ( float ) atan2( sinD, cosD );
- IsinD = 1.0f / sinD;
- x = ( float ) sin( ( 1.0f - param ) * deltaD ) * IsinD;
- y = ( float ) sin( param * deltaD ) * IsinD;
- }
- for( z = 0; z < 4; z++ ) {
- val = quatV->quat[z];
- if( val )
- val = -val;
- quat[z] = ( quatU->quat[z] * x ) + ( val * y );
+ //calculate sin of angle
+ sinT = sqrt(1.0f - (dot * dot));
+ //calculate angle
+ angle = atan2(sinT, dot);
+ //caluculate inverse of sin(theta)
+ IsinT = 1.0f / sinT;
+ x = sin((1.0f - param) * angle) * IsinT;
+ y = sin(param * angle) * IsinT;
}
- retval = ( PyObject * ) newQuaternionObject( quat );
- PyMem_Free( quat );
- return retval;
-}
+ //interpolate
+ quat[0] = quat_u[0] * x + quat_v[0] * y;
+ quat[1] = quat_u[1] * x + quat_v[1] * y;
+ quat[2] = quat_u[2] * x + quat_v[2] * y;
+ quat[3] = quat_u[3] * x + quat_v[3] * y;
-//***************************************************************************
-// Function: M_Mathutils_Euler
-// Python equivalent: Blender.Mathutils.Euler
-//***************************************************************************
-static PyObject *M_Mathutils_Euler( PyObject * self, PyObject * args )
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
+}
+//----------------------------------EULER FUNCTIONS----------------------
+//----------------------------------Mathutils.Euler() -------------------
+//makes a new euler for you to play with
+PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args)
{
- PyObject *listObject;
- float *vec = NULL;
- PyObject *retval;
- int x;
-
- if( !PyArg_ParseTuple( args, "O!", &PyList_Type, &listObject ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected list\n" ) );
- if( PyList_Size( listObject ) != 3 )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "only 3d eulers are supported\n" );
+ PyObject *listObject = NULL;
+ int size, i;
+ float eul[3];
- vec = PyMem_Malloc( 3 * sizeof( float ) );
- for( x = 0; x < 3; x++ ) {
- if( !PyArg_Parse
- ( PyList_GetItem( listObject, x ), "f", &vec[x] ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "python list not parseable\n" );
+ size = PySequence_Length(args);
+ if (size == 1) {
+ listObject = PySequence_GetItem(args, 0);
+ if (PySequence_Check(listObject)) {
+ size = PySequence_Length(listObject);
+ } else { // Single argument was not a sequence
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Euler(): 3d numeric sequence expected\n");
+ }
+ } else if (size == 0) {
+ //returns a new empty 3d euler
+ return (PyObject *) newEulerObject(NULL, Py_NEW);
+ } else {
+ listObject = EXPP_incr_ret(args);
}
+ if (size != 3) { // Invalid euler size
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Mathutils.Euler(): 3d numeric sequence expected\n");
+ }
+ for (i=0; i<size; i++) {
+ PyObject *e, *f;
- retval = ( PyObject * ) newEulerObject( vec );
-
- PyMem_Free( vec );
- return retval;
+ e = PySequence_GetItem(listObject, i);
+ if (e == NULL) { // Failed to read sequence
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_RuntimeError,
+ "Mathutils.Euler(): 3d numeric sequence expected\n");
+ }
+ f = PyNumber_Float(e);
+ if(f == NULL) { // parsed item not a number
+ Py_DECREF(e);
+ Py_XDECREF(listObject);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.Euler(): 3d numeric sequence expected\n");
+ }
+ eul[i]=PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(f,e);
+ }
+ Py_DECREF(listObject);
+ return (PyObject *) newEulerObject(eul, Py_NEW);
}
-
-
-//***************************************************************************
-//Begin Euler Util
-
-static PyObject *M_Mathutils_CopyEuler( PyObject * self, PyObject * args )
+//#############################DEPRECATED################################
+//#######################################################################
+//----------------------------------Mathutils.CopyMat() -----------------
+//copies a matrix into a new matrix
+PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args)
{
- EulerObject *eulU;
- float *eul = NULL;
- PyObject *retval;
-
- if( !PyArg_ParseTuple( args, "O!", &euler_Type, &eulU ) )
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "expected Euler types" ) );
-
- eul = PyMem_Malloc( 3 * sizeof( float ) );
- eul[0] = eulU->eul[0];
- eul[1] = eulU->eul[1];
- eul[2] = eulU->eul[2];
-
- retval = ( PyObject * ) newEulerObject( eul );
- PyMem_Free( eul );
- return retval;
+ PyObject *matrix = NULL;
+
+ printf("Mathutils.CopyMat(): Deprecated :use Mathutils.Matrix() to copy matrices\n");
+ matrix = M_Mathutils_Matrix(self, args);
+ if(matrix == NULL)
+ return NULL; //error string already set if we get here
+ else
+ return matrix;
}
-
-static PyObject *M_Mathutils_RotateEuler( PyObject * self, PyObject * args )
+//----------------------------------Mathutils.CopyVec() -----------------
+//makes a new vector that is a copy of the input
+PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args)
+{
+ PyObject *vec = NULL;
+
+ printf("Mathutils.CopyVec(): Deprecated: use Mathutils.Vector() to copy vectors\n");
+ vec = M_Mathutils_Vector(self, args);
+ if(vec == NULL)
+ return NULL; //error string already set if we get here
+ else
+ return vec;
+}
+//----------------------------------Mathutils.CopyQuat() --------------
+//Copies a quaternion to a new quat
+PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args)
+{
+ PyObject *quat = NULL;
+
+ printf("Mathutils.CopyQuat(): Deprecated:use Mathutils.Quaternion() to copy vectors\n");
+ quat = M_Mathutils_Quaternion(self, args);
+ if(quat == NULL)
+ return NULL; //error string already set if we get here
+ else
+ return quat;
+}
+//----------------------------------Mathutils.CopyEuler() ---------------
+//copies a euler to a new euler
+PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args)
{
- EulerObject *Eul;
+ PyObject *eul = NULL;
+
+ printf("Mathutils.CopyEuler(): Deprecated:use Mathutils.Euler() to copy vectors\n");
+ eul = M_Mathutils_Euler(self, args);
+ if(eul == NULL)
+ return NULL; //error string already set if we get here
+ else
+ return eul;
+}
+//----------------------------------Mathutils.RotateEuler() ------------
+//rotates a euler a certain amount and returns the result
+//should return a unique euler rotation (i.e. no 720 degree pitches :)
+PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args)
+{
+ EulerObject *Eul = NULL;
float angle;
char *axis;
- int x;
- if( !PyArg_ParseTuple
- ( args, "O!fs", &euler_Type, &Eul, &angle, &axis ) )
- return ( EXPP_ReturnPyObjError
- ( PyExc_TypeError,
- "expected euler type & float & string" ) );
+ if(!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.RotateEuler(): expected euler type & float & string");
- angle *= ( float ) ( Py_PI / 180 );
- for( x = 0; x < 3; x++ ) {
- Eul->eul[x] *= ( float ) ( Py_PI / 180 );
- }
- euler_rot( Eul->eul, angle, *axis );
- for( x = 0; x < 3; x++ ) {
- Eul->eul[x] *= ( float ) ( 180 / Py_PI );
+ printf("Mathutils.RotateEuler(): Deprecated:use Euler.rotate() to rotate a euler\n");
+ Euler_Rotate(Eul, Py_BuildValue("fs", angle, axis));
+ return EXPP_incr_ret(Py_None);
+}
+//----------------------------------Mathutils.MatMultVec() --------------
+//COLUMN VECTOR Multiplication (Matrix X Vector)
+PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args)
+{
+ MatrixObject *mat = NULL;
+ VectorObject *vec = NULL;
+ PyObject *retObj = NULL;
+
+ //get pyObjects
+ if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &mat, &vector_Type, &vec))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.MatMultVec(): MatMultVec() expects a matrix and a vector object - in that order\n");
+
+ printf("Mathutils.MatMultVec(): Deprecated: use matrix * vec to perform column vector multiplication\n");
+ EXPP_incr2((PyObject*)vec, (PyObject*)mat);
+ retObj = column_vector_multiplication(mat, vec);
+ if(!retObj){
+ return NULL;
}
- return EXPP_incr_ret( Py_None );
+ EXPP_decr2((PyObject*)vec, (PyObject*)mat);
+ return retObj;
}
-
-//***************************************************************************
-// Function: Mathutils_Init
-//***************************************************************************
-PyObject *Mathutils_Init( void )
+//----------------------------------Mathutils.VecMultMat() ---------------
+//ROW VECTOR Multiplication - Vector X Matrix
+PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args)
{
- PyObject *mod =
- Py_InitModule3( "Blender.Mathutils", M_Mathutils_methods,
- M_Mathutils_doc );
- return ( mod );
+ MatrixObject *mat = NULL;
+ VectorObject *vec = NULL;
+ PyObject *retObj = NULL;
+
+ //get pyObjects
+ if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec, &matrix_Type, &mat))
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Mathutils.VecMultMat(): VecMultMat() expects a vector and matrix object - in that order\n");
+
+ printf("Mathutils.VecMultMat(): Deprecated: use vec * matrix to perform row vector multiplication\n");
+ EXPP_incr2((PyObject*)vec, (PyObject*)mat);
+ retObj = row_vector_multiplication(vec, mat);
+ if(!retObj){
+ return NULL;
+ }
+
+ EXPP_decr2((PyObject*)vec, (PyObject*)mat);
+ return retObj;
}
+//#######################################################################
+//#############################DEPRECATED################################
diff --git a/source/blender/python/api2_2x/Mathutils.h b/source/blender/python/api2_2x/Mathutils.h
index 7d34187656e..1365693e691 100644
--- a/source/blender/python/api2_2x/Mathutils.h
+++ b/source/blender/python/api2_2x/Mathutils.h
@@ -29,14 +29,48 @@
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
+//Include this file for access to vector, quat, matrix, euler, etc...
#ifndef EXPP_Mathutils_H
#define EXPP_Mathutils_H
-
-
+#include <Python.h>
+#include "vector.h"
+#include "matrix.h"
+#include "quat.h"
+#include "euler.h"
#include "Types.h"
PyObject *Mathutils_Init( void );
+PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat);
+PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec);
+
+PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args);
+//DEPRECATED
+PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args);
+PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args);
#endif /* EXPP_Mathutils_H */
diff --git a/source/blender/python/api2_2x/NMesh.c b/source/blender/python/api2_2x/NMesh.c
index 61e4a6f513c..2d2d9cc039c 100644
--- a/source/blender/python/api2_2x/NMesh.c
+++ b/source/blender/python/api2_2x/NMesh.c
@@ -58,12 +58,12 @@
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "MEM_guardedalloc.h"
-
+#include "BKE_utildefines.h"
#include "blendef.h"
#include "mydevice.h"
#include "Object.h"
-#include "vector.h"
+#include "Mathutils.h"
#include "constant.h"
#include "gen_utils.h"
@@ -759,12 +759,12 @@ static PyObject *NMVert_getattr( PyObject * self, char *name )
BPy_NMVert *mv = ( BPy_NMVert * ) self;
if( !strcmp( name, "co" ) || !strcmp( name, "loc" ) )
- return newVectorProxy( mv->co, 3 );
+ return newVectorObject(mv->co,3,Py_WRAP);
else if( strcmp( name, "no" ) == 0 )
- return newVectorProxy( mv->no, 3 );
+ return newVectorObject(mv->no,3,Py_WRAP);
else if( strcmp( name, "uvco" ) == 0 )
- return newVectorProxy( mv->uvco, 3 );
+ return newVectorObject(mv->uvco,3,Py_WRAP);
else if( strcmp( name, "index" ) == 0 )
return PyInt_FromLong( mv->index );
else if( strcmp( name, "sel" ) == 0 )
diff --git a/source/blender/python/api2_2x/Object.c b/source/blender/python/api2_2x/Object.c
index 67a94a8b4fd..55ab29d8cac 100644
--- a/source/blender/python/api2_2x/Object.c
+++ b/source/blender/python/api2_2x/Object.c
@@ -38,28 +38,28 @@
#include "Object.h"
#include "NLA.h"
#include "logic.h"
-#include <blendef.h>
+#include "blendef.h"
-#include <DNA_scene_types.h>
-#include <DNA_mesh_types.h>
-#include <DNA_curve_types.h>
+#include "DNA_scene_types.h"
+#include "DNA_mesh_types.h"
+#include "DNA_curve_types.h"
#include "DNA_object_force.h"
-#include <DNA_property_types.h>
+#include "DNA_property_types.h"
-#include <BKE_depsgraph.h>
-#include <BKE_font.h>
-#include <BKE_property.h>
-#include <BKE_mball.h>
-#include <BKE_softbody.h>
+#include "BKE_depsgraph.h"
+#include "BKE_font.h"
+#include "BKE_property.h"
+#include "BKE_mball.h"
+#include "BKE_softbody.h"
-#include <BIF_editview.h>
-#include <BSE_editipo.h>
-#include <BSE_edit.h>
+#include "BIF_editview.h"
+#include "BSE_editipo.h"
+#include "BSE_edit.h"
#include "Ipo.h"
#include "Lattice.h"
#include "modules.h"
-
+#include "Mathutils.h"
#include "constant.h"
/* only used for oops location get/set at the moment */
#include "DNA_oops_types.h"
@@ -1109,21 +1109,20 @@ static PyObject *Object_getDrawType( BPy_Object * self )
static PyObject *Object_getEuler( BPy_Object * self )
{
- EulerObject *eul;
+ float eul[3];
- eul = ( EulerObject * ) newEulerObject( NULL );
- eul->eul[0] = self->object->rot[0];
- eul->eul[1] = self->object->rot[1];
- eul->eul[2] = self->object->rot[2];
+ eul[0] = self->object->rot[0];
+ eul[1] = self->object->rot[1];
+ eul[2] = self->object->rot[2];
- return ( PyObject * ) eul;
+ return ( PyObject * ) newEulerObject( eul, Py_WRAP );
}
static PyObject *Object_getInverseMatrix( BPy_Object * self )
{
MatrixObject *inverse =
- ( MatrixObject * ) newMatrixObject( NULL, 4, 4 );
+ ( MatrixObject * ) newMatrixObject( NULL, 4, 4, Py_NEW);
Mat4Invert( (float ( * )[4])*inverse->matrix, self->object->obmat );
return ( ( PyObject * ) inverse );
@@ -1170,35 +1169,30 @@ static PyObject *Object_getMaterials( BPy_Object * self, PyObject * args )
static PyObject *Object_getMatrix( BPy_Object * self, PyObject * args )
{
- PyObject *matrix;
+ float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
char *space = "worldspace"; /* default to world */
if( !PyArg_ParseTuple( args, "|s", &space ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a string or nothing" ) );
}
- //new matrix
- matrix = newMatrixObject( NULL, 4, 4 );
if( BLI_streq( space, "worldspace" ) ) { /* Worldspace matrix */
disable_where_script( 1 );
where_is_object( self->object );
disable_where_script( 0 );
- Mat4CpyMat4((float ( * )[4]) *( ( MatrixObject * ) matrix )->matrix,
- self->object->obmat );
} else if( BLI_streq( space, "localspace" ) ) { /* Localspace matrix */
- object_to_mat4( self->object,
- ( float ( * )[4] ) *( ( MatrixObject * ) matrix )->matrix );
- /* old behavior, prior to 2.34, check this method's doc string: */
+ object_to_mat4( self->object, (float (*)[4])matrix );
+ return newMatrixObject(matrix,4,4,Py_NEW);
} else if( BLI_streq( space, "old_worldspace" ) ) {
- Mat4CpyMat4( (float ( * )[4]) *( ( MatrixObject * ) matrix )->matrix,
- self->object->obmat );
+ /* old behavior, prior to 2.34, check this method's doc string: */
} else {
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"wrong parameter, expected nothing or either 'worldspace' (default),\n\
'localspace' or 'old_worldspace'" ) );
}
- return matrix;
+ return newMatrixObject((float*)self->object->obmat,4,4,Py_WRAP);
}
static PyObject *Object_getName( BPy_Object * self )
@@ -1378,7 +1372,7 @@ static PyObject *Object_getBoundBox( BPy_Object * self )
does not have its own memory,
we must create vectors that allocate space */
- vector = newVectorObject( NULL, 3 );
+ vector = newVectorObject( NULL, 3, Py_NEW);
memcpy( ( ( VectorObject * ) vector )->vec,
tmpvec, 3 * sizeof( float ) );
PyList_SET_ITEM( bbox, i, vector );
@@ -1399,7 +1393,7 @@ static PyObject *Object_getBoundBox( BPy_Object * self )
/* create vectors referencing object bounding box coords */
for( i = 0; i < 8; i++ ) {
- vector = newVectorObject( vec, 3 );
+ vector = newVectorObject( vec, 3, Py_WRAP );
PyList_SET_ITEM( bbox, i, vector );
vec += 3;
}
diff --git a/source/blender/python/api2_2x/Object.h b/source/blender/python/api2_2x/Object.h
index 0c629f325ce..52bdbd27bf2 100644
--- a/source/blender/python/api2_2x/Object.h
+++ b/source/blender/python/api2_2x/Object.h
@@ -35,34 +35,31 @@
#include <Python.h>
#include <stdio.h>
-#include <BDR_editobject.h>
-#include <BKE_armature.h>
-#include <BKE_curve.h>
-#include <BKE_global.h>
-#include <BKE_library.h>
-#include <BKE_lattice.h>
-#include <BKE_main.h>
-#include <BKE_mesh.h>
-#include <BKE_object.h>
-#include <BKE_scene.h>
-#include <BKE_displist.h> /* for makeDispList */
-#include <BKE_font.h> /* for text_to_font */
-#include <BLI_arithb.h>
-#include <BLI_blenlib.h>
-#include <DNA_armature_types.h>
-#include <DNA_action_types.h>
-#include <DNA_ID.h>
-#include <DNA_listBase.h>
-#include <DNA_scene_types.h>
-#include <DNA_userdef_types.h>
-#include <DNA_view3d_types.h>
-#include <DNA_action_types.h>
+#include "BDR_editobject.h"
+#include "BKE_armature.h"
+#include "BKE_curve.h"
+#include "BKE_global.h"
+#include "BKE_library.h"
+#include "BKE_lattice.h"
+#include "BKE_main.h"
+#include "BKE_mesh.h"
+#include "BKE_object.h"
+#include "BKE_scene.h"
+#include "BKE_displist.h" /* for makeDispList */
+#include "BKE_font.h" /* for text_to_font */
+#include "BLI_arithb.h"
+#include "BLI_blenlib.h"
+#include "DNA_armature_types.h"
+#include "DNA_action_types.h"
+#include "DNA_ID.h"
+#include "DNA_listBase.h"
+#include "DNA_scene_types.h"
+#include "DNA_userdef_types.h"
+#include "DNA_view3d_types.h"
+#include "DNA_action_types.h"
#include "gen_utils.h"
-#include "vector.h"
-#include "matrix.h"
-#include "euler.h"
-#include "quat.h"
+
/* The Object PyType Object defined in Object.c */
extern PyTypeObject Object_Type;
diff --git a/source/blender/python/api2_2x/Window.c b/source/blender/python/api2_2x/Window.c
index 236275742be..96e33245bf0 100644
--- a/source/blender/python/api2_2x/Window.c
+++ b/source/blender/python/api2_2x/Window.c
@@ -34,29 +34,29 @@
#include <Python.h>
#include <stdio.h>
-#include <blendef.h> /* OBACT */
-#include <BDR_editobject.h> /* enter / leave editmode */
-#include <BKE_global.h>
-#include <BKE_library.h>
-#include <BKE_object.h> /* for during_script() and during_scriptlink() */
-#include <BKE_scene.h> /* scene_find_camera() */
-#include <BIF_usiblender.h>
-#include <BIF_mywindow.h>
-#include <BSE_headerbuttons.h>
-#include <BSE_filesel.h>
-#include <BIF_editmesh.h> /* for undo_push_mesh() */
-#include <BIF_screen.h>
-#include <BIF_space.h>
-#include <BIF_drawtext.h>
-#include <BIF_mywindow.h> /* L/M/R_MOUSE bitflags */
-#include <BIF_spacetypes.h>
-#include <mydevice.h>
-#include <DNA_view3d_types.h>
-#include <DNA_screen_types.h>
-#include <DNA_space_types.h>
-#include <DNA_scene_types.h>
-#include <DNA_text_types.h>
-#include <DNA_vec_types.h> /* for rcti struct */
+#include "blendef.h" /* OBACT */
+#include "BDR_editobject.h" /* enter / leave editmode */
+#include "BKE_global.h"
+#include "BKE_library.h"
+#include "BKE_object.h" /* for during_script() and during_scriptlink() */
+#include "BKE_scene.h" /* scene_find_camera() */
+#include "BIF_usiblender.h"
+#include "BIF_mywindow.h"
+#include "BSE_headerbuttons.h"
+#include "BSE_filesel.h"
+#include "BIF_editmesh.h" /* for undo_push_mesh() */
+#include "BIF_screen.h"
+#include "BIF_space.h"
+#include "BIF_drawtext.h"
+#include "BIF_mywindow.h" /* L/M/R_MOUSE bitflags */
+#include "BIF_spacetypes.h"
+#include "mydevice.h"
+#include "DNA_view3d_types.h"
+#include "DNA_screen_types.h"
+#include "DNA_space_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_text_types.h"
+#include "DNA_vec_types.h" /* for rcti struct */
#include "windowTheme.h"
#include "gen_utils.h"
@@ -856,7 +856,7 @@ static PyObject *M_Window_GetViewMatrix( PyObject * self )
viewmat =
( PyObject * ) newMatrixObject( ( float * ) G.vd->viewmat, 4,
- 4 );
+ 4, Py_WRAP );
if( !viewmat )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
@@ -880,7 +880,7 @@ static PyObject *M_Window_GetPerspMatrix( PyObject * self )
perspmat =
( PyObject * ) newMatrixObject( ( float * ) G.vd->persmat, 4,
- 4 );
+ 4, Py_WRAP );
if( !perspmat )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
diff --git a/source/blender/python/api2_2x/euler.c b/source/blender/python/api2_2x/euler.c
index 6b72460ccd4..d5b7b61c8a7 100644
--- a/source/blender/python/api2_2x/euler.c
+++ b/source/blender/python/api2_2x/euler.c
@@ -29,329 +29,384 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include "euler.h"
+#include "BLI_arithb.h"
+#include "BKE_utildefines.h"
+#include "Mathutils.h"
+#include "gen_utils.h"
+#include "BLI_blenlib.h"
-//doc strings
+//-------------------------DOC STRINGS ---------------------------
char Euler_Zero_doc[] = "() - set all values in the euler to 0";
-char Euler_Unique_doc[] =
- "() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
-char Euler_ToMatrix_doc[] =
- "() - returns a rotation matrix representing the euler rotation";
-char Euler_ToQuat_doc[] =
- "() - returns a quaternion representing the euler rotation";
-
-//methods table
+char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
+char Euler_ToMatrix_doc[] = "() - returns a rotation matrix representing the euler rotation";
+char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation";
+char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation";
+//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Euler_methods[] = {
- {"zero", ( PyCFunction ) Euler_Zero, METH_NOARGS,
- Euler_Zero_doc},
- {"unique", ( PyCFunction ) Euler_Unique, METH_NOARGS,
- Euler_Unique_doc},
- {"toMatrix", ( PyCFunction ) Euler_ToMatrix, METH_NOARGS,
- Euler_ToMatrix_doc},
- {"toQuat", ( PyCFunction ) Euler_ToQuat, METH_NOARGS,
- Euler_ToQuat_doc},
+ {"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
+ {"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
+ {"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
+ {"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
+ {"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
{NULL, NULL, 0, NULL}
};
-
-/*****************************/
-// Euler Python Object
-/*****************************/
-
-//euler methods
-PyObject *Euler_ToQuat( EulerObject * self )
+//-----------------------------METHODS----------------------------
+//----------------------------Euler.toQuat()----------------------
+//return a quaternion representation of the euler
+PyObject *Euler_ToQuat(EulerObject * self)
{
- float *quat;
+ float eul[3];
+ float quat[4];
int x;
- for( x = 0; x < 3; x++ ) {
- self->eul[x] *= ( float ) ( Py_PI / 180 );
+ for(x = 0; x < 3; x++) {
+ eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- EulToQuat( self->eul, quat );
- for( x = 0; x < 3; x++ ) {
- self->eul[x] *= ( float ) ( 180 / Py_PI );
- }
- return ( PyObject * ) newQuaternionObject( quat );
+ EulToQuat(eul, quat);
+ if(self->data.blend_data)
+ return (PyObject *) newQuaternionObject(quat, Py_WRAP);
+ else
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
-
-PyObject *Euler_ToMatrix( EulerObject * self )
+//----------------------------Euler.toMatrix()---------------------
+//return a matrix representation of the euler
+PyObject *Euler_ToMatrix(EulerObject * self)
{
- float *mat;
+ float eul[3];
+ float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
int x;
- for( x = 0; x < 3; x++ ) {
- self->eul[x] *= ( float ) ( Py_PI / 180 );
+ for(x = 0; x < 3; x++) {
+ eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
- mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
- EulToMat3( self->eul, ( float ( * )[3] ) mat );
- for( x = 0; x < 3; x++ ) {
- self->eul[x] *= ( float ) ( 180 / Py_PI );
- }
- return ( PyObject * ) newMatrixObject( mat, 3, 3 );
+ EulToMat3(eul, (float (*)[3]) mat);
+ if(self->data.blend_data)
+ return (PyObject *) newMatrixObject(mat, 3, 3 , Py_WRAP);
+ else
+ return (PyObject *) newMatrixObject(mat, 3, 3 , Py_NEW);
}
-
-PyObject *Euler_Unique( EulerObject * self )
+//----------------------------Euler.unique()-----------------------
+//sets the x,y,z values to a unique euler rotation
+PyObject *Euler_Unique(EulerObject * self)
{
- float heading, pitch, bank;
- float pi2 = ( float ) Py_PI * 2.0f;
- float piO2 = ( float ) Py_PI / 2.0f;
- float Opi2 = 1.0f / pi2;
+ double heading, pitch, bank;
+ double pi2 = Py_PI * 2.0f;
+ double piO2 = Py_PI / 2.0f;
+ double Opi2 = 1.0f / pi2;
//radians
- heading = self->eul[0] * ( float ) ( Py_PI / 180 );
- pitch = self->eul[1] * ( float ) ( Py_PI / 180 );
- bank = self->eul[2] * ( float ) ( Py_PI / 180 );
+ heading = self->eul[0] * (float)Py_PI / 180;
+ pitch = self->eul[1] * (float)Py_PI / 180;
+ bank = self->eul[2] * (float)Py_PI / 180;
//wrap heading in +180 / -180
- pitch += ( float ) Py_PI;
- pitch -= ( float ) floor( pitch * Opi2 ) * pi2;
- pitch -= ( float ) Py_PI;
-
-
- if( pitch < -piO2 ) {
- pitch = ( float ) -Py_PI - pitch;
- heading += ( float ) Py_PI;
- bank += ( float ) Py_PI;
- } else if( pitch > piO2 ) {
- pitch = ( float ) Py_PI - pitch;
- heading += ( float ) Py_PI;
- bank += ( float ) Py_PI;
+ pitch += Py_PI;
+ pitch -= floor(pitch * Opi2) * pi2;
+ pitch -= Py_PI;
+
+
+ if(pitch < -piO2) {
+ pitch = -Py_PI - pitch;
+ heading += Py_PI;
+ bank += Py_PI;
+ } else if(pitch > piO2) {
+ pitch = Py_PI - pitch;
+ heading += Py_PI;
+ bank += Py_PI;
}
//gimbal lock test
- if( fabs( pitch ) > piO2 - 1e-4 ) {
+ if(fabs(pitch) > piO2 - 1e-4) {
heading += bank;
bank = 0.0f;
} else {
- bank += ( float ) Py_PI;
- bank -= ( float ) ( floor( bank * Opi2 ) ) * pi2;
- bank -= ( float ) Py_PI;
+ bank += Py_PI;
+ bank -= (floor(bank * Opi2)) * pi2;
+ bank -= Py_PI;
}
- heading += ( float ) Py_PI;
- heading -= ( float ) ( floor( heading * Opi2 ) ) * pi2;
- heading -= ( float ) Py_PI;
+ heading += Py_PI;
+ heading -= (floor(heading * Opi2)) * pi2;
+ heading -= Py_PI;
//back to degrees
- self->eul[0] = heading * ( float ) ( 180 / Py_PI );
- self->eul[1] = pitch * ( float ) ( 180 / Py_PI );
- self->eul[2] = bank * ( float ) ( 180 / Py_PI );
+ self->eul[0] = heading * 180 / (float)Py_PI;
+ self->eul[1] = pitch * 180 / (float)Py_PI;
+ self->eul[2] = bank * 180 / (float)Py_PI;
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Euler_Zero( EulerObject * self )
+//----------------------------Euler.zero()-------------------------
+//sets the euler to 0,0,0
+PyObject *Euler_Zero(EulerObject * self)
{
self->eul[0] = 0.0;
self->eul[1] = 0.0;
self->eul[2] = 0.0;
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-static void Euler_dealloc( EulerObject * self )
+//----------------------------Euler.rotate()-----------------------
+//rotates a euler a certain amount and returns the result
+//should return a unique euler rotation (i.e. no 720 degree pitches :)
+PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
- /* since we own this memory... */
- PyMem_Free( self->eul );
+ float angle = 0.0f;
+ char *axis;
+ int x;
- PyObject_DEL( self );
-}
+ if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "euler.rotate():expected angle (float) and axis (x,y,z)");
+ }
+ if(!STREQ3(axis,"x","y","z")){
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "euler.rotate(): expected axis to be 'x', 'y' or 'z'");
+ }
-static PyObject *Euler_getattr( EulerObject * self, char *name )
+ //covert to radians
+ angle *= ((float)Py_PI / 180);
+ for(x = 0; x < 3; x++) {
+ self->eul[x] *= ((float)Py_PI / 180);
+ }
+ euler_rot(self->eul, angle, *axis);
+ //convert back from radians
+ for(x = 0; x < 3; x++) {
+ self->eul[x] *= (180 / (float)Py_PI);
+ }
+
+ return (PyObject*)self;
+}
+//----------------------------dealloc()(internal) ------------------
+//free the py_object
+static void Euler_dealloc(EulerObject * self)
{
- if( ELEM3( name[0], 'x', 'y', 'z' ) && name[1] == 0 ) {
- return PyFloat_FromDouble( self->eul[name[0] - 'x'] );
+ //only free py_data
+ if(self->data.py_data){
+ PyMem_Free(self->data.py_data);
}
- return Py_FindMethod( Euler_methods, ( PyObject * ) self, name );
+ PyObject_DEL(self);
}
+//----------------------------getattr()(internal) ------------------
+//object.attribute access (get)
+static PyObject *Euler_getattr(EulerObject * self, char *name)
+{
+ if(STREQ(name,"x")){
+ return PyFloat_FromDouble(self->eul[0]);
+ }else if(STREQ(name, "y")){
+ return PyFloat_FromDouble(self->eul[1]);
+ }else if(STREQ(name, "z")){
+ return PyFloat_FromDouble(self->eul[2]);
+ }
-static int Euler_setattr( EulerObject * self, char *name, PyObject * e )
+ return Py_FindMethod(Euler_methods, (PyObject *) self, name);
+}
+//----------------------------setattr()(internal) ------------------
+//object.attribute access (set)
+static int Euler_setattr(EulerObject * self, char *name, PyObject * e)
{
- float val;
+ PyObject *f = NULL;
+
+ f = PyNumber_Float(e);
+ if(f == NULL) { // parsed item not a number
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "euler.attribute = x: argument not a number\n");
+ }
- if( !PyArg_Parse( e, "f", &val ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "unable to parse float argument\n" );
+ if(STREQ(name,"x")){
+ self->eul[0] = PyFloat_AS_DOUBLE(f);
+ }else if(STREQ(name, "y")){
+ self->eul[1] = PyFloat_AS_DOUBLE(f);
+ }else if(STREQ(name, "z")){
+ self->eul[2] = PyFloat_AS_DOUBLE(f);
+ }else{
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_AttributeError,
+ "euler.attribute = x: unknown attribute\n");
+ }
- if( ELEM3( name[0], 'x', 'y', 'z' ) && name[1] == 0 ) {
- self->eul[name[0] - 'x'] = val;
- return 0;
- } else
- return -1;
+ Py_DECREF(f);
+ return 0;
}
-
-/* Eulers Sequence methods */
-static PyObject *Euler_item( EulerObject * self, int i )
+//----------------------------print object (internal)--------------
+//print the object to screen
+static PyObject *Euler_repr(EulerObject * self)
{
- if( i < 0 || i >= 3 )
- return EXPP_ReturnPyObjError( PyExc_IndexError,
- "array index out of range\n" );
+ int i;
+ char buffer[48], str[1024];
+
+ BLI_strncpy(str,"[",1024);
+ for(i = 0; i < 3; i++){
+ if(i < (2)){
+ sprintf(buffer, "%.6f, ", self->eul[i]);
+ strcat(str,buffer);
+ }else{
+ sprintf(buffer, "%.6f", self->eul[i]);
+ strcat(str,buffer);
+ }
+ }
+ strcat(str, "](euler)");
- return Py_BuildValue( "f", self->eul[i] );
+ return EXPP_incr_ret(PyString_FromString(str));
}
-
-static PyObject *Euler_slice( EulerObject * self, int begin, int end )
+//---------------------SEQUENCE PROTOCOLS------------------------
+//----------------------------len(object)------------------------
+//sequence length
+static int Euler_len(EulerObject * self)
{
- PyObject *list;
- int count;
-
- if( begin < 0 )
- begin = 0;
- if( end > 3 )
- end = 3;
- if( begin > end )
- begin = end;
+ return 3;
+}
+//----------------------------object[]---------------------------
+//sequence accessor (get)
+static PyObject *Euler_item(EulerObject * self, int i)
+{
+ if(i < 0 || i >= 3)
+ return EXPP_ReturnPyObjError(PyExc_IndexError,
+ "euler[attribute]: array index out of range\n");
- list = PyList_New( end - begin );
+ return Py_BuildValue("f", self->eul[i]);
- for( count = begin; count < end; count++ ) {
- PyList_SetItem( list, count - begin,
- PyFloat_FromDouble( self->eul[count] ) );
- }
- return list;
}
-
-static int Euler_ass_item( EulerObject * self, int i, PyObject * ob )
+//----------------------------object[]-------------------------
+//sequence accessor (set)
+static int Euler_ass_item(EulerObject * self, int i, PyObject * ob)
{
- if( i < 0 || i >= 3 )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "array assignment index out of range\n" );
+ PyObject *f = NULL;
- if( !PyNumber_Check( ob ) )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "Euler member must be a number\n" );
+ f = PyNumber_Float(ob);
+ if(f == NULL) { // parsed item not a number
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "euler[attribute] = x: argument not a number\n");
+ }
- if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
- return EXPP_ReturnIntError( PyExc_TypeError,
- "int or float expected\n" );
- } else {
- self->eul[i] = ( float ) PyFloat_AsDouble( ob );
+ if(i < 0 || i >= 3){
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_IndexError,
+ "euler[attribute] = x: array assignment index out of range\n");
}
+ self->eul[i] = PyFloat_AS_DOUBLE(f);
+ Py_DECREF(f);
return 0;
}
-
-static int Euler_ass_slice( EulerObject * self, int begin, int end,
- PyObject * seq )
+//----------------------------object[z:y]------------------------
+//sequence slice (get)
+static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
- int count, z;
-
- if( begin < 0 )
- begin = 0;
- if( end > 3 )
- end = 3;
- if( begin > end )
- begin = end;
-
- if( !PySequence_Check( seq ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "illegal argument type for built-in operation\n" );
- if( PySequence_Length( seq ) != ( end - begin ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "size mismatch in slice assignment\n" );
-
- z = 0;
- for( count = begin; count < end; count++ ) {
- PyObject *ob = PySequence_GetItem( seq, z );
- z++;
-
- if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
- Py_DECREF( ob );
- return -1;
- } else {
- if( !PyArg_Parse( ob, "f", &self->eul[count] ) ) {
- Py_DECREF( ob );
- return -1;
- }
- }
+ PyObject *list = NULL;
+ int count;
+
+ CLAMP(begin, 0, 3);
+ CLAMP(end, 0, 3);
+ begin = MIN2(begin,end);
+
+ list = PyList_New(end - begin);
+ for(count = begin; count < end; count++) {
+ PyList_SetItem(list, count - begin,
+ PyFloat_FromDouble(self->eul[count]));
}
- return 0;
-}
-static PyObject *Euler_repr( EulerObject * self )
+ return list;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (set)
+static int Euler_ass_slice(EulerObject * self, int begin, int end,
+ PyObject * seq)
{
- int i, maxindex = 3 - 1;
- char ftoa[24];
- PyObject *str1, *str2;
-
- str1 = PyString_FromString( "[" );
-
- for( i = 0; i < maxindex; i++ ) {
- sprintf( ftoa, "%.4f, ", self->eul[i] );
- str2 = PyString_FromString( ftoa );
- if( !str1 || !str2 )
- goto error;
- PyString_ConcatAndDel( &str1, str2 );
- }
+ int i, y, size = 0;
+ float eul[3];
- sprintf( ftoa, "%.4f]\n", self->eul[maxindex] );
- str2 = PyString_FromString( ftoa );
- if( !str1 || !str2 )
- goto error;
- PyString_ConcatAndDel( &str1, str2 );
+ CLAMP(begin, 0, 3);
+ CLAMP(end, 0, 3);
+ begin = MIN2(begin,end);
- if( str1 )
- return str1;
+ size = PySequence_Length(seq);
+ if(size != (end - begin)){
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "euler[begin:end] = []: size mismatch in slice assignment\n");
+ }
- error:
- Py_XDECREF( str1 );
- Py_XDECREF( str2 );
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "couldn't create PyString!\n" );
-}
+ for (i = 0; i < size; i++) {
+ PyObject *e, *f;
+ e = PySequence_GetItem(seq, i);
+ if (e == NULL) { // Failed to read sequence
+ return EXPP_ReturnIntError(PyExc_RuntimeError,
+ "euler[begin:end] = []: unable to read sequence\n");
+ }
+ f = PyNumber_Float(e);
+ if(f == NULL) { // parsed item not a number
+ Py_DECREF(e);
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "euler[begin:end] = []: sequence argument not a number\n");
+ }
+ eul[i] = PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(f,e);
+ }
+ //parsed well - now set in vector
+ for(y = 0; y < 3; y++){
+ self->eul[begin + y] = eul[y];
+ }
+ return 0;
+}
+//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
- ( inquiry ) 0, /* sq_length */
- ( binaryfunc ) 0, /* sq_concat */
- ( intargfunc ) 0, /* sq_repeat */
- ( intargfunc ) Euler_item, /* sq_item */
- ( intintargfunc ) Euler_slice, /* sq_slice */
- ( intobjargproc ) Euler_ass_item, /* sq_ass_item */
- ( intintobjargproc ) Euler_ass_slice, /* sq_ass_slice */
+ (inquiry) Euler_len, /* sq_length */
+ (binaryfunc) 0, /* sq_concat */
+ (intargfunc) 0, /* sq_repeat */
+ (intargfunc) Euler_item, /* sq_item */
+ (intintargfunc) Euler_slice, /* sq_slice */
+ (intobjargproc) Euler_ass_item, /* sq_ass_item */
+ (intintobjargproc) Euler_ass_slice, /* sq_ass_slice */
};
-
+//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject euler_Type = {
- PyObject_HEAD_INIT( NULL )
- 0, /*ob_size */
- "euler", /*tp_name */
- sizeof( EulerObject ), /*tp_basicsize */
- 0, /*tp_itemsize */
- ( destructor ) Euler_dealloc, /*tp_dealloc */
- ( printfunc ) 0, /*tp_print */
- ( getattrfunc ) Euler_getattr, /*tp_getattr */
- ( setattrfunc ) Euler_setattr, /*tp_setattr */
- 0, /*tp_compare */
- ( reprfunc ) Euler_repr, /*tp_repr */
- 0, /*tp_as_number */
- &Euler_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT(NULL)
+ 0, /*ob_size */
+ "euler", /*tp_name */
+ sizeof(EulerObject), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ (destructor) Euler_dealloc, /*tp_dealloc */
+ (printfunc) 0, /*tp_print */
+ (getattrfunc) Euler_getattr, /*tp_getattr */
+ (setattrfunc) Euler_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ (reprfunc) Euler_repr, /*tp_repr */
+ 0, /*tp_as_number */
+ &Euler_SeqMethods, /*tp_as_sequence */
};
-
-PyObject *newEulerObject( float *eul )
+//------------------------newEulerObject (internal)-------------
+//creates a new euler object
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newEulerObject(float *eul, int type)
{
EulerObject *self;
int x;
euler_Type.ob_type = &PyType_Type;
-
- self = PyObject_NEW( EulerObject, &euler_Type );
-
- /*
- we own the self->eul memory and will free it later.
- if we received an input arg, copy to our internal array
- */
-
- self->eul = PyMem_Malloc( 3 * sizeof( float ) );
- if( ! self->eul )
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "newEulerObject:PyMem_Malloc failed" );
-
- if( !eul ) {
- for( x = 0; x < 3; x++ ) {
- self->eul[x] = 0.0f;
- }
- } else{
- for( x = 0; x < 3; x++){
- self->eul[x] = eul[x];
+ self = PyObject_NEW(EulerObject, &euler_Type);
+ self->data.blend_data = NULL;
+ self->data.py_data = NULL;
+
+ if(type == Py_WRAP){
+ self->data.blend_data = eul;
+ self->eul = self->data.blend_data;
+ }else if (type == Py_NEW){
+ self->data.py_data = PyMem_Malloc(3 * sizeof(float));
+ self->eul = self->data.py_data;
+ if(!eul) { //new empty
+ for(x = 0; x < 3; x++) {
+ self->eul[x] = 0.0f;
+ }
+ }else{
+ for(x = 0; x < 3; x++){
+ self->eul[x] = eul[x];
+ }
}
+ }else{ //bad type
+ return NULL;
}
-
- return ( PyObject * ) self;
+ return (PyObject *) EXPP_incr_ret((PyObject *)self);
}
+
diff --git a/source/blender/python/api2_2x/euler.h b/source/blender/python/api2_2x/euler.h
index 1c3b21f7ffc..1b5dca26df7 100644
--- a/source/blender/python/api2_2x/euler.h
+++ b/source/blender/python/api2_2x/euler.h
@@ -1,4 +1,3 @@
-
/*
* $Id$
*
@@ -35,33 +34,28 @@
#ifndef EXPP_euler_h
#define EXPP_euler_h
-#include "Python.h"
-#include "gen_utils.h"
-#include "Types.h"
-#include <BLI_arithb.h>
-#include "quat.h"
-#include "matrix.h"
-#include "BKE_utildefines.h"
-
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-/*****************************/
-// Euler Python Object
-/*****************************/
-
#define EulerObject_Check(v) ((v)->ob_type == &euler_Type)
typedef struct {
- PyObject_VAR_HEAD float *eul;
+ PyObject_VAR_HEAD
+ struct{
+ float *py_data; //python managed
+ float *blend_data; //blender managed
+ }data;
+ float *eul; //1D array of data (alias)
} EulerObject;
+/*struct data contains a pointer to the actual data that the
+object uses. It can use either PyMem allocated data (which will
+be stored in py_data) or be a wrapper for data allocated through
+blender (stored in blend_data). This is an either/or struct not both*/
+
//prototypes
-PyObject *newEulerObject( float *eul );
PyObject *Euler_Zero( EulerObject * self );
PyObject *Euler_Unique( EulerObject * self );
PyObject *Euler_ToMatrix( EulerObject * self );
PyObject *Euler_ToQuat( EulerObject * self );
+PyObject *Euler_Rotate( EulerObject * self, PyObject *args );
+PyObject *newEulerObject( float *eul, int type );
#endif /* EXPP_euler_h */
diff --git a/source/blender/python/api2_2x/gen_utils.c b/source/blender/python/api2_2x/gen_utils.c
index ba6878b0a5d..61cf8178510 100644
--- a/source/blender/python/api2_2x/gen_utils.c
+++ b/source/blender/python/api2_2x/gen_utils.c
@@ -30,10 +30,10 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include <DNA_text_types.h>
-#include <MEM_guardedalloc.h>
-#include <BLI_blenlib.h>
-#include <BIF_space.h>
+#include "DNA_text_types.h"
+#include "MEM_guardedalloc.h"
+#include "BLI_blenlib.h"
+#include "BIF_space.h"
#include "gen_utils.h"
#include "constant.h"
@@ -141,6 +141,31 @@ PyObject *EXPP_incr_ret_True()
return Py_BuildValue("i", 1);
}
+void EXPP_incr2( PyObject * ob1, PyObject * ob2 )
+{
+ Py_INCREF( ob1 );
+ Py_INCREF( ob2 );
+}
+
+void EXPP_incr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 )
+{
+ Py_INCREF( ob1 );
+ Py_INCREF( ob2 );
+ Py_INCREF( ob3 );
+}
+
+void EXPP_decr2( PyObject * ob1, PyObject * ob2 )
+{
+ Py_DECREF( ob1 );
+ Py_DECREF( ob2 );
+}
+
+void EXPP_decr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 )
+{
+ Py_DECREF( ob1 );
+ Py_DECREF( ob2 );
+ Py_DECREF( ob3 );
+}
/*****************************************************************************/
/* Description: This function maps the event identifier to a string. */
/*****************************************************************************/
diff --git a/source/blender/python/api2_2x/gen_utils.h b/source/blender/python/api2_2x/gen_utils.h
index 91021d970b9..df85c92dae4 100644
--- a/source/blender/python/api2_2x/gen_utils.h
+++ b/source/blender/python/api2_2x/gen_utils.h
@@ -39,17 +39,19 @@
#include <stdio.h>
#include <string.h>
-#include <BKE_global.h>
-#include <BKE_main.h>
-#include <BPI_script.h>
+#include "BKE_global.h"
+#include "BKE_main.h"
+#include "BPI_script.h"
-#include <DNA_ID.h>
-#include <DNA_object_types.h>
-#include <DNA_material_types.h>
-#include <DNA_scriptlink_types.h>
-#include <DNA_listBase.h>
+#include "DNA_ID.h"
+#include "DNA_object_types.h"
+#include "DNA_material_types.h"
+#include "DNA_scriptlink_types.h"
+#include "DNA_listBase.h"
#define Py_PI 3.14159265358979323846
+#define Py_WRAP 1024
+#define Py_NEW 2048
/*
Py_RETURN_NONE
@@ -72,6 +74,10 @@ char *event_to_name( short event );
float EXPP_ClampFloat( float value, float min, float max );
int EXPP_ClampInt( int value, int min, int max );
+void EXPP_incr2( PyObject * ob1, PyObject * ob2 );
+void EXPP_incr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 );
+void EXPP_decr2( PyObject * ob1, PyObject * ob2 );
+void EXPP_decr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 );
PyObject *EXPP_incr_ret( PyObject * object );
PyObject *EXPP_incr_ret_True(void);
PyObject *EXPP_incr_ret_False(void);
diff --git a/source/blender/python/api2_2x/matrix.c b/source/blender/python/api2_2x/matrix.c
index b50df287061..8b0add848a2 100644
--- a/source/blender/python/api2_2x/matrix.c
+++ b/source/blender/python/api2_2x/matrix.c
@@ -28,1010 +28,801 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include "matrix.h"
+#include "BKE_utildefines.h"
+#include "BLI_arithb.h"
+#include "Mathutils.h"
+#include "gen_utils.h"
+#include "BLI_blenlib.h"
-//doc strings
+//-------------------------DOC STRINGS ---------------------------
char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
-char Matrix_Identity_doc[] =
- "() - set the square matrix to it's identity matrix";
+char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix";
char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
-char Matrix_Invert_doc[] =
- "() - set the matrix to it's inverse if an inverse is possible";
-char Matrix_TranslationPart_doc[] =
- "() - return a vector encompassing the translation of the matrix";
-char Matrix_RotationPart_doc[] =
- "() - return a vector encompassing the rotation of the matrix";
+char Matrix_Invert_doc[] = "() - set the matrix to it's inverse if an inverse is possible";
+char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix";
+char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix";
char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation";
char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
-
-//methods table
+//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Matrix_methods[] = {
- {"zero", ( PyCFunction ) Matrix_Zero, METH_NOARGS,
- Matrix_Zero_doc},
- {"identity", ( PyCFunction ) Matrix_Identity, METH_NOARGS,
- Matrix_Identity_doc},
- {"transpose", ( PyCFunction ) Matrix_Transpose, METH_NOARGS,
- Matrix_Transpose_doc},
- {"determinant", ( PyCFunction ) Matrix_Determinant, METH_NOARGS,
- Matrix_Determinant_doc},
- {"invert", ( PyCFunction ) Matrix_Invert, METH_NOARGS,
- Matrix_Invert_doc},
- {"translationPart", ( PyCFunction ) Matrix_TranslationPart,
- METH_NOARGS,
- Matrix_TranslationPart_doc},
- {"rotationPart", ( PyCFunction ) Matrix_RotationPart, METH_NOARGS,
- Matrix_RotationPart_doc},
- {"resize4x4", ( PyCFunction ) Matrix_Resize4x4, METH_NOARGS,
- Matrix_Resize4x4_doc},
- {"toEuler", ( PyCFunction ) Matrix_toEuler, METH_NOARGS,
- Matrix_toEuler_doc},
- {"toQuat", ( PyCFunction ) Matrix_toQuat, METH_NOARGS,
- Matrix_toQuat_doc},
+ {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
+ {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
+ {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
+ {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
+ {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
+ {"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
+ {"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
+ {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
+ {"toEuler", (PyCFunction) Matrix_toEuler, METH_NOARGS, Matrix_toEuler_doc},
+ {"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
{NULL, NULL, 0, NULL}
};
-
-/*****************************/
-// Matrix Python Object
-/*****************************/
-
-PyObject *Matrix_toQuat( MatrixObject * self )
+//-----------------------------METHODS----------------------------
+//---------------------------Matrix.toQuat() ---------------------
+PyObject *Matrix_toQuat(MatrixObject * self)
{
- float *quat, *mat;
-
- if( self->colSize < 3 ) {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
- } else if( self->colSize > 2 ) { //3 or 4 col
- if( self->rowSize < 3 ) //3 or 4 row
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
-
- mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating matrix\n\n" ) );
- }
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[3] = self->matrix[1][0];
- mat[4] = self->matrix[1][1];
- mat[5] = self->matrix[1][2];
- mat[6] = self->matrix[2][0];
- mat[7] = self->matrix[2][1];
- mat[8] = self->matrix[2][2];
+ float quat[4];
+
+ //must be 3-4 cols, 3-4 rows, square matrix
+ if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
+ }
+ if(self->colSize == 3){
+ Mat3ToQuat((float (*)[3])*self->matrix, quat);
+ }else{
+ Mat4ToQuat((float (*)[4])*self->matrix, quat);
}
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- if( quat == NULL ) {
- PyMem_Free( mat );
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating quat\n\n" ) );
- }
- Mat3ToQuat( ( float ( * )[3] ) mat, quat );
-
- return ( PyObject * ) newQuaternionObject( quat );
+
+ if(self->data.blend_data)
+ return (PyObject *) newQuaternionObject(quat, Py_WRAP);
+ else
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
-
-
-PyObject *Matrix_toEuler( MatrixObject * self )
+//---------------------------Matrix.toEuler() --------------------
+PyObject *Matrix_toEuler(MatrixObject * self)
{
- float *eul, *mat;
+ float eul[3];
int x;
- if( self->colSize < 3 ) {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
- } else if( self->colSize > 2 ) { //3 or 4 col
- if( self->rowSize < 3 ) //3 or 4 row
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
-
- mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[3] = self->matrix[1][0];
- mat[4] = self->matrix[1][1];
- mat[5] = self->matrix[1][2];
- mat[6] = self->matrix[2][0];
- mat[7] = self->matrix[2][1];
- mat[8] = self->matrix[2][2];
- }
- eul = PyMem_Malloc( 3 * sizeof( float ) );
- if( eul == NULL ) {
- PyMem_Free( mat );
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating eul\n\n" ) );
- }
- Mat3ToEul( ( float ( * )[3] ) mat, eul );
-
- for( x = 0; x < 3; x++ ) {
- eul[x] *= ( float ) ( 180 / Py_PI );
- }
-
- return ( PyObject * ) newEulerObject( eul );
+ //must be 3-4 cols, 3-4 rows, square matrix
+ if(self->colSize !=3 || self->rowSize != 3) {
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.toQuat(): inappropriate matrix size - expects 3x3 matrix\n");
+ }
+ Mat3ToEul((float (*)[3])*self->matrix, eul);
+ //have to convert to degrees
+ for(x = 0; x < 3; x++) {
+ eul[x] *= (float) (180 / Py_PI);
+ }
+ if(self->data.blend_data)
+ return (PyObject *) newEulerObject(eul, Py_WRAP);
+ else
+ return (PyObject *) newEulerObject(eul, Py_NEW);
}
-
-PyObject *Matrix_Resize4x4( MatrixObject * self )
+//---------------------------Matrix.resize4x4() ------------------
+PyObject *Matrix_Resize4x4(MatrixObject * self)
{
- float *mat;
- int x, row, col;
-
- if( self->colSize == 4 && self->rowSize == 4 )
- return EXPP_incr_ret( Py_None );
+ int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows;
- mat = PyMem_Malloc( 4 * 4 * sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- for( x = 0; x < 16; x++ ) {
- mat[x] = 0.0f;
+ if(self->data.blend_data){
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "cannot resize wrapped data - only python matrices\n");
}
- if( self->colSize == 2 ) { //2x2, 2x3, 2x4
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[4] = self->matrix[1][0];
- mat[5] = self->matrix[1][1];
- if( self->rowSize > 2 ) {
- mat[8] = self->matrix[2][0];
- mat[9] = self->matrix[2][1];
- }
- if( self->rowSize > 3 ) {
- mat[12] = self->matrix[3][0];
- mat[13] = self->matrix[3][1];
- }
- mat[10] = 1.0f;
- mat[15] = 1.0f;
- } else if( self->colSize == 3 ) { //3x2, 3x3, 3x4
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[4] = self->matrix[1][0];
- mat[5] = self->matrix[1][1];
- mat[6] = self->matrix[1][2];
- if( self->rowSize > 2 ) {
- mat[8] = self->matrix[2][0];
- mat[9] = self->matrix[2][1];
- mat[10] = self->matrix[2][2];
- }
- if( self->rowSize > 3 ) {
- mat[12] = self->matrix[3][0];
- mat[13] = self->matrix[3][1];
- mat[14] = self->matrix[3][2];
- }
- if( self->rowSize == 2 )
- mat[10] = 1.0f;
- mat[15] = 1.0f;
- } else if( self->colSize == 4 ) { //2x4, 3x4
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[3] = self->matrix[0][3];
- mat[4] = self->matrix[1][0];
- mat[5] = self->matrix[1][1];
- mat[6] = self->matrix[1][2];
- mat[7] = self->matrix[1][3];
- if( self->rowSize > 2 ) {
- mat[8] = self->matrix[2][0];
- mat[9] = self->matrix[2][1];
- mat[10] = self->matrix[2][2];
- mat[11] = self->matrix[2][3];
- }
- if( self->rowSize == 2 )
- mat[10] = 1.0f;
- mat[15] = 1.0f;
+ self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16));
+ if(self->data.py_data == NULL) {
+ return EXPP_ReturnPyObjError(PyExc_MemoryError,
+ "matrix.resize4x4(): problem allocating pointer space\n\n");
}
-
- PyMem_Free( self->matrix );
- PyMem_Free( self->contigPtr );
- self->contigPtr = PyMem_Malloc( 4 * 4 * sizeof( float ) );
- if( self->contigPtr == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating array space\n\n" ) );
+ self->contigPtr = self->data.py_data; //force
+ self->matrix = PyMem_Realloc(self->matrix, (sizeof(float) * 4));
+ if(self->matrix == NULL) {
+ return EXPP_ReturnPyObjError(PyExc_MemoryError,
+ "matrix.resize4x4(): problem allocating pointer space\n\n");
}
- self->matrix = PyMem_Malloc( 4 * sizeof( float * ) );
- if( self->matrix == NULL ) {
- PyMem_Free( self->contigPtr );
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating pointer space\n\n" ) );
+ //set row pointers
+ for(x = 0; x < 4; x++) {
+ self->matrix[x] = self->contigPtr + (x * 4);
}
- for( x = 0; x < 4; x++ ) {
- self->matrix[x] = self->contigPtr + ( x * 4 );
+ //move data to new spot in array + clean
+ for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
+ for(x = 0; x < 4; x++){
+ self->contigPtr[(4 * (self->rowSize + (blank_rows - 1))) + x] = 0.0f;
+ }
}
-
- for( row = 0; row < 4; row++ ) {
- for( col = 0; col < 4; col++ ) {
- self->matrix[row][col] = mat[( row * 4 ) + col];
+ for(x = 1; x <= self->rowSize; x++){
+ first_row_elem = (self->colSize * (self->rowSize - x));
+ curr_pos = (first_row_elem + (self->colSize -1));
+ new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
+ for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
+ self->contigPtr[new_pos + blank_columns] = 0.0f;
+ }
+ for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
+ self->contigPtr[new_pos] = self->contigPtr[curr_pos];
+ new_pos--;
}
}
- PyMem_Free( mat );
-
- self->colSize = 4;
self->rowSize = 4;
-
- return EXPP_incr_ret( Py_None );
+ self->colSize = 4;
+ return (PyObject*)self;
}
-
-PyObject *Matrix_TranslationPart( MatrixObject * self )
+//---------------------------Matrix.translationPart() ------------
+PyObject *Matrix_TranslationPart(MatrixObject * self)
{
- float *vec = NULL;
- PyObject *retval;
+ float vec[4];
- if( self->colSize < 3 ) {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
- } else if( self->colSize > 2 ) { //3 or 4 columns
- if( self->rowSize < 4 ) //all 4 rows
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
-
- vec = PyMem_Malloc( 3 * sizeof( float ) );
- if( vec == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating vec\n\n" ) );
- }
- vec[0] = self->matrix[3][0];
- vec[1] = self->matrix[3][1];
- vec[2] = self->matrix[3][2];
+ if(self->colSize < 3 && self->rowSize < 4){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.translationPart: inappropriate matrix size\n");
}
- retval = ( PyObject * ) newVectorObject( vec, 3 );
- PyMem_Free( vec );
- return retval;
-}
+ vec[0] = self->matrix[3][0];
+ vec[1] = self->matrix[3][1];
+ vec[2] = self->matrix[3][2];
-PyObject *Matrix_RotationPart( MatrixObject * self )
+ return newVectorObject(vec, 3, Py_NEW);
+}
+//---------------------------Matrix.rotationPart() ---------------
+PyObject *Matrix_RotationPart(MatrixObject * self)
{
- float *mat;
-
- if( self->colSize < 3 ) {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
- } else if( self->colSize > 2 ) { //3 or 4 col
- if( self->rowSize < 3 ) //3 or 4 row
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "inappropriate matrix size\n" );
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[3] = self->matrix[1][0];
- mat[4] = self->matrix[1][1];
- mat[5] = self->matrix[1][2];
- mat[6] = self->matrix[2][0];
- mat[7] = self->matrix[2][1];
- mat[8] = self->matrix[2][2];
+ if(self->colSize < 3 && self->rowSize < 3){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.rotationPart: inappropriate matrix size\n");
}
- return ( PyObject * ) newMatrixObject( mat, 3, 3 );
-}
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[2] = self->matrix[0][2];
+ mat[3] = self->matrix[1][0];
+ mat[4] = self->matrix[1][1];
+ mat[5] = self->matrix[1][2];
+ mat[6] = self->matrix[2][0];
+ mat[7] = self->matrix[2][1];
+ mat[8] = self->matrix[2][2];
-PyObject *Matrix_Invert( MatrixObject * self )
+ return newMatrixObject(mat, 3, 3, Py_NEW);
+}
+//---------------------------Matrix.invert() ---------------------
+PyObject *Matrix_Invert(MatrixObject * self)
{
- float det;
- int x, y, z;
- float *mat = NULL;
- float t;
-
- if( self->rowSize != self->colSize )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "only square matrices are supported\n" );
+
+ int x, y, z = 0;
+ float det = 0.0f;
+ PyObject *f = NULL;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- //calculate the determinant
- if( self->rowSize == 2 ) {
- det = Det2x2( self->matrix[0][0], self->matrix[0][1],
- self->matrix[1][0], self->matrix[1][1] );
- } else if( self->rowSize == 3 ) {
- det = Det3x3( self->matrix[0][0], self->matrix[0][1],
- self->matrix[0][2], self->matrix[1][0],
- self->matrix[1][1], self->matrix[1][2],
- self->matrix[2][0], self->matrix[2][1],
- self->matrix[2][2] );
- } else if( self->rowSize == 4 ) {
- det = Det4x4( (float ( * )[4]) *self->matrix );
- } else {
- return EXPP_ReturnPyObjError( PyExc_StandardError,
- "error calculating determinant for inverse()\n" );
+ if(self->rowSize != self->colSize){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.invert: only square matrices are supported\n");
}
- if( det != 0 ) {
+ //calculate the determinant
+ f = Matrix_Determinant(self);
+ det = PyFloat_AS_DOUBLE(f);
+ if(det != 0) {
//calculate the classical adjoint
- if( self->rowSize == 2 ) {
- mat = PyMem_Malloc( self->rowSize * self->colSize *
- sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError
- ( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
+ if(self->rowSize == 2) {
mat[0] = self->matrix[1][1];
mat[1] = -self->matrix[1][0];
mat[2] = -self->matrix[0][1];
mat[3] = self->matrix[0][0];
- } else if( self->rowSize == 3 ) {
- mat = PyMem_Malloc( self->rowSize * self->colSize *
- sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError
- ( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- Mat3Adj( ( float ( * )[3] ) mat,( float ( * )[3] ) *self->matrix );
- } else if( self->rowSize == 4 ) {
- mat = PyMem_Malloc( self->rowSize * self->colSize *
- sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError
- ( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- Mat4Adj( ( float ( * )[4] ) mat, ( float ( * )[4] ) *self->matrix );
+ } else if(self->rowSize == 3) {
+ Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
+ } else if(self->rowSize == 4) {
+ Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
}
//divide by determinate
- for( x = 0; x < ( self->rowSize * self->colSize ); x++ ) {
+ for(x = 0; x < (self->rowSize * self->colSize); x++) {
mat[x] /= det;
}
-
//set values
- z = 0;
- for( x = 0; x < self->rowSize; x++ ) {
- for( y = 0; y < self->colSize; y++ ) {
+ for(x = 0; x < self->rowSize; x++) {
+ for(y = 0; y < self->colSize; y++) {
self->matrix[x][y] = mat[z];
z++;
}
}
-
//transpose
- if( self->rowSize == 2 ) {
- t = self->matrix[1][0];
- self->matrix[1][0] = self->matrix[0][1];
- self->matrix[0][1] = t;
-
-/*
- Note: is the code below correct?
- transposing mat and not copying into self->matrix?
- s. swaney 11-oct-2004
-*/
- } else if( self->rowSize == 3 ) {
- Mat3Transp( ( float ( * )[3] ) mat );
- } else if( self->rowSize == 4 ) {
- Mat4Transp( ( float ( * )[4] ) mat );
- }
+ Matrix_Transpose(self);
} else {
- printf( "matrix does not have an inverse - none attempted\n" );
+ printf("Matrix.invert: matrix does not have an inverse\n");
}
- PyMem_Free( mat );
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-
-PyObject *Matrix_Determinant( MatrixObject * self )
+//---------------------------Matrix.determinant() ----------------
+PyObject *Matrix_Determinant(MatrixObject * self)
{
- float det;
-
- if( self->rowSize != self->colSize )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "only square matrices are supported\n" );
-
- if( self->rowSize == 2 ) {
- det = Det2x2( self->matrix[0][0], self->matrix[0][1],
- self->matrix[1][0], self->matrix[1][1] );
- } else if( self->rowSize == 3 ) {
- det = Det3x3( self->matrix[0][0], self->matrix[0][1],
- self->matrix[0][2], self->matrix[1][0],
- self->matrix[1][1], self->matrix[1][2],
- self->matrix[2][0], self->matrix[2][1],
- self->matrix[2][2] );
- } else if( self->rowSize == 4 ) {
- det = Det4x4( (float ( * )[4]) *self->matrix );
+ float det = 0.0f;
+
+ if(self->rowSize != self->colSize){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.determinant: only square matrices are supported\n");
+ }
+
+ if(self->rowSize == 2) {
+ det = Det2x2(self->matrix[0][0], self->matrix[0][1],
+ self->matrix[1][0], self->matrix[1][1]);
+ } else if(self->rowSize == 3) {
+ det = Det3x3(self->matrix[0][0], self->matrix[0][1],
+ self->matrix[0][2], self->matrix[1][0],
+ self->matrix[1][1], self->matrix[1][2],
+ self->matrix[2][0], self->matrix[2][1],
+ self->matrix[2][2]);
} else {
- return EXPP_ReturnPyObjError( PyExc_StandardError,
- "error in determinant()\n" );
+ det = Det4x4((float (*)[4]) *self->matrix);
}
return PyFloat_FromDouble( (double) det );
}
//---------------------------Matrix.transpose() ------------------
-
-PyObject *Matrix_Transpose( MatrixObject * self )
-
+PyObject *Matrix_Transpose(MatrixObject * self)
{
- float t;
+ float t = 0.0f;
- if( self->rowSize != self->colSize )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "only square matrices are supported\n" );
+ if(self->rowSize != self->colSize){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.transpose: only square matrices are supported\n");
+ }
- if( self->rowSize == 2 ) {
+ if(self->rowSize == 2) {
t = self->matrix[1][0];
self->matrix[1][0] = self->matrix[0][1];
self->matrix[0][1] = t;
- } else if( self->rowSize == 3 ) {
- Mat3Transp( (float ( * )[3])*self->matrix );
- } else if( self->rowSize == 4 ) {
- Mat4Transp( (float ( * )[4])*self->matrix );
- } else
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "unable to transpose matrix\n" ) );
+ } else if(self->rowSize == 3) {
+ Mat3Transp((float (*)[3])*self->matrix);
+ } else {
+ Mat4Transp((float (*)[4])*self->matrix);
+ }
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Matrix_Zero( MatrixObject * self )
+//---------------------------Matrix.zero() -----------------------
+PyObject *Matrix_Zero(MatrixObject * self)
{
int row, col;
- for( row = 0; row < self->rowSize; row++ ) {
- for( col = 0; col < self->colSize; col++ ) {
+ for(row = 0; row < self->rowSize; row++) {
+ for(col = 0; col < self->colSize; col++) {
self->matrix[row][col] = 0.0f;
}
}
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Matrix_Identity( MatrixObject * self )
+//---------------------------Matrix.identity(() ------------------
+PyObject *Matrix_Identity(MatrixObject * self)
{
- if( self->rowSize != self->colSize )
- return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
- "only square matrices supported\n" ) );
+ if(self->rowSize != self->colSize){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix.identity: only square matrices are supported\n");
+ }
- if( self->rowSize == 2 ) {
+ if(self->rowSize == 2) {
self->matrix[0][0] = 1.0f;
self->matrix[0][1] = 0.0f;
self->matrix[1][0] = 0.0f;
self->matrix[1][1] = 1.0f;
- } else if( self->rowSize == 3 ) {
- Mat3One( ( float ( * )[3] ) *self->matrix );
- } else if( self->rowSize == 4 ) {
- Mat4One( ( float ( * )[4] ) *self->matrix );
- } else
- return ( EXPP_ReturnPyObjError( PyExc_TypeError,
- "unable to create identity matrix\n" ) );
+ } else if(self->rowSize == 3) {
+ Mat3One((float (*)[3]) *self->matrix);
+ } else {
+ Mat4One((float (*)[4]) *self->matrix);
+ }
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-static void Matrix_dealloc( MatrixObject * self )
+//----------------------------dealloc()(internal) ----------------
+//free the py_object
+static void Matrix_dealloc(MatrixObject * self)
{
- PyMem_Free( self->contigPtr );
- PyMem_Free( self->matrix );
-
- PyObject_DEL( self );
+ Py_XDECREF(self->coerced_object);
+ PyMem_Free(self->matrix);
+ //only free py_data
+ if(self->data.py_data){
+ PyMem_Free(self->data.py_data);
+ }
+ PyObject_DEL(self);
}
-
-static PyObject *Matrix_getattr( MatrixObject * self, char *name )
+//----------------------------getattr()(internal) ----------------
+//object.attribute access (get)
+static PyObject *Matrix_getattr(MatrixObject * self, char *name)
{
- if( strcmp( name, "rowSize" ) == 0 ) {
- return PyInt_FromLong( ( long ) self->rowSize );
- } else if( strcmp( name, "colSize" ) == 0 ) {
- return PyInt_FromLong( ( long ) self->colSize );
+ if(STREQ(name, "rowSize")) {
+ return PyInt_FromLong((long) self->rowSize);
+ } else if(STREQ(name, "colSize")) {
+ return PyInt_FromLong((long) self->colSize);
}
- return Py_FindMethod( Matrix_methods, ( PyObject * ) self, name );
+ return Py_FindMethod(Matrix_methods, (PyObject *) self, name);
}
-
-static int Matrix_setattr( MatrixObject * self, char *name, PyObject * v )
+//----------------------------setattr()(internal) ----------------
+//object.attribute access (set)
+static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v)
{
/* This is not supported. */
- return ( -1 );
+ return (-1);
}
-
-static PyObject *Matrix_repr( MatrixObject * self )
+//----------------------------print object (internal)-------------
+//print the object to screen
+static PyObject *Matrix_repr(MatrixObject * self)
{
- PyObject *repr, *str;
int x, y;
- char ftoa[24];
-
- repr = PyString_FromString( "" );
- if( !repr )
- return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
- "Attribute error in PyMatrix (repr)\n" ) );
-
- for( x = 0; x < self->rowSize; x++ ) {
- str = PyString_FromString( "[" );
- PyString_ConcatAndDel( &repr, str );
-
- for( y = 0; y < ( self->colSize - 1 ); y++ ) {
- sprintf( ftoa, "%.4f, ", self->matrix[x][y] );
- str = PyString_FromString( ftoa );
- PyString_ConcatAndDel( &repr, str );
+ char buffer[48], str[1024];
+
+ BLI_strncpy(str,"",1024);
+ for(x = 0; x < self->rowSize; x++){
+ sprintf(buffer, "[");
+ strcat(str,buffer);
+ for(y = 0; y < (self->colSize - 1); y++) {
+ sprintf(buffer, "%.6f, ", self->matrix[x][y]);
+ strcat(str,buffer);
+ }
+ if(x < (self->rowSize-1)){
+ sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x);
+ strcat(str,buffer);
+ }else{
+ sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x);
+ strcat(str,buffer);
}
- sprintf( ftoa, "%.4f]\n", self->matrix[x][y] );
- str = PyString_FromString( ftoa );
- PyString_ConcatAndDel( &repr, str );
}
- return repr;
+
+ return EXPP_incr_ret(PyString_FromString(str));
}
-//no support for matrix[x][y] so have to return by sequence index
-//will return a row from the matrix to support previous API
-//compatability
-static PyObject *Matrix_item( MatrixObject * self, int i )
+//---------------------SEQUENCE PROTOCOLS------------------------
+//----------------------------len(object)------------------------
+//sequence length
+static int Matrix_len(MatrixObject * self)
{
- float *vec = NULL;
- PyObject *retval;
- int x;
-
- if( i < 0 || i >= self->rowSize )
- return EXPP_ReturnPyObjError( PyExc_IndexError,
- "matrix row index out of range\n" );
-
- vec = PyMem_Malloc( self->colSize * sizeof( float ) );
- if( vec == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating vec\n\n" ) );
- }
- for( x = 0; x < self->colSize; x++ ) {
- vec[x] = self->matrix[i][x];
- }
-
- retval =( PyObject * ) newVectorObject( vec, self->colSize );
- PyMem_Free( vec );
- return retval;
+ return (self->colSize * self->rowSize);
}
-
-static PyObject *Matrix_slice( MatrixObject * self, int begin, int end )
+//----------------------------object[]---------------------------
+//sequence accessor (get)
+//the wrapped vector gives direct access to the matrix data
+static PyObject *Matrix_item(MatrixObject * self, int i)
{
- PyObject *list;
- int count, maxsize, x, y;
-
- maxsize = self->colSize * self->rowSize;
- if( begin < 0 )
- begin = 0;
- if( end > maxsize )
- end = maxsize;
- if( begin > end )
- begin = end;
+ if(i < 0 || i >= self->rowSize)
+ return EXPP_ReturnPyObjError(PyExc_IndexError,
+ "matrix[attribute]: array index out of range\n");
- list = PyList_New( end - begin );
-
- for( count = begin; count < end; count++ ) {
- x = ( int ) floor( ( double ) ( count / self->colSize ) );
- y = count % self->colSize;
- PyList_SetItem( list, count - begin,
- PyFloat_FromDouble( self->matrix[x][y] ) );
- }
-
- return list;
+ return newVectorObject(self->matrix[i], self->colSize, Py_WRAP);
}
-
-static int Matrix_ass_item( MatrixObject * self, int i, PyObject * ob )
+//----------------------------object[]-------------------------
+//sequence accessor (set)
+static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
{
- int maxsize, x, y;
+ int y, x, size = 0;
+ float vec[4];
- maxsize = self->colSize * self->rowSize;
- if( i < 0 || i >= maxsize )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "array assignment index out of range\n" );
- if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "matrix member must be a number\n" );
+ if(i > self->rowSize || i < 0){
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[attribute] = x: bad row\n");
+ }
- x = ( int ) floor( ( double ) ( i / self->colSize ) );
- y = i % self->colSize;
- self->matrix[x][y] = ( float ) PyFloat_AsDouble( ob );
+ if(PySequence_Check(ob)){
+ size = PySequence_Length(ob);
+ if(size != self->colSize){
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[attribute] = x: bad sequence size\n");
+ }
+ for (x = 0; x < size; x++) {
+ PyObject *m, *f;
- return 0;
+ m = PySequence_GetItem(ob, x);
+ if (m == NULL) { // Failed to read sequence
+ return EXPP_ReturnIntError(PyExc_RuntimeError,
+ "matrix[attribute] = x: unable to read sequence\n");
+ }
+ f = PyNumber_Float(m);
+ if(f == NULL) { // parsed item not a number
+ Py_DECREF(m);
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[attribute] = x: sequence argument not a number\n");
+ }
+ vec[x] = PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(m, f);
+ }
+ //parsed well - now set in matrix
+ for(y = 0; y < size; y++){
+ self->matrix[i][y] = vec[y];
+ }
+ return 0;
+ }else{
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[attribute] = x: expects a sequence of column size\n");
+ }
}
-
-static int Matrix_ass_slice( MatrixObject * self, int begin, int end,
- PyObject * seq )
+//----------------------------object[z:y]------------------------
+//sequence slice (get)
+static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
{
- int count, maxsize, x, y, z;
-
- maxsize = self->colSize * self->rowSize;
- if( begin < 0 )
- begin = 0;
- if( end > maxsize )
- end = maxsize;
- if( begin > end )
- begin = end;
- if( !PySequence_Check( seq ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "illegal argument type for built-in operation\n" );
- if( PySequence_Length( seq ) != ( end - begin ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "size mismatch in slice assignment\n" );
+ PyObject *list = NULL;
+ int count;
- z = 0;
- for( count = begin; count < end; count++ ) {
- PyObject *ob = PySequence_GetItem( seq, z );
- z++;
- if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "list member must be a number\n" );
+ CLAMP(begin, 0, self->rowSize);
+ CLAMP(end, 0, self->rowSize);
+ begin = MIN2(begin,end);
- x = ( int ) floor( ( double ) ( count / self->colSize ) );
- y = count % self->colSize;
- if( !PyArg_Parse( ob, "f", &self->matrix[x][y] ) ) {
- Py_DECREF( ob );
- return -1;
- }
+ list = PyList_New(end - begin);
+ for(count = begin; count < end; count++) {
+ PyList_SetItem(list, count - begin,
+ newVectorObject(self->matrix[count], self->colSize, Py_WRAP));
}
- return 0;
-}
-static int Matrix_len( MatrixObject * self )
+ return EXPP_incr_ret(list);
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (set)
+static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
+ PyObject * seq)
{
- return ( self->colSize * self->rowSize );
+ int i, x, y, size, sub_size = 0;
+ float mat[16];
+
+ CLAMP(begin, 0, self->rowSize);
+ CLAMP(end, 0, self->rowSize);
+ begin = MIN2(begin,end);
+
+ if(PySequence_Check(seq)){
+ size = PySequence_Length(seq);
+ if(size != (end - begin)){
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[begin:end] = []: size mismatch in slice assignment\n");
+ }
+ //parse sub items
+ for (i = 0; i < size; i++) {
+ //parse each sub sequence
+ PyObject *subseq;
+ subseq = PySequence_GetItem(seq, i);
+ if (subseq == NULL) { // Failed to read sequence
+ return EXPP_ReturnIntError(PyExc_RuntimeError,
+ "matrix[begin:end] = []: unable to read sequence\n");
+ }
+ if(PySequence_Check(subseq)){
+ //subsequence is also a sequence
+ sub_size = PySequence_Length(subseq);
+ if(sub_size != self->colSize){
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[begin:end] = []: size mismatch in slice assignment\n");
+ }
+ for (y = 0; y < sub_size; y++) {
+ PyObject *m, *f;
+ m = PySequence_GetItem(subseq, y);
+ if (m == NULL) { // Failed to read sequence
+ return EXPP_ReturnIntError(PyExc_RuntimeError,
+ "matrix[begin:end] = []: unable to read sequence\n");
+ }
+ f = PyNumber_Float(m);
+ if(f == NULL) { // parsed item not a number
+ Py_DECREF(m);
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[begin:end] = []: sequence argument not a number\n");
+ }
+ mat[(i * self->colSize) + y] = PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(f, m);
+ }
+ }else{
+ Py_DECREF(subseq);
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[begin:end] = []: illegal argument type for built-in operation\n");
+ }
+ }
+ //parsed well - now set in matrix
+ for(x = 0; x < (size * sub_size); x++){
+ self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
+ }
+ return 0;
+ }else{
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix[begin:end] = []: illegal argument type for built-in operation\n");
+ }
}
-
-static PyObject *Matrix_add( PyObject * m1, PyObject * m2 )
+//------------------------NUMERIC PROTOCOLS----------------------
+//------------------------obj + obj------------------------------
+static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
{
- float *mat;
- int matSize, rowSize, colSize, x, y;
-
- if( ( !Matrix_CheckPyObject( m1 ) )
- || ( !Matrix_CheckPyObject( m2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
-
- if( ( ( MatrixObject * ) m1 )->flag > 0
- || ( ( MatrixObject * ) m2 )->flag > 0 )
- return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
- "cannot add scalar to a matrix\n" );
-
- if( ( ( MatrixObject * ) m1 )->rowSize !=
- ( ( MatrixObject * ) m2 )->rowSize
- || ( ( MatrixObject * ) m1 )->colSize !=
- ( ( MatrixObject * ) m2 )->colSize )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "matrices must be the same same for this operation\n" );
+ int x, y;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ MatrixObject *mat1 = NULL, *mat2 = NULL;
- rowSize = ( ( ( MatrixObject * ) m1 )->rowSize );
- colSize = ( ( ( MatrixObject * ) m1 )->colSize );
- matSize = rowSize * colSize;
+ EXPP_incr2(m1, m2);
+ mat1 = (MatrixObject*)m1;
+ mat2 = (MatrixObject*)m2;
- mat = PyMem_Malloc( matSize * sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
+ if(mat1->coerced_object || mat2->coerced_object){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix addition: arguments not valid for this operation....\n");
+ }
+ if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix addition: matrices must have the same dimensions for this operation\n");
}
- for( x = 0; x < rowSize; x++ ) {
- for( y = 0; y < colSize; y++ ) {
- mat[( ( x * rowSize ) + y )] =
- ( ( MatrixObject * ) m1 )->matrix[x][y] +
- ( ( MatrixObject * ) m2 )->matrix[x][y];
+
+ for(x = 0; x < mat1->rowSize; x++) {
+ for(y = 0; y < mat1->colSize; y++) {
+ mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
}
}
- return newMatrixObject( mat, rowSize, colSize );
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
}
-
-static PyObject *Matrix_sub( PyObject * m1, PyObject * m2 )
+//------------------------obj - obj------------------------------
+//subtraction
+static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
{
- float *mat;
- int matSize, rowSize, colSize, x, y;
-
- if( ( !Matrix_CheckPyObject( m1 ) )
- || ( !Matrix_CheckPyObject( m2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
-
- if( ( ( MatrixObject * ) m1 )->flag > 0
- || ( ( MatrixObject * ) m2 )->flag > 0 )
- return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
- "cannot subtract a scalar from a matrix\n" );
-
- if( ( ( MatrixObject * ) m1 )->rowSize !=
- ( ( MatrixObject * ) m2 )->rowSize
- || ( ( MatrixObject * ) m1 )->colSize !=
- ( ( MatrixObject * ) m2 )->colSize )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "matrices must be the same same for this operation\n" );
+ int x, y;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ MatrixObject *mat1 = NULL, *mat2 = NULL;
- rowSize = ( ( ( MatrixObject * ) m1 )->rowSize );
- colSize = ( ( ( MatrixObject * ) m1 )->colSize );
- matSize = rowSize * colSize;
+ EXPP_incr2(m1, m2);
+ mat1 = (MatrixObject*)m1;
+ mat2 = (MatrixObject*)m2;
- mat = PyMem_Malloc( matSize * sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
+ if(mat1->coerced_object || mat2->coerced_object){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix addition: arguments not valid for this operation....\n");
+ }
+ if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix addition: matrices must have the same dimensions for this operation\n");
}
- for( x = 0; x < rowSize; x++ ) {
- for( y = 0; y < colSize; y++ ) {
- mat[( ( x * rowSize ) + y )] =
- ( ( MatrixObject * ) m1 )->matrix[x][y] -
- ( ( MatrixObject * ) m2 )->matrix[x][y];
+
+ for(x = 0; x < mat1->rowSize; x++) {
+ for(y = 0; y < mat1->colSize; y++) {
+ mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
}
}
- return newMatrixObject( mat, rowSize, colSize );
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
}
-
-static PyObject *Matrix_mul( PyObject * m1, PyObject * m2 )
+//------------------------obj * obj------------------------------
+//mulplication
+static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
{
- PyObject *retval;
- int matSizeV, rowSizeV, colSizeV, rowSizeW, colSizeW, matSizeW, x, y,z;
- MatrixObject *matV;
- MatrixObject *matW;
- float *mat = NULL;
- float dot = 0;
-
-
- if( ( !Matrix_CheckPyObject( m1 ) )
- || ( !Matrix_CheckPyObject( m2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
-
- //get some vars
- rowSizeV = ( ( ( MatrixObject * ) m1 )->rowSize );
- colSizeV = ( ( ( MatrixObject * ) m1 )->colSize );
- matSizeV = rowSizeV * colSizeV;
- rowSizeW = ( ( ( MatrixObject * ) m2 )->rowSize );
- colSizeW = ( ( ( MatrixObject * ) m2 )->colSize );
- matSizeW = rowSizeW * colSizeW;
- matV = ( ( MatrixObject * ) m1 );
- matW = ( ( MatrixObject * ) m2 );
-
- //coerced int or float for scalar multiplication
- if( matW->flag > 1 || matW->flag > 2 ) {
-
- if( rowSizeV != rowSizeW && colSizeV != colSizeW )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "Matrix dimension error during scalar multiplication\n" );
-
- mat = PyMem_Malloc( matSizeV * sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- for( x = 0; x < rowSizeV; x++ ) {
- for( y = 0; y < colSizeV; y++ ) {
- mat[( ( x * rowSizeV ) + y )] =
- matV->matrix[x][y] *
- matW->matrix[x][y];
+ int x, y, z;
+ float scalar;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ double dot = 0.0f;
+ MatrixObject *mat1 = NULL, *mat2 = NULL;
+ PyObject *f = NULL, *retObj = NULL;
+ VectorObject *vec = NULL;
+
+ EXPP_incr2(m1, m2);
+ mat1 = (MatrixObject*)m1;
+ mat2 = (MatrixObject*)m2;
+
+ if(mat1->coerced_object){
+ if (PyFloat_Check(mat1->coerced_object) ||
+ PyInt_Check(mat1->coerced_object)){ // FLOAT/INT * MATRIX
+ f = PyNumber_Float(mat1->coerced_object);
+ if(f == NULL) { // parsed item not a number
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Matrix multiplication: arguments not acceptable for this operation\n");
}
- }
- retval = ( PyObject* ) newMatrixObject( mat, rowSizeV, colSizeV );
- PyMem_Free( mat );
- return retval;
- } else if( matW->flag == 0 && matV->flag == 0 ) { //true matrix multiplication
- if( colSizeV != rowSizeW ) {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "Matrix multiplication undefined...\n" );
- }
-
- mat = PyMem_Malloc( ( rowSizeV * colSizeW ) *
- sizeof( float ) );
- if( mat == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- for( x = 0; x < rowSizeV; x++ ) {
- for( y = 0; y < colSizeW; y++ ) {
- for( z = 0; z < colSizeV; z++ ) {
- dot += ( matV->matrix[x][z] *
- matW->matrix[z][y] );
+ scalar = PyFloat_AS_DOUBLE(f);
+ for(x = 0; x < mat2->rowSize; x++) {
+ for(y = 0; y < mat2->colSize; y++) {
+ mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
}
- mat[( ( x * rowSizeV ) + y )] = dot;
- dot = 0;
}
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW);
}
- retval = ( PyObject* ) newMatrixObject( mat, rowSizeV, colSizeW );
- PyMem_Free( mat );
- return retval;
- } else
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "Error in matrix_mul...\n" );
-}
-
-//coercion of unknown types to type MatrixObject for numeric protocols
-static int Matrix_coerce( PyObject ** m1, PyObject ** m2 )
-{
- long *tempI;
- double *tempF;
- float *mat;
- int x, matSize;
-
- matSize =
- ( ( ( MatrixObject * ) * m1 )->rowSize ) *
- ( ( ( MatrixObject * ) * m1 )->rowSize );
- if( Matrix_CheckPyObject( *m1 ) ) {
- if( Matrix_CheckPyObject( *m2 ) ) { //matrix & matrix
- Py_INCREF( *m1 );
- Py_INCREF( *m2 );
- return 0;
- } else {
- if( VectorObject_Check( *m2 ) ) { //matrix & vector?
- printf( "use MatMultVec() for column vector multiplication\n" );
- Py_INCREF( *m1 );
- return 0;
- } else if( PyNumber_Check( *m2 ) ) { //& scalar?
- if( PyInt_Check( *m2 ) ) { //it's a int
- tempI = PyMem_Malloc( 1 *
- sizeof( long ) );
- if( tempI == NULL ) {
- return ( EXPP_ReturnIntError
- ( PyExc_MemoryError,
- "problem allocating tempI\n\n" ) );
- }
- *tempI = PyInt_AsLong( *m2 );
- mat = PyMem_Malloc( matSize *
- sizeof( float ) );
- if( mat == NULL ) {
- PyMem_Free( tempI );
- return ( EXPP_ReturnIntError
- ( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
- }
- for( x = 0; x < matSize; x++ ) {
- mat[x] = ( float ) *tempI;
- }
- PyMem_Free( tempI );
- *m2 = newMatrixObject( mat,
- ( ( ( MatrixObject * ) * m1 )->rowSize ), ( ( ( MatrixObject * ) * m1 )->colSize ) );
- ( ( MatrixObject * ) * m2 )->flag = 1; //int coercion
- PyMem_Free( mat );
- Py_INCREF( *m1 );
- return 0;
- } else if( PyFloat_Check( *m2 ) ) { //it's a float
- tempF = PyMem_Malloc( 1 *
- sizeof
- ( double ) );
- if( tempF == NULL ) {
- return ( EXPP_ReturnIntError
- ( PyExc_MemoryError,
- "problem allocating tempF\n\n" ) );
- }
- *tempF = PyFloat_AsDouble( *m2 );
- mat = PyMem_Malloc( matSize *
- sizeof( float ) );
- if( mat == NULL ) {
- PyMem_Free( tempF );
- return ( EXPP_ReturnIntError
- ( PyExc_MemoryError,
- "problem allocating mat\n\n" ) );
+ }else{
+ if(mat2->coerced_object){
+ if(VectorObject_Check(mat2->coerced_object)){ //MATRIX * VECTOR
+ vec = (VectorObject*)EXPP_incr_ret(mat2->coerced_object);
+ retObj = column_vector_multiplication(mat1, vec);
+ EXPP_decr3((PyObject*)mat1, (PyObject*)mat2, (PyObject*)vec);
+ return retObj;
+ }else if (PyFloat_Check(mat2->coerced_object) ||
+ PyInt_Check(mat2->coerced_object)){ // MATRIX * FLOAT/INT
+ f = PyNumber_Float(mat2->coerced_object);
+ if(f == NULL) { // parsed item not a number
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Matrix multiplication: arguments not acceptable for this operation\n");
+ }
+ scalar = PyFloat_AS_DOUBLE(f);
+ for(x = 0; x < mat1->rowSize; x++) {
+ for(y = 0; y < mat1->colSize; y++) {
+ mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
}
- for( x = 0; x < matSize; x++ ) {
- mat[x] = ( float ) *tempF;
+ }
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
+ }
+ }else{ //MATRIX * MATRIX
+ if(mat1->colSize != mat2->rowSize){
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Matrix multiplication: matrix A rowsize must equal matrix B colsize\n");
+ }
+ for(x = 0; x < mat1->rowSize; x++) {
+ for(y = 0; y < mat2->colSize; y++) {
+ for(z = 0; z < mat1->colSize; z++) {
+ dot += (mat1->matrix[x][z] * mat2->matrix[z][y]);
}
- PyMem_Free( tempF );
- *m2 = newMatrixObject( mat,
- ( ( ( MatrixObject * ) * m1 )->rowSize ), ( ( ( MatrixObject * ) * m1 )->colSize ) );
- ( ( MatrixObject * ) * m2 )->flag = 2; //float coercion
- PyMem_Free( mat );
- Py_INCREF( *m1 );
- return 0;
+ mat[((x * mat1->rowSize) + y)] = dot;
+ dot = 0.0f;
}
}
- //unknom2n type or numeric cast failure
- printf( "attempting matrix operation m2ith unsupported type...\n" );
- Py_INCREF( *m1 );
- return 0; //operation m2ill type check
+ return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW);
}
- } else {
- //1st not Matrix
- printf( "numeric protocol failure...\n" );
- return -1; //this should not occur - fail
}
- return -1;
-}
-//******************************************************************
-// Matrix definition
-//******************************************************************
+ EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Matrix multiplication: arguments not acceptable for this operation\n");
+}
+//------------------------coerce(obj, obj)-----------------------
+//coercion of unknown types to type MatrixObject for numeric protocols
+/*Coercion() is called whenever a math operation has 2 operands that
+ it doesn't understand how to evaluate. 2+Matrix for example. We want to
+ evaluate some of these operations like: (vector * 2), however, for math
+ to proceed, the unknown operand must be cast to a type that python math will
+ understand. (e.g. in the case above case, 2 must be cast to a vector and
+ then call vector.multiply(vector, scalar_cast_as_vector)*/
+static int Matrix_coerce(PyObject ** m1, PyObject ** m2)
+{
+ PyObject *coerced = NULL;
+ if(!MatrixObject_Check(*m2)) {
+ if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2)) {
+ coerced = EXPP_incr_ret(*m2);
+ *m2 = newMatrixObject(NULL,3,3,Py_NEW);
+ ((MatrixObject*)*m2)->coerced_object = coerced;
+ }else{
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "matrix.coerce(): unknown operand - can't coerce for numeric protocols\n");
+ }
+ }
+ Py_INCREF(*m2);
+ Py_INCREF(*m1);
+ return 0;
+}
+//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Matrix_SeqMethods = {
- ( inquiry ) Matrix_len, /* sq_length */
- ( binaryfunc ) 0, /* sq_concat */
- ( intargfunc ) 0, /* sq_repeat */
- ( intargfunc ) Matrix_item, /* sq_item */
- ( intintargfunc ) Matrix_slice, /* sq_slice */
- ( intobjargproc ) Matrix_ass_item, /* sq_ass_item */
- ( intintobjargproc ) Matrix_ass_slice, /* sq_ass_slice */
+ (inquiry) Matrix_len, /* sq_length */
+ (binaryfunc) 0, /* sq_concat */
+ (intargfunc) 0, /* sq_repeat */
+ (intargfunc) Matrix_item, /* sq_item */
+ (intintargfunc) Matrix_slice, /* sq_slice */
+ (intobjargproc) Matrix_ass_item, /* sq_ass_item */
+ (intintobjargproc) Matrix_ass_slice, /* sq_ass_slice */
};
-
static PyNumberMethods Matrix_NumMethods = {
- ( binaryfunc ) Matrix_add, /* __add__ */
- ( binaryfunc ) Matrix_sub, /* __sub__ */
- ( binaryfunc ) Matrix_mul, /* __mul__ */
- ( binaryfunc ) 0, /* __div__ */
- ( binaryfunc ) 0, /* __mod__ */
- ( binaryfunc ) 0, /* __divmod__ */
- ( ternaryfunc ) 0, /* __pow__ */
- ( unaryfunc ) 0, /* __neg__ */
- ( unaryfunc ) 0, /* __pos__ */
- ( unaryfunc ) 0, /* __abs__ */
- ( inquiry ) 0, /* __nonzero__ */
- ( unaryfunc ) 0, /* __invert__ */
- ( binaryfunc ) 0, /* __lshift__ */
- ( binaryfunc ) 0, /* __rshift__ */
- ( binaryfunc ) 0, /* __and__ */
- ( binaryfunc ) 0, /* __xor__ */
- ( binaryfunc ) 0, /* __or__ */
- ( coercion ) Matrix_coerce, /* __coerce__ */
- ( unaryfunc ) 0, /* __int__ */
- ( unaryfunc ) 0, /* __long__ */
- ( unaryfunc ) 0, /* __float__ */
- ( unaryfunc ) 0, /* __oct__ */
- ( unaryfunc ) 0, /* __hex__ */
+ (binaryfunc) Matrix_add, /* __add__ */
+ (binaryfunc) Matrix_sub, /* __sub__ */
+ (binaryfunc) Matrix_mul, /* __mul__ */
+ (binaryfunc) 0, /* __div__ */
+ (binaryfunc) 0, /* __mod__ */
+ (binaryfunc) 0, /* __divmod__ */
+ (ternaryfunc) 0, /* __pow__ */
+ (unaryfunc) 0, /* __neg__ */
+ (unaryfunc) 0, /* __pos__ */
+ (unaryfunc) 0, /* __abs__ */
+ (inquiry) 0, /* __nonzero__ */
+ (unaryfunc) 0, /* __invert__ */
+ (binaryfunc) 0, /* __lshift__ */
+ (binaryfunc) 0, /* __rshift__ */
+ (binaryfunc) 0, /* __and__ */
+ (binaryfunc) 0, /* __xor__ */
+ (binaryfunc) 0, /* __or__ */
+ (coercion) Matrix_coerce, /* __coerce__ */
+ (unaryfunc) 0, /* __int__ */
+ (unaryfunc) 0, /* __long__ */
+ (unaryfunc) 0, /* __float__ */
+ (unaryfunc) 0, /* __oct__ */
+ (unaryfunc) 0, /* __hex__ */
};
-
+//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject matrix_Type = {
- PyObject_HEAD_INIT( NULL ) /* required python macro */
- 0, /*ob_size */
- "Matrix", /*tp_name */
- sizeof( MatrixObject ), /*tp_basicsize */
- 0, /*tp_itemsize */
- ( destructor ) Matrix_dealloc, /*tp_dealloc */
- ( printfunc ) 0, /*tp_print */
- ( getattrfunc ) Matrix_getattr, /*tp_getattr */
- ( setattrfunc ) Matrix_setattr, /*tp_setattr */
- 0, /*tp_compare */
- ( reprfunc ) Matrix_repr, /*tp_repr */
- &Matrix_NumMethods, /*tp_as_number */
- &Matrix_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT(NULL) /* required python macro */
+ 0, /*ob_size */
+ "Matrix", /*tp_name */
+ sizeof(MatrixObject), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ (destructor) Matrix_dealloc, /*tp_dealloc */
+ (printfunc) 0, /*tp_print */
+ (getattrfunc) Matrix_getattr, /*tp_getattr */
+ (setattrfunc) Matrix_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ (reprfunc) Matrix_repr, /*tp_repr */
+ &Matrix_NumMethods, /*tp_as_number */
+ &Matrix_SeqMethods, /*tp_as_sequence */
};
-
-//******************************************************************
-//Function: newMatrixObject
-//******************************************************************
-PyObject *newMatrixObject( float *mat, int rowSize, int colSize )
+//------------------------newMatrixObject (internal)-------------
+//creates a new matrix object
+//self->matrix self->contiguous_ptr (reference to data.xxx)
+// [0]------------->[0]
+// [1]
+// [2]
+// [1]------------->[3]
+// [4]
+// [5]
+// ....
+//self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
{
MatrixObject *self;
- int row, col, x;
-
- if( rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4 )
- return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
- "row and column sizes must be between 2 and 4\n" ) );
-
- self = PyObject_NEW( MatrixObject, &matrix_Type );
+ int x, row, col;
- //generate contigous memory space
- self->contigPtr = PyMem_Malloc( rowSize * colSize * sizeof( float ) );
- if( self->contigPtr == NULL ) {
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating array space\n\n" ) );
- }
- //create pointer array
- self->matrix = PyMem_Malloc( rowSize * sizeof( float * ) );
- if( self->matrix == NULL ) {
- PyMem_Free( self->contigPtr );
- return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
- "problem allocating pointer space\n\n" ) );
- }
- //pointer array points to contigous memory
- for( x = 0; x < rowSize; x++ ) {
- self->matrix[x] = self->contigPtr + ( x * colSize );
+ //matrix objects can be any 2-4row x 2-4col matrix
+ if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
+ return EXPP_ReturnPyObjError(PyExc_RuntimeError,
+ "matrix(): row and column sizes must be between 2 and 4\n");
}
- if( mat ) { //if a float array passed
- for( row = 0; row < rowSize; row++ ) {
- for( col = 0; col < colSize; col++ ) {
- self->matrix[row][col] =
- mat[( row * colSize ) + col];
- }
+ matrix_Type.ob_type = &PyType_Type;
+ self = PyObject_NEW(MatrixObject, &matrix_Type);
+ self->data.blend_data = NULL;
+ self->data.py_data = NULL;
+ self->rowSize = rowSize;
+ self->colSize = colSize;
+ self->coerced_object = NULL;
+
+ if(type == Py_WRAP){
+ self->data.blend_data = mat;
+ self->contigPtr = self->data.blend_data;
+ //create pointer array
+ self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
+ if(self->matrix == NULL) { //allocation failure
+ return EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "matrix(): problem allocating pointer space\n");
+ }
+ //pointer array points to contigous memory
+ for(x = 0; x < rowSize; x++) {
+ self->matrix[x] = self->contigPtr + (x * colSize);
+ }
+ }else if (type == Py_NEW){
+ self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
+ if(self->data.py_data == NULL) { //allocation failure
+ return EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "matrix(): problem allocating pointer space\n");
}
- } else { //or if NULL passed
- for( row = 0; row < rowSize; row++ ) {
- for( col = 0; col < colSize; col++ ) {
- self->matrix[row][col] = 0.0f;
+ self->contigPtr = self->data.py_data;
+ //create pointer array
+ self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
+ if(self->matrix == NULL) { //allocation failure
+ PyMem_Free(self->data.py_data);
+ return EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "matrix(): problem allocating pointer space\n");
+ }
+ //pointer array points to contigous memory
+ for(x = 0; x < rowSize; x++) {
+ self->matrix[x] = self->contigPtr + (x * colSize);
+ }
+ //parse
+ if(mat) { //if a float array passed
+ for(row = 0; row < rowSize; row++) {
+ for(col = 0; col < colSize; col++) {
+ self->matrix[row][col] = mat[(row * colSize) + col];
+ }
}
+ } else { //or if no arguments are passed return identity matrix
+ Matrix_Identity(self);
}
+ }else{ //bad type
+ return NULL;
}
-
- //set size vars of matrix
- self->rowSize = rowSize;
- self->colSize = colSize;
-
- //set coercion flag
- self->flag = 0;
-
- return ( ( PyObject * ) self );
+ return (PyObject *) EXPP_incr_ret((PyObject *)self);
}
diff --git a/source/blender/python/api2_2x/matrix.h b/source/blender/python/api2_2x/matrix.h
index b40ec978159..9c114867786 100644
--- a/source/blender/python/api2_2x/matrix.h
+++ b/source/blender/python/api2_2x/matrix.h
@@ -33,37 +33,31 @@
#ifndef EXPP_matrix_h
#define EXPP_matrix_h
-#include "Python.h"
-#include "BLI_arithb.h"
-#include "vector.h"
-#include "gen_utils.h"
-#include "Types.h"
-#include "quat.h"
-#include "euler.h"
+#define MatrixObject_Check(v) ((v)->ob_type == &matrix_Type)
-#define Matrix_CheckPyObject(v) ((v)->ob_type == &matrix_Type)
-
-/*****************************/
-/* Matrix Python Object */
-/*****************************/
typedef float **ptRow;
-
typedef struct _Matrix {
- PyObject_VAR_HEAD /* standard python macro */
- ptRow matrix;
- float *contigPtr;
+ PyObject_VAR_HEAD
+ struct{
+ float *py_data; //python managed
+ float *blend_data; //blender managed
+ }data;
+ ptRow matrix; //ptr to the contigPtr (accessor)
+ float *contigPtr; //1D array of data (alias)
int rowSize;
int colSize;
- int flag;
- //0 - no coercion
- //1 - coerced from int
- //2 - coerced from float
+ PyObject *coerced_object;
} MatrixObject;
+/*coerced_object is a pointer to the object that it was
+coerced from when a dummy vector needs to be created from
+the coerce() function for numeric protocol operations*/
+
+/*struct data contains a pointer to the actual data that the
+object uses. It can use either PyMem allocated data (which will
+be stored in py_data) or be a wrapper for data allocated through
+blender (stored in blend_data). This is an either/or struct not both*/
-/*****************************************************************************/
-/* Python API function prototypes. */
-/*****************************************************************************/
-PyObject *newMatrixObject( float *mat, int rowSize, int colSize );
+//prototypes
PyObject *Matrix_Zero( MatrixObject * self );
PyObject *Matrix_Identity( MatrixObject * self );
PyObject *Matrix_Transpose( MatrixObject * self );
@@ -74,5 +68,6 @@ PyObject *Matrix_RotationPart( MatrixObject * self );
PyObject *Matrix_Resize4x4( MatrixObject * self );
PyObject *Matrix_toEuler( MatrixObject * self );
PyObject *Matrix_toQuat( MatrixObject * self );
+PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type);
#endif /* EXPP_matrix_H */
diff --git a/source/blender/python/api2_2x/quat.c b/source/blender/python/api2_2x/quat.c
index 35ef90aca2d..78944b9f7d5 100644
--- a/source/blender/python/api2_2x/quat.c
+++ b/source/blender/python/api2_2x/quat.c
@@ -29,545 +29,570 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include "quat.h"
-
-//doc strings
-char Quaternion_Identity_doc[] =
- "() - set the quaternion to it's identity (1, vector)";
-char Quaternion_Negate_doc[] =
- "() - set all values in the quaternion to their negative";
+#include "BLI_arithb.h"
+#include "BKE_utildefines.h"
+#include "Mathutils.h"
+#include "gen_utils.h"
+#include "BLI_blenlib.h"
+
+//-------------------------DOC STRINGS ---------------------------
+char Quaternion_Identity_doc[] = "() - set the quaternion to it's identity (1, vector)";
+char Quaternion_Negate_doc[] = "() - set all values in the quaternion to their negative";
char Quaternion_Conjugate_doc[] = "() - set the quaternion to it's conjugate";
char Quaternion_Inverse_doc[] = "() - set the quaternion to it's inverse";
-char Quaternion_Normalize_doc[] =
- "() - normalize the vector portion of the quaternion";
-char Quaternion_ToEuler_doc[] =
- "() - return a euler rotation representing the quaternion";
-char Quaternion_ToMatrix_doc[] =
- "() - return a rotation matrix representing the quaternion";
-
-//methods table
+char Quaternion_Normalize_doc[] = "() - normalize the vector portion of the quaternion";
+char Quaternion_ToEuler_doc[] = "() - return a euler rotation representing the quaternion";
+char Quaternion_ToMatrix_doc[] = "() - return a rotation matrix representing the quaternion";
+//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Quaternion_methods[] = {
- {"identity", ( PyCFunction ) Quaternion_Identity, METH_NOARGS,
- Quaternion_Identity_doc},
- {"negate", ( PyCFunction ) Quaternion_Negate, METH_NOARGS,
- Quaternion_Negate_doc},
- {"conjugate", ( PyCFunction ) Quaternion_Conjugate, METH_NOARGS,
- Quaternion_Conjugate_doc},
- {"inverse", ( PyCFunction ) Quaternion_Inverse, METH_NOARGS,
- Quaternion_Inverse_doc},
- {"normalize", ( PyCFunction ) Quaternion_Normalize, METH_NOARGS,
- Quaternion_Normalize_doc},
- {"toEuler", ( PyCFunction ) Quaternion_ToEuler, METH_NOARGS,
- Quaternion_ToEuler_doc},
- {"toMatrix", ( PyCFunction ) Quaternion_ToMatrix, METH_NOARGS,
- Quaternion_ToMatrix_doc},
+ {"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
+ {"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
+ {"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
+ {"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
+ {"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
+ {"toEuler", (PyCFunction) Quaternion_ToEuler, METH_NOARGS, Quaternion_ToEuler_doc},
+ {"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
{NULL, NULL, 0, NULL}
};
-
-/* ****** prototypes ********** */
-PyObject *Quaternion_add( PyObject * q1, PyObject * q2 );
-PyObject *Quaternion_sub( PyObject * q1, PyObject * q2 );
-PyObject *Quaternion_mul( PyObject * q1, PyObject * q2 );
-int Quaternion_coerce( PyObject ** q1, PyObject ** q2 );
-
-
-/*****************************/
-// Quaternion Python Object
-/*****************************/
-
-PyObject *Quaternion_ToEuler( QuaternionObject * self )
+//-----------------------------METHODS------------------------------
+//----------------------------Quaternion.toEuler()------------------
+//return the quat as a euler
+PyObject *Quaternion_ToEuler(QuaternionObject * self)
{
- float *eul;
+ float eul[3];
int x;
- eul = PyMem_Malloc( 3 * sizeof( float ) );
- QuatToEul( self->quat, eul );
-
- for( x = 0; x < 3; x++ ) {
- eul[x] *= ( float ) ( 180 / Py_PI );
+ QuatToEul(self->quat, eul);
+ for(x = 0; x < 3; x++) {
+ eul[x] *= (180 / (float)Py_PI);
}
- return ( PyObject * ) newEulerObject( eul );
+ if(self->data.blend_data)
+ return newEulerObject(eul, Py_WRAP);
+ else
+ return newEulerObject(eul, Py_NEW);
}
-
-PyObject *Quaternion_ToMatrix( QuaternionObject * self )
+//----------------------------Quaternion.toMatrix()------------------
+//return the quat as a matrix
+PyObject *Quaternion_ToMatrix(QuaternionObject * self)
{
- float *mat;
-
- mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
- QuatToMat3( self->quat, ( float ( * )[3] ) mat );
+ float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
+ QuatToMat3(self->quat, (float (*)[3]) mat);
- return ( PyObject * ) newMatrixObject( mat, 3, 3 );
+ if(self->data.blend_data)
+ return newMatrixObject(mat, 3, 3, Py_WRAP);
+ else
+ return newMatrixObject(mat, 3, 3, Py_NEW);
}
-
+//----------------------------Quaternion.normalize()----------------
//normalize the axis of rotation of [theta,vector]
-PyObject *Quaternion_Normalize( QuaternionObject * self )
+PyObject *Quaternion_Normalize(QuaternionObject * self)
{
- NormalQuat( self->quat );
- return EXPP_incr_ret( Py_None );
+ NormalQuat(self->quat);
+ return (PyObject*)self;
}
-
-PyObject *Quaternion_Inverse( QuaternionObject * self )
+//----------------------------Quaternion.inverse()------------------
+//invert the quat
+PyObject *Quaternion_Inverse(QuaternionObject * self)
{
- float mag = 0.0f;
+ double mag = 0.0f;
int x;
- for( x = 1; x < 4; x++ ) {
+ for(x = 1; x < 4; x++) {
self->quat[x] = -self->quat[x];
}
- for( x = 0; x < 4; x++ ) {
- mag += ( self->quat[x] * self->quat[x] );
+ for(x = 0; x < 4; x++) {
+ mag += (self->quat[x] * self->quat[x]);
}
- mag = ( float ) sqrt( mag );
- for( x = 0; x < 4; x++ ) {
- self->quat[x] /= ( mag * mag );
+ mag = sqrt(mag);
+ for(x = 0; x < 4; x++) {
+ self->quat[x] /= (mag * mag);
}
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Quaternion_Identity( QuaternionObject * self )
+//----------------------------Quaternion.identity()-----------------
+//generate the identity quaternion
+PyObject *Quaternion_Identity(QuaternionObject * self)
{
self->quat[0] = 1.0;
self->quat[1] = 0.0;
self->quat[2] = 0.0;
self->quat[3] = 0.0;
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Quaternion_Negate( QuaternionObject * self )
+//----------------------------Quaternion.negate()-------------------
+//negate the quat
+PyObject *Quaternion_Negate(QuaternionObject * self)
{
int x;
-
- for( x = 0; x < 4; x++ ) {
+ for(x = 0; x < 4; x++) {
self->quat[x] = -self->quat[x];
}
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Quaternion_Conjugate( QuaternionObject * self )
+//----------------------------Quaternion.conjugate()----------------
+//negate the vector part
+PyObject *Quaternion_Conjugate(QuaternionObject * self)
{
int x;
-
- for( x = 1; x < 4; x++ ) {
+ for(x = 1; x < 4; x++) {
self->quat[x] = -self->quat[x];
}
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-static void Quaternion_dealloc( QuaternionObject * self )
+//----------------------------dealloc()(internal) ------------------
+//free the py_object
+static void Quaternion_dealloc(QuaternionObject * self)
{
- PyMem_Free( self->quat );
- PyObject_DEL( self );
+ //only free py_data
+ if(self->data.py_data){
+ PyMem_Free(self->data.py_data);
+ }
+ PyObject_DEL(self);
}
-
-static PyObject *Quaternion_getattr( QuaternionObject * self, char *name )
+//----------------------------getattr()(internal) ------------------
+//object.attribute access (get)
+static PyObject *Quaternion_getattr(QuaternionObject * self, char *name)
{
- double mag = 0.0f;
- float *vec = NULL;
int x;
- PyObject *retval;
-
- if( ELEM4( name[0], 'w', 'x', 'y', 'z' ) && name[1] == 0 ) {
- return PyFloat_FromDouble( self->quat[name[0] - 'w'] );
+ double mag = 0.0f;
+ float vec[3];
+
+ if(STREQ(name,"w")){
+ return PyFloat_FromDouble(self->quat[0]);
+ }else if(STREQ(name, "x")){
+ return PyFloat_FromDouble(self->quat[1]);
+ }else if(STREQ(name, "y")){
+ return PyFloat_FromDouble(self->quat[2]);
+ }else if(STREQ(name, "z")){
+ return PyFloat_FromDouble(self->quat[3]);
}
- if( strcmp( name, "magnitude" ) == 0 ) {
- for( x = 0; x < 4; x++ ) {
+ if(STREQ(name, "magnitude")) {
+ for(x = 0; x < 4; x++) {
mag += self->quat[x] * self->quat[x];
}
- mag = ( float ) sqrt( mag );
- return PyFloat_FromDouble( mag );
+ mag = sqrt(mag);
+ return PyFloat_FromDouble(mag);
}
- if( strcmp( name, "angle" ) == 0 ) {
-
+ if(STREQ(name, "angle")) {
mag = self->quat[0];
- mag = 2 * ( acos( mag ) );
- mag *= ( 180 / Py_PI );
- return PyFloat_FromDouble( mag );
+ mag = 2 * (acos(mag));
+ mag *= (180 / Py_PI);
+ return PyFloat_FromDouble(mag);
}
- if( strcmp( name, "axis" ) == 0 ) {
-
- mag = ( double ) ( self->quat[0] * ( Py_PI / 180 ) );
- mag = 2 * ( acos( mag ) );
- mag = sin( mag / 2 );
- vec = PyMem_Malloc( 3 * sizeof( float ) );
- for( x = 0; x < 3; x++ ) {
- vec[x] = ( self->quat[x + 1] / ( ( float ) ( mag ) ) );
+ if(STREQ(name, "axis")) {
+ mag = self->quat[0] * (Py_PI / 180);
+ mag = 2 * (acos(mag));
+ mag = sin(mag / 2);
+ for(x = 0; x < 3; x++) {
+ vec[x] = (self->quat[x + 1] / mag);
}
- Normalise( vec );
- retval = ( PyObject * ) newVectorObject( vec, 3 );
- PyMem_Free( vec );
- return retval;
+ Normalise(vec);
+ return (PyObject *) newVectorObject(vec, 3, Py_NEW);
}
- return Py_FindMethod( Quaternion_methods, ( PyObject * ) self, name );
-}
-static int Quaternion_setattr( QuaternionObject * self, char *name,
- PyObject * v )
+ return Py_FindMethod(Quaternion_methods, (PyObject *) self, name);
+}
+//----------------------------setattr()(internal) ------------------
+//object.attribute access (set)
+static int Quaternion_setattr(QuaternionObject * self, char *name, PyObject * q)
{
- float val;
-
- if( !PyFloat_Check( v ) && !PyInt_Check( v ) ) {
- return EXPP_ReturnIntError( PyExc_TypeError,
- "int or float expected\n" );
- } else {
- if( !PyArg_Parse( v, "f", &val ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "unable to parse float argument\n" );
+ PyObject *f = NULL;
+
+ f = PyNumber_Float(q);
+ if(f == NULL) { // parsed item not a number
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "quaternion.attribute = x: argument not a number\n");
+ }
+
+ if(STREQ(name,"w")){
+ self->quat[0] = PyFloat_AS_DOUBLE(f);
+ }else if(STREQ(name, "x")){
+ self->quat[1] = PyFloat_AS_DOUBLE(f);
+ }else if(STREQ(name, "y")){
+ self->quat[2] = PyFloat_AS_DOUBLE(f);
+ }else if(STREQ(name, "z")){
+ self->quat[3] = PyFloat_AS_DOUBLE(f);
+ }else{
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_AttributeError,
+ "quaternion.attribute = x: unknown attribute\n");
}
- if( ELEM4( name[0], 'w', 'x', 'y', 'z' ) && name[1] == 0 ) {
- self->quat[name[0] - 'w'] = val;
- } else
- return -1;
+ Py_DECREF(f);
return 0;
}
-
-/* Quaternions Sequence methods */
-static PyObject *Quaternion_item( QuaternionObject * self, int i )
+//----------------------------print object (internal)--------------
+//print the object to screen
+static PyObject *Quaternion_repr(QuaternionObject * self)
{
- if( i < 0 || i >= 4 )
- return EXPP_ReturnPyObjError( PyExc_IndexError,
- "array index out of range\n" );
+ int i;
+ char buffer[48], str[1024];
+
+ BLI_strncpy(str,"[",1024);
+ for(i = 0; i < 4; i++){
+ if(i < (3)){
+ sprintf(buffer, "%.6f, ", self->quat[i]);
+ strcat(str,buffer);
+ }else{
+ sprintf(buffer, "%.6f", self->quat[i]);
+ strcat(str,buffer);
+ }
+ }
+ strcat(str, "](quaternion)");
- return Py_BuildValue( "f", self->quat[i] );
+ return EXPP_incr_ret(PyString_FromString(str));
}
-
-static PyObject *Quaternion_slice( QuaternionObject * self, int begin,
- int end )
+//---------------------SEQUENCE PROTOCOLS------------------------
+//----------------------------len(object)------------------------
+//sequence length
+static int Quaternion_len(QuaternionObject * self)
{
- PyObject *list;
- int count;
-
- if( begin < 0 )
- begin = 0;
- if( end > 4 )
- end = 4;
- if( begin > end )
- begin = end;
+ return 4;
+}
+//----------------------------object[]---------------------------
+//sequence accessor (get)
+static PyObject *Quaternion_item(QuaternionObject * self, int i)
+{
+ if(i < 0 || i >= 4)
+ return EXPP_ReturnPyObjError(PyExc_IndexError,
+ "quaternion[attribute]: array index out of range\n");
- list = PyList_New( end - begin );
+ return Py_BuildValue("f", self->quat[i]);
- for( count = begin; count < end; count++ ) {
- PyList_SetItem( list, count - begin,
- PyFloat_FromDouble( self->quat[count] ) );
- }
- return list;
}
-
-static int Quaternion_ass_item( QuaternionObject * self, int i, PyObject * ob )
+//----------------------------object[]-------------------------
+//sequence accessor (set)
+static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
{
- if( i < 0 || i >= 4 )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "array assignment index out of range\n" );
- if( !PyNumber_Check( ob ) )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "Quaternion member must be a number\n" );
-
- if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
- return EXPP_ReturnIntError( PyExc_TypeError,
- "int or float expected\n" );
- } else {
- self->quat[i] = ( float ) PyFloat_AsDouble( ob );
+ PyObject *f = NULL;
+
+ f = PyNumber_Float(ob);
+ if(f == NULL) { // parsed item not a number
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "quaternion[attribute] = x: argument not a number\n");
}
- return 0;
-}
-static int Quaternion_ass_slice( QuaternionObject * self, int begin, int end,
- PyObject * seq )
-{
- int count, z;
-
- if( begin < 0 )
- begin = 0;
- if( end > 4 )
- end = 4;
- if( begin > end )
- begin = end;
-
- if( !PySequence_Check( seq ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "illegal argument type for built-in operation\n" );
- if( PySequence_Length( seq ) != ( end - begin ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "size mismatch in slice assignment\n" );
-
- z = 0;
- for( count = begin; count < end; count++ ) {
- PyObject *ob = PySequence_GetItem( seq, z );
- z++;
-
- if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
- Py_DECREF( ob );
- return -1;
- } else {
- if( !PyArg_Parse( ob, "f", &self->quat[count] ) ) {
- Py_DECREF( ob );
- return -1;
- }
- }
+ if(i < 0 || i >= 4){
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_IndexError,
+ "quaternion[attribute] = x: array assignment index out of range\n");
}
+ self->quat[i] = PyFloat_AS_DOUBLE(f);
+ Py_DECREF(f);
return 0;
}
-
-static PyObject *Quaternion_repr( QuaternionObject * self )
+//----------------------------object[z:y]------------------------
+//sequence slice (get)
+static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
{
- int i, maxindex = 4 - 1;
- char ftoa[24];
- PyObject *str1, *str2;
-
- str1 = PyString_FromString( "[" );
-
- for( i = 0; i < maxindex; i++ ) {
- sprintf( ftoa, "%.4f, ", self->quat[i] );
- str2 = PyString_FromString( ftoa );
- if( !str1 || !str2 )
- goto error;
- PyString_ConcatAndDel( &str1, str2 );
- }
+ PyObject *list = NULL;
+ int count;
- sprintf( ftoa, "%.4f]", self->quat[maxindex] );
- str2 = PyString_FromString( ftoa );
- if( !str1 || !str2 )
- goto error;
- PyString_ConcatAndDel( &str1, str2 );
+ CLAMP(begin, 0, 4);
+ CLAMP(end, 0, 4);
+ begin = MIN2(begin,end);
- if( str1 )
- return str1;
+ list = PyList_New(end - begin);
+ for(count = begin; count < end; count++) {
+ PyList_SetItem(list, count - begin,
+ PyFloat_FromDouble(self->quat[count]));
+ }
- error:
- Py_XDECREF( str1 );
- Py_XDECREF( str2 );
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "couldn't create PyString!\n" );
+ return list;
}
-
-
-PyObject *Quaternion_add( PyObject * q1, PyObject * q2 )
+//----------------------------object[z:y]------------------------
+//sequence slice (set)
+static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end,
+ PyObject * seq)
{
- float *quat = NULL;
- PyObject *retval;
- int x;
+ int i, y, size = 0;
+ float quat[4];
- if( ( !QuaternionObject_Check( q1 ) )
- || ( !QuaternionObject_Check( q2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
- if( ( ( QuaternionObject * ) q1 )->flag > 0
- || ( ( QuaternionObject * ) q2 )->flag > 0 )
- return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
- "cannot add a scalar and a quat\n" );
-
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- for( x = 0; x < 4; x++ ) {
- quat[x] =
- ( ( ( QuaternionObject * ) q1 )->quat[x] ) +
- ( ( ( QuaternionObject * ) q2 )->quat[x] );
+ CLAMP(begin, 0, 4);
+ CLAMP(end, 0, 4);
+ begin = MIN2(begin,end);
+
+ size = PySequence_Length(seq);
+ if(size != (end - begin)){
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "quaternion[begin:end] = []: size mismatch in slice assignment\n");
}
- retval = ( PyObject * ) newQuaternionObject( quat );
- PyMem_Free( quat );
- return retval;
-}
+ for (i = 0; i < size; i++) {
+ PyObject *q, *f;
-PyObject *Quaternion_sub( PyObject * q1, PyObject * q2 )
+ q = PySequence_GetItem(seq, i);
+ if (q == NULL) { // Failed to read sequence
+ return EXPP_ReturnIntError(PyExc_RuntimeError,
+ "quaternion[begin:end] = []: unable to read sequence\n");
+ }
+ f = PyNumber_Float(q);
+ if(f == NULL) { // parsed item not a number
+ Py_DECREF(q);
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "quaternion[begin:end] = []: sequence argument not a number\n");
+ }
+ quat[i] = PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(f,q);
+ }
+ //parsed well - now set in vector
+ for(y = 0; y < size; y++){
+ self->quat[begin + y] = quat[y];
+ }
+ return 0;
+}
+//------------------------NUMERIC PROTOCOLS----------------------
+//------------------------obj + obj------------------------------
+//addition
+static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
{
- float *quat = NULL;
- PyObject *retval;
int x;
+ float quat[4];
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+
+ EXPP_incr2(q1, q2);
+ quat1 = (QuaternionObject*)q1;
+ quat2 = (QuaternionObject*)q2;
- if( ( !QuaternionObject_Check( q1 ) )
- || ( !QuaternionObject_Check( q2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
- if( ( ( QuaternionObject * ) q1 )->flag > 0
- || ( ( QuaternionObject * ) q2 )->flag > 0 )
- return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
- "cannot subtract a scalar and a quat\n" );
-
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- for( x = 0; x < 4; x++ ) {
- quat[x] =
- ( ( ( QuaternionObject * ) q1 )->quat[x] ) -
- ( ( ( QuaternionObject * ) q2 )->quat[x] );
+ if(quat1->coerced_object || quat2->coerced_object){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Quaternion addition: arguments not valid for this operation....\n");
+ }
+ for(x = 0; x < 4; x++) {
+ quat[x] = quat1->quat[x] + quat2->quat[x];
}
- retval = ( PyObject * ) newQuaternionObject( quat );
- PyMem_Free( quat );
- return retval;
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
-
-PyObject *Quaternion_mul( PyObject * q1, PyObject * q2 )
+//------------------------obj - obj------------------------------
+//subtraction
+static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
{
- float *quat = NULL;
- PyObject *retval;
int x;
+ float quat[4];
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+
+ EXPP_incr2(q1, q2);
+ quat1 = (QuaternionObject*)q1;
+ quat2 = (QuaternionObject*)q2;
- if( ( !QuaternionObject_Check( q1 ) )
- || ( !QuaternionObject_Check( q2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
- if( ( ( QuaternionObject * ) q1 )->flag == 0
- && ( ( QuaternionObject * ) q2 )->flag == 0 )
- return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
- "please use the dot or cross product to multiply quaternions\n" );
-
- quat = PyMem_Malloc( 4 * sizeof( float ) );
- //scalar mult by quat
- for( x = 0; x < 4; x++ ) {
- quat[x] =
- ( ( QuaternionObject * ) q1 )->quat[x] *
- ( ( QuaternionObject * ) q2 )->quat[x];
+ if(quat1->coerced_object || quat2->coerced_object){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Quaternion addition: arguments not valid for this operation....\n");
+ }
+ for(x = 0; x < 4; x++) {
+ quat[x] = quat1->quat[x] - quat2->quat[x];
}
- retval = ( PyObject * ) newQuaternionObject( quat );
- PyMem_Free( quat );
- return retval;
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
-
-//coercion of unknown types to type QuaternionObject for numeric protocols
-int Quaternion_coerce( PyObject ** q1, PyObject ** q2 )
+//------------------------obj * obj------------------------------
+//mulplication
+static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
{
- long *tempI = NULL;
- double *tempF = NULL;
- float *quat = NULL;
int x;
-
- if( QuaternionObject_Check( *q1 ) ) {
- if( QuaternionObject_Check( *q2 ) ) { //two Quaternions
- Py_INCREF( *q1 );
- Py_INCREF( *q2 );
- return 0;
- } else {
- if( PyNumber_Check( *q2 ) ) {
- if( PyInt_Check( *q2 ) ) { //cast scalar to Quaternion
- tempI = PyMem_Malloc( 1 *
- sizeof( long ) );
- *tempI = PyInt_AsLong( *q2 );
- quat = PyMem_Malloc( 4 *
- sizeof( float ) );
- for( x = 0; x < 4; x++ ) {
- quat[x] = ( float ) *tempI;
- }
- PyMem_Free( tempI );
- *q2 = newQuaternionObject( quat );
- PyMem_Free( quat );
- ( ( QuaternionObject * ) * q2 )->flag = 1; //int coercion
- Py_INCREF( *q1 ); /* fixme: is this needed? */
- return 0;
- } else if( PyFloat_Check( *q2 ) ) { //cast scalar to Quaternion
- tempF = PyMem_Malloc( 1 *
- sizeof
- ( double ) );
- *tempF = PyFloat_AsDouble( *q2 );
- quat = PyMem_Malloc( 4 *
- sizeof( float ) );
- for( x = 0; x < 4; x++ ) {
- quat[x] = ( float ) *tempF;
- }
- PyMem_Free( tempF );
- *q2 = newQuaternionObject( quat );
- PyMem_Free( quat );
- ( ( QuaternionObject * ) * q2 )->flag = 2; //float coercion
- Py_INCREF( *q1 ); /* fixme: is this needed? */
- return 0;
+ float quat[4], scalar, newVec[3];
+ double dot = 0.0f;
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+ PyObject *f = NULL;
+ VectorObject *vec = NULL;
+
+ EXPP_incr2(q1, q2);
+ quat1 = (QuaternionObject*)q1;
+ quat2 = (QuaternionObject*)q2;
+
+ if(quat1->coerced_object){
+ if (PyFloat_Check(quat1->coerced_object) ||
+ PyInt_Check(quat1->coerced_object)){ // FLOAT/INT * QUAT
+ f = PyNumber_Float(quat1->coerced_object);
+ if(f == NULL) { // parsed item not a number
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Quaternion multiplication: arguments not acceptable for this operation\n");
+ }
+ scalar = PyFloat_AS_DOUBLE(f);
+ for(x = 0; x < 4; x++) {
+ quat[x] = quat2->quat[x] * scalar;
+ }
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ }
+ }else{
+ if(quat2->coerced_object){
+ if (PyFloat_Check(quat2->coerced_object) ||
+ PyInt_Check(quat2->coerced_object)){ // QUAT * FLOAT/INT
+ f = PyNumber_Float(quat2->coerced_object);
+ if(f == NULL) { // parsed item not a number
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Quaternion multiplication: arguments not acceptable for this operation\n");
+ }
+ scalar = PyFloat_AS_DOUBLE(f);
+ for(x = 0; x < 4; x++) {
+ quat[x] = quat1->quat[x] * scalar;
+ }
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ }else if(VectorObject_Check(quat2->coerced_object)){ //QUAT * VEC
+ vec = (VectorObject*)EXPP_incr_ret(quat2->coerced_object);
+ if(vec->size != 3){
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Quaternion multiplication: only 3D vector rotations currently supported\n");
}
+ newVec[0] = quat1->quat[0]*quat1->quat[0]*vec->vec[0] +
+ 2*quat1->quat[2]*quat1->quat[0]*vec->vec[2] -
+ 2*quat1->quat[3]*quat1->quat[0]*vec->vec[1] +
+ quat1->quat[1]*quat1->quat[1]*vec->vec[0] +
+ 2*quat1->quat[2]*quat1->quat[1]*vec->vec[1] +
+ 2*quat1->quat[3]*quat1->quat[1]*vec->vec[2] -
+ quat1->quat[3]*quat1->quat[3]*vec->vec[0] -
+ quat1->quat[2]*quat1->quat[2]*vec->vec[0];
+ newVec[1] = 2*quat1->quat[1]*quat1->quat[2]*vec->vec[0] +
+ quat1->quat[2]*quat1->quat[2]*vec->vec[1] +
+ 2*quat1->quat[3]*quat1->quat[2]*vec->vec[2] +
+ 2*quat1->quat[0]*quat1->quat[3]*vec->vec[0] -
+ quat1->quat[3]*quat1->quat[3]*vec->vec[1] +
+ quat1->quat[0]*quat1->quat[0]*vec->vec[1] -
+ 2*quat1->quat[1]*quat1->quat[0]*vec->vec[2] -
+ quat1->quat[1]*quat1->quat[1]*vec->vec[1];
+ newVec[2] = 2*quat1->quat[1]*quat1->quat[3]*vec->vec[0] +
+ 2*quat1->quat[2]*quat1->quat[3]*vec->vec[1] +
+ quat1->quat[3]*quat1->quat[3]*vec->vec[2] -
+ 2*quat1->quat[0]*quat1->quat[2]*vec->vec[0] -
+ quat1->quat[2]*quat1->quat[2]*vec->vec[2] +
+ 2*quat1->quat[0]*quat1->quat[1]*vec->vec[1] -
+ quat1->quat[1]*quat1->quat[1]*vec->vec[2] +
+ quat1->quat[0]*quat1->quat[0]*vec->vec[2];
+ EXPP_decr3((PyObject*)quat1, (PyObject*)quat2, (PyObject*)vec);
+ return newVectorObject(newVec,3,Py_NEW);
}
- //unknown type or numeric cast failure
- printf( "attempting quaternion operation with unsupported type...\n" );
- Py_INCREF( *q1 ); /* fixme: is this needed? */
- return 0; //operation will type check
+ }else{ //QUAT * QUAT (dot product)
+ for(x = 0; x < 4; x++) {
+ dot += quat1->quat[x] * quat1->quat[x];
+ }
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return PyFloat_FromDouble(dot);
}
- } else {
- printf( "numeric protocol failure...\n" );
- return -1; //this should not occur - fail
}
- return -1;
-}
+ EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Quaternion multiplication: arguments not acceptable for this operation\n");
+}
+//------------------------coerce(obj, obj)-----------------------
+//coercion of unknown types to type QuaternionObject for numeric protocols
+/*Coercion() is called whenever a math operation has 2 operands that
+ it doesn't understand how to evaluate. 2+Matrix for example. We want to
+ evaluate some of these operations like: (vector * 2), however, for math
+ to proceed, the unknown operand must be cast to a type that python math will
+ understand. (e.g. in the case above case, 2 must be cast to a vector and
+ then call vector.multiply(vector, scalar_cast_as_vector)*/
+static int Quaternion_coerce(PyObject ** q1, PyObject ** q2)
+{
+ PyObject *coerced = NULL;
+
+ if(!QuaternionObject_Check(*q2)) {
+ if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2)) {
+ coerced = EXPP_incr_ret(*q2);
+ *q2 = newQuaternionObject(NULL,Py_NEW);
+ ((QuaternionObject*)*q2)->coerced_object = coerced;
+ }else{
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "quaternion.coerce(): unknown operand - can't coerce for numeric protocols\n");
+ }
+ }
+ EXPP_incr2(*q1, *q2);
+ return 0;
+}
+//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Quaternion_SeqMethods = {
- ( inquiry ) 0, /* sq_length */
- ( binaryfunc ) 0, /* sq_concat */
- ( intargfunc ) 0, /* sq_repeat */
- ( intargfunc ) Quaternion_item, /* sq_item */
- ( intintargfunc ) Quaternion_slice, /* sq_slice */
- ( intobjargproc ) Quaternion_ass_item, /* sq_ass_item */
- ( intintobjargproc ) Quaternion_ass_slice, /* sq_ass_slice */
+ (inquiry) Quaternion_len, /* sq_length */
+ (binaryfunc) 0, /* sq_concat */
+ (intargfunc) 0, /* sq_repeat */
+ (intargfunc) Quaternion_item, /* sq_item */
+ (intintargfunc) Quaternion_slice, /* sq_slice */
+ (intobjargproc) Quaternion_ass_item, /* sq_ass_item */
+ (intintobjargproc) Quaternion_ass_slice, /* sq_ass_slice */
};
-
static PyNumberMethods Quaternion_NumMethods = {
- ( binaryfunc ) Quaternion_add, /* __add__ */
- ( binaryfunc ) Quaternion_sub, /* __sub__ */
- ( binaryfunc ) Quaternion_mul, /* __mul__ */
- ( binaryfunc ) 0, /* __div__ */
- ( binaryfunc ) 0, /* __mod__ */
- ( binaryfunc ) 0, /* __divmod__ */
- ( ternaryfunc ) 0, /* __pow__ */
- ( unaryfunc ) 0, /* __neg__ */
- ( unaryfunc ) 0, /* __pos__ */
- ( unaryfunc ) 0, /* __abs__ */
- ( inquiry ) 0, /* __nonzero__ */
- ( unaryfunc ) 0, /* __invert__ */
- ( binaryfunc ) 0, /* __lshift__ */
- ( binaryfunc ) 0, /* __rshift__ */
- ( binaryfunc ) 0, /* __and__ */
- ( binaryfunc ) 0, /* __xor__ */
- ( binaryfunc ) 0, /* __or__ */
- ( coercion ) Quaternion_coerce, /* __coerce__ */
- ( unaryfunc ) 0, /* __int__ */
- ( unaryfunc ) 0, /* __long__ */
- ( unaryfunc ) 0, /* __float__ */
- ( unaryfunc ) 0, /* __oct__ */
- ( unaryfunc ) 0, /* __hex__ */
+ (binaryfunc) Quaternion_add, /* __add__ */
+ (binaryfunc) Quaternion_sub, /* __sub__ */
+ (binaryfunc) Quaternion_mul, /* __mul__ */
+ (binaryfunc) 0, /* __div__ */
+ (binaryfunc) 0, /* __mod__ */
+ (binaryfunc) 0, /* __divmod__ */
+ (ternaryfunc) 0, /* __pow__ */
+ (unaryfunc) 0, /* __neg__ */
+ (unaryfunc) 0, /* __pos__ */
+ (unaryfunc) 0, /* __abs__ */
+ (inquiry) 0, /* __nonzero__ */
+ (unaryfunc) 0, /* __invert__ */
+ (binaryfunc) 0, /* __lshift__ */
+ (binaryfunc) 0, /* __rshift__ */
+ (binaryfunc) 0, /* __and__ */
+ (binaryfunc) 0, /* __xor__ */
+ (binaryfunc) 0, /* __or__ */
+ (coercion) Quaternion_coerce, /* __coerce__ */
+ (unaryfunc) 0, /* __int__ */
+ (unaryfunc) 0, /* __long__ */
+ (unaryfunc) 0, /* __float__ */
+ (unaryfunc) 0, /* __oct__ */
+ (unaryfunc) 0, /* __hex__ */
};
-
+//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject quaternion_Type = {
- PyObject_HEAD_INIT( NULL )
- 0, /*ob_size */
- "quaternion", /*tp_name */
- sizeof( QuaternionObject ), /*tp_basicsize */
- 0, /*tp_itemsize */
- ( destructor ) Quaternion_dealloc, /*tp_dealloc */
- ( printfunc ) 0, /*tp_print */
- ( getattrfunc ) Quaternion_getattr, /*tp_getattr */
- ( setattrfunc ) Quaternion_setattr, /*tp_setattr */
- 0, /*tp_compare */
- ( reprfunc ) Quaternion_repr, /*tp_repr */
- &Quaternion_NumMethods, /*tp_as_number */
- &Quaternion_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT(NULL)
+ 0, /*ob_size */
+ "quaternion", /*tp_name */
+ sizeof(QuaternionObject), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ (destructor) Quaternion_dealloc, /*tp_dealloc */
+ (printfunc) 0, /*tp_print */
+ (getattrfunc) Quaternion_getattr, /*tp_getattr */
+ (setattrfunc) Quaternion_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ (reprfunc) Quaternion_repr, /*tp_repr */
+ &Quaternion_NumMethods, /*tp_as_number */
+ &Quaternion_SeqMethods, /*tp_as_sequence */
};
-
-/** Creates a new quaternion object.
- *
- * Memory for a new quaternion is allocated. The quaternion copies the given
- * list of parameters or initializes to the identity, if a <code>NULL</code>
- * pointer is given as parameter. The memory will be freed in the dealloc
- * routine.
- *
- * @param quat Pointer to a list of floats for the quanternion parameters w, x, y, z.
- * @return Quaternion Python object.
- * @see Quaternion_Identity
- */
-PyObject *newQuaternionObject( float *quat )
+//------------------------newQuaternionObject (internal)-------------
+//creates a new quaternion object
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newQuaternionObject(float *quat, int type)
{
QuaternionObject *self;
int x;
quaternion_Type.ob_type = &PyType_Type;
-
- self = PyObject_NEW( QuaternionObject, &quaternion_Type );
-
- self->quat = PyMem_Malloc( 4 * sizeof( float ) );
-
- if( !quat ) {
- Quaternion_Identity(self);
- } else {
- for( x = 0; x < 4; x++ ) {
- self->quat[x] = quat[x];
+ self = PyObject_NEW(QuaternionObject, &quaternion_Type);
+ self->data.blend_data = NULL;
+ self->data.py_data = NULL;
+ self->coerced_object = NULL;
+
+ if(type == Py_WRAP){
+ self->data.blend_data = quat;
+ self->quat = self->data.blend_data;
+ }else if (type == Py_NEW){
+ self->data.py_data = PyMem_Malloc(4 * sizeof(float));
+ self->quat = self->data.py_data;
+ if(!quat) { //new empty
+ Quaternion_Identity(self);
+ }else{
+ for(x = 0; x < 4; x++){
+ self->quat[x] = quat[x];
+ }
}
+ }else{ //bad type
+ return NULL;
}
- self->flag = 0;
-
- return ( PyObject * ) self;
+ return (PyObject *) EXPP_incr_ret((PyObject *)self);
}
diff --git a/source/blender/python/api2_2x/quat.h b/source/blender/python/api2_2x/quat.h
index a04e0ee7c37..8be94ef3f42 100644
--- a/source/blender/python/api2_2x/quat.h
+++ b/source/blender/python/api2_2x/quat.h
@@ -34,34 +34,27 @@
#ifndef EXPP_quat_h
#define EXPP_quat_h
-#include "Python.h"
-#include "gen_utils.h"
-#include "Types.h"
-#include <BLI_arithb.h>
-#include "euler.h"
-#include "matrix.h"
-
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-/*****************************/
-// Quaternion Python Object
-/*****************************/
-
#define QuaternionObject_Check(v) ((v)->ob_type == &quaternion_Type)
typedef struct {
- PyObject_VAR_HEAD float *quat;
- int flag;
- //0 - no coercion
- //1 - coerced from int
- //2 - coerced from float
+ PyObject_VAR_HEAD
+ struct{
+ float *py_data; //python managed
+ float *blend_data; //blender managed
+ }data;
+ float *quat; //1D array of data (alias)
+ PyObject *coerced_object;
} QuaternionObject;
+/*coerced_object is a pointer to the object that it was
+coerced from when a dummy vector needs to be created from
+the coerce() function for numeric protocol operations*/
+/*struct data contains a pointer to the actual data that the
+object uses. It can use either PyMem allocated data (which will
+be stored in py_data) or be a wrapper for data allocated through
+blender (stored in blend_data). This is an either/or struct not both*/
//prototypes
-PyObject *newQuaternionObject( float *quat );
PyObject *Quaternion_Identity( QuaternionObject * self );
PyObject *Quaternion_Negate( QuaternionObject * self );
PyObject *Quaternion_Conjugate( QuaternionObject * self );
@@ -69,5 +62,6 @@ PyObject *Quaternion_Inverse( QuaternionObject * self );
PyObject *Quaternion_Normalize( QuaternionObject * self );
PyObject *Quaternion_ToEuler( QuaternionObject * self );
PyObject *Quaternion_ToMatrix( QuaternionObject * self );
+PyObject *newQuaternionObject( float *quat, int type );
#endif /* EXPP_quat_h */
diff --git a/source/blender/python/api2_2x/vector.c b/source/blender/python/api2_2x/vector.c
index 049ed793de6..ff888df12f6 100644
--- a/source/blender/python/api2_2x/vector.c
+++ b/source/blender/python/api2_2x/vector.c
@@ -23,717 +23,656 @@
* All rights reserved.
*
*
- * Contributor(s): Willian P. Germano, Joseph Gilbert, Ken Hughes
+ * Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include "vector.h"
+#include "BKE_utildefines.h"
+#include "Mathutils.h"
+#include "gen_utils.h"
+#include "BLI_blenlib.h"
-//doc strings
+//-------------------------DOC STRINGS ---------------------------
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
char Vector_Normalize_doc[] = "() - normalize the vector";
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
-
-//method table
+//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Vector_methods[] = {
- {"zero", ( PyCFunction ) Vector_Zero, METH_NOARGS,
- Vector_Zero_doc},
- {"normalize", ( PyCFunction ) Vector_Normalize, METH_NOARGS,
- Vector_Normalize_doc},
- {"negate", ( PyCFunction ) Vector_Negate, METH_NOARGS,
- Vector_Negate_doc},
- {"resize2D", ( PyCFunction ) Vector_Resize2D, METH_NOARGS,
- Vector_Resize2D_doc},
- {"resize3D", ( PyCFunction ) Vector_Resize3D, METH_NOARGS,
- Vector_Resize2D_doc},
- {"resize4D", ( PyCFunction ) Vector_Resize4D, METH_NOARGS,
- Vector_Resize2D_doc},
+ {"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
+ {"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
+ {"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
+ {"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
+ {"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
+ {"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
{NULL, NULL, 0, NULL}
};
-
-/******prototypes*************/
-PyObject *Vector_add( PyObject * v1, PyObject * v2 );
-PyObject *Vector_sub( PyObject * v1, PyObject * v2 );
-PyObject *Vector_mul( PyObject * v1, PyObject * v2 );
-PyObject *Vector_div( PyObject * v1, PyObject * v2 );
-int Vector_coerce( PyObject ** v1, PyObject ** v2 );
-
-
-/*****************************/
-// Vector Python Object
-/*****************************/
-
-//object methods
-PyObject *Vector_Zero( VectorObject * self )
+//-----------------------------METHODS----------------------------
+//----------------------------Vector.zero() ----------------------
+//set the vector data to 0,0,0
+PyObject *Vector_Zero(VectorObject * self)
{
int x;
- for( x = 0; x < self->size; x++ ) {
+ for(x = 0; x < self->size; x++) {
self->vec[x] = 0.0f;
}
-
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Vector_Normalize( VectorObject * self )
+//----------------------------Vector.normalize() -----------------
+//normalize the vector data to a unit vector
+PyObject *Vector_Normalize(VectorObject * self)
{
- float norm;
int x;
+ float norm = 0.0f;
- norm = 0.0f;
- for( x = 0; x < self->size; x++ ) {
+ for(x = 0; x < self->size; x++) {
norm += self->vec[x] * self->vec[x];
}
- norm = ( float ) sqrt( norm );
- for( x = 0; x < self->size; x++ ) {
+ norm = (float) sqrt(norm);
+ for(x = 0; x < self->size; x++) {
self->vec[x] /= norm;
}
-
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Vector_Negate( VectorObject * self )
+//----------------------------Vector.negate() --------------------
+//set the vector to it's negative -x, -y, -z
+PyObject *Vector_Negate(VectorObject * self)
{
int x;
- for( x = 0; x < self->size; x++ ) {
- self->vec[x] = -( self->vec[x] );
+ for(x = 0; x < self->size; x++) {
+ self->vec[x] = -(self->vec[x]);
}
-
- return EXPP_incr_ret( Py_None );
+ return (PyObject*)self;
}
-
-PyObject *Vector_Resize2D( VectorObject * self )
+//----------------------------Vector.resize2D() ------------------
+//resize the vector to x,y
+PyObject *Vector_Resize2D(VectorObject * self)
{
- float x, y;
-
- if( self->size == 4 || self->size == 3 ) {
- x = self->vec[0];
- y = self->vec[1];
- PyMem_Free( self->vec );
- self->vec = PyMem_Malloc( 2 * sizeof( float ) );
- self->vec[0] = x;
- self->vec[1] = y;
- self->size = 2;
+ if(self->data.blend_data){
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "vector.resize2d(): cannot resize wrapped data - only python vectors\n");
}
- return EXPP_incr_ret( Py_None );
+ self->data.py_data =
+ PyMem_Realloc(self->data.py_data, (sizeof(float) * 2));
+ if(self->data.py_data == NULL) {
+ return EXPP_ReturnPyObjError(PyExc_MemoryError,
+ "vector.resize2d(): problem allocating pointer space\n\n");
+ }
+ self->vec = self->data.py_data; //force
+ self->size = 2;
+ return (PyObject*)self;
}
-
-PyObject *Vector_Resize3D( VectorObject * self )
+//----------------------------Vector.resize3D() ------------------
+//resize the vector to x,y,z
+PyObject *Vector_Resize3D(VectorObject * self)
{
- float x, y, z;
-
- if( self->size == 2 ) {
- x = self->vec[0];
- y = self->vec[1];
- PyMem_Free( self->vec );
- self->vec = PyMem_Malloc( 3 * sizeof( float ) );
- self->vec[0] = x;
- self->vec[1] = y;
- self->vec[2] = 0.0f;
- self->size = 3;
- } else if( self->size == 4 ) {
- x = self->vec[0];
- y = self->vec[1];
- z = self->vec[2];
- PyMem_Free( self->vec );
- self->vec = PyMem_Malloc( 3 * sizeof( float ) );
- self->vec[0] = x;
- self->vec[1] = y;
- self->vec[2] = z;
- self->size = 3;
- }
-
- return EXPP_incr_ret( Py_None );
-}
+ if(self->data.blend_data){
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "vector.resize3d(): cannot resize wrapped data - only python vectors\n");
+ }
-PyObject *Vector_Resize4D( VectorObject * self )
-{
- float x, y, z;
-
- if( self->size == 2 ) {
- x = self->vec[0];
- y = self->vec[1];
- PyMem_Free( self->vec );
- self->vec = PyMem_Malloc( 4 * sizeof( float ) );
- self->vec[0] = x;
- self->vec[1] = y;
- self->vec[2] = 0.0f;
- self->vec[3] = 1.0f;
- self->size = 4;
- } else if( self->size == 3 ) {
- x = self->vec[0];
- y = self->vec[1];
- z = self->vec[2];
- PyMem_Free( self->vec );
- self->vec = PyMem_Malloc( 4 * sizeof( float ) );
- self->vec[0] = x;
- self->vec[1] = y;
- self->vec[2] = z;
- self->vec[3] = 1.0f;
- self->size = 4;
- }
-
- return EXPP_incr_ret( Py_None );
+ self->data.py_data =
+ PyMem_Realloc(self->data.py_data, (sizeof(float) * 3));
+ if(self->data.py_data == NULL) {
+ return EXPP_ReturnPyObjError(PyExc_MemoryError,
+ "vector.resize3d(): problem allocating pointer space\n\n");
+ }
+ self->vec = self->data.py_data; //force
+ if(self->size == 2){
+ self->data.py_data[2] = 0.0f;
+ }
+ self->size = 3;
+ return (PyObject*)self;
}
-
-static void Vector_dealloc( VectorObject * self )
+//----------------------------Vector.resize4D() ------------------
+//resize the vector to x,y,z,w
+PyObject *Vector_Resize4D(VectorObject * self)
{
- /* if we own this memory we must delete it */
- if( self->delete_pymem )
- PyMem_Free( self->vec );
+ if(self->data.blend_data){
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "vector.resize4d(): cannot resize wrapped data - only python vectors\n");
+ }
- PyObject_DEL( self );
+ self->data.py_data =
+ PyMem_Realloc(self->data.py_data, (sizeof(float) * 4));
+ if(self->data.py_data == NULL) {
+ return EXPP_ReturnPyObjError(PyExc_MemoryError,
+ "vector.resize4d(): problem allocating pointer space\n\n");
+ }
+ self->vec = self->data.py_data; //force
+ if(self->size == 2){
+ self->data.py_data[2] = 0.0f;
+ self->data.py_data[3] = 0.0f;
+ }else if(self->size == 3){
+ self->data.py_data[3] = 0.0f;
+ }
+ self->size = 4;
+ return (PyObject*)self;
}
-
-static PyObject *Vector_getattr( VectorObject * self, char *name )
+//----------------------------dealloc()(internal) ----------------
+//free the py_object
+static void Vector_dealloc(VectorObject * self)
{
- if( self->size == 4 && ELEM4( name[0], 'x', 'y', 'z', 'w' )
- && name[1] == 0 ) {
- if( ( name[0] ) == ( 'w' ) ) {
- return PyFloat_FromDouble( self->vec[3] );
- } else {
- return PyFloat_FromDouble( self->vec[name[0] - 'x'] );
- }
- } else if( self->size == 3 && ELEM3( name[0], 'x', 'y', 'z' )
- && name[1] == 0 )
- return PyFloat_FromDouble( self->vec[name[0] - 'x'] );
- else if( self->size == 2 && ELEM( name[0], 'x', 'y' ) && name[1] == 0 )
- return PyFloat_FromDouble( self->vec[name[0] - 'x'] );
-
- if( ( strcmp( name, "length" ) == 0 ) ) {
- if( self->size == 4 ) {
- return PyFloat_FromDouble( sqrt
- ( self->vec[0] *
- self->vec[0] +
- self->vec[1] *
- self->vec[1] +
- self->vec[2] *
- self->vec[2] +
- self->vec[3] *
- self->vec[3] ) );
- } else if( self->size == 3 ) {
- return PyFloat_FromDouble( sqrt
- ( self->vec[0] *
- self->vec[0] +
- self->vec[1] *
- self->vec[1] +
- self->vec[2] *
- self->vec[2] ) );
- } else if( self->size == 2 ) {
- return PyFloat_FromDouble( sqrt
- ( self->vec[0] *
- self->vec[0] +
- self->vec[1] *
- self->vec[1] ) );
- } else
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "can only return the length of a 2D ,3D or 4D vector\n" );
- }
-
- return Py_FindMethod( Vector_methods, ( PyObject * ) self, name );
+ //only free py_data
+ if(self->data.py_data){
+ PyMem_Free(self->data.py_data);
+ }
+ PyObject_DEL(self);
}
+//----------------------------getattr()(internal) ----------------
+//object.attribute access (get)
+static PyObject *Vector_getattr(VectorObject * self, char *name)
+{
+ int x;
+ double dot = 0.0f;
+
+ if(STREQ(name,"x")){
+ return PyFloat_FromDouble(self->vec[0]);
+ }else if(STREQ(name, "y")){
+ return PyFloat_FromDouble(self->vec[1]);
+ }else if(STREQ(name, "z")){
+ if(self->size > 2){
+ return PyFloat_FromDouble(self->vec[2]);
+ }else{
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "vector.z: illegal attribute access\n");
+ }
+ }else if(STREQ(name, "w")){
+ if(self->size > 3){
+ return PyFloat_FromDouble(self->vec[3]);
+ }else{
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "vector.w: illegal attribute access\n");
+ }
+ }else if(STREQ2(name, "length", "magnitude")) {
+ for(x = 0; x < self->size; x++){
+ dot += (self->vec[x] * self->vec[x]);
+ }
+ return PyFloat_FromDouble(sqrt(dot));
+ }
-static int Vector_setattr( VectorObject * self, char *name, PyObject * v )
+ return Py_FindMethod(Vector_methods, (PyObject *) self, name);
+}
+//----------------------------setattr()(internal) ----------------
+//object.attribute access (set)
+static int Vector_setattr(VectorObject * self, char *name, PyObject * v)
{
- float val;
- int valTemp;
-
- if( !PyFloat_Check( v ) ) {
- if( !PyInt_Check( v ) ) {
- return EXPP_ReturnIntError( PyExc_TypeError,
- "int or float expected\n" );
- } else {
- if( !PyArg_Parse( v, "i", &valTemp ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "unable to parse int argument\n" );
- val = ( float ) valTemp;
+ PyObject *f = NULL;
+
+ f = PyNumber_Float(v);
+ if(f == NULL) { // parsed item not a number
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "vector.attribute = x: argument not a number\n");
+ }
+
+ if(STREQ(name,"x")){
+ self->vec[0] = PyFloat_AS_DOUBLE(f);
+ }else if(STREQ(name, "y")){
+ self->vec[1] = PyFloat_AS_DOUBLE(f);
+ }else if(STREQ(name, "z")){
+ if(self->size > 2){
+ self->vec[2] = PyFloat_AS_DOUBLE(f);
+ }else{
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_AttributeError,
+ "vector.z = x: illegal attribute access\n");
}
- } else {
- if( !PyArg_Parse( v, "f", &val ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "unable to parse float argument\n" );
- }
- if( self->size == 4 && ELEM4( name[0], 'x', 'y', 'z', 'w' )
- && name[1] == 0 ) {
- if( ( name[0] ) == ( 'w' ) ) {
- self->vec[3] = val;
- } else {
- self->vec[name[0] - 'x'] = val;
+ }else if(STREQ(name, "w")){
+ if(self->size > 3){
+ self->vec[3] = PyFloat_AS_DOUBLE(f);
+ }else{
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_AttributeError,
+ "vector.w = x: illegal attribute access\n");
}
- } else if( self->size == 3 && ELEM3( name[0], 'x', 'y', 'z' )
- && name[1] == 0 )
- self->vec[name[0] - 'x'] = val;
- else if( self->size == 2 && ELEM( name[0], 'x', 'y' ) && name[1] == 0 )
- self->vec[name[0] - 'x'] = val;
- else
- return -1;
+ }else{
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_AttributeError,
+ "vector.attribute = x: unknown attribute\n");
+ }
+ Py_DECREF(f);
return 0;
}
+//----------------------------print object (internal)-------------
+//print the object to screen
+static PyObject *Vector_repr(VectorObject * self)
+{
+ int i;
+ char buffer[48], str[1024];
+
+ BLI_strncpy(str,"[",1024);
+ for(i = 0; i < self->size; i++){
+ if(i < (self->size - 1)){
+ sprintf(buffer, "%.6f, ", self->vec[i]);
+ strcat(str,buffer);
+ }else{
+ sprintf(buffer, "%.6f", self->vec[i]);
+ strcat(str,buffer);
+ }
+ }
+ strcat(str, "](vector)");
-/* Vectors Sequence methods */
-static int Vector_len( VectorObject * self )
+ return EXPP_incr_ret(PyString_FromString(str));
+}
+//---------------------SEQUENCE PROTOCOLS------------------------
+//----------------------------len(object)------------------------
+//sequence length
+static int Vector_len(VectorObject * self)
{
return self->size;
}
-
-static PyObject *Vector_item( VectorObject * self, int i )
+//----------------------------object[]---------------------------
+//sequence accessor (get)
+static PyObject *Vector_item(VectorObject * self, int i)
{
- if( i < 0 || i >= self->size )
- return EXPP_ReturnPyObjError( PyExc_IndexError,
- "array index out of range\n" );
+ if(i < 0 || i >= self->size)
+ return EXPP_ReturnPyObjError(PyExc_IndexError,
+ "vector[attribute]: array index out of range\n");
- return Py_BuildValue( "f", self->vec[i] );
+ return Py_BuildValue("f", self->vec[i]);
}
+//----------------------------object[]-------------------------
+//sequence accessor (set)
+static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
+{
+ PyObject *f = NULL;
-static PyObject *Vector_slice( VectorObject * self, int begin, int end )
+ f = PyNumber_Float(ob);
+ if(f == NULL) { // parsed item not a number
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "vector[attribute] = x: argument not a number\n");
+ }
+
+ if(i < 0 || i >= self->size){
+ Py_DECREF(f);
+ return EXPP_ReturnIntError(PyExc_IndexError,
+ "vector[attribute] = x: array assignment index out of range\n");
+ }
+ self->vec[i] = PyFloat_AS_DOUBLE(f);
+ Py_DECREF(f);
+ return 0;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (get)
+static PyObject *Vector_slice(VectorObject * self, int begin, int end)
{
- PyObject *list;
+ PyObject *list = NULL;
int count;
- if( begin < 0 )
- begin = 0;
- if( end > self->size )
- end = self->size;
- if( begin > end )
- begin = end;
-
- list = PyList_New( end - begin );
+ CLAMP(begin, 0, self->size);
+ CLAMP(end, 0, self->size);
+ begin = MIN2(begin,end);
- for( count = begin; count < end; count++ ) {
- PyList_SetItem( list, count - begin,
- PyFloat_FromDouble( self->vec[count] ) );
+ list = PyList_New(end - begin);
+ for(count = begin; count < end; count++) {
+ PyList_SetItem(list, count - begin,
+ PyFloat_FromDouble(self->vec[count]));
}
return list;
}
-
-static int Vector_ass_item( VectorObject * self, int i, PyObject * ob )
+//----------------------------object[z:y]------------------------
+//sequence slice (set)
+static int Vector_ass_slice(VectorObject * self, int begin, int end,
+ PyObject * seq)
{
- if( i < 0 || i >= self->size )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "array assignment index out of range\n" );
- if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "vector member must be a number\n" );
+ int i, y, size = 0;
+ float vec[4];
- self->vec[i] = ( float ) PyFloat_AsDouble( ob );
+ CLAMP(begin, 0, self->size);
+ CLAMP(end, 0, self->size);
+ begin = MIN2(begin,end);
- return 0;
-}
+ size = PySequence_Length(seq);
+ if(size != (end - begin)){
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "vector[begin:end] = []: size mismatch in slice assignment\n");
+ }
-static int Vector_ass_slice( VectorObject * self, int begin, int end,
- PyObject * seq )
-{
- int count, z;
-
- if( begin < 0 )
- begin = 0;
- if( end > self->size )
- end = self->size;
- if( begin > end )
- begin = end;
-
- if( !PySequence_Check( seq ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "illegal argument type for built-in operation\n" );
- if( PySequence_Length( seq ) != ( end - begin ) )
- return EXPP_ReturnIntError( PyExc_TypeError,
- "size mismatch in slice assignment\n" );
-
- z = 0;
- for( count = begin; count < end; count++ ) {
- PyObject *ob = PySequence_GetItem( seq, z );
- z++;
- if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
- return EXPP_ReturnIntError( PyExc_IndexError,
- "list member must be a number\n" );
-
- if( !PyArg_Parse( ob, "f", &self->vec[count] ) ) {
- Py_DECREF( ob );
- return -1;
+ for (i = 0; i < size; i++) {
+ PyObject *v, *f;
+
+ v = PySequence_GetItem(seq, i);
+ if (v == NULL) { // Failed to read sequence
+ return EXPP_ReturnIntError(PyExc_RuntimeError,
+ "vector[begin:end] = []: unable to read sequence\n");
}
+ f = PyNumber_Float(v);
+ if(f == NULL) { // parsed item not a number
+ Py_DECREF(v);
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "vector[begin:end] = []: sequence argument not a number\n");
+ }
+ vec[i] = PyFloat_AS_DOUBLE(f);
+ EXPP_decr2(f,v);
+ }
+ //parsed well - now set in vector
+ for(y = 0; y < size; y++){
+ self->vec[begin + y] = vec[y];
}
-
return 0;
}
-
-static PyObject *Vector_repr( VectorObject * self )
+//------------------------NUMERIC PROTOCOLS----------------------
+//------------------------obj + obj------------------------------
+//addition
+static PyObject *Vector_add(PyObject * v1, PyObject * v2)
{
- int i, maxindex = self->size - 1;
- char ftoa[24];
- PyObject *str1, *str2;
-
- str1 = PyString_FromString( "[" );
-
- for( i = 0; i < maxindex; i++ ) {
- sprintf( ftoa, "%.4f, ", self->vec[i] );
- str2 = PyString_FromString( ftoa );
- if( !str1 || !str2 )
- goto error;
- PyString_ConcatAndDel( &str1, str2 );
- }
-
- sprintf( ftoa, "%.4f]", self->vec[maxindex] );
- str2 = PyString_FromString( ftoa );
- if( !str1 || !str2 )
- goto error;
- PyString_ConcatAndDel( &str1, str2 );
-
- if( str1 )
- return str1;
-
- error:
- Py_XDECREF( str1 );
- Py_XDECREF( str2 );
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "couldn't create PyString!\n" );
-}
+ int x, size;
+ float vec[4];
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+ EXPP_incr2(v1, v2);
+ vec1 = (VectorObject*)v1;
+ vec2 = (VectorObject*)v2;
-PyObject *Vector_add( PyObject * v1, PyObject * v2 )
-{
- float *vec;
- int x;
- PyObject *retval;
-
- if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
- if( ( ( VectorObject * ) v1 )->flag != 0
- || ( ( VectorObject * ) v2 )->flag != 0 )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "cannot add a scalar to a vector\n" );
- if( ( ( VectorObject * ) v1 )->size !=
- ( ( VectorObject * ) v2 )->size )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "vectors must have the same dimensions for this operation\n" );
-
- vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
- sizeof( float ) );
-
- for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
- vec[x] = ( ( VectorObject * ) v1 )->vec[x] +
- ( ( VectorObject * ) v2 )->vec[x];
- }
-
- retval = ( PyObject * ) newVectorObject( vec,
- ( ( ( VectorObject * ) v1 )->
- size ) );
- PyMem_Free( vec );
- return retval;
-}
+ if(vec1->coerced_object || vec2->coerced_object){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Vector addition: arguments not valid for this operation....\n");
+ }
+ if(vec1->size != vec2->size){
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Vector addition: vectors must have the same dimensions for this operation\n");
+ }
-PyObject *Vector_sub( PyObject * v1, PyObject * v2 )
-{
- float *vec;
- int x;
- PyObject *retval;
-
- if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
- if( ( ( VectorObject * ) v1 )->flag != 0
- || ( ( VectorObject * ) v2 )->flag != 0 )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "cannot subtract a scalar from a vector\n" );
- if( ( ( VectorObject * ) v1 )->size !=
- ( ( VectorObject * ) v2 )->size )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "vectors must have the same dimensions for this operation\n" );
-
- vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
- sizeof( float ) );
-
- for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
- vec[x] = ( ( VectorObject * ) v1 )->vec[x] -
- ( ( VectorObject * ) v2 )->vec[x];
- }
-
- retval = ( PyObject * ) newVectorObject( vec,
- ( ( ( VectorObject * ) v1 )->
- size ) );
- PyMem_Free( vec );
- return retval;
-}
+ size = vec1->size;
+ for(x = 0; x < size; x++) {
+ vec[x] = vec1->vec[x] + vec2->vec[x];
+ }
-PyObject *Vector_mul( PyObject * v1, PyObject * v2 )
-{
- float *vec;
- int x;
- PyObject *retval;
-
- if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
- if( ( ( VectorObject * ) v1 )->flag == 0
- && ( ( VectorObject * ) v2 )->flag == 0 )
- return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
- "please use the dot product or the cross product to multiply vectors\n" );
- if( ( ( VectorObject * ) v1 )->size !=
- ( ( VectorObject * ) v2 )->size )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "vector dimension error during Vector_mul\n" );
-
- vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
- sizeof( float ) );
-
- for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
- vec[x] = ( ( VectorObject * ) v1 )->vec[x] *
- ( ( VectorObject * ) v2 )->vec[x];
- }
-
- retval = ( PyObject * ) newVectorObject( vec,
- ( ( ( VectorObject * ) v1 )->
- size ) );
- PyMem_Free( vec );
- return retval;
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
-
-PyObject *Vector_div( PyObject * v1, PyObject * v2 )
+//------------------------obj - obj------------------------------
+//subtraction
+static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
{
- float *vec;
- int x;
- PyObject *retval;
-
- if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "unsupported type for this operation\n" );
- if( ( ( VectorObject * ) v1 )->flag == 0
- && ( ( VectorObject * ) v2 )->flag == 0 )
- return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
- "cannot divide two vectors\n" );
- if( ( ( VectorObject * ) v1 )->flag != 0
- && ( ( VectorObject * ) v2 )->flag == 0 )
- return EXPP_ReturnPyObjError( PyExc_TypeError,
- "cannot divide a scalar by a vector\n" );
- if( ( ( VectorObject * ) v1 )->size !=
- ( ( VectorObject * ) v2 )->size )
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "vector dimension error during Vector_mul\n" );
-
- vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
- sizeof( float ) );
-
- for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
- vec[x] = ( ( VectorObject * ) v1 )->vec[x] /
- ( ( VectorObject * ) v2 )->vec[x];
- }
-
- retval = ( PyObject * ) newVectorObject( vec,
- ( ( ( VectorObject * ) v1 )->
- size ) );
- PyMem_Free( vec );
- return retval;
-}
+ int x, size;
+ float vec[4];
+ VectorObject *vec1 = NULL, *vec2 = NULL;
-//coercion of unknown types to type VectorObject for numeric protocols
-int Vector_coerce( PyObject ** v1, PyObject ** v2 )
-{
- long *tempI;
- double *tempF;
- float *vec;
- int x;
+ EXPP_incr2(v1, v2);
+ vec1 = (VectorObject*)v1;
+ vec2 = (VectorObject*)v2;
+
+ if(vec1->coerced_object || vec2->coerced_object){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Vector subtraction: arguments not valid for this operation....\n");
+ }
+ if(vec1->size != vec2->size){
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Vector subtraction: vectors must have the same dimensions for this operation\n");
+ }
- if( VectorObject_Check( *v1 ) ) {
- if( VectorObject_Check( *v2 ) ) { //two vectors
- Py_INCREF( *v1 ); /* fixme: wahy are we bumping the ref count? */
- Py_INCREF( *v2 );
- return 0;
- } else {
- if( Matrix_CheckPyObject( *v2 ) ) {
- printf( "vector/matrix numeric protocols unsupported...\n" );
- Py_INCREF( *v1 );
- return 0; //operation will type check
- } else if( *v2 == Py_None ) {
- Py_INCREF(*v1);
- Py_INCREF(Py_None);
- return 0;
- } else if( PyNumber_Check( *v2 ) ) {
- if( PyInt_Check( *v2 ) ) { //cast scalar to vector
- tempI = PyMem_Malloc( 1 *
- sizeof( long ) );
- *tempI = PyInt_AsLong( *v2 );
- vec = PyMem_Malloc( ( ( ( VectorObject
- * ) *
- v1 )->size ) *
- sizeof( float ) );
- for( x = 0;
- x < ( ( ( VectorObject * ) * v1 )->size );
- x++ ) {
- vec[x] = ( float ) *tempI;
- }
- PyMem_Free( tempI );
- *v2 = newVectorObject( vec,
- ( ( ( VectorObject * ) * v1 )->size ) );
- ( ( VectorObject * ) * v2 )->flag = 1; //int coercion
- Py_INCREF( *v1 );
- return 0;
- } else if( PyFloat_Check( *v2 ) ) { //cast scalar to vector
- tempF = PyMem_Malloc( 1 *
- sizeof
- ( double ) );
- *tempF = PyFloat_AsDouble( *v2 );
- vec = PyMem_Malloc( ( ( ( VectorObject
- * ) *
- v1 )->size ) *
- sizeof( float ) );
- for( x = 0;
- x <
- ( ( ( VectorObject * ) *
- v1 )->size ); x++ ) {
- vec[x] = ( float ) *tempF;
- }
- PyMem_Free( tempF );
- *v2 = newVectorObject( vec,
- ( ( ( VectorObject * ) * v1 )->size ) );
- ( ( VectorObject * ) * v2 )->flag = 2; //float coercion
- Py_INCREF( *v1 );
- return 0;
+ size = vec1->size;
+ for(x = 0; x < size; x++) {
+ vec[x] = vec1->vec[x] - vec2->vec[x];
+ }
+
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return (PyObject *) newVectorObject(vec, size, Py_NEW);
+}
+//------------------------obj * obj------------------------------
+//mulplication
+static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
+{
+ int x, size;
+ float vec[4], scalar, newVec[3];
+ double dot = 0.0f;
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+ PyObject *f = NULL, *retObj = NULL;
+ MatrixObject *mat = NULL;
+ QuaternionObject *quat = NULL;
+
+ EXPP_incr2(v1, v2);
+ vec1 = (VectorObject*)v1;
+ vec2 = (VectorObject*)v2;
+
+ if(vec1->coerced_object){
+ if (PyFloat_Check(vec1->coerced_object) ||
+ PyInt_Check(vec1->coerced_object)){ // FLOAT/INT * VECTOR
+ f = PyNumber_Float(vec1->coerced_object);
+ if(f == NULL) { // parsed item not a number
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Vector multiplication: arguments not acceptable for this operation\n");
+ }
+ scalar = PyFloat_AS_DOUBLE(f);
+ size = vec2->size;
+ for(x = 0; x < size; x++) {
+ vec[x] = vec2->vec[x] * scalar;
+ }
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return (PyObject *) newVectorObject(vec, size, Py_NEW);
+ }
+ }else{
+ if(vec2->coerced_object){
+ if(MatrixObject_Check(vec2->coerced_object)){ //VECTOR * MATRIX
+ mat = (MatrixObject*)EXPP_incr_ret(vec2->coerced_object);
+ retObj = row_vector_multiplication(vec1, mat);
+ EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)mat);
+ return retObj;
+ }else if (PyFloat_Check(vec2->coerced_object) ||
+ PyInt_Check(vec2->coerced_object)){ // VECTOR * FLOAT/INT
+ f = PyNumber_Float(vec2->coerced_object);
+ if(f == NULL) { // parsed item not a number
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Vector multiplication: arguments not acceptable for this operation\n");
+ }
+ scalar = PyFloat_AS_DOUBLE(f);
+ size = vec1->size;
+ for(x = 0; x < size; x++) {
+ vec[x] = vec1->vec[x] * scalar;
}
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return (PyObject *) newVectorObject(vec, size, Py_NEW);
+ }else if(QuaternionObject_Check(vec2->coerced_object)){ //QUAT * VEC
+ quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object);
+ if(vec1->size != 3){
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
+ }
+ newVec[0] = quat->quat[0]*quat->quat[0]*vec1->vec[0] +
+ 2*quat->quat[2]*quat->quat[0]*vec1->vec[2] -
+ 2*quat->quat[3]*quat->quat[0]*vec1->vec[1] +
+ quat->quat[1]*quat->quat[1]*vec1->vec[0] +
+ 2*quat->quat[2]*quat->quat[1]*vec1->vec[1] +
+ 2*quat->quat[3]*quat->quat[1]*vec1->vec[2] -
+ quat->quat[3]*quat->quat[3]*vec1->vec[0] -
+ quat->quat[2]*quat->quat[2]*vec1->vec[0];
+ newVec[1] = 2*quat->quat[1]*quat->quat[2]*vec1->vec[0] +
+ quat->quat[2]*quat->quat[2]*vec1->vec[1] +
+ 2*quat->quat[3]*quat->quat[2]*vec1->vec[2] +
+ 2*quat->quat[0]*quat->quat[3]*vec1->vec[0] -
+ quat->quat[3]*quat->quat[3]*vec1->vec[1] +
+ quat->quat[0]*quat->quat[0]*vec1->vec[1] -
+ 2*quat->quat[1]*quat->quat[0]*vec1->vec[2] -
+ quat->quat[1]*quat->quat[1]*vec1->vec[1];
+ newVec[2] = 2*quat->quat[1]*quat->quat[3]*vec1->vec[0] +
+ 2*quat->quat[2]*quat->quat[3]*vec1->vec[1] +
+ quat->quat[3]*quat->quat[3]*vec1->vec[2] -
+ 2*quat->quat[0]*quat->quat[2]*vec1->vec[0] -
+ quat->quat[2]*quat->quat[2]*vec1->vec[2] +
+ 2*quat->quat[0]*quat->quat[1]*vec1->vec[1] -
+ quat->quat[1]*quat->quat[1]*vec1->vec[2] +
+ quat->quat[0]*quat->quat[0]*vec1->vec[2];
+ EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat);
+ return newVectorObject(newVec,3,Py_NEW);
+ }
+ }else{ //VECTOR * VECTOR
+ if(vec1->size != vec2->size){
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Vector multiplication: vectors must have the same dimensions for this operation\n");
}
- //unknown type or numeric cast failure
- printf( "attempting vector operation with unsupported type...\n" );
- Py_INCREF( *v1 );
- Py_INCREF( *v2 );
- return 0; //operation will type check
+ size = vec1->size;
+ //dot product
+ for(x = 0; x < size; x++) {
+ dot += vec1->vec[x] * vec2->vec[x];
+ }
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return PyFloat_FromDouble(dot);
}
- } else {
- printf( "numeric protocol failure...\n" );
- return -1; //this should not occur - fail
}
- return -1;
+
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_TypeError,
+ "Vector multiplication: arguments not acceptable for this operation\n");
}
+//------------------------obj / obj------------------------------
+//division
+static PyObject *Vector_div(PyObject * v1, PyObject * v2)
+{
+ int x, size;
+ float vec[4];
+ VectorObject *vec1 = NULL, *vec2 = NULL;
+
+ EXPP_incr2(v1, v2);
+ vec1 = (VectorObject*)v1;
+ vec2 = (VectorObject*)v2;
+
+ if(vec1->coerced_object || vec2->coerced_object){
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Vector division: arguments not valid for this operation....\n");
+ }
+ if(vec1->size != vec2->size){
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return EXPP_ReturnPyObjError(PyExc_AttributeError,
+ "Vector division: vectors must have the same dimensions for this operation\n");
+ }
+ size = vec1->size;
+ for(x = 0; x < size; x++) {
+ vec[x] = vec1->vec[x] / vec2->vec[x];
+ }
+ EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
+ return (PyObject *) newVectorObject(vec, size, Py_NEW);
+}
+//------------------------coerce(obj, obj)-----------------------
+//coercion of unknown types to type VectorObject for numeric protocols
+/*Coercion() is called whenever a math operation has 2 operands that
+ it doesn't understand how to evaluate. 2+Matrix for example. We want to
+ evaluate some of these operations like: (vector * 2), however, for math
+ to proceed, the unknown operand must be cast to a type that python math will
+ understand. (e.g. in the case above case, 2 must be cast to a vector and
+ then call vector.multiply(vector, scalar_cast_as_vector)*/
+static int Vector_coerce(PyObject ** v1, PyObject ** v2)
+{
+ PyObject *coerced = NULL;
+
+ if(!VectorObject_Check(*v2)) {
+ if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || QuaternionObject_Check(*v2)) {
+ coerced = EXPP_incr_ret(*v2);
+ *v2 = newVectorObject(NULL,3,Py_NEW);
+ ((VectorObject*)*v2)->coerced_object = coerced;
+ }else{
+ return EXPP_ReturnIntError(PyExc_TypeError,
+ "vector.coerce(): unknown operand - can't coerce for numeric protocols\n");
+ }
+ }
+ EXPP_incr2(*v1, *v2);
+ return 0;
+}
+//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Vector_SeqMethods = {
- ( inquiry ) Vector_len, /* sq_length */
- ( binaryfunc ) 0, /* sq_concat */
- ( intargfunc ) 0, /* sq_repeat */
- ( intargfunc ) Vector_item, /* sq_item */
- ( intintargfunc ) Vector_slice, /* sq_slice */
- ( intobjargproc ) Vector_ass_item, /* sq_ass_item */
- ( intintobjargproc ) Vector_ass_slice, /* sq_ass_slice */
+ (inquiry) Vector_len, /* sq_length */
+ (binaryfunc) 0, /* sq_concat */
+ (intargfunc) 0, /* sq_repeat */
+ (intargfunc) Vector_item, /* sq_item */
+ (intintargfunc) Vector_slice, /* sq_slice */
+ (intobjargproc) Vector_ass_item, /* sq_ass_item */
+ (intintobjargproc) Vector_ass_slice, /* sq_ass_slice */
};
-
static PyNumberMethods Vector_NumMethods = {
- ( binaryfunc ) Vector_add, /* __add__ */
- ( binaryfunc ) Vector_sub, /* __sub__ */
- ( binaryfunc ) Vector_mul, /* __mul__ */
- ( binaryfunc ) Vector_div, /* __div__ */
- ( binaryfunc ) 0, /* __mod__ */
- ( binaryfunc ) 0, /* __divmod__ */
- ( ternaryfunc ) 0, /* __pow__ */
- ( unaryfunc ) 0, /* __neg__ */
- ( unaryfunc ) 0, /* __pos__ */
- ( unaryfunc ) 0, /* __abs__ */
- ( inquiry ) 0, /* __nonzero__ */
- ( unaryfunc ) 0, /* __invert__ */
- ( binaryfunc ) 0, /* __lshift__ */
- ( binaryfunc ) 0, /* __rshift__ */
- ( binaryfunc ) 0, /* __and__ */
- ( binaryfunc ) 0, /* __xor__ */
- ( binaryfunc ) 0, /* __or__ */
- ( coercion ) Vector_coerce, /* __coerce__ */
- ( unaryfunc ) 0, /* __int__ */
- ( unaryfunc ) 0, /* __long__ */
- ( unaryfunc ) 0, /* __float__ */
- ( unaryfunc ) 0, /* __oct__ */
- ( unaryfunc ) 0, /* __hex__ */
+ (binaryfunc) Vector_add, /* __add__ */
+ (binaryfunc) Vector_sub, /* __sub__ */
+ (binaryfunc) Vector_mul, /* __mul__ */
+ (binaryfunc) Vector_div, /* __div__ */
+ (binaryfunc) 0, /* __mod__ */
+ (binaryfunc) 0, /* __divmod__ */
+ (ternaryfunc) 0, /* __pow__ */
+ (unaryfunc) 0, /* __neg__ */
+ (unaryfunc) 0, /* __pos__ */
+ (unaryfunc) 0, /* __abs__ */
+ (inquiry) 0, /* __nonzero__ */
+ (unaryfunc) 0, /* __invert__ */
+ (binaryfunc) 0, /* __lshift__ */
+ (binaryfunc) 0, /* __rshift__ */
+ (binaryfunc) 0, /* __and__ */
+ (binaryfunc) 0, /* __xor__ */
+ (binaryfunc) 0, /* __or__ */
+ (coercion) Vector_coerce, /* __coerce__ */
+ (unaryfunc) 0, /* __int__ */
+ (unaryfunc) 0, /* __long__ */
+ (unaryfunc) 0, /* __float__ */
+ (unaryfunc) 0, /* __oct__ */
+ (unaryfunc) 0, /* __hex__ */
};
-
+//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject vector_Type = {
- PyObject_HEAD_INIT( NULL ) 0, /*ob_size */
- "vector", /*tp_name */
- sizeof( VectorObject ), /*tp_basicsize */
- 0, /*tp_itemsize */
- ( destructor ) Vector_dealloc, /*tp_dealloc */
- ( printfunc ) 0, /*tp_print */
- ( getattrfunc ) Vector_getattr, /*tp_getattr */
- ( setattrfunc ) Vector_setattr, /*tp_setattr */
- 0, /*tp_compare */
- ( reprfunc ) Vector_repr, /*tp_repr */
- &Vector_NumMethods, /*tp_as_number */
- &Vector_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT(NULL)
+ 0, /*ob_size */
+ "vector", /*tp_name */
+ sizeof(VectorObject), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ (destructor) Vector_dealloc, /*tp_dealloc */
+ (printfunc) 0, /*tp_print */
+ (getattrfunc) Vector_getattr, /*tp_getattr */
+ (setattrfunc) Vector_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ (reprfunc) Vector_repr, /*tp_repr */
+ &Vector_NumMethods, /*tp_as_number */
+ &Vector_SeqMethods, /*tp_as_sequence */
};
-
-
-/*
- * create a Vector Object( vec, size )
- *
- * Note: Vector now uses copy semantics like STL containers.
- * Memory for vec member is allocated on python stack.
- * We own this memory and will free it later.
- *
- * size arg is number of floats to alloc.
- *
- * if vec arg is NULL
- * fill our vec with zeros
- * initialize 4d vectors to zero in homogenous coords.
- * else
- * vec param is copied into our local memory and always freed.
- */
-
-PyObject *newVectorObject( float *vec, int size )
+//------------------------newVectorObject (internal)-------------
+//creates a new vector object
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newVectorObject(float *vec, int size, int type)
{
VectorObject *self;
int x;
vector_Type.ob_type = &PyType_Type;
-
- self = PyObject_NEW( VectorObject, &vector_Type );
-
- self->vec = PyMem_Malloc( size * sizeof( float ) );
- self->delete_pymem = 1; /* must free this alloc later */
-
- if( !vec ) {
- for( x = 0; x < size; x++ ) {
- self->vec[x] = 0.0f;
- }
- if( size == 4 ) /* do the homogenous thing */
- self->vec[3] = 1.0f;
- } else {
- for( x = 0; x < size; x++ ){
- self->vec[x] = vec[x];
+ self = PyObject_NEW(VectorObject, &vector_Type);
+ self->data.blend_data = NULL;
+ self->data.py_data = NULL;
+ self->size = size;
+ self->coerced_object = NULL;
+
+ if(type == Py_WRAP){
+ self->data.blend_data = vec;
+ self->vec = self->data.blend_data;
+ }else if (type == Py_NEW){
+ self->data.py_data = PyMem_Malloc(size * sizeof(float));
+ self->vec = self->data.py_data;
+ if(!vec) { //new empty
+ for(x = 0; x < size; x++){
+ self->vec[x] = 0.0f;
+ }
+ if(size == 4) /* do the homogenous thing */
+ self->vec[3] = 1.0f;
+ }else{
+ for(x = 0; x < size; x++){
+ self->vec[x] = vec[x];
+ }
}
+ }else{ //bad type
+ return NULL;
}
-
- self->size = size;
- self->flag = 0;
-
- return ( PyObject * ) self;
+ return (PyObject *) EXPP_incr_ret((PyObject *)self);
}
-
-/*
- create a Vector that is a proxy for blender data.
- we do not own this data, we NEVER free it.
- Note: users must deal with bad pointer issue
-*/
-
-PyObject *newVectorProxy( float *vec, int size)
-{
- VectorObject *proxy;
-
- proxy = PyObject_NEW( VectorObject, &vector_Type );
-
- proxy->delete_pymem = 0; /* must NOT free this alloc later */
-
- if( !vec || size < 1 ) {
- return EXPP_ReturnPyObjError( PyExc_AttributeError,
- "cannot creat zero length vector proxy" );
- }
-
- proxy->vec = vec;
- proxy->size = size;
- proxy->flag = 0;
-
- return ( PyObject * ) proxy;
-}
-
diff --git a/source/blender/python/api2_2x/vector.h b/source/blender/python/api2_2x/vector.h
index 40e5851359a..048fa1df8bc 100644
--- a/source/blender/python/api2_2x/vector.h
+++ b/source/blender/python/api2_2x/vector.h
@@ -33,40 +33,34 @@
#ifndef EXPP_vector_h
#define EXPP_vector_h
-#include "Python.h"
-#include "gen_utils.h"
-#include "Types.h"
-#include "matrix.h"
-#include "BKE_utildefines.h"
-
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-/*****************************/
-// Vector Python Object
-/*****************************/
-
#define VectorObject_Check(v) ((v)->ob_type == &vector_Type)
typedef struct {
- PyObject_VAR_HEAD float *vec;
+ PyObject_VAR_HEAD
+ struct{
+ float *py_data; //python managed
+ float *blend_data; //blender managed
+ }data;
+ float *vec; //1D array of data (alias)
int size;
- int flag;
- //0 - no coercion
- //1 - coerced from int
- //2 - coerced from float
- int delete_pymem; /* flag to delete the memory vec points at */
+ PyObject *coerced_object;
} VectorObject;
+/*coerced_object is a pointer to the object that it was
+coerced from when a dummy vector needs to be created from
+the coerce() function for numeric protocol operations*/
+
+/*struct data contains a pointer to the actual data that the
+object uses. It can use either PyMem allocated data (which will
+be stored in py_data) or be a wrapper for data allocated through
+blender (stored in blend_data). This is an either/or struct not both*/
//prototypes
-PyObject *newVectorObject( float *vec, int size );
-PyObject *newVectorProxy( float *vec, int size );
PyObject *Vector_Zero( VectorObject * self );
PyObject *Vector_Normalize( VectorObject * self );
PyObject *Vector_Negate( VectorObject * self );
PyObject *Vector_Resize2D( VectorObject * self );
PyObject *Vector_Resize3D( VectorObject * self );
PyObject *Vector_Resize4D( VectorObject * self );
+PyObject *newVectorObject(float *vec, int size, int type);
#endif /* EXPP_vector_h */