Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorErwin Coumans <blender@erwincoumans.com>2008-09-03 06:27:16 +0400
committerErwin Coumans <blender@erwincoumans.com>2008-09-03 06:27:16 +0400
commit1926e846500212d11061c23cacdbd08d88e375da (patch)
treead72fe64632cfc22a4878e065578b66d52de218d /extern/bullet2/src/BulletCollision/BroadphaseCollision
parent33ac84e888ee3e3217f15f955e1b389a9c4bb230 (diff)
Finally upgraded to latest Bullet subversion, about to release 2.71. Some recent changes in extern/bullet2 need to be re-applied, will check with Benoit. Ray tests in 0_FPS_Template.blend is broken, didn't figure out why yet.
HELP BUILD SYSTEM MAINTAINERS: Please help with updating all build systems: the newly added files need to be added. Note that the src/SoftBody has been added for future extension of real-time soft bodies.
Diffstat (limited to 'extern/bullet2/src/BulletCollision/BroadphaseCollision')
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp636
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h865
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h28
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h55
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp2
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h11
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.cpp1320
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.h1101
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp344
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h103
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btDispatcher.h22
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.cpp466
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.h144
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp505
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h351
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h40
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp1025
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.h486
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp236
-rw-r--r--extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h101
20 files changed, 6966 insertions, 875 deletions
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp
index be4a11506df..d7eea33ea41 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp
@@ -21,640 +21,18 @@
#include <assert.h>
-#ifdef DEBUG_BROADPHASE
-#include <stdio.h>
-void btAxisSweep3::debugPrintAxis(int axis, bool checkCardinality)
+btAxisSweep3::btAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, unsigned short int maxHandles, btOverlappingPairCache* pairCache)
+:btAxisSweep3Internal<unsigned short int>(worldAabbMin,worldAabbMax,0xfffe,0xffff,maxHandles,pairCache)
{
- int numEdges = m_pHandles[0].m_maxEdges[axis];
- printf("SAP Axis %d, numEdges=%d\n",axis,numEdges);
-
- int i;
- for (i=0;i<numEdges+1;i++)
- {
- Edge* pEdge = m_pEdges[axis] + i;
- Handle* pHandlePrev = getHandle(pEdge->m_handle);
- int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
- char beginOrEnd;
- beginOrEnd=pEdge->IsMax()?'E':'B';
- printf(" [%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex);
- }
-
- if (checkCardinality)
- assert(numEdges == m_numHandles*2+1);
-}
-#endif //DEBUG_BROADPHASE
-
-
-btBroadphaseProxy* btAxisSweep3::createProxy( const btVector3& min, const btVector3& max,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask)
-{
- (void)shapeType;
- BP_FP_INT_TYPE handleId = addHandle(min,max, userPtr,collisionFilterGroup,collisionFilterMask);
-
- Handle* handle = getHandle(handleId);
-
- return handle;
-}
-
-void btAxisSweep3::destroyProxy(btBroadphaseProxy* proxy)
-{
- Handle* handle = static_cast<Handle*>(proxy);
- removeHandle(handle->m_handleId);
-}
-
-void btAxisSweep3::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)
-{
- Handle* handle = static_cast<Handle*>(proxy);
- updateHandle(handle->m_handleId,aabbMin,aabbMax);
-
-}
-
-
-
-
-
-
-btAxisSweep3::btAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, int maxHandles)
-:btOverlappingPairCache()
-{
- m_invalidPair = 0;
- //assert(bounds.HasVolume());
-
// 1 handle is reserved as sentinel
- btAssert(maxHandles > 1 && maxHandles < BP_MAX_HANDLES);
-
- // init bounds
- m_worldAabbMin = worldAabbMin;
- m_worldAabbMax = worldAabbMax;
-
- btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;
-
- BP_FP_INT_TYPE maxInt = BP_HANDLE_SENTINEL;
-
- m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize;
-
- // allocate handles buffer and put all handles on free list
- m_pHandles = new Handle[maxHandles];
- m_maxHandles = maxHandles;
- m_numHandles = 0;
-
- // handle 0 is reserved as the null index, and is also used as the sentinel
- m_firstFreeHandle = 1;
- {
- for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < maxHandles; i++)
- m_pHandles[i].SetNextFree(i + 1);
- m_pHandles[maxHandles - 1].SetNextFree(0);
- }
-
- {
- // allocate edge buffers
- for (int i = 0; i < 3; i++)
- m_pEdges[i] = new Edge[maxHandles * 2];
- }
- //removed overlap management
-
- // make boundary sentinels
-
- m_pHandles[0].m_clientObject = 0;
-
- for (int axis = 0; axis < 3; axis++)
- {
- m_pHandles[0].m_minEdges[axis] = 0;
- m_pHandles[0].m_maxEdges[axis] = 1;
-
- m_pEdges[axis][0].m_pos = 0;
- m_pEdges[axis][0].m_handle = 0;
- m_pEdges[axis][1].m_pos = BP_HANDLE_SENTINEL;
- m_pEdges[axis][1].m_handle = 0;
-#ifdef DEBUG_BROADPHASE
- debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
-
- }
-
-}
-
-btAxisSweep3::~btAxisSweep3()
-{
-
- for (int i = 2; i >= 0; i--)
- delete[] m_pEdges[i];
- delete[] m_pHandles;
-}
-
-void btAxisSweep3::quantize(BP_FP_INT_TYPE* out, const btPoint3& point, int isMax) const
-{
- btPoint3 clampedPoint(point);
-
-
-
- clampedPoint.setMax(m_worldAabbMin);
- clampedPoint.setMin(m_worldAabbMax);
-
- btVector3 v = (clampedPoint - m_worldAabbMin) * m_quantize;
- out[0] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getX() & BP_HANDLE_MASK) | isMax);
- out[1] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getY() & BP_HANDLE_MASK) | isMax);
- out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & BP_HANDLE_MASK) | isMax);
-
-}
-
-
-
-BP_FP_INT_TYPE btAxisSweep3::allocHandle()
-{
- assert(m_firstFreeHandle);
-
- BP_FP_INT_TYPE handle = m_firstFreeHandle;
- m_firstFreeHandle = getHandle(handle)->GetNextFree();
- m_numHandles++;
-
- return handle;
-}
-
-void btAxisSweep3::freeHandle(BP_FP_INT_TYPE handle)
-{
- assert(handle > 0 && handle < m_maxHandles);
-
- getHandle(handle)->SetNextFree(m_firstFreeHandle);
- m_firstFreeHandle = handle;
-
- m_numHandles--;
-}
-
-
-
-BP_FP_INT_TYPE btAxisSweep3::addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask)
-{
- // quantize the bounds
- BP_FP_INT_TYPE min[3], max[3];
- quantize(min, aabbMin, 0);
- quantize(max, aabbMax, 1);
-
- // allocate a handle
- BP_FP_INT_TYPE handle = allocHandle();
- assert(handle!= 0xcdcd);
-
- Handle* pHandle = getHandle(handle);
-
- pHandle->m_handleId = handle;
- //pHandle->m_pOverlaps = 0;
- pHandle->m_clientObject = pOwner;
- pHandle->m_collisionFilterGroup = collisionFilterGroup;
- pHandle->m_collisionFilterMask = collisionFilterMask;
-
- // compute current limit of edge arrays
- BP_FP_INT_TYPE limit = m_numHandles * 2;
-
-
- // insert new edges just inside the max boundary edge
- for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++)
- {
-
- m_pHandles[0].m_maxEdges[axis] += 2;
-
- m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];
-
- m_pEdges[axis][limit - 1].m_pos = min[axis];
- m_pEdges[axis][limit - 1].m_handle = handle;
-
- m_pEdges[axis][limit].m_pos = max[axis];
- m_pEdges[axis][limit].m_handle = handle;
-
- pHandle->m_minEdges[axis] = limit - 1;
- pHandle->m_maxEdges[axis] = limit;
- }
-
- // now sort the new edges to their correct position
- sortMinDown(0, pHandle->m_minEdges[0], false);
- sortMaxDown(0, pHandle->m_maxEdges[0], false);
- sortMinDown(1, pHandle->m_minEdges[1], false);
- sortMaxDown(1, pHandle->m_maxEdges[1], false);
- sortMinDown(2, pHandle->m_minEdges[2], true);
- sortMaxDown(2, pHandle->m_maxEdges[2], true);
-
-
- return handle;
-}
-
-
-void btAxisSweep3::removeHandle(BP_FP_INT_TYPE handle)
-{
-
- Handle* pHandle = getHandle(handle);
-
- //explicitly remove the pairs containing the proxy
- //we could do it also in the sortMinUp (passing true)
- //todo: compare performance
- removeOverlappingPairsContainingProxy(pHandle);
-
-
- // compute current limit of edge arrays
- int limit = m_numHandles * 2;
-
- int axis;
-
- for (axis = 0;axis<3;axis++)
- {
- m_pHandles[0].m_maxEdges[axis] -= 2;
- }
-
- // remove the edges by sorting them up to the end of the list
- for ( axis = 0; axis < 3; axis++)
- {
- Edge* pEdges = m_pEdges[axis];
- BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
- pEdges[max].m_pos = BP_HANDLE_SENTINEL;
-
- sortMaxUp(axis,max,false);
-
-
- BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
- pEdges[i].m_pos = BP_HANDLE_SENTINEL;
-
-
- sortMinUp(axis,i,false);
-
- pEdges[limit-1].m_handle = 0;
- pEdges[limit-1].m_pos = BP_HANDLE_SENTINEL;
-
-#ifdef DEBUG_BROADPHASE
- debugPrintAxis(axis,false);
-#endif //DEBUG_BROADPHASE
-
-
- }
-
-
- // free the handle
- freeHandle(handle);
-
-
-}
-
-extern int gOverlappingPairs;
-
-
-void btAxisSweep3::refreshOverlappingPairs()
-{
-
-}
-void btAxisSweep3::processAllOverlappingPairs(btOverlapCallback* callback)
-{
-
- //perform a sort, to find duplicates and to sort 'invalid' pairs to the end
- m_overlappingPairArray.heapSort(btBroadphasePairSortPredicate());
-
- //remove the 'invalid' ones
-#ifdef USE_POPBACK_REMOVAL
- while (m_invalidPair>0)
- {
- m_invalidPair--;
- m_overlappingPairArray.pop_back();
- }
-#else
- m_overlappingPairArray.resize(m_overlappingPairArray.size() - m_invalidPair);
- m_invalidPair = 0;
-#endif
-
-
- int i;
-
- btBroadphasePair previousPair;
- previousPair.m_pProxy0 = 0;
- previousPair.m_pProxy1 = 0;
- previousPair.m_algorithm = 0;
-
-
- for (i=0;i<m_overlappingPairArray.size();i++)
- {
-
- btBroadphasePair& pair = m_overlappingPairArray[i];
-
- bool isDuplicate = (pair == previousPair);
-
- previousPair = pair;
-
- bool needsRemoval = false;
-
- if (!isDuplicate)
- {
- bool hasOverlap = testOverlap(pair.m_pProxy0,pair.m_pProxy1);
-
- if (hasOverlap)
- {
- needsRemoval = callback->processOverlap(pair);
- } else
- {
- needsRemoval = true;
- }
- } else
- {
- //remove duplicate
- needsRemoval = true;
- //should have no algorithm
- btAssert(!pair.m_algorithm);
- }
-
- if (needsRemoval)
- {
- cleanOverlappingPair(pair);
-
- // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
- // m_overlappingPairArray.pop_back();
- pair.m_pProxy0 = 0;
- pair.m_pProxy1 = 0;
- m_invalidPair++;
- gOverlappingPairs--;
- }
-
- }
-}
-
-
-bool btAxisSweep3::testOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
-{
- const Handle* pHandleA = static_cast<Handle*>(proxy0);
- const Handle* pHandleB = static_cast<Handle*>(proxy1);
-
- //optimization 1: check the array index (memory address), instead of the m_pos
-
- for (int axis = 0; axis < 3; axis++)
- {
- if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
- pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
- {
- return false;
- }
- }
- return true;
-}
-
-bool btAxisSweep3::testOverlap(int ignoreAxis,const Handle* pHandleA, const Handle* pHandleB)
-{
- //optimization 1: check the array index (memory address), instead of the m_pos
-
- for (int axis = 0; axis < 3; axis++)
- {
- if (axis != ignoreAxis)
- {
- if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
- pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
- {
- return false;
- }
- }
- }
-
- //optimization 2: only 2 axis need to be tested (conflicts with 'delayed removal' optimization)
-
- /*for (int axis = 0; axis < 3; axis++)
- {
- if (m_pEdges[axis][pHandleA->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleB->m_minEdges[axis]].m_pos ||
- m_pEdges[axis][pHandleB->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleA->m_minEdges[axis]].m_pos)
- {
- return false;
- }
- }
- */
-
- return true;
-}
-
-void btAxisSweep3::updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax)
-{
-// assert(bounds.IsFinite());
- //assert(bounds.HasVolume());
-
- Handle* pHandle = getHandle(handle);
-
- // quantize the new bounds
- BP_FP_INT_TYPE min[3], max[3];
- quantize(min, aabbMin, 0);
- quantize(max, aabbMax, 1);
-
- // update changed edges
- for (int axis = 0; axis < 3; axis++)
- {
- BP_FP_INT_TYPE emin = pHandle->m_minEdges[axis];
- BP_FP_INT_TYPE emax = pHandle->m_maxEdges[axis];
-
- int dmin = (int)min[axis] - (int)m_pEdges[axis][emin].m_pos;
- int dmax = (int)max[axis] - (int)m_pEdges[axis][emax].m_pos;
-
- m_pEdges[axis][emin].m_pos = min[axis];
- m_pEdges[axis][emax].m_pos = max[axis];
-
- // expand (only adds overlaps)
- if (dmin < 0)
- sortMinDown(axis, emin);
-
- if (dmax > 0)
- sortMaxUp(axis, emax);
-
- // shrink (only removes overlaps)
- if (dmin > 0)
- sortMinUp(axis, emin);
-
- if (dmax < 0)
- sortMaxDown(axis, emax);
-
-#ifdef DEBUG_BROADPHASE
- debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
- }
-
-
-}
-
-
-
-
-// sorting a min edge downwards can only ever *add* overlaps
-void btAxisSweep3::sortMinDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
-{
-
- Edge* pEdge = m_pEdges[axis] + edge;
- Edge* pPrev = pEdge - 1;
- Handle* pHandleEdge = getHandle(pEdge->m_handle);
-
- while (pEdge->m_pos < pPrev->m_pos)
- {
- Handle* pHandlePrev = getHandle(pPrev->m_handle);
-
- if (pPrev->IsMax())
- {
- // if previous edge is a maximum check the bounds and add an overlap if necessary
- if (updateOverlaps && testOverlap(axis,pHandleEdge, pHandlePrev))
- {
- addOverlappingPair(pHandleEdge,pHandlePrev);
-
- //AddOverlap(pEdge->m_handle, pPrev->m_handle);
-
- }
-
- // update edge reference in other handle
- pHandlePrev->m_maxEdges[axis]++;
- }
- else
- pHandlePrev->m_minEdges[axis]++;
-
- pHandleEdge->m_minEdges[axis]--;
-
- // swap the edges
- Edge swap = *pEdge;
- *pEdge = *pPrev;
- *pPrev = swap;
-
- // decrement
- pEdge--;
- pPrev--;
- }
-
-#ifdef DEBUG_BROADPHASE
- debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
-
-}
-
-// sorting a min edge upwards can only ever *remove* overlaps
-void btAxisSweep3::sortMinUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
-{
- Edge* pEdge = m_pEdges[axis] + edge;
- Edge* pNext = pEdge + 1;
- Handle* pHandleEdge = getHandle(pEdge->m_handle);
-
- while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
- {
- Handle* pHandleNext = getHandle(pNext->m_handle);
-
- if (pNext->IsMax())
- {
- // if next edge is maximum remove any overlap between the two handles
- if (updateOverlaps)
- {
- /*
- Handle* handle0 = getHandle(pEdge->m_handle);
- Handle* handle1 = getHandle(pNext->m_handle);
- btBroadphasePair tmpPair(*handle0,*handle1);
- removeOverlappingPair(tmpPair);
- */
-
- }
-
- // update edge reference in other handle
- pHandleNext->m_maxEdges[axis]--;
- }
- else
- pHandleNext->m_minEdges[axis]--;
-
- pHandleEdge->m_minEdges[axis]++;
-
- // swap the edges
- Edge swap = *pEdge;
- *pEdge = *pNext;
- *pNext = swap;
-
- // increment
- pEdge++;
- pNext++;
- }
-
+ btAssert(maxHandles > 1 && maxHandles < 32767);
}
-// sorting a max edge downwards can only ever *remove* overlaps
-void btAxisSweep3::sortMaxDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
-{
-
- Edge* pEdge = m_pEdges[axis] + edge;
- Edge* pPrev = pEdge - 1;
- Handle* pHandleEdge = getHandle(pEdge->m_handle);
-
- while (pEdge->m_pos < pPrev->m_pos)
- {
- Handle* pHandlePrev = getHandle(pPrev->m_handle);
-
- if (!pPrev->IsMax())
- {
- // if previous edge was a minimum remove any overlap between the two handles
- if (updateOverlaps)
- {
- //this is done during the overlappingpairarray iteration/narrowphase collision
- /*
- Handle* handle0 = getHandle(pEdge->m_handle);
- Handle* handle1 = getHandle(pPrev->m_handle);
- btBroadphasePair* pair = findPair(handle0,handle1);
- //assert(pair);
-
- if (pair)
- {
- removeOverlappingPair(*pair);
- }
- */
-
- }
-
- // update edge reference in other handle
- pHandlePrev->m_minEdges[axis]++;;
- }
- else
- pHandlePrev->m_maxEdges[axis]++;
-
- pHandleEdge->m_maxEdges[axis]--;
-
- // swap the edges
- Edge swap = *pEdge;
- *pEdge = *pPrev;
- *pPrev = swap;
- // decrement
- pEdge--;
- pPrev--;
- }
-
-
-#ifdef DEBUG_BROADPHASE
- debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
-
-}
-
-// sorting a max edge upwards can only ever *add* overlaps
-void btAxisSweep3::sortMaxUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
+bt32BitAxisSweep3::bt32BitAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, unsigned int maxHandles , btOverlappingPairCache* pairCache )
+:btAxisSweep3Internal<unsigned int>(worldAabbMin,worldAabbMax,0xfffffffe,0x7fffffff,maxHandles,pairCache)
{
- Edge* pEdge = m_pEdges[axis] + edge;
- Edge* pNext = pEdge + 1;
- Handle* pHandleEdge = getHandle(pEdge->m_handle);
-
- while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
- {
- Handle* pHandleNext = getHandle(pNext->m_handle);
-
- if (!pNext->IsMax())
- {
- // if next edge is a minimum check the bounds and add an overlap if necessary
- if (updateOverlaps && testOverlap(axis, pHandleEdge, pHandleNext))
- {
- Handle* handle0 = getHandle(pEdge->m_handle);
- Handle* handle1 = getHandle(pNext->m_handle);
- addOverlappingPair(handle0,handle1);
- }
-
- // update edge reference in other handle
- pHandleNext->m_minEdges[axis]--;
- }
- else
- pHandleNext->m_maxEdges[axis]--;
-
- pHandleEdge->m_maxEdges[axis]++;
-
- // swap the edges
- Edge swap = *pEdge;
- *pEdge = *pNext;
- *pNext = swap;
-
- // increment
- pEdge++;
- pNext++;
- }
-
+ // 1 handle is reserved as sentinel
+ btAssert(maxHandles > 1 && maxHandles < 2147483647);
}
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h
index 57bbb368672..e7c5fb5b6cf 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h
@@ -19,34 +19,25 @@
#ifndef AXIS_SWEEP_3_H
#define AXIS_SWEEP_3_H
-#include "../../LinearMath/btPoint3.h"
-#include "../../LinearMath/btVector3.h"
+#include "LinearMath/btPoint3.h"
+#include "LinearMath/btVector3.h"
#include "btOverlappingPairCache.h"
+#include "btBroadphaseInterface.h"
#include "btBroadphaseProxy.h"
-
-
-//Enable BP_USE_FIXEDPOINT_INT_32 if you need more then 32767 objects
-//#define BP_USE_FIXEDPOINT_INT_32 1
-
-#ifdef BP_USE_FIXEDPOINT_INT_32
- #define BP_FP_INT_TYPE unsigned int
- #define BP_MAX_HANDLES 1500000 //arbitrary maximum number of handles
- #define BP_HANDLE_SENTINEL 0x7fffffff
- #define BP_HANDLE_MASK 0xfffffffe
-#else
- #define BP_FP_INT_TYPE unsigned short int
- #define BP_MAX_HANDLES 32767
- #define BP_HANDLE_SENTINEL 0xffff
- #define BP_HANDLE_MASK 0xfffe
-#endif //BP_USE_FIXEDPOINT_INT_32
+#include "btOverlappingPairCallback.h"
//#define DEBUG_BROADPHASE 1
-/// btAxisSweep3 is an efficient implementation of the 3d axis sweep and prune broadphase.
-/// It uses arrays rather then lists for storage of the 3 axis. Also it operates using integer coordinates instead of floats.
-/// The testOverlap check is optimized to check the array index, rather then the actual AABB coordinates/pos
-class btAxisSweep3 : public btOverlappingPairCache
+/// The internal templace class btAxisSweep3Internal implements the sweep and prune broadphase.
+/// It uses quantized integers to represent the begin and end points for each of the 3 axis.
+/// Dont use this class directly, use btAxisSweep3 or bt32BitAxisSweep3 instead.
+template <typename BP_FP_INT_TYPE>
+class btAxisSweep3Internal : public btBroadphaseInterface
{
+protected:
+
+ BP_FP_INT_TYPE m_bpHandleMask;
+ BP_FP_INT_TYPE m_handleSentinel;
public:
@@ -57,40 +48,52 @@ public:
BP_FP_INT_TYPE m_pos; // low bit is min/max
BP_FP_INT_TYPE m_handle;
- BP_FP_INT_TYPE IsMax() const {return m_pos & 1;}
+ BP_FP_INT_TYPE IsMax() const {return static_cast<BP_FP_INT_TYPE>(m_pos & 1);}
};
public:
+ //This breaks the Intel compiler, see http://softwarecommunity.intel.com/isn/Community/en-US/forums/thread/30253577.aspx
class Handle : public btBroadphaseProxy
+ //ATTRIBUTE_ALIGNED16(class) Handle : public btBroadphaseProxy
{
public:
-
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
// indexes into the edge arrays
BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3]; // 6 * 2 = 12
- BP_FP_INT_TYPE m_handleId;
+// BP_FP_INT_TYPE m_uniqueId;
BP_FP_INT_TYPE m_pad;
//void* m_pOwner; this is now in btBroadphaseProxy.m_clientObject
- inline void SetNextFree(BP_FP_INT_TYPE next) {m_minEdges[0] = next;}
- inline BP_FP_INT_TYPE GetNextFree() const {return m_minEdges[0];}
+ SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) {m_minEdges[0] = next;}
+ SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const {return m_minEdges[0];}
}; // 24 bytes + 24 for Edge structures = 44 bytes total per entry
-private:
+protected:
btPoint3 m_worldAabbMin; // overall system bounds
btPoint3 m_worldAabbMax; // overall system bounds
btVector3 m_quantize; // scaling factor for quantization
BP_FP_INT_TYPE m_numHandles; // number of active handles
- int m_maxHandles; // max number of handles
+ BP_FP_INT_TYPE m_maxHandles; // max number of handles
Handle* m_pHandles; // handles pool
+ void* m_pHandlesRawPtr;
BP_FP_INT_TYPE m_firstFreeHandle; // free handles list
Edge* m_pEdges[3]; // edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries)
+ void* m_pEdgesRawPtr[3];
+
+ btOverlappingPairCache* m_pairCache;
+
+ ///btOverlappingPairCallback is an additional optional user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache.
+ btOverlappingPairCallback* m_userPairCallback;
+
+ bool m_ownsPairCache;
- int m_invalidPair;
+ int m_invalidPair;
// allocation/deallocation
BP_FP_INT_TYPE allocHandle();
@@ -108,29 +111,801 @@ private:
void quantize(BP_FP_INT_TYPE* out, const btPoint3& point, int isMax) const;
- void sortMinDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
- void sortMinUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
- void sortMaxDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
- void sortMaxUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
+ void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
+ void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
+ void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
+ void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
public:
- btAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, int maxHandles = 16384);
- virtual ~btAxisSweep3();
- virtual void refreshOverlappingPairs();
+ btAxisSweep3Internal(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache=0);
+
+ virtual ~btAxisSweep3Internal();
+
+ BP_FP_INT_TYPE getNumHandles() const
+ {
+ return m_numHandles;
+ }
+
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
- BP_FP_INT_TYPE addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask);
- void removeHandle(BP_FP_INT_TYPE handle);
- void updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax);
- inline Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;}
+ BP_FP_INT_TYPE addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
+ void removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher);
+ void updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax,btDispatcher* dispatcher);
+ SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;}
void processAllOverlappingPairs(btOverlapCallback* callback);
//Broadphase Interface
- virtual btBroadphaseProxy* createProxy( const btVector3& min, const btVector3& max,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask);
- virtual void destroyProxy(btBroadphaseProxy* proxy);
- virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax);
- bool testOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+ virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
+ virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+ virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
+
+ bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+
+ btOverlappingPairCache* getOverlappingPairCache()
+ {
+ return m_pairCache;
+ }
+ const btOverlappingPairCache* getOverlappingPairCache() const
+ {
+ return m_pairCache;
+ }
+
+ void setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback)
+ {
+ m_userPairCallback = pairCallback;
+ }
+ const btOverlappingPairCallback* getOverlappingPairUserCallback() const
+ {
+ return m_userPairCallback;
+ }
+
+ ///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
+ ///will add some transform later
+ virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
+ {
+ aabbMin = m_worldAabbMin;
+ aabbMax = m_worldAabbMax;
+ }
+
+ virtual void printStats()
+ {
+/* printf("btAxisSweep3.h\n");
+ printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
+ printf("aabbMin=%f,%f,%f,aabbMax=%f,%f,%f\n",m_worldAabbMin.getX(),m_worldAabbMin.getY(),m_worldAabbMin.getZ(),
+ m_worldAabbMax.getX(),m_worldAabbMax.getY(),m_worldAabbMax.getZ());
+ */
+
+ }
+
+};
+
+////////////////////////////////////////////////////////////////////
+
+
+
+
+#ifdef DEBUG_BROADPHASE
+#include <stdio.h>
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3<BP_FP_INT_TYPE>::debugPrintAxis(int axis, bool checkCardinality)
+{
+ int numEdges = m_pHandles[0].m_maxEdges[axis];
+ printf("SAP Axis %d, numEdges=%d\n",axis,numEdges);
+
+ int i;
+ for (i=0;i<numEdges+1;i++)
+ {
+ Edge* pEdge = m_pEdges[axis] + i;
+ Handle* pHandlePrev = getHandle(pEdge->m_handle);
+ int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
+ char beginOrEnd;
+ beginOrEnd=pEdge->IsMax()?'E':'B';
+ printf(" [%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex);
+ }
+
+ if (checkCardinality)
+ assert(numEdges == m_numHandles*2+1);
+}
+#endif //DEBUG_BROADPHASE
+
+template <typename BP_FP_INT_TYPE>
+btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy)
+{
+ (void)shapeType;
+ BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask,dispatcher,multiSapProxy);
+
+ Handle* handle = getHandle(handleId);
+
+ return handle;
+}
+
+
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+{
+ Handle* handle = static_cast<Handle*>(proxy);
+ removeHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), dispatcher);
+}
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
+{
+ Handle* handle = static_cast<Handle*>(proxy);
+ updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax,dispatcher);
+
+}
+
+
+
+
+
+template <typename BP_FP_INT_TYPE>
+btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel,BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache )
+:m_bpHandleMask(handleMask),
+m_handleSentinel(handleSentinel),
+m_pairCache(pairCache),
+m_userPairCallback(0),
+m_ownsPairCache(false),
+m_invalidPair(0)
+{
+ BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles+1);//need to add one sentinel handle
+
+ if (!m_pairCache)
+ {
+ void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16);
+ m_pairCache = new(ptr) btHashedOverlappingPairCache();
+ m_ownsPairCache = true;
+ }
+
+ //assert(bounds.HasVolume());
+
+ // init bounds
+ m_worldAabbMin = worldAabbMin;
+ m_worldAabbMax = worldAabbMax;
+
+ btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;
+
+ BP_FP_INT_TYPE maxInt = m_handleSentinel;
+
+ m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize;
+
+ // allocate handles buffer and put all handles on free list
+ m_pHandlesRawPtr = btAlignedAlloc(sizeof(Handle)*maxHandles,16);
+ m_pHandles = new(m_pHandlesRawPtr) Handle[maxHandles];
+
+ m_maxHandles = maxHandles;
+ m_numHandles = 0;
+
+ // handle 0 is reserved as the null index, and is also used as the sentinel
+ m_firstFreeHandle = 1;
+ {
+ for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < maxHandles; i++)
+ m_pHandles[i].SetNextFree(static_cast<BP_FP_INT_TYPE>(i + 1));
+ m_pHandles[maxHandles - 1].SetNextFree(0);
+ }
+
+ {
+ // allocate edge buffers
+ for (int i = 0; i < 3; i++)
+ {
+ m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge)*maxHandles*2,16);
+ m_pEdges[i] = new(m_pEdgesRawPtr[i]) Edge[maxHandles * 2];
+ }
+ }
+ //removed overlap management
+
+ // make boundary sentinels
+
+ m_pHandles[0].m_clientObject = 0;
+
+ for (int axis = 0; axis < 3; axis++)
+ {
+ m_pHandles[0].m_minEdges[axis] = 0;
+ m_pHandles[0].m_maxEdges[axis] = 1;
+
+ m_pEdges[axis][0].m_pos = 0;
+ m_pEdges[axis][0].m_handle = 0;
+ m_pEdges[axis][1].m_pos = m_handleSentinel;
+ m_pEdges[axis][1].m_handle = 0;
+#ifdef DEBUG_BROADPHASE
+ debugPrintAxis(axis);
+#endif //DEBUG_BROADPHASE
+
+ }
+
+}
+
+template <typename BP_FP_INT_TYPE>
+btAxisSweep3Internal<BP_FP_INT_TYPE>::~btAxisSweep3Internal()
+{
+
+ for (int i = 2; i >= 0; i--)
+ {
+ btAlignedFree(m_pEdgesRawPtr[i]);
+ }
+ btAlignedFree(m_pHandlesRawPtr);
+
+ if (m_ownsPairCache)
+ {
+ m_pairCache->~btOverlappingPairCache();
+ btAlignedFree(m_pairCache);
+ }
+}
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::quantize(BP_FP_INT_TYPE* out, const btPoint3& point, int isMax) const
+{
+ btPoint3 clampedPoint(point);
+
+
+
+ clampedPoint.setMax(m_worldAabbMin);
+ clampedPoint.setMin(m_worldAabbMax);
+
+ btVector3 v = (clampedPoint - m_worldAabbMin) * m_quantize;
+ out[0] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getX() & m_bpHandleMask) | isMax);
+ out[1] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getY() & m_bpHandleMask) | isMax);
+ out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & m_bpHandleMask) | isMax);
+
+}
+
+
+template <typename BP_FP_INT_TYPE>
+BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::allocHandle()
+{
+ assert(m_firstFreeHandle);
+
+ BP_FP_INT_TYPE handle = m_firstFreeHandle;
+ m_firstFreeHandle = getHandle(handle)->GetNextFree();
+ m_numHandles++;
+
+ return handle;
+}
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::freeHandle(BP_FP_INT_TYPE handle)
+{
+ assert(handle > 0 && handle < m_maxHandles);
+
+ getHandle(handle)->SetNextFree(m_firstFreeHandle);
+ m_firstFreeHandle = handle;
+
+ m_numHandles--;
+}
+
+
+template <typename BP_FP_INT_TYPE>
+BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy)
+{
+ // quantize the bounds
+ BP_FP_INT_TYPE min[3], max[3];
+ quantize(min, aabbMin, 0);
+ quantize(max, aabbMax, 1);
+
+ // allocate a handle
+ BP_FP_INT_TYPE handle = allocHandle();
+
+
+ Handle* pHandle = getHandle(handle);
+
+ pHandle->m_uniqueId = static_cast<int>(handle);
+ //pHandle->m_pOverlaps = 0;
+ pHandle->m_clientObject = pOwner;
+ pHandle->m_collisionFilterGroup = collisionFilterGroup;
+ pHandle->m_collisionFilterMask = collisionFilterMask;
+ pHandle->m_multiSapParentProxy = multiSapProxy;
+
+ // compute current limit of edge arrays
+ BP_FP_INT_TYPE limit = static_cast<BP_FP_INT_TYPE>(m_numHandles * 2);
+
+
+ // insert new edges just inside the max boundary edge
+ for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++)
+ {
+
+ m_pHandles[0].m_maxEdges[axis] += 2;
+
+ m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];
+
+ m_pEdges[axis][limit - 1].m_pos = min[axis];
+ m_pEdges[axis][limit - 1].m_handle = handle;
+
+ m_pEdges[axis][limit].m_pos = max[axis];
+ m_pEdges[axis][limit].m_handle = handle;
+
+ pHandle->m_minEdges[axis] = static_cast<BP_FP_INT_TYPE>(limit - 1);
+ pHandle->m_maxEdges[axis] = limit;
+ }
+
+ // now sort the new edges to their correct position
+ sortMinDown(0, pHandle->m_minEdges[0], dispatcher,false);
+ sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher,false);
+ sortMinDown(1, pHandle->m_minEdges[1], dispatcher,false);
+ sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher,false);
+ sortMinDown(2, pHandle->m_minEdges[2], dispatcher,true);
+ sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher,true);
+
+
+ return handle;
+}
+
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher)
+{
+
+ Handle* pHandle = getHandle(handle);
+
+ //explicitly remove the pairs containing the proxy
+ //we could do it also in the sortMinUp (passing true)
+ //todo: compare performance
+ if (!m_pairCache->hasDeferredRemoval())
+ {
+ m_pairCache->removeOverlappingPairsContainingProxy(pHandle,dispatcher);
+ }
+
+ // compute current limit of edge arrays
+ int limit = static_cast<int>(m_numHandles * 2);
+
+ int axis;
+
+ for (axis = 0;axis<3;axis++)
+ {
+ m_pHandles[0].m_maxEdges[axis] -= 2;
+ }
+
+ // remove the edges by sorting them up to the end of the list
+ for ( axis = 0; axis < 3; axis++)
+ {
+ Edge* pEdges = m_pEdges[axis];
+ BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
+ pEdges[max].m_pos = m_handleSentinel;
+
+ sortMaxUp(axis,max,dispatcher,false);
+
+
+ BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
+ pEdges[i].m_pos = m_handleSentinel;
+
+
+ sortMinUp(axis,i,dispatcher,false);
+
+ pEdges[limit-1].m_handle = 0;
+ pEdges[limit-1].m_pos = m_handleSentinel;
+
+#ifdef DEBUG_BROADPHASE
+ debugPrintAxis(axis,false);
+#endif //DEBUG_BROADPHASE
+
+
+ }
+
+
+ // free the handle
+ freeHandle(handle);
+
+
+}
+
+extern int gOverlappingPairs;
+//#include <stdio.h>
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher)
+{
+
+ if (m_pairCache->hasDeferredRemoval())
+ {
+
+ btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
+
+ //perform a sort, to find duplicates and to sort 'invalid' pairs to the end
+ overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
+
+ overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
+ m_invalidPair = 0;
+
+
+ int i;
+
+ btBroadphasePair previousPair;
+ previousPair.m_pProxy0 = 0;
+ previousPair.m_pProxy1 = 0;
+ previousPair.m_algorithm = 0;
+
+
+ for (i=0;i<overlappingPairArray.size();i++)
+ {
+
+ btBroadphasePair& pair = overlappingPairArray[i];
+
+ bool isDuplicate = (pair == previousPair);
+
+ previousPair = pair;
+
+ bool needsRemoval = false;
+
+ if (!isDuplicate)
+ {
+ bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
+
+ if (hasOverlap)
+ {
+ needsRemoval = false;//callback->processOverlap(pair);
+ } else
+ {
+ needsRemoval = true;
+ }
+ } else
+ {
+ //remove duplicate
+ needsRemoval = true;
+ //should have no algorithm
+ btAssert(!pair.m_algorithm);
+ }
+
+ if (needsRemoval)
+ {
+ m_pairCache->cleanOverlappingPair(pair,dispatcher);
+
+ // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
+ // m_overlappingPairArray.pop_back();
+ pair.m_pProxy0 = 0;
+ pair.m_pProxy1 = 0;
+ m_invalidPair++;
+ gOverlappingPairs--;
+ }
+
+ }
+
+ ///if you don't like to skip the invalid pairs in the array, execute following code:
+ #define CLEAN_INVALID_PAIRS 1
+ #ifdef CLEAN_INVALID_PAIRS
+
+ //perform a sort, to sort 'invalid' pairs to the end
+ overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
+
+ overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
+ m_invalidPair = 0;
+ #endif//CLEAN_INVALID_PAIRS
+
+ //printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
+ }
+
+
+
+
+
+}
+
+
+template <typename BP_FP_INT_TYPE>
+bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+{
+ const Handle* pHandleA = static_cast<Handle*>(proxy0);
+ const Handle* pHandleB = static_cast<Handle*>(proxy1);
+
+ //optimization 1: check the array index (memory address), instead of the m_pos
+
+ for (int axis = 0; axis < 3; axis++)
+ {
+ if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
+ pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
+ {
+ return false;
+ }
+ }
+ return true;
+}
+
+template <typename BP_FP_INT_TYPE>
+bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap(int ignoreAxis,const Handle* pHandleA, const Handle* pHandleB)
+{
+ //optimization 1: check the array index (memory address), instead of the m_pos
+
+ for (int axis = 0; axis < 3; axis++)
+ {
+ if (axis != ignoreAxis)
+ {
+ if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
+ pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
+ {
+ return false;
+ }
+ }
+ }
+
+ //optimization 2: only 2 axis need to be tested (conflicts with 'delayed removal' optimization)
+
+ /*for (int axis = 0; axis < 3; axis++)
+ {
+ if (m_pEdges[axis][pHandleA->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleB->m_minEdges[axis]].m_pos ||
+ m_pEdges[axis][pHandleB->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleA->m_minEdges[axis]].m_pos)
+ {
+ return false;
+ }
+ }
+ */
+
+ return true;
+}
+
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax,btDispatcher* dispatcher)
+{
+// assert(bounds.IsFinite());
+ //assert(bounds.HasVolume());
+
+ Handle* pHandle = getHandle(handle);
+
+ // quantize the new bounds
+ BP_FP_INT_TYPE min[3], max[3];
+ quantize(min, aabbMin, 0);
+ quantize(max, aabbMax, 1);
+
+ // update changed edges
+ for (int axis = 0; axis < 3; axis++)
+ {
+ BP_FP_INT_TYPE emin = pHandle->m_minEdges[axis];
+ BP_FP_INT_TYPE emax = pHandle->m_maxEdges[axis];
+
+ int dmin = (int)min[axis] - (int)m_pEdges[axis][emin].m_pos;
+ int dmax = (int)max[axis] - (int)m_pEdges[axis][emax].m_pos;
+
+ m_pEdges[axis][emin].m_pos = min[axis];
+ m_pEdges[axis][emax].m_pos = max[axis];
+
+ // expand (only adds overlaps)
+ if (dmin < 0)
+ sortMinDown(axis, emin,dispatcher,true);
+
+ if (dmax > 0)
+ sortMaxUp(axis, emax,dispatcher,true);
+
+ // shrink (only removes overlaps)
+ if (dmin > 0)
+ sortMinUp(axis, emin,dispatcher,true);
+
+ if (dmax < 0)
+ sortMaxDown(axis, emax,dispatcher,true);
+
+#ifdef DEBUG_BROADPHASE
+ debugPrintAxis(axis);
+#endif //DEBUG_BROADPHASE
+ }
+
+
+}
+
+
+
+
+// sorting a min edge downwards can only ever *add* overlaps
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
+{
+
+ Edge* pEdge = m_pEdges[axis] + edge;
+ Edge* pPrev = pEdge - 1;
+ Handle* pHandleEdge = getHandle(pEdge->m_handle);
+
+ while (pEdge->m_pos < pPrev->m_pos)
+ {
+ Handle* pHandlePrev = getHandle(pPrev->m_handle);
+
+ if (pPrev->IsMax())
+ {
+ // if previous edge is a maximum check the bounds and add an overlap if necessary
+ if (updateOverlaps && testOverlap(axis,pHandleEdge, pHandlePrev))
+ {
+ m_pairCache->addOverlappingPair(pHandleEdge,pHandlePrev);
+ if (m_userPairCallback)
+ m_userPairCallback->addOverlappingPair(pHandleEdge,pHandlePrev);
+
+ //AddOverlap(pEdge->m_handle, pPrev->m_handle);
+
+ }
+
+ // update edge reference in other handle
+ pHandlePrev->m_maxEdges[axis]++;
+ }
+ else
+ pHandlePrev->m_minEdges[axis]++;
+
+ pHandleEdge->m_minEdges[axis]--;
+
+ // swap the edges
+ Edge swap = *pEdge;
+ *pEdge = *pPrev;
+ *pPrev = swap;
+
+ // decrement
+ pEdge--;
+ pPrev--;
+ }
+
+#ifdef DEBUG_BROADPHASE
+ debugPrintAxis(axis);
+#endif //DEBUG_BROADPHASE
+
+}
+
+// sorting a min edge upwards can only ever *remove* overlaps
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
+{
+ Edge* pEdge = m_pEdges[axis] + edge;
+ Edge* pNext = pEdge + 1;
+ Handle* pHandleEdge = getHandle(pEdge->m_handle);
+
+ while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
+ {
+ Handle* pHandleNext = getHandle(pNext->m_handle);
+
+ if (pNext->IsMax())
+ {
+
+ // if next edge is maximum remove any overlap between the two handles
+ if (updateOverlaps)
+ {
+ Handle* handle0 = getHandle(pEdge->m_handle);
+ Handle* handle1 = getHandle(pNext->m_handle);
+
+ m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
+ if (m_userPairCallback)
+ m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
+
+ }
+
+
+ // update edge reference in other handle
+ pHandleNext->m_maxEdges[axis]--;
+ }
+ else
+ pHandleNext->m_minEdges[axis]--;
+
+ pHandleEdge->m_minEdges[axis]++;
+
+ // swap the edges
+ Edge swap = *pEdge;
+ *pEdge = *pNext;
+ *pNext = swap;
+
+ // increment
+ pEdge++;
+ pNext++;
+ }
+
+
+}
+
+// sorting a max edge downwards can only ever *remove* overlaps
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
+{
+
+ Edge* pEdge = m_pEdges[axis] + edge;
+ Edge* pPrev = pEdge - 1;
+ Handle* pHandleEdge = getHandle(pEdge->m_handle);
+
+ while (pEdge->m_pos < pPrev->m_pos)
+ {
+ Handle* pHandlePrev = getHandle(pPrev->m_handle);
+
+ if (!pPrev->IsMax())
+ {
+ // if previous edge was a minimum remove any overlap between the two handles
+ if (updateOverlaps)
+ {
+ //this is done during the overlappingpairarray iteration/narrowphase collision
+
+ Handle* handle0 = getHandle(pEdge->m_handle);
+ Handle* handle1 = getHandle(pPrev->m_handle);
+ m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
+ if (m_userPairCallback)
+ m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
+
+
+
+ }
+
+ // update edge reference in other handle
+ pHandlePrev->m_minEdges[axis]++;;
+ }
+ else
+ pHandlePrev->m_maxEdges[axis]++;
+
+ pHandleEdge->m_maxEdges[axis]--;
+
+ // swap the edges
+ Edge swap = *pEdge;
+ *pEdge = *pPrev;
+ *pPrev = swap;
+
+ // decrement
+ pEdge--;
+ pPrev--;
+ }
+
+
+#ifdef DEBUG_BROADPHASE
+ debugPrintAxis(axis);
+#endif //DEBUG_BROADPHASE
+
+}
+
+// sorting a max edge upwards can only ever *add* overlaps
+template <typename BP_FP_INT_TYPE>
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
+{
+ Edge* pEdge = m_pEdges[axis] + edge;
+ Edge* pNext = pEdge + 1;
+ Handle* pHandleEdge = getHandle(pEdge->m_handle);
+
+ while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
+ {
+ Handle* pHandleNext = getHandle(pNext->m_handle);
+
+ if (!pNext->IsMax())
+ {
+ // if next edge is a minimum check the bounds and add an overlap if necessary
+ if (updateOverlaps && testOverlap(axis, pHandleEdge, pHandleNext))
+ {
+ Handle* handle0 = getHandle(pEdge->m_handle);
+ Handle* handle1 = getHandle(pNext->m_handle);
+ m_pairCache->addOverlappingPair(handle0,handle1);
+ if (m_userPairCallback)
+ m_userPairCallback->addOverlappingPair(handle0,handle1);
+ }
+
+ // update edge reference in other handle
+ pHandleNext->m_minEdges[axis]--;
+ }
+ else
+ pHandleNext->m_maxEdges[axis]--;
+
+ pHandleEdge->m_maxEdges[axis]++;
+
+ // swap the edges
+ Edge swap = *pEdge;
+ *pEdge = *pNext;
+ *pNext = swap;
+
+ // increment
+ pEdge++;
+ pNext++;
+ }
+
+}
+
+
+
+////////////////////////////////////////////////////////////////////
+
+
+/// The btAxisSweep3 is an efficient implementation of the 3d axis sweep and prune broadphase.
+/// It uses arrays rather then lists for storage of the 3 axis. Also it operates using 16 bit integer coordinates instead of floats.
+/// For large worlds and many objects, use bt32BitAxisSweep3 or btDbvtBroadphase instead. bt32BitAxisSweep3 has higher precision and allows more then 16384 objects at the cost of more memory and bit of performance.
+class btAxisSweep3 : public btAxisSweep3Internal<unsigned short int>
+{
+public:
+
+ btAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, unsigned short int maxHandles = 16384, btOverlappingPairCache* pairCache = 0);
+
+};
+
+/// The bt32BitAxisSweep3 allows higher precision quantization and more objects compared to the btAxisSweep3 sweep and prune.
+/// This comes at the cost of more memory per handle, and a bit slower performance.
+/// It uses arrays rather then lists for storage of the 3 axis.
+class bt32BitAxisSweep3 : public btAxisSweep3Internal<unsigned int>
+{
+public:
+
+ bt32BitAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, unsigned int maxHandles = 1500000, btOverlappingPairCache* pairCache = 0);
};
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h
index b6ace03c07a..200ac365329 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h
@@ -20,20 +20,34 @@ subject to the following restrictions:
struct btDispatcherInfo;
class btDispatcher;
-struct btBroadphaseProxy;
-#include "../../LinearMath/btVector3.h"
+#include "btBroadphaseProxy.h"
+class btOverlappingPairCache;
-///BroadphaseInterface for aabb-overlapping object pairs
+#include "LinearMath/btVector3.h"
+
+///The btBroadphaseInterface class provides an interface to detect aabb-overlapping object pairs.
+///Some implementations for this broadphase interface include btAxisSweep3, bt32BitAxisSweep3 and btDbvtBroadphase.
+///The actual overlapping pair management, storage, adding and removing of pairs is dealt by the btOverlappingPairCache class.
class btBroadphaseInterface
{
public:
virtual ~btBroadphaseInterface() {}
- virtual btBroadphaseProxy* createProxy( const btVector3& min, const btVector3& max,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask) =0;
- virtual void destroyProxy(btBroadphaseProxy* proxy)=0;
- virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)=0;
- virtual void cleanProxyFromPairs(btBroadphaseProxy* proxy)=0;
+ virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher,void* multiSapProxy) =0;
+ virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)=0;
+ virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher)=0;
+ ///calculateOverlappingPairs is optional: incremental algorithms (sweep and prune) might do it during the set aabb
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher)=0;
+
+ virtual btOverlappingPairCache* getOverlappingPairCache()=0;
+ virtual const btOverlappingPairCache* getOverlappingPairCache() const =0;
+
+ ///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
+ ///will add some transform later
+ virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const =0;
+
+ virtual void printStats() = 0;
};
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h
index 40d9748ffa9..e0bb67f8521 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h
@@ -16,7 +16,8 @@ subject to the following restrictions:
#ifndef BROADPHASE_PROXY_H
#define BROADPHASE_PROXY_H
-#include "../../LinearMath/btScalar.h" //for SIMD_FORCE_INLINE
+#include "LinearMath/btScalar.h" //for SIMD_FORCE_INLINE
+#include "LinearMath/btAlignedAllocator.h"
/// btDispatcher uses these types
@@ -38,6 +39,7 @@ IMPLICIT_CONVEX_SHAPES_START_HERE,
CONE_SHAPE_PROXYTYPE,
CONVEX_SHAPE_PROXYTYPE,
CYLINDER_SHAPE_PROXYTYPE,
+ UNIFORM_SCALING_SHAPE_PROXYTYPE,
MINKOWSKI_SUM_SHAPE_PROXYTYPE,
MINKOWSKI_DIFFERENCE_SHAPE_PROXYTYPE,
//concave shapes
@@ -50,6 +52,8 @@ CONCAVE_SHAPES_START_HERE,
TERRAIN_SHAPE_PROXYTYPE,
///Used for GIMPACT Trimesh integration
GIMPACT_SHAPE_PROXYTYPE,
+///Multimaterial mesh
+ MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE,
EMPTY_SHAPE_PROXYTYPE,
STATIC_PLANE_PROXYTYPE,
@@ -57,13 +61,18 @@ CONCAVE_SHAPES_END_HERE,
COMPOUND_SHAPE_PROXYTYPE,
+ SOFTBODY_SHAPE_PROXYTYPE,
+
MAX_BROADPHASE_COLLISION_TYPES
};
-///btBroadphaseProxy
-struct btBroadphaseProxy
+///The btBroadphaseProxy is the main class that can be used with the Bullet broadphases.
+///It stores collision shape type information, collision filter information and a client object, typically a btCollisionObject or btRigidBody.
+ATTRIBUTE_ALIGNED16(struct) btBroadphaseProxy
{
+
+BT_DECLARE_ALIGNED_ALLOCATOR();
///optional filtering to cull potential collisions
enum CollisionFilterGroups
@@ -73,44 +82,60 @@ struct btBroadphaseProxy
KinematicFilter = 4,
DebrisFilter = 8,
SensorTrigger = 16,
- AllFilter = DefaultFilter | StaticFilter | KinematicFilter | DebrisFilter | SensorTrigger
+ AllFilter = -1 //all bits sets: DefaultFilter | StaticFilter | KinematicFilter | DebrisFilter | SensorTrigger
};
//Usually the client btCollisionObject or Rigidbody class
void* m_clientObject;
+
short int m_collisionFilterGroup;
short int m_collisionFilterMask;
+ void* m_multiSapParentProxy;
+
+
+ int m_uniqueId;//m_uniqueId is introduced for paircache. could get rid of this, by calculating the address offset etc.
+
+ SIMD_FORCE_INLINE int getUid() const
+ {
+ return m_uniqueId;
+ }
+
//used for memory pools
- btBroadphaseProxy() :m_clientObject(0){}
+ btBroadphaseProxy() :m_clientObject(0),m_multiSapParentProxy(0)
+ {
+ }
- btBroadphaseProxy(void* userPtr,short int collisionFilterGroup, short int collisionFilterMask)
+ btBroadphaseProxy(void* userPtr,short int collisionFilterGroup, short int collisionFilterMask,void* multiSapParentProxy=0)
:m_clientObject(userPtr),
m_collisionFilterGroup(collisionFilterGroup),
m_collisionFilterMask(collisionFilterMask)
{
+ m_multiSapParentProxy = multiSapParentProxy;
}
- static inline bool isPolyhedral(int proxyType)
+
+
+ static SIMD_FORCE_INLINE bool isPolyhedral(int proxyType)
{
return (proxyType < IMPLICIT_CONVEX_SHAPES_START_HERE);
}
- static inline bool isConvex(int proxyType)
+ static SIMD_FORCE_INLINE bool isConvex(int proxyType)
{
return (proxyType < CONCAVE_SHAPES_START_HERE);
}
- static inline bool isConcave(int proxyType)
+ static SIMD_FORCE_INLINE bool isConcave(int proxyType)
{
return ((proxyType > CONCAVE_SHAPES_START_HERE) &&
(proxyType < CONCAVE_SHAPES_END_HERE));
}
- static inline bool isCompound(int proxyType)
+ static SIMD_FORCE_INLINE bool isCompound(int proxyType)
{
return (proxyType == COMPOUND_SHAPE_PROXYTYPE);
}
- static inline bool isInfinite(int proxyType)
+ static SIMD_FORCE_INLINE bool isInfinite(int proxyType)
{
return (proxyType == STATIC_PLANE_PROXYTYPE);
}
@@ -124,8 +149,9 @@ struct btBroadphaseProxy;
-/// contains a pair of aabb-overlapping objects
-struct btBroadphasePair
+///The btBroadphasePair class contains a pair of aabb-overlapping objects.
+///A btDispatcher can search a btCollisionAlgorithm that performs exact/narrowphase collision detection on the actual collision shapes.
+ATTRIBUTE_ALIGNED16(struct) btBroadphasePair
{
btBroadphasePair ()
:
@@ -136,6 +162,8 @@ struct btBroadphasePair
{
}
+BT_DECLARE_ALIGNED_ALLOCATOR();
+
btBroadphasePair(const btBroadphasePair& other)
: m_pProxy0(other.m_pProxy0),
m_pProxy1(other.m_pProxy1),
@@ -181,6 +209,7 @@ SIMD_FORCE_INLINE bool operator<(const btBroadphasePair& a, const btBroadphasePa
*/
+
class btBroadphasePairSortPredicate
{
public:
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp
index 2ad0c86d8a2..c95d1be0f2c 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp
@@ -18,6 +18,6 @@ subject to the following restrictions:
btCollisionAlgorithm::btCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci)
{
- m_dispatcher = ci.m_dispatcher;
+ m_dispatcher = ci.m_dispatcher1;
}
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h
index 55cec386a7b..1618ad9fdd3 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h
@@ -16,7 +16,8 @@ subject to the following restrictions:
#ifndef COLLISION_ALGORITHM_H
#define COLLISION_ALGORITHM_H
-#include "../../LinearMath/btScalar.h"
+#include "LinearMath/btScalar.h"
+#include "LinearMath/btAlignedObjectArray.h"
struct btBroadphaseProxy;
class btDispatcher;
@@ -25,21 +26,22 @@ class btCollisionObject;
struct btDispatcherInfo;
class btPersistentManifold;
+typedef btAlignedObjectArray<btPersistentManifold*> btManifoldArray;
struct btCollisionAlgorithmConstructionInfo
{
btCollisionAlgorithmConstructionInfo()
- :m_dispatcher(0),
+ :m_dispatcher1(0),
m_manifold(0)
{
}
btCollisionAlgorithmConstructionInfo(btDispatcher* dispatcher,int temp)
- :m_dispatcher(dispatcher)
+ :m_dispatcher1(dispatcher)
{
(void)temp;
}
- btDispatcher* m_dispatcher;
+ btDispatcher* m_dispatcher1;
btPersistentManifold* m_manifold;
int getDispatcherId();
@@ -71,6 +73,7 @@ public:
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) = 0;
+ virtual void getAllContactManifolds(btManifoldArray& manifoldArray) = 0;
};
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.cpp
new file mode 100644
index 00000000000..fade71179e6
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.cpp
@@ -0,0 +1,1320 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///btDbvt implementation by Nathanael Presson
+
+#include "btDbvt.h"
+
+//
+typedef btAlignedObjectArray<btDbvtNode*> tNodeArray;
+typedef btAlignedObjectArray<const btDbvtNode*> tConstNodeArray;
+
+//
+struct btDbvtNodeEnumerator : btDbvt::ICollide
+{
+tConstNodeArray nodes;
+void Process(const btDbvtNode* n) { nodes.push_back(n); }
+};
+
+//
+static DBVT_INLINE int indexof(const btDbvtNode* node)
+{
+return(node->parent->childs[1]==node);
+}
+
+//
+static DBVT_INLINE btDbvtVolume merge( const btDbvtVolume& a,
+ const btDbvtVolume& b)
+{
+#if DBVT_MERGE_IMPL==DBVT_IMPL_SSE
+DBVT_ALIGN char locals[sizeof(btDbvtAabbMm)];
+btDbvtVolume& res=*(btDbvtVolume*)locals;
+#else
+btDbvtVolume res;
+#endif
+Merge(a,b,res);
+return(res);
+}
+
+// volume+edge lengths
+static DBVT_INLINE btScalar size(const btDbvtVolume& a)
+{
+const btVector3 edges=a.Lengths();
+return( edges.x()*edges.y()*edges.z()+
+ edges.x()+edges.y()+edges.z());
+}
+
+//
+static void getmaxdepth(const btDbvtNode* node,int depth,int& maxdepth)
+{
+if(node->isinternal())
+ {
+ getmaxdepth(node->childs[0],depth+1,maxdepth);
+ getmaxdepth(node->childs[0],depth+1,maxdepth);
+ } else maxdepth=btMax(maxdepth,depth);
+}
+
+//
+static DBVT_INLINE void deletenode( btDbvt* pdbvt,
+ btDbvtNode* node)
+{
+btAlignedFree(pdbvt->m_free);
+pdbvt->m_free=node;
+}
+
+//
+static void recursedeletenode( btDbvt* pdbvt,
+ btDbvtNode* node)
+{
+if(!node->isleaf())
+ {
+ recursedeletenode(pdbvt,node->childs[0]);
+ recursedeletenode(pdbvt,node->childs[1]);
+ }
+if(node==pdbvt->m_root) pdbvt->m_root=0;
+deletenode(pdbvt,node);
+}
+
+//
+static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
+ btDbvtNode* parent,
+ void* data)
+{
+btDbvtNode* node;
+if(pdbvt->m_free)
+ { node=pdbvt->m_free;pdbvt->m_free=0; }
+ else
+ { node=new(btAlignedAlloc(sizeof(btDbvtNode),16)) btDbvtNode(); }
+node->parent = parent;
+node->data = data;
+node->childs[1] = 0;
+return(node);
+}
+
+//
+static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
+ btDbvtNode* parent,
+ const btDbvtVolume& volume,
+ void* data)
+{
+btDbvtNode* node=createnode(pdbvt,parent,data);
+node->volume=volume;
+return(node);
+}
+
+//
+static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
+ btDbvtNode* parent,
+ const btDbvtVolume& volume0,
+ const btDbvtVolume& volume1,
+ void* data)
+{
+btDbvtNode* node=createnode(pdbvt,parent,data);
+Merge(volume0,volume1,node->volume);
+return(node);
+}
+
+//
+static void insertleaf( btDbvt* pdbvt,
+ btDbvtNode* root,
+ btDbvtNode* leaf)
+{
+if(!pdbvt->m_root)
+ {
+ pdbvt->m_root = leaf;
+ leaf->parent = 0;
+ }
+ else
+ {
+ if(!root->isleaf())
+ {
+ do {
+ root=root->childs[Select( leaf->volume,
+ root->childs[0]->volume,
+ root->childs[1]->volume)];
+ } while(!root->isleaf());
+ }
+ btDbvtNode* prev=root->parent;
+ btDbvtNode* node=createnode(pdbvt,prev,leaf->volume,root->volume,0);
+ if(prev)
+ {
+ prev->childs[indexof(root)] = node;
+ node->childs[0] = root;root->parent=node;
+ node->childs[1] = leaf;leaf->parent=node;
+ do {
+ if(!prev->volume.Contain(node->volume))
+ Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume);
+ else
+ break;
+ node=prev;
+ } while(0!=(prev=node->parent));
+ }
+ else
+ {
+ node->childs[0] = root;root->parent=node;
+ node->childs[1] = leaf;leaf->parent=node;
+ pdbvt->m_root = node;
+ }
+ }
+}
+
+//
+static btDbvtNode* removeleaf( btDbvt* pdbvt,
+ btDbvtNode* leaf)
+{
+if(leaf==pdbvt->m_root)
+ {
+ pdbvt->m_root=0;
+ return(0);
+ }
+ else
+ {
+ btDbvtNode* parent=leaf->parent;
+ btDbvtNode* prev=parent->parent;
+ btDbvtNode* sibling=parent->childs[1-indexof(leaf)];
+ if(prev)
+ {
+ prev->childs[indexof(parent)]=sibling;
+ sibling->parent=prev;
+ deletenode(pdbvt,parent);
+ while(prev)
+ {
+ const btDbvtVolume pb=prev->volume;
+ Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume);
+ if(NotEqual(pb,prev->volume))
+ {
+ prev=prev->parent;
+ } else break;
+ }
+ return(prev?prev:pdbvt->m_root);
+ }
+ else
+ {
+ pdbvt->m_root=sibling;
+ sibling->parent=0;
+ deletenode(pdbvt,parent);
+ return(pdbvt->m_root);
+ }
+ }
+}
+
+//
+static void fetchleaves(btDbvt* pdbvt,
+ btDbvtNode* root,
+ tNodeArray& leaves,
+ int depth=-1)
+{
+if(root->isinternal()&&depth)
+ {
+ fetchleaves(pdbvt,root->childs[0],leaves,depth-1);
+ fetchleaves(pdbvt,root->childs[1],leaves,depth-1);
+ deletenode(pdbvt,root);
+ }
+ else
+ {
+ leaves.push_back(root);
+ }
+}
+
+//
+static void split( const tNodeArray& leaves,
+ tNodeArray& left,
+ tNodeArray& right,
+ const btVector3& org,
+ const btVector3& axis)
+{
+left.resize(0);
+right.resize(0);
+for(int i=0,ni=leaves.size();i<ni;++i)
+ {
+ if(dot(axis,leaves[i]->volume.Center()-org)<0)
+ left.push_back(leaves[i]);
+ else
+ right.push_back(leaves[i]);
+ }
+}
+
+//
+static btDbvtVolume bounds( const tNodeArray& leaves)
+{
+#if DBVT_MERGE_IMPL==DBVT_IMPL_SSE
+DBVT_ALIGN char locals[sizeof(btDbvtVolume)];
+btDbvtVolume& volume=*(btDbvtVolume*)locals;
+volume=leaves[0]->volume;
+#else
+btDbvtVolume volume=leaves[0]->volume;
+#endif
+for(int i=1,ni=leaves.size();i<ni;++i)
+ {
+ Merge(volume,leaves[i]->volume,volume);
+ }
+return(volume);
+}
+
+//
+static void bottomup( btDbvt* pdbvt,
+ tNodeArray& leaves)
+{
+while(leaves.size()>1)
+ {
+ btScalar minsize=SIMD_INFINITY;
+ int minidx[2]={-1,-1};
+ for(int i=0;i<leaves.size();++i)
+ {
+ for(int j=i+1;j<leaves.size();++j)
+ {
+ const btScalar sz=size(merge(leaves[i]->volume,leaves[j]->volume));
+ if(sz<minsize)
+ {
+ minsize = sz;
+ minidx[0] = i;
+ minidx[1] = j;
+ }
+ }
+ }
+ btDbvtNode* n[] = {leaves[minidx[0]],leaves[minidx[1]]};
+ btDbvtNode* p = createnode(pdbvt,0,n[0]->volume,n[1]->volume,0);
+ p->childs[0] = n[0];
+ p->childs[1] = n[1];
+ n[0]->parent = p;
+ n[1]->parent = p;
+ leaves[minidx[0]] = p;
+ leaves.swap(minidx[1],leaves.size()-1);
+ leaves.pop_back();
+ }
+}
+
+//
+static btDbvtNode* topdown(btDbvt* pdbvt,
+ tNodeArray& leaves,
+ int bu_treshold)
+{
+static const btVector3 axis[]={btVector3(1,0,0),
+ btVector3(0,1,0),
+ btVector3(0,0,1)};
+if(leaves.size()>1)
+ {
+ if(leaves.size()>bu_treshold)
+ {
+ const btDbvtVolume vol=bounds(leaves);
+ const btVector3 org=vol.Center();
+ tNodeArray sets[2];
+ int bestaxis=-1;
+ int bestmidp=leaves.size();
+ int splitcount[3][2]={{0,0},{0,0},{0,0}};
+ int i;
+ for( i=0;i<leaves.size();++i)
+ {
+ const btVector3 x=leaves[i]->volume.Center()-org;
+ for(int j=0;j<3;++j)
+ {
+ ++splitcount[j][dot(x,axis[j])>0?1:0];
+ }
+ }
+ for( i=0;i<3;++i)
+ {
+ if((splitcount[i][0]>0)&&(splitcount[i][1]>0))
+ {
+ const int midp=(int)btFabs(btScalar(splitcount[i][0]-splitcount[i][1]));
+ if(midp<bestmidp)
+ {
+ bestaxis=i;
+ bestmidp=midp;
+ }
+ }
+ }
+ if(bestaxis>=0)
+ {
+ sets[0].reserve(splitcount[bestaxis][0]);
+ sets[1].reserve(splitcount[bestaxis][1]);
+ split(leaves,sets[0],sets[1],org,axis[bestaxis]);
+ }
+ else
+ {
+ sets[0].reserve(leaves.size()/2+1);
+ sets[1].reserve(leaves.size()/2);
+ for(int i=0,ni=leaves.size();i<ni;++i)
+ {
+ sets[i&1].push_back(leaves[i]);
+ }
+ }
+ btDbvtNode* node=createnode(pdbvt,0,vol,0);
+ node->childs[0]=topdown(pdbvt,sets[0],bu_treshold);
+ node->childs[1]=topdown(pdbvt,sets[1],bu_treshold);
+ node->childs[0]->parent=node;
+ node->childs[1]->parent=node;
+ return(node);
+ }
+ else
+ {
+ bottomup(pdbvt,leaves);
+ return(leaves[0]);
+ }
+ }
+return(leaves[0]);
+}
+
+//
+static DBVT_INLINE btDbvtNode* sort(btDbvtNode* n,btDbvtNode*& r)
+{
+btDbvtNode* p=n->parent;
+btAssert(n->isinternal());
+if(p>n)
+ {
+ const int i=indexof(n);
+ const int j=1-i;
+ btDbvtNode* s=p->childs[j];
+ btDbvtNode* q=p->parent;
+ btAssert(n==p->childs[i]);
+ if(q) q->childs[indexof(p)]=n; else r=n;
+ s->parent=n;
+ p->parent=n;
+ n->parent=q;
+ p->childs[0]=n->childs[0];
+ p->childs[1]=n->childs[1];
+ n->childs[0]->parent=p;
+ n->childs[1]->parent=p;
+ n->childs[i]=p;
+ n->childs[j]=s;
+ btSwap(p->volume,n->volume);
+ return(p);
+ }
+return(n);
+}
+
+//
+static DBVT_INLINE btDbvtNode* walkup(btDbvtNode* n,int count)
+{
+while(n&&(count--)) n=n->parent;
+return(n);
+}
+
+//
+// Api
+//
+
+//
+ btDbvt::btDbvt()
+{
+m_root = 0;
+m_free = 0;
+m_lkhd = -1;
+m_leaves = 0;
+m_opath = 0;
+}
+
+//
+ btDbvt::~btDbvt()
+{
+clear();
+}
+
+//
+void btDbvt::clear()
+{
+if(m_root) recursedeletenode(this,m_root);
+btAlignedFree(m_free);
+m_free=0;
+}
+
+//
+void btDbvt::optimizeBottomUp()
+{
+if(m_root)
+ {
+ tNodeArray leaves;
+ leaves.reserve(m_leaves);
+ fetchleaves(this,m_root,leaves);
+ bottomup(this,leaves);
+ m_root=leaves[0];
+ }
+}
+
+//
+void btDbvt::optimizeTopDown(int bu_treshold)
+{
+if(m_root)
+ {
+ tNodeArray leaves;
+ leaves.reserve(m_leaves);
+ fetchleaves(this,m_root,leaves);
+ m_root=topdown(this,leaves,bu_treshold);
+ }
+}
+
+//
+void btDbvt::optimizeIncremental(int passes)
+{
+if(passes<0) passes=m_leaves;
+if(m_root&&(passes>0))
+ {
+ do {
+ btDbvtNode* node=m_root;
+ unsigned bit=0;
+ while(node->isinternal())
+ {
+ node=sort(node,m_root)->childs[(m_opath>>bit)&1];
+ bit=(bit+1)&(sizeof(unsigned)*8-1);
+ }
+ update(node);
+ ++m_opath;
+ } while(--passes);
+ }
+}
+
+//
+btDbvtNode* btDbvt::insert(const btDbvtVolume& volume,void* data)
+{
+btDbvtNode* leaf=createnode(this,0,volume,data);
+insertleaf(this,m_root,leaf);
+++m_leaves;
+return(leaf);
+}
+
+//
+void btDbvt::update(btDbvtNode* leaf,int lookahead)
+{
+btDbvtNode* root=removeleaf(this,leaf);
+if(root)
+ {
+ if(lookahead>=0)
+ {
+ for(int i=0;(i<lookahead)&&root->parent;++i)
+ {
+ root=root->parent;
+ }
+ } else root=m_root;
+ }
+insertleaf(this,root,leaf);
+}
+
+//
+void btDbvt::update(btDbvtNode* leaf,const btDbvtVolume& volume)
+{
+btDbvtNode* root=removeleaf(this,leaf);
+if(root)
+ {
+ if(m_lkhd>=0)
+ {
+ for(int i=0;(i<m_lkhd)&&root->parent;++i)
+ {
+ root=root->parent;
+ }
+ } else root=m_root;
+ }
+leaf->volume=volume;
+insertleaf(this,root,leaf);
+}
+
+//
+bool btDbvt::update(btDbvtNode* leaf,btDbvtVolume volume,const btVector3& velocity,btScalar margin)
+{
+if(leaf->volume.Contain(volume)) return(false);
+volume.Expand(btVector3(margin,margin,margin));
+volume.SignedExpand(velocity);
+update(leaf,volume);
+return(true);
+}
+
+//
+bool btDbvt::update(btDbvtNode* leaf,btDbvtVolume volume,const btVector3& velocity)
+{
+if(leaf->volume.Contain(volume)) return(false);
+volume.SignedExpand(velocity);
+update(leaf,volume);
+return(true);
+}
+
+//
+bool btDbvt::update(btDbvtNode* leaf,btDbvtVolume volume,btScalar margin)
+{
+if(leaf->volume.Contain(volume)) return(false);
+volume.Expand(btVector3(margin,margin,margin));
+update(leaf,volume);
+return(true);
+}
+
+//
+void btDbvt::remove(btDbvtNode* leaf)
+{
+removeleaf(this,leaf);
+deletenode(this,leaf);
+--m_leaves;
+}
+
+//
+void btDbvt::write(IWriter* iwriter) const
+{
+btDbvtNodeEnumerator nodes;
+nodes.nodes.reserve(m_leaves*2);
+enumNodes(m_root,nodes);
+iwriter->Prepare(m_root,nodes.nodes.size());
+for(int i=0;i<nodes.nodes.size();++i)
+ {
+ const btDbvtNode* n=nodes.nodes[i];
+ int p=-1;
+ if(n->parent) p=nodes.nodes.findLinearSearch(n->parent);
+ if(n->isinternal())
+ {
+ const int c0=nodes.nodes.findLinearSearch(n->childs[0]);
+ const int c1=nodes.nodes.findLinearSearch(n->childs[1]);
+ iwriter->WriteNode(n,i,p,c0,c1);
+ }
+ else
+ {
+ iwriter->WriteLeaf(n,i,p);
+ }
+ }
+}
+
+//
+void btDbvt::clone(btDbvt& dest,IClone* iclone) const
+{
+dest.clear();
+if(m_root!=0)
+ {
+ btAlignedObjectArray<sStkCLN> stack;
+ stack.reserve(m_leaves);
+ stack.push_back(sStkCLN(m_root,0));
+ do {
+ const int i=stack.size()-1;
+ const sStkCLN e=stack[i];
+ btDbvtNode* n=createnode(&dest,e.parent,e.node->volume,e.node->data);
+ stack.pop_back();
+ if(e.parent!=0)
+ e.parent->childs[i&1]=n;
+ else
+ dest.m_root=n;
+ if(e.node->isinternal())
+ {
+ stack.push_back(sStkCLN(e.node->childs[0],n));
+ stack.push_back(sStkCLN(e.node->childs[1],n));
+ }
+ else
+ {
+ iclone->CloneLeaf(n);
+ }
+ } while(stack.size()>0);
+ }
+}
+
+//
+int btDbvt::maxdepth(const btDbvtNode* node)
+{
+int depth=0;
+if(node) getmaxdepth(node,1,depth);
+return(depth);
+}
+
+//
+int btDbvt::countLeaves(const btDbvtNode* node)
+{
+if(node->isinternal())
+ return(countLeaves(node->childs[0])+countLeaves(node->childs[1]));
+ else
+ return(1);
+}
+
+//
+void btDbvt::extractLeaves(const btDbvtNode* node,btAlignedObjectArray<const btDbvtNode*>& leaves)
+{
+if(node->isinternal())
+ {
+ extractLeaves(node->childs[0],leaves);
+ extractLeaves(node->childs[1],leaves);
+ }
+ else
+ {
+ leaves.push_back(node);
+ }
+}
+
+//
+#if DBVT_ENABLE_BENCHMARK
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "LinearMath/btQuickProf.h"
+
+/*
+q6600,2.4ghz
+
+/Ox /Ob2 /Oi /Ot /I "." /I "..\.." /I "..\..\src" /D "NDEBUG" /D "_LIB" /D "_WINDOWS" /D "_CRT_SECURE_NO_DEPRECATE" /D "_CRT_NONSTDC_NO_DEPRECATE" /D "WIN32"
+/GF /FD /MT /GS- /Gy /arch:SSE2 /Zc:wchar_t- /Fp"..\..\out\release8\build\libbulletcollision\libbulletcollision.pch"
+/Fo"..\..\out\release8\build\libbulletcollision\\"
+/Fd"..\..\out\release8\build\libbulletcollision\bulletcollision.pdb"
+/W3 /nologo /c /Wp64 /Zi /errorReport:prompt
+
+Benchmarking dbvt...
+ World scale: 100.000000
+ Extents base: 1.000000
+ Extents range: 4.000000
+ Leaves: 8192
+ sizeof(btDbvtVolume): 32 bytes
+ sizeof(btDbvtNode): 44 bytes
+[1] btDbvtVolume intersections: 3537 ms (0%)
+[2] btDbvtVolume merges: 1945 ms (0%)
+[3] btDbvt::collideTT: 6646 ms (0%)
+[4] btDbvt::collideTT self: 3389 ms (0%)
+[5] btDbvt::collideTT xform: 7505 ms (0%)
+[6] btDbvt::collideTT xform,self: 7480 ms (0%)
+[7] btDbvt::collideRAY: 6307 ms (0%),(332511 r/s)
+[8] insert/remove: 2105 ms (-3%),(996271 ir/s)
+[9] updates (teleport): 1943 ms (0%),(1079337 u/s)
+[10] updates (jitter): 1301 ms (0%),(1611953 u/s)
+[11] optimize (incremental): 2510 ms (0%),(1671000 o/s)
+[12] btDbvtVolume notequal: 3677 ms (0%)
+[13] culling(OCL+fullsort): 2231 ms (0%),(458 t/s)
+[14] culling(OCL+qsort): 3500 ms (0%),(2340 t/s)
+[15] culling(KDOP+qsort): 1151 ms (0%),(7117 t/s)
+[16] insert/remove batch(256): 5138 ms (0%),(816330 bir/s)
+[17] btDbvtVolume proximity: 2842 ms (0%)
+[18] btDbvtVolume select: 3390 ms (0%)
+*/
+
+struct btDbvtBenchmark
+{
+struct NilPolicy : btDbvt::ICollide
+ {
+ NilPolicy() : m_pcount(0),m_depth(-SIMD_INFINITY),m_checksort(true) {}
+ void Process(const btDbvtNode*,const btDbvtNode*) { ++m_pcount; }
+ void Process(const btDbvtNode*) { ++m_pcount; }
+ void Process(const btDbvtNode*,btScalar depth)
+ {
+ ++m_pcount;
+ if(m_checksort)
+ { if(depth>=m_depth) m_depth=depth; else printf("wrong depth: %f (should be >= %f)\r\n",depth,m_depth); }
+ }
+ int m_pcount;
+ btScalar m_depth;
+ bool m_checksort;
+ };
+struct P14 : btDbvt::ICollide
+ {
+ struct Node
+ {
+ const btDbvtNode* leaf;
+ btScalar depth;
+ };
+ void Process(const btDbvtNode* leaf,btScalar depth)
+ {
+ Node n;
+ n.leaf = leaf;
+ n.depth = depth;
+ }
+ static int sortfnc(const Node& a,const Node& b)
+ {
+ if(a.depth<b.depth) return(+1);
+ if(a.depth>b.depth) return(-1);
+ return(0);
+ }
+ btAlignedObjectArray<Node> m_nodes;
+ };
+struct P15 : btDbvt::ICollide
+ {
+ struct Node
+ {
+ const btDbvtNode* leaf;
+ btScalar depth;
+ };
+ void Process(const btDbvtNode* leaf)
+ {
+ Node n;
+ n.leaf = leaf;
+ n.depth = dot(leaf->volume.Center(),m_axis);
+ }
+ static int sortfnc(const Node& a,const Node& b)
+ {
+ if(a.depth<b.depth) return(+1);
+ if(a.depth>b.depth) return(-1);
+ return(0);
+ }
+ btAlignedObjectArray<Node> m_nodes;
+ btVector3 m_axis;
+ };
+static btScalar RandUnit()
+ {
+ return(rand()/(btScalar)RAND_MAX);
+ }
+static btVector3 RandVector3()
+ {
+ return(btVector3(RandUnit(),RandUnit(),RandUnit()));
+ }
+static btVector3 RandVector3(btScalar cs)
+ {
+ return(RandVector3()*cs-btVector3(cs,cs,cs)/2);
+ }
+static btDbvtVolume RandVolume(btScalar cs,btScalar eb,btScalar es)
+ {
+ return(btDbvtVolume::FromCE(RandVector3(cs),btVector3(eb,eb,eb)+RandVector3()*es));
+ }
+static btTransform RandTransform(btScalar cs)
+ {
+ btTransform t;
+ t.setOrigin(RandVector3(cs));
+ t.setRotation(btQuaternion(RandUnit()*SIMD_PI*2,RandUnit()*SIMD_PI*2,RandUnit()*SIMD_PI*2).normalized());
+ return(t);
+ }
+static void RandTree(btScalar cs,btScalar eb,btScalar es,int leaves,btDbvt& dbvt)
+ {
+ dbvt.clear();
+ for(int i=0;i<leaves;++i)
+ {
+ dbvt.insert(RandVolume(cs,eb,es),0);
+ }
+ }
+};
+
+void btDbvt::benchmark()
+{
+static const btScalar cfgVolumeCenterScale = 100;
+static const btScalar cfgVolumeExentsBase = 1;
+static const btScalar cfgVolumeExentsScale = 4;
+static const int cfgLeaves = 8192;
+static const bool cfgEnable = true;
+
+//[1] btDbvtVolume intersections
+bool cfgBenchmark1_Enable = cfgEnable;
+static const int cfgBenchmark1_Iterations = 8;
+static const int cfgBenchmark1_Reference = 3537;
+//[2] btDbvtVolume merges
+bool cfgBenchmark2_Enable = cfgEnable;
+static const int cfgBenchmark2_Iterations = 4;
+static const int cfgBenchmark2_Reference = 1945;
+//[3] btDbvt::collideTT
+bool cfgBenchmark3_Enable = cfgEnable;
+static const int cfgBenchmark3_Iterations = 512;
+static const int cfgBenchmark3_Reference = 6646;
+//[4] btDbvt::collideTT self
+bool cfgBenchmark4_Enable = cfgEnable;
+static const int cfgBenchmark4_Iterations = 512;
+static const int cfgBenchmark4_Reference = 3389;
+//[5] btDbvt::collideTT xform
+bool cfgBenchmark5_Enable = cfgEnable;
+static const int cfgBenchmark5_Iterations = 512;
+static const btScalar cfgBenchmark5_OffsetScale = 2;
+static const int cfgBenchmark5_Reference = 7505;
+//[6] btDbvt::collideTT xform,self
+bool cfgBenchmark6_Enable = cfgEnable;
+static const int cfgBenchmark6_Iterations = 512;
+static const btScalar cfgBenchmark6_OffsetScale = 2;
+static const int cfgBenchmark6_Reference = 7480;
+//[7] btDbvt::collideRAY
+bool cfgBenchmark7_Enable = cfgEnable;
+static const int cfgBenchmark7_Passes = 32;
+static const int cfgBenchmark7_Iterations = 65536;
+static const int cfgBenchmark7_Reference = 6307;
+//[8] insert/remove
+bool cfgBenchmark8_Enable = cfgEnable;
+static const int cfgBenchmark8_Passes = 32;
+static const int cfgBenchmark8_Iterations = 65536;
+static const int cfgBenchmark8_Reference = 2105;
+//[9] updates (teleport)
+bool cfgBenchmark9_Enable = cfgEnable;
+static const int cfgBenchmark9_Passes = 32;
+static const int cfgBenchmark9_Iterations = 65536;
+static const int cfgBenchmark9_Reference = 1943;
+//[10] updates (jitter)
+bool cfgBenchmark10_Enable = cfgEnable;
+static const btScalar cfgBenchmark10_Scale = cfgVolumeCenterScale/10000;
+static const int cfgBenchmark10_Passes = 32;
+static const int cfgBenchmark10_Iterations = 65536;
+static const int cfgBenchmark10_Reference = 1301;
+//[11] optimize (incremental)
+bool cfgBenchmark11_Enable = cfgEnable;
+static const int cfgBenchmark11_Passes = 64;
+static const int cfgBenchmark11_Iterations = 65536;
+static const int cfgBenchmark11_Reference = 2510;
+//[12] btDbvtVolume notequal
+bool cfgBenchmark12_Enable = cfgEnable;
+static const int cfgBenchmark12_Iterations = 32;
+static const int cfgBenchmark12_Reference = 3677;
+//[13] culling(OCL+fullsort)
+bool cfgBenchmark13_Enable = cfgEnable;
+static const int cfgBenchmark13_Iterations = 1024;
+static const int cfgBenchmark13_Reference = 2231;
+//[14] culling(OCL+qsort)
+bool cfgBenchmark14_Enable = cfgEnable;
+static const int cfgBenchmark14_Iterations = 8192;
+static const int cfgBenchmark14_Reference = 3500;
+//[15] culling(KDOP+qsort)
+bool cfgBenchmark15_Enable = cfgEnable;
+static const int cfgBenchmark15_Iterations = 8192;
+static const int cfgBenchmark15_Reference = 1151;
+//[16] insert/remove batch
+bool cfgBenchmark16_Enable = cfgEnable;
+static const int cfgBenchmark16_BatchCount = 256;
+static const int cfgBenchmark16_Passes = 16384;
+static const int cfgBenchmark16_Reference = 5138;
+//[17] proximity
+bool cfgBenchmark17_Enable = cfgEnable;
+static const int cfgBenchmark17_Iterations = 8;
+static const int cfgBenchmark17_Reference = 2842;
+//[18] select
+bool cfgBenchmark18_Enable = cfgEnable;
+static const int cfgBenchmark18_Iterations = 4;
+static const int cfgBenchmark18_Reference = 3390;
+
+btClock wallclock;
+printf("Benchmarking dbvt...\r\n");
+printf("\tWorld scale: %f\r\n",cfgVolumeCenterScale);
+printf("\tExtents base: %f\r\n",cfgVolumeExentsBase);
+printf("\tExtents range: %f\r\n",cfgVolumeExentsScale);
+printf("\tLeaves: %u\r\n",cfgLeaves);
+printf("\tsizeof(btDbvtVolume): %u bytes\r\n",sizeof(btDbvtVolume));
+printf("\tsizeof(btDbvtNode): %u bytes\r\n",sizeof(btDbvtNode));
+if(cfgBenchmark1_Enable)
+ {// Benchmark 1
+ srand(380843);
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<bool> results;
+ volumes.resize(cfgLeaves);
+ results.resize(cfgLeaves);
+ for(int i=0;i<cfgLeaves;++i)
+ {
+ volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ }
+ printf("[1] btDbvtVolume intersections: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark1_Iterations;++i)
+ {
+ for(int j=0;j<cfgLeaves;++j)
+ {
+ for(int k=0;k<cfgLeaves;++k)
+ {
+ results[k]=Intersect(volumes[j],volumes[k]);
+ }
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark1_Reference)*100/time);
+ }
+if(cfgBenchmark2_Enable)
+ {// Benchmark 2
+ srand(380843);
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<btDbvtVolume> results;
+ volumes.resize(cfgLeaves);
+ results.resize(cfgLeaves);
+ for(int i=0;i<cfgLeaves;++i)
+ {
+ volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ }
+ printf("[2] btDbvtVolume merges: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark2_Iterations;++i)
+ {
+ for(int j=0;j<cfgLeaves;++j)
+ {
+ for(int k=0;k<cfgLeaves;++k)
+ {
+ Merge(volumes[j],volumes[k],results[k]);
+ }
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark2_Reference)*100/time);
+ }
+if(cfgBenchmark3_Enable)
+ {// Benchmark 3
+ srand(380843);
+ btDbvt dbvt[2];
+ btDbvtBenchmark::NilPolicy policy;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[0]);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[1]);
+ dbvt[0].optimizeTopDown();
+ dbvt[1].optimizeTopDown();
+ printf("[3] btDbvt::collideTT: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark3_Iterations;++i)
+ {
+ btDbvt::collideTT(dbvt[0].m_root,dbvt[1].m_root,policy);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark3_Reference)*100/time);
+ }
+if(cfgBenchmark4_Enable)
+ {// Benchmark 4
+ srand(380843);
+ btDbvt dbvt;
+ btDbvtBenchmark::NilPolicy policy;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ printf("[4] btDbvt::collideTT self: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark4_Iterations;++i)
+ {
+ btDbvt::collideTT(dbvt.m_root,dbvt.m_root,policy);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark4_Reference)*100/time);
+ }
+if(cfgBenchmark5_Enable)
+ {// Benchmark 5
+ srand(380843);
+ btDbvt dbvt[2];
+ btAlignedObjectArray<btTransform> transforms;
+ btDbvtBenchmark::NilPolicy policy;
+ transforms.resize(cfgBenchmark5_Iterations);
+ for(int i=0;i<transforms.size();++i)
+ {
+ transforms[i]=btDbvtBenchmark::RandTransform(cfgVolumeCenterScale*cfgBenchmark5_OffsetScale);
+ }
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[0]);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[1]);
+ dbvt[0].optimizeTopDown();
+ dbvt[1].optimizeTopDown();
+ printf("[5] btDbvt::collideTT xform: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark5_Iterations;++i)
+ {
+ btDbvt::collideTT(dbvt[0].m_root,dbvt[1].m_root,transforms[i],policy);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark5_Reference)*100/time);
+ }
+if(cfgBenchmark6_Enable)
+ {// Benchmark 6
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<btTransform> transforms;
+ btDbvtBenchmark::NilPolicy policy;
+ transforms.resize(cfgBenchmark6_Iterations);
+ for(int i=0;i<transforms.size();++i)
+ {
+ transforms[i]=btDbvtBenchmark::RandTransform(cfgVolumeCenterScale*cfgBenchmark6_OffsetScale);
+ }
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ printf("[6] btDbvt::collideTT xform,self: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark6_Iterations;++i)
+ {
+ btDbvt::collideTT(dbvt.m_root,dbvt.m_root,transforms[i],policy);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark6_Reference)*100/time);
+ }
+if(cfgBenchmark7_Enable)
+ {// Benchmark 7
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> rayorg;
+ btAlignedObjectArray<btVector3> raydir;
+ btDbvtBenchmark::NilPolicy policy;
+ rayorg.resize(cfgBenchmark7_Iterations);
+ raydir.resize(cfgBenchmark7_Iterations);
+ for(int i=0;i<rayorg.size();++i)
+ {
+ rayorg[i]=btDbvtBenchmark::RandVector3(cfgVolumeCenterScale*2);
+ raydir[i]=btDbvtBenchmark::RandVector3(cfgVolumeCenterScale*2);
+ }
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ printf("[7] btDbvt::collideRAY: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark7_Passes;++i)
+ {
+ for(int j=0;j<cfgBenchmark7_Iterations;++j)
+ {
+ btDbvt::collideRAY(dbvt.m_root,rayorg[j],raydir[j],policy);
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ unsigned rays=cfgBenchmark7_Passes*cfgBenchmark7_Iterations;
+ printf("%u ms (%i%%),(%u r/s)\r\n",time,(time-cfgBenchmark7_Reference)*100/time,(rays*1000)/time);
+ }
+if(cfgBenchmark8_Enable)
+ {// Benchmark 8
+ srand(380843);
+ btDbvt dbvt;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ printf("[8] insert/remove: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark8_Passes;++i)
+ {
+ for(int j=0;j<cfgBenchmark8_Iterations;++j)
+ {
+ dbvt.remove(dbvt.insert(btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale),0));
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int ir=cfgBenchmark8_Passes*cfgBenchmark8_Iterations;
+ printf("%u ms (%i%%),(%u ir/s)\r\n",time,(time-cfgBenchmark8_Reference)*100/time,ir*1000/time);
+ }
+if(cfgBenchmark9_Enable)
+ {// Benchmark 9
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<const btDbvtNode*> leaves;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ dbvt.extractLeaves(dbvt.m_root,leaves);
+ printf("[9] updates (teleport): ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark9_Passes;++i)
+ {
+ for(int j=0;j<cfgBenchmark9_Iterations;++j)
+ {
+ dbvt.update(const_cast<btDbvtNode*>(leaves[rand()%cfgLeaves]),
+ btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale));
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int up=cfgBenchmark9_Passes*cfgBenchmark9_Iterations;
+ printf("%u ms (%i%%),(%u u/s)\r\n",time,(time-cfgBenchmark9_Reference)*100/time,up*1000/time);
+ }
+if(cfgBenchmark10_Enable)
+ {// Benchmark 10
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<const btDbvtNode*> leaves;
+ btAlignedObjectArray<btVector3> vectors;
+ vectors.resize(cfgBenchmark10_Iterations);
+ for(int i=0;i<vectors.size();++i)
+ {
+ vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1))*cfgBenchmark10_Scale;
+ }
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ dbvt.extractLeaves(dbvt.m_root,leaves);
+ printf("[10] updates (jitter): ");
+ wallclock.reset();
+
+ for(int i=0;i<cfgBenchmark10_Passes;++i)
+ {
+ for(int j=0;j<cfgBenchmark10_Iterations;++j)
+ {
+ const btVector3& d=vectors[j];
+ btDbvtNode* l=const_cast<btDbvtNode*>(leaves[rand()%cfgLeaves]);
+ btDbvtVolume v=btDbvtVolume::FromMM(l->volume.Mins()+d,l->volume.Maxs()+d);
+ dbvt.update(l,v);
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int up=cfgBenchmark10_Passes*cfgBenchmark10_Iterations;
+ printf("%u ms (%i%%),(%u u/s)\r\n",time,(time-cfgBenchmark10_Reference)*100/time,up*1000/time);
+ }
+if(cfgBenchmark11_Enable)
+ {// Benchmark 11
+ srand(380843);
+ btDbvt dbvt;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ printf("[11] optimize (incremental): ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark11_Passes;++i)
+ {
+ dbvt.optimizeIncremental(cfgBenchmark11_Iterations);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int op=cfgBenchmark11_Passes*cfgBenchmark11_Iterations;
+ printf("%u ms (%i%%),(%u o/s)\r\n",time,(time-cfgBenchmark11_Reference)*100/time,op/time*1000);
+ }
+if(cfgBenchmark12_Enable)
+ {// Benchmark 12
+ srand(380843);
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<bool> results;
+ volumes.resize(cfgLeaves);
+ results.resize(cfgLeaves);
+ for(int i=0;i<cfgLeaves;++i)
+ {
+ volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ }
+ printf("[12] btDbvtVolume notequal: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark12_Iterations;++i)
+ {
+ for(int j=0;j<cfgLeaves;++j)
+ {
+ for(int k=0;k<cfgLeaves;++k)
+ {
+ results[k]=NotEqual(volumes[j],volumes[k]);
+ }
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark12_Reference)*100/time);
+ }
+if(cfgBenchmark13_Enable)
+ {// Benchmark 13
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> vectors;
+ btDbvtBenchmark::NilPolicy policy;
+ vectors.resize(cfgBenchmark13_Iterations);
+ for(int i=0;i<vectors.size();++i)
+ {
+ vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1)).normalized();
+ }
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ printf("[13] culling(OCL+fullsort): ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark13_Iterations;++i)
+ {
+ static const btScalar offset=0;
+ policy.m_depth=-SIMD_INFINITY;
+ dbvt.collideOCL(dbvt.m_root,&vectors[i],&offset,vectors[i],1,policy);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int t=cfgBenchmark13_Iterations;
+ printf("%u ms (%i%%),(%u t/s)\r\n",time,(time-cfgBenchmark13_Reference)*100/time,(t*1000)/time);
+ }
+if(cfgBenchmark14_Enable)
+ {// Benchmark 14
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> vectors;
+ btDbvtBenchmark::P14 policy;
+ vectors.resize(cfgBenchmark14_Iterations);
+ for(int i=0;i<vectors.size();++i)
+ {
+ vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1)).normalized();
+ }
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ policy.m_nodes.reserve(cfgLeaves);
+ printf("[14] culling(OCL+qsort): ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark14_Iterations;++i)
+ {
+ static const btScalar offset=0;
+ policy.m_nodes.resize(0);
+ dbvt.collideOCL(dbvt.m_root,&vectors[i],&offset,vectors[i],1,policy,false);
+ policy.m_nodes.quickSort(btDbvtBenchmark::P14::sortfnc);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int t=cfgBenchmark14_Iterations;
+ printf("%u ms (%i%%),(%u t/s)\r\n",time,(time-cfgBenchmark14_Reference)*100/time,(t*1000)/time);
+ }
+if(cfgBenchmark15_Enable)
+ {// Benchmark 15
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> vectors;
+ btDbvtBenchmark::P15 policy;
+ vectors.resize(cfgBenchmark15_Iterations);
+ for(int i=0;i<vectors.size();++i)
+ {
+ vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1)).normalized();
+ }
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ policy.m_nodes.reserve(cfgLeaves);
+ printf("[15] culling(KDOP+qsort): ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark15_Iterations;++i)
+ {
+ static const btScalar offset=0;
+ policy.m_nodes.resize(0);
+ policy.m_axis=vectors[i];
+ dbvt.collideKDOP(dbvt.m_root,&vectors[i],&offset,1,policy);
+ policy.m_nodes.quickSort(btDbvtBenchmark::P15::sortfnc);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int t=cfgBenchmark15_Iterations;
+ printf("%u ms (%i%%),(%u t/s)\r\n",time,(time-cfgBenchmark15_Reference)*100/time,(t*1000)/time);
+ }
+if(cfgBenchmark16_Enable)
+ {// Benchmark 16
+ srand(380843);
+ btDbvt dbvt;
+ btAlignedObjectArray<btDbvtNode*> batch;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ dbvt.optimizeTopDown();
+ batch.reserve(cfgBenchmark16_BatchCount);
+ printf("[16] insert/remove batch(%u): ",cfgBenchmark16_BatchCount);
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark16_Passes;++i)
+ {
+ for(int j=0;j<cfgBenchmark16_BatchCount;++j)
+ {
+ batch.push_back(dbvt.insert(btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale),0));
+ }
+ for(int j=0;j<cfgBenchmark16_BatchCount;++j)
+ {
+ dbvt.remove(batch[j]);
+ }
+ batch.resize(0);
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ const int ir=cfgBenchmark16_Passes*cfgBenchmark16_BatchCount;
+ printf("%u ms (%i%%),(%u bir/s)\r\n",time,(time-cfgBenchmark16_Reference)*100/time,int(ir*1000.0/time));
+ }
+if(cfgBenchmark17_Enable)
+ {// Benchmark 17
+ srand(380843);
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<btScalar> results;
+ volumes.resize(cfgLeaves);
+ results.resize(cfgLeaves);
+ for(int i=0;i<cfgLeaves;++i)
+ {
+ volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ }
+ printf("[17] btDbvtVolume proximity: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark17_Iterations;++i)
+ {
+ for(int j=0;j<cfgLeaves;++j)
+ {
+ for(int k=0;k<cfgLeaves;++k)
+ {
+ results[k]=Proximity(volumes[j],volumes[k]);
+ }
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark17_Reference)*100/time);
+ }
+if(cfgBenchmark18_Enable)
+ {// Benchmark 18
+ srand(380843);
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<int> results;
+ btAlignedObjectArray<int> indices;
+ volumes.resize(cfgLeaves);
+ results.resize(cfgLeaves);
+ indices.resize(cfgLeaves);
+ for(int i=0;i<cfgLeaves;++i)
+ {
+ indices[i]=i;
+ volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ }
+ for(int i=0;i<cfgLeaves;++i)
+ {
+ btSwap(indices[i],indices[rand()%cfgLeaves]);
+ }
+ printf("[18] btDbvtVolume select: ");
+ wallclock.reset();
+ for(int i=0;i<cfgBenchmark18_Iterations;++i)
+ {
+ for(int j=0;j<cfgLeaves;++j)
+ {
+ for(int k=0;k<cfgLeaves;++k)
+ {
+ const int idx=indices[k];
+ results[idx]=Select(volumes[idx],volumes[j],volumes[k]);
+ }
+ }
+ }
+ const int time=(int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark18_Reference)*100/time);
+ }
+printf("\r\n\r\n");
+}
+#endif
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.h
new file mode 100644
index 00000000000..10f94627c37
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvt.h
@@ -0,0 +1,1101 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///btDbvt implementation by Nathanael Presson
+
+#ifndef BT_DYNAMIC_BOUNDING_VOLUME_TREE_H
+#define BT_DYNAMIC_BOUNDING_VOLUME_TREE_H
+
+#include "LinearMath/btAlignedObjectArray.h"
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btTransform.h"
+
+//
+// Compile time configuration
+//
+
+
+// Implementation profiles
+#define DBVT_IMPL_GENERIC 0 // Generic implementation
+#define DBVT_IMPL_SSE 1 // SSE
+
+// Template implementation of ICollide
+#ifdef WIN32_AVOID_WHEN_EMBEDDED_INSIDE_BLENDER
+ #if (defined (_MSC_VER) && _MSC_VER >= 1400)
+ #define DBVT_USE_TEMPLATE 1
+ #else
+ #define DBVT_USE_TEMPLATE 0
+#endif
+#else
+#define DBVT_USE_TEMPLATE 0
+#endif
+
+// Using memmov for collideOCL
+#define DBVT_USE_MEMMOVE 1
+
+// Enable benchmarking code
+#define DBVT_ENABLE_BENCHMARK 0
+
+// Inlining
+#define DBVT_INLINE SIMD_FORCE_INLINE
+// Align
+#ifdef WIN32
+#define DBVT_ALIGN __declspec(align(16))
+#else
+#define DBVT_ALIGN
+#endif
+
+// Specific methods implementation
+#ifdef WIN32_AVOID_WHEN_EMBEDDED_INSIDE_BLENDER
+#define DBVT_PROXIMITY_IMPL DBVT_IMPL_SSE
+#define DBVT_SELECT_IMPL DBVT_IMPL_SSE
+#define DBVT_MERGE_IMPL DBVT_IMPL_SSE
+#else
+#define DBVT_PROXIMITY_IMPL DBVT_IMPL_GENERIC
+#define DBVT_SELECT_IMPL DBVT_IMPL_GENERIC
+#define DBVT_MERGE_IMPL DBVT_IMPL_GENERIC
+#endif
+
+//
+// Auto config and checks
+//
+
+#if DBVT_USE_TEMPLATE
+#define DBVT_VIRTUAL
+#define DBVT_VIRTUAL_DTOR(a)
+#define DBVT_PREFIX template <typename T>
+#define DBVT_IPOLICY T& policy
+#define DBVT_CHECKTYPE static const ICollide& typechecker=*(T*)0;
+#else
+#define DBVT_VIRTUAL_DTOR(a) virtual ~a() {}
+#define DBVT_VIRTUAL virtual
+#define DBVT_PREFIX
+#define DBVT_IPOLICY ICollide& policy
+#define DBVT_CHECKTYPE
+#endif
+
+#if DBVT_USE_MEMMOVE
+#ifndef __CELLOS_LV2__
+#include <memory.h>
+#endif
+#include <string.h>
+#endif
+
+#ifndef DBVT_USE_TEMPLATE
+#error "DBVT_USE_TEMPLATE undefined"
+#endif
+
+#ifndef DBVT_USE_MEMMOVE
+#error "DBVT_USE_MEMMOVE undefined"
+#endif
+
+#ifndef DBVT_ENABLE_BENCHMARK
+#error "DBVT_ENABLE_BENCHMARK undefined"
+#endif
+
+#ifndef DBVT_PROXIMITY_IMPL
+#error "DBVT_PROXIMITY_IMPL undefined"
+#endif
+
+#ifndef DBVT_SELECT_IMPL
+#error "DBVT_SELECT_IMPL undefined"
+#endif
+
+#ifndef DBVT_MERGE_IMPL
+#error "DBVT_MERGE_IMPL undefined"
+#endif
+
+//
+// Defaults volumes
+//
+
+/* btDbvtAabbMm */
+struct btDbvtAabbMm
+{
+DBVT_INLINE btVector3 Center() const { return((mi+mx)/2); }
+DBVT_INLINE btVector3 Lengths() const { return(mx-mi); }
+DBVT_INLINE btVector3 Extents() const { return((mx-mi)/2); }
+DBVT_INLINE const btVector3& Mins() const { return(mi); }
+DBVT_INLINE const btVector3& Maxs() const { return(mx); }
+static inline btDbvtAabbMm FromCE(const btVector3& c,const btVector3& e);
+static inline btDbvtAabbMm FromCR(const btVector3& c,btScalar r);
+static inline btDbvtAabbMm FromMM(const btVector3& mi,const btVector3& mx);
+static inline btDbvtAabbMm FromPoints(const btVector3* pts,int n);
+static inline btDbvtAabbMm FromPoints(const btVector3** ppts,int n);
+DBVT_INLINE void Expand(const btVector3 e);
+DBVT_INLINE void SignedExpand(const btVector3 e);
+DBVT_INLINE bool Contain(const btDbvtAabbMm& a) const;
+DBVT_INLINE int Classify(const btVector3& n,btScalar o,int s) const;
+DBVT_INLINE btScalar ProjectMinimum(const btVector3& v,unsigned signs) const;
+DBVT_INLINE friend bool Intersect( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+DBVT_INLINE friend bool Intersect( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b,
+ const btTransform& xform);
+DBVT_INLINE friend bool Intersect( const btDbvtAabbMm& a,
+ const btVector3& b);
+DBVT_INLINE friend bool Intersect( const btDbvtAabbMm& a,
+ const btVector3& org,
+ const btVector3& invdir,
+ const unsigned* signs);
+DBVT_INLINE friend btScalar Proximity( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+DBVT_INLINE friend int Select( const btDbvtAabbMm& o,
+ const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+DBVT_INLINE friend void Merge( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b,
+ btDbvtAabbMm& r);
+DBVT_INLINE friend bool NotEqual( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+private:
+DBVT_INLINE void AddSpan(const btVector3& d,btScalar& smi,btScalar& smx) const;
+private:
+btVector3 mi,mx;
+};
+
+// Types
+typedef btDbvtAabbMm btDbvtVolume;
+
+/* btDbvtNode */
+struct btDbvtNode
+{
+ btDbvtVolume volume;
+ btDbvtNode* parent;
+ bool isleaf() const { return(childs[1]==0); }
+ bool isinternal() const { return(!isleaf()); }
+ union {
+ btDbvtNode* childs[2];
+ void* data;
+ };
+};
+
+///The btDbvt class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree).
+///This btDbvt is used for soft body collision detection and for the btDbvtBroadphase. It has a fast insert, remove and update of nodes.
+///Unlike the btQuantizedBvh, nodes can be dynamically moved around, which allows for change in topology of the underlying data structure.
+struct btDbvt
+ {
+
+
+ /* Stack element */
+ struct sStkNN
+ {
+ const btDbvtNode* a;
+ const btDbvtNode* b;
+ sStkNN() {}
+ sStkNN(const btDbvtNode* na,const btDbvtNode* nb) : a(na),b(nb) {}
+ };
+ struct sStkNP
+ {
+ const btDbvtNode* node;
+ int mask;
+ sStkNP(const btDbvtNode* n,unsigned m) : node(n),mask(m) {}
+ };
+ struct sStkNPS
+ {
+ const btDbvtNode* node;
+ int mask;
+ btScalar value;
+ sStkNPS() {}
+ sStkNPS(const btDbvtNode* n,unsigned m,btScalar v) : node(n),mask(m),value(v) {}
+ };
+ struct sStkCLN
+ {
+ const btDbvtNode* node;
+ btDbvtNode* parent;
+ sStkCLN(const btDbvtNode* n,btDbvtNode* p) : node(n),parent(p) {}
+ };
+ // Policies/Interfaces
+
+ /* ICollide */
+ struct ICollide
+ {
+ DBVT_VIRTUAL_DTOR(ICollide)
+ DBVT_VIRTUAL void Process(const btDbvtNode*,const btDbvtNode*) {}
+ DBVT_VIRTUAL void Process(const btDbvtNode*) {}
+ DBVT_VIRTUAL void Process(const btDbvtNode* n,btScalar) { Process(n); }
+ DBVT_VIRTUAL bool Descent(const btDbvtNode*) { return(true); }
+ DBVT_VIRTUAL bool AllLeaves(const btDbvtNode*) { return(true); }
+ };
+ /* IWriter */
+ struct IWriter
+ {
+ virtual ~IWriter() {}
+ virtual void Prepare(const btDbvtNode* root,int numnodes)=0;
+ virtual void WriteNode(const btDbvtNode*,int index,int parent,int child0,int child1)=0;
+ virtual void WriteLeaf(const btDbvtNode*,int index,int parent)=0;
+ };
+ /* IClone */
+ struct IClone
+ {
+ virtual ~IClone() {}
+ virtual void CloneLeaf(btDbvtNode*) {}
+ };
+
+ // Constants
+ enum {
+ SIMPLE_STACKSIZE = 64,
+ DOUBLE_STACKSIZE = SIMPLE_STACKSIZE*2
+ };
+
+ // Fields
+ btDbvtNode* m_root;
+ btDbvtNode* m_free;
+ int m_lkhd;
+ int m_leaves;
+ unsigned m_opath;
+ // Methods
+ btDbvt();
+ ~btDbvt();
+ void clear();
+ bool empty() const { return(0==m_root); }
+ void optimizeBottomUp();
+ void optimizeTopDown(int bu_treshold=128);
+ void optimizeIncremental(int passes);
+ btDbvtNode* insert(const btDbvtVolume& box,void* data);
+ void update(btDbvtNode* leaf,int lookahead=-1);
+ void update(btDbvtNode* leaf,const btDbvtVolume& volume);
+ bool update(btDbvtNode* leaf,btDbvtVolume volume,const btVector3& velocity,btScalar margin);
+ bool update(btDbvtNode* leaf,btDbvtVolume volume,const btVector3& velocity);
+ bool update(btDbvtNode* leaf,btDbvtVolume volume,btScalar margin);
+ void remove(btDbvtNode* leaf);
+ void write(IWriter* iwriter) const;
+ void clone(btDbvt& dest,IClone* iclone=0) const;
+ static int maxdepth(const btDbvtNode* node);
+ static int countLeaves(const btDbvtNode* node);
+ static void extractLeaves(const btDbvtNode* node,btAlignedObjectArray<const btDbvtNode*>& leaves);
+ #if DBVT_ENABLE_BENCHMARK
+ static void benchmark();
+ #else
+ static void benchmark(){}
+ #endif
+ // DBVT_IPOLICY must support ICollide policy/interface
+ DBVT_PREFIX
+ static void enumNodes( const btDbvtNode* root,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void enumLeaves( const btDbvtNode* root,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void collideTT( const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void collideTT( const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ const btTransform& xform,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void collideTT( const btDbvtNode* root0,
+ const btTransform& xform0,
+ const btDbvtNode* root1,
+ const btTransform& xform1,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void collideTV( const btDbvtNode* root,
+ const btDbvtVolume& volume,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void collideRAY( const btDbvtNode* root,
+ const btVector3& origin,
+ const btVector3& direction,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void collideKDOP(const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ int count,
+ DBVT_IPOLICY);
+ DBVT_PREFIX
+ static void collideOCL( const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ const btVector3& sortaxis,
+ int count,
+ DBVT_IPOLICY,
+ bool fullsort=true);
+ DBVT_PREFIX
+ static void collideTU( const btDbvtNode* root,
+ DBVT_IPOLICY);
+ // Helpers
+ static DBVT_INLINE int nearest(const int* i,const btDbvt::sStkNPS* a,btScalar v,int l,int h)
+ {
+ int m=0;
+ while(l<h)
+ {
+ m=(l+h)>>1;
+ if(a[i[m]].value>=v) l=m+1; else h=m;
+ }
+ return(h);
+ }
+ static DBVT_INLINE int allocate( btAlignedObjectArray<int>& ifree,
+ btAlignedObjectArray<sStkNPS>& stock,
+ const sStkNPS& value)
+ {
+ int i;
+ if(ifree.size()>0)
+ { i=ifree[ifree.size()-1];ifree.pop_back();stock[i]=value; }
+ else
+ { i=stock.size();stock.push_back(value); }
+ return(i);
+ }
+ //
+ private:
+ btDbvt(const btDbvt&) {}
+ };
+
+//
+// Inline's
+//
+
+//
+inline btDbvtAabbMm btDbvtAabbMm::FromCE(const btVector3& c,const btVector3& e)
+{
+btDbvtAabbMm box;
+box.mi=c-e;box.mx=c+e;
+return(box);
+}
+
+//
+inline btDbvtAabbMm btDbvtAabbMm::FromCR(const btVector3& c,btScalar r)
+{
+return(FromCE(c,btVector3(r,r,r)));
+}
+
+//
+inline btDbvtAabbMm btDbvtAabbMm::FromMM(const btVector3& mi,const btVector3& mx)
+{
+btDbvtAabbMm box;
+box.mi=mi;box.mx=mx;
+return(box);
+}
+
+//
+inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3* pts,int n)
+{
+btDbvtAabbMm box;
+box.mi=box.mx=pts[0];
+for(int i=1;i<n;++i)
+ {
+ box.mi.setMin(pts[i]);
+ box.mx.setMax(pts[i]);
+ }
+return(box);
+}
+
+//
+inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3** ppts,int n)
+{
+btDbvtAabbMm box;
+box.mi=box.mx=*ppts[0];
+for(int i=1;i<n;++i)
+ {
+ box.mi.setMin(*ppts[i]);
+ box.mx.setMax(*ppts[i]);
+ }
+return(box);
+}
+
+//
+DBVT_INLINE void btDbvtAabbMm::Expand(const btVector3 e)
+{
+mi-=e;mx+=e;
+}
+
+//
+DBVT_INLINE void btDbvtAabbMm::SignedExpand(const btVector3 e)
+{
+if(e.x()>0) mx.setX(mx.x()+e.x()); else mi.setX(mi.x()+e.x());
+if(e.y()>0) mx.setY(mx.y()+e.y()); else mi.setY(mi.y()+e.y());
+if(e.z()>0) mx.setZ(mx.z()+e.z()); else mi.setZ(mi.z()+e.z());
+}
+
+//
+DBVT_INLINE bool btDbvtAabbMm::Contain(const btDbvtAabbMm& a) const
+{
+return( (mi.x()<=a.mi.x())&&
+ (mi.y()<=a.mi.y())&&
+ (mi.z()<=a.mi.z())&&
+ (mx.x()>=a.mx.x())&&
+ (mx.y()>=a.mx.y())&&
+ (mx.z()>=a.mx.z()));
+}
+
+//
+DBVT_INLINE int btDbvtAabbMm::Classify(const btVector3& n,btScalar o,int s) const
+{
+btVector3 pi,px;
+switch(s)
+ {
+ case (0+0+0): px=btVector3(mi.x(),mi.y(),mi.z());
+ pi=btVector3(mx.x(),mx.y(),mx.z());break;
+ case (1+0+0): px=btVector3(mx.x(),mi.y(),mi.z());
+ pi=btVector3(mi.x(),mx.y(),mx.z());break;
+ case (0+2+0): px=btVector3(mi.x(),mx.y(),mi.z());
+ pi=btVector3(mx.x(),mi.y(),mx.z());break;
+ case (1+2+0): px=btVector3(mx.x(),mx.y(),mi.z());
+ pi=btVector3(mi.x(),mi.y(),mx.z());break;
+ case (0+0+4): px=btVector3(mi.x(),mi.y(),mx.z());
+ pi=btVector3(mx.x(),mx.y(),mi.z());break;
+ case (1+0+4): px=btVector3(mx.x(),mi.y(),mx.z());
+ pi=btVector3(mi.x(),mx.y(),mi.z());break;
+ case (0+2+4): px=btVector3(mi.x(),mx.y(),mx.z());
+ pi=btVector3(mx.x(),mi.y(),mi.z());break;
+ case (1+2+4): px=btVector3(mx.x(),mx.y(),mx.z());
+ pi=btVector3(mi.x(),mi.y(),mi.z());break;
+ }
+if((dot(n,px)+o)<0) return(-1);
+if((dot(n,pi)+o)>=0) return(+1);
+return(0);
+}
+
+//
+DBVT_INLINE btScalar btDbvtAabbMm::ProjectMinimum(const btVector3& v,unsigned signs) const
+{
+const btVector3* b[]={&mx,&mi};
+const btVector3 p( b[(signs>>0)&1]->x(),
+ b[(signs>>1)&1]->y(),
+ b[(signs>>2)&1]->z());
+return(dot(p,v));
+}
+
+//
+DBVT_INLINE void btDbvtAabbMm::AddSpan(const btVector3& d,btScalar& smi,btScalar& smx) const
+{
+for(int i=0;i<3;++i)
+ {
+ if(d[i]<0)
+ { smi+=mx[i]*d[i];smx+=mi[i]*d[i]; }
+ else
+ { smi+=mi[i]*d[i];smx+=mx[i]*d[i]; }
+ }
+}
+
+//
+DBVT_INLINE bool Intersect( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
+{
+return( (a.mi.x()<=b.mx.x())&&
+ (a.mx.x()>=b.mi.x())&&
+ (a.mi.y()<=b.mx.y())&&
+ (a.mx.y()>=b.mi.y())&&
+ (a.mi.z()<=b.mx.z())&&
+ (a.mx.z()>=b.mi.z()));
+}
+
+//
+DBVT_INLINE bool Intersect( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b,
+ const btTransform& xform)
+{
+const btVector3 d0=xform*b.Center()-a.Center();
+const btVector3 d1=d0*xform.getBasis();
+btScalar s0[2]={0,0};
+btScalar s1[2]={dot(xform.getOrigin(),d0),s1[0]};
+a.AddSpan(d0,s0[0],s0[1]);
+b.AddSpan(d1,s1[0],s1[1]);
+if(s0[0]>(s1[1])) return(false);
+if(s0[1]<(s1[0])) return(false);
+return(true);
+}
+
+//
+DBVT_INLINE bool Intersect( const btDbvtAabbMm& a,
+ const btVector3& b)
+{
+return( (b.x()>=a.mi.x())&&
+ (b.y()>=a.mi.y())&&
+ (b.z()>=a.mi.z())&&
+ (b.x()<=a.mx.x())&&
+ (b.y()<=a.mx.y())&&
+ (b.z()<=a.mx.z()));
+}
+
+//
+DBVT_INLINE bool Intersect( const btDbvtAabbMm& a,
+ const btVector3& org,
+ const btVector3& invdir,
+ const unsigned* signs)
+{
+#if 0
+const btVector3 b0((a.mi-org)*invdir);
+const btVector3 b1((a.mx-org)*invdir);
+const btVector3 tmin(btMin(b0[0],b1[0]),btMin(b0[1],b1[1]),btMin(b0[2],b1[2]));
+const btVector3 tmax(btMax(b0[0],b1[0]),btMax(b0[1],b1[1]),btMax(b0[2],b1[2]));
+const btScalar tin=btMax(tmin[0],btMax(tmin[1],tmin[2]));
+const btScalar tout=btMin(tmax[0],btMin(tmax[1],tmax[2]));
+return(tin<tout);
+#else
+const btVector3* bounds[2]={&a.mi,&a.mx};
+btScalar txmin=(bounds[ signs[0]]->x()-org[0])*invdir[0];
+btScalar txmax=(bounds[1-signs[0]]->x()-org[0])*invdir[0];
+const btScalar tymin=(bounds[ signs[1]]->y()-org[1])*invdir[1];
+const btScalar tymax=(bounds[1-signs[1]]->y()-org[1])*invdir[1];
+if((txmin>tymax)||(tymin>txmax)) return(false);
+if(tymin>txmin) txmin=tymin;
+if(tymax<txmax) txmax=tymax;
+const btScalar tzmin=(bounds[ signs[2]]->z()-org[2])*invdir[2];
+const btScalar tzmax=(bounds[1-signs[2]]->z()-org[2])*invdir[2];
+if((txmin>tzmax)||(tzmin>txmax)) return(false);
+if(tzmin>txmin) txmin=tzmin;
+if(tzmax<txmax) txmax=tzmax;
+return(txmax>0);
+#endif
+}
+
+//
+DBVT_INLINE btScalar Proximity( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
+{
+#if DBVT_PROXIMITY_IMPL == DBVT_IMPL_SSE
+DBVT_ALIGN btScalar r[1];
+static DBVT_ALIGN const unsigned __int32 mask[]={0x7fffffff,0x7fffffff,0x7fffffff,0x7fffffff};
+__asm
+ {
+ mov eax,a
+ mov ecx,b
+ movaps xmm0,[eax]
+ movaps xmm2,[ecx]
+ movaps xmm1,[eax+16]
+ movaps xmm3,[ecx+16]
+ addps xmm0,xmm1
+ addps xmm2,xmm3
+ subps xmm0,xmm2
+ andps xmm0,mask
+ movhlps xmm1,xmm0
+ addps xmm0,xmm1
+ pshufd xmm1,xmm0,1
+ addss xmm0,xmm1
+ movss r,xmm0
+ }
+return(r[0]);
+#else
+const btVector3 d=(a.mi+a.mx)-(b.mi+b.mx);
+return(btFabs(d.x())+btFabs(d.y())+btFabs(d.z()));
+#endif
+}
+
+//
+DBVT_INLINE int Select( const btDbvtAabbMm& o,
+ const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
+{
+#if DBVT_SELECT_IMPL == DBVT_IMPL_SSE
+DBVT_ALIGN __int32 r[1];
+static DBVT_ALIGN const unsigned __int32 mask[]={0x7fffffff,0x7fffffff,0x7fffffff,0x7fffffff};
+__asm
+ {
+ mov eax,o
+ mov ecx,a
+ mov edx,b
+ movaps xmm0,[eax]
+ movaps xmm5,mask
+ addps xmm0,[eax+16]
+ movaps xmm1,[ecx]
+ movaps xmm2,[edx]
+ addps xmm1,[ecx+16]
+ addps xmm2,[edx+16]
+ subps xmm1,xmm0
+ subps xmm2,xmm0
+ andps xmm1,xmm5
+ andps xmm2,xmm5
+ movhlps xmm3,xmm1
+ movhlps xmm4,xmm2
+ addps xmm1,xmm3
+ addps xmm2,xmm4
+ pshufd xmm3,xmm1,1
+ pshufd xmm4,xmm2,1
+ addss xmm1,xmm3
+ addss xmm2,xmm4
+ cmpless xmm2,xmm1
+ movss r,xmm2
+ }
+return(r[0]&1);
+#else
+return(Proximity(o,a)<Proximity(o,b)?0:1);
+#endif
+}
+
+//
+DBVT_INLINE void Merge( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b,
+ btDbvtAabbMm& r)
+{
+#if DBVT_MERGE_IMPL==DBVT_IMPL_SSE
+__asm
+ {
+ mov eax,a
+ mov edx,b
+ mov ecx,r
+ movaps xmm0,[eax+0]
+ movaps xmm1,[edx+0]
+ movaps xmm2,[eax+16]
+ movaps xmm3,[edx+16]
+ minps xmm0,xmm1
+ maxps xmm2,xmm3
+ movaps [ecx+0],xmm0
+ movaps [ecx+16],xmm2
+ }
+#else
+for(int i=0;i<3;++i)
+ {
+ if(a.mi[i]<b.mi[i]) r.mi[i]=a.mi[i]; else r.mi[i]=b.mi[i];
+ if(a.mx[i]>b.mx[i]) r.mx[i]=a.mx[i]; else r.mx[i]=b.mx[i];
+ }
+#endif
+}
+
+//
+DBVT_INLINE bool NotEqual( const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
+{
+return( (a.mi.x()!=b.mi.x())||
+ (a.mi.y()!=b.mi.y())||
+ (a.mi.z()!=b.mi.z())||
+ (a.mx.x()!=b.mx.x())||
+ (a.mx.y()!=b.mx.y())||
+ (a.mx.z()!=b.mx.z()));
+}
+
+//
+// Inline's
+//
+
+//
+DBVT_PREFIX
+inline void btDbvt::enumNodes( const btDbvtNode* root,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+policy.Process(root);
+if(root->isinternal())
+ {
+ enumNodes(root->childs[0],policy);
+ enumNodes(root->childs[1],policy);
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::enumLeaves( const btDbvtNode* root,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+if(root->isinternal())
+ {
+ enumLeaves(root->childs[0],policy);
+ enumLeaves(root->childs[1],policy);
+ }
+ else
+ {
+ policy.Process(root);
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideTT( const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+if(root0&&root1)
+ {
+ btAlignedObjectArray<sStkNN> stack;
+ int depth=1;
+ int treshold=DOUBLE_STACKSIZE-4;
+ stack.resize(DOUBLE_STACKSIZE);
+ stack[0]=sStkNN(root0,root1);
+ do {
+ sStkNN p=stack[--depth];
+ if(depth>treshold)
+ {
+ stack.resize(stack.size()*2);
+ treshold=stack.size()-4;
+ }
+ if(p.a==p.b)
+ {
+ if(p.a->isinternal())
+ {
+ stack[depth++]=sStkNN(p.a->childs[0],p.a->childs[0]);
+ stack[depth++]=sStkNN(p.a->childs[1],p.a->childs[1]);
+ stack[depth++]=sStkNN(p.a->childs[0],p.a->childs[1]);
+ }
+ }
+ else if(Intersect(p.a->volume,p.b->volume))
+ {
+ if(p.a->isinternal())
+ {
+ if(p.b->isinternal())
+ {
+ stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[0]);
+ stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[0]);
+ stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[1]);
+ stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[1]);
+ }
+ else
+ {
+ stack[depth++]=sStkNN(p.a->childs[0],p.b);
+ stack[depth++]=sStkNN(p.a->childs[1],p.b);
+ }
+ }
+ else
+ {
+ if(p.b->isinternal())
+ {
+ stack[depth++]=sStkNN(p.a,p.b->childs[0]);
+ stack[depth++]=sStkNN(p.a,p.b->childs[1]);
+ }
+ else
+ {
+ policy.Process(p.a,p.b);
+ }
+ }
+ }
+ } while(depth);
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideTT( const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ const btTransform& xform,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+if(root0&&root1)
+ {
+ btAlignedObjectArray<sStkNN> stack;
+ int depth=1;
+ int treshold=DOUBLE_STACKSIZE-4;
+ stack.resize(DOUBLE_STACKSIZE);
+ stack[0]=sStkNN(root0,root1);
+ do {
+ sStkNN p=stack[--depth];
+ if(Intersect(p.a->volume,p.b->volume,xform))
+ {
+ if(depth>treshold)
+ {
+ stack.resize(stack.size()*2);
+ treshold=stack.size()-4;
+ }
+ if(p.a->isinternal())
+ {
+ if(p.b->isinternal())
+ {
+ stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[0]);
+ stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[0]);
+ stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[1]);
+ stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[1]);
+ }
+ else
+ {
+ stack[depth++]=sStkNN(p.a->childs[0],p.b);
+ stack[depth++]=sStkNN(p.a->childs[1],p.b);
+ }
+ }
+ else
+ {
+ if(p.b->isinternal())
+ {
+ stack[depth++]=sStkNN(p.a,p.b->childs[0]);
+ stack[depth++]=sStkNN(p.a,p.b->childs[1]);
+ }
+ else
+ {
+ policy.Process(p.a,p.b);
+ }
+ }
+ }
+ } while(depth);
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideTT( const btDbvtNode* root0,
+ const btTransform& xform0,
+ const btDbvtNode* root1,
+ const btTransform& xform1,
+ DBVT_IPOLICY)
+{
+const btTransform xform=xform0.inverse()*xform1;
+collideTT(root0,root1,xform,policy);
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideTV( const btDbvtNode* root,
+ const btDbvtVolume& volume,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+if(root)
+ {
+ btAlignedObjectArray<const btDbvtNode*> stack;
+ stack.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(root);
+ do {
+ const btDbvtNode* n=stack[stack.size()-1];
+ stack.pop_back();
+ if(Intersect(n->volume,volume))
+ {
+ if(n->isinternal())
+ {
+ stack.push_back(n->childs[0]);
+ stack.push_back(n->childs[1]);
+ }
+ else
+ {
+ policy.Process(n);
+ }
+ }
+ } while(stack.size()>0);
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideRAY( const btDbvtNode* root,
+ const btVector3& origin,
+ const btVector3& direction,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+if(root)
+ {
+ const btVector3 normal=direction.normalized();
+ const btVector3 invdir( 1/normal.x(),
+ 1/normal.y(),
+ 1/normal.z());
+ const unsigned signs[]={ direction.x()<0,
+ direction.y()<0,
+ direction.z()<0};
+ btAlignedObjectArray<const btDbvtNode*> stack;
+ stack.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(root);
+ do {
+ const btDbvtNode* node=stack[stack.size()-1];
+ stack.pop_back();
+ if(Intersect(node->volume,origin,invdir,signs))
+ {
+ if(node->isinternal())
+ {
+ stack.push_back(node->childs[0]);
+ stack.push_back(node->childs[1]);
+ }
+ else
+ {
+ policy.Process(node);
+ }
+ }
+ } while(stack.size());
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideKDOP(const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ int count,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+if(root)
+ {
+ const int inside=(1<<count)-1;
+ btAlignedObjectArray<sStkNP> stack;
+ int signs[sizeof(unsigned)*8];
+ btAssert(count<int (sizeof(signs)/sizeof(signs[0])));
+ for(int i=0;i<count;++i)
+ {
+ signs[i]= ((normals[i].x()>=0)?1:0)+
+ ((normals[i].y()>=0)?2:0)+
+ ((normals[i].z()>=0)?4:0);
+ }
+ stack.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(sStkNP(root,0));
+ do {
+ sStkNP se=stack[stack.size()-1];
+ bool out=false;
+ stack.pop_back();
+ for(int i=0,j=1;(!out)&&(i<count);++i,j<<=1)
+ {
+ if(0==(se.mask&j))
+ {
+ const int side=se.node->volume.Classify(normals[i],offsets[i],signs[i]);
+ switch(side)
+ {
+ case -1: out=true;break;
+ case +1: se.mask|=j;break;
+ }
+ }
+ }
+ if(!out)
+ {
+ if((se.mask!=inside)&&(se.node->isinternal()))
+ {
+ stack.push_back(sStkNP(se.node->childs[0],se.mask));
+ stack.push_back(sStkNP(se.node->childs[1],se.mask));
+ }
+ else
+ {
+ if(policy.AllLeaves(se.node)) enumLeaves(se.node,policy);
+ }
+ }
+ } while(stack.size());
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideOCL( const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ const btVector3& sortaxis,
+ int count,
+ DBVT_IPOLICY,
+ bool fsort)
+{
+DBVT_CHECKTYPE
+if(root)
+ {
+ const unsigned srtsgns=(sortaxis[0]>=0?1:0)+
+ (sortaxis[1]>=0?2:0)+
+ (sortaxis[2]>=0?4:0);
+ const int inside=(1<<count)-1;
+ btAlignedObjectArray<sStkNPS> stock;
+ btAlignedObjectArray<int> ifree;
+ btAlignedObjectArray<int> stack;
+ int signs[sizeof(unsigned)*8];
+ btAssert(count<int (sizeof(signs)/sizeof(signs[0])));
+ for(int i=0;i<count;++i)
+ {
+ signs[i]= ((normals[i].x()>=0)?1:0)+
+ ((normals[i].y()>=0)?2:0)+
+ ((normals[i].z()>=0)?4:0);
+ }
+ stock.reserve(SIMPLE_STACKSIZE);
+ stack.reserve(SIMPLE_STACKSIZE);
+ ifree.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(allocate(ifree,stock,sStkNPS(root,0,root->volume.ProjectMinimum(sortaxis,srtsgns))));
+ do {
+ const int id=stack[stack.size()-1];
+ sStkNPS se=stock[id];
+ stack.pop_back();ifree.push_back(id);
+ if(se.mask!=inside)
+ {
+ bool out=false;
+ for(int i=0,j=1;(!out)&&(i<count);++i,j<<=1)
+ {
+ if(0==(se.mask&j))
+ {
+ const int side=se.node->volume.Classify(normals[i],offsets[i],signs[i]);
+ switch(side)
+ {
+ case -1: out=true;break;
+ case +1: se.mask|=j;break;
+ }
+ }
+ }
+ if(out) continue;
+ }
+ if(policy.Descent(se.node))
+ {
+ if(se.node->isinternal())
+ {
+ const btDbvtNode* pns[]={ se.node->childs[0],se.node->childs[1]};
+ sStkNPS nes[]={ sStkNPS(pns[0],se.mask,pns[0]->volume.ProjectMinimum(sortaxis,srtsgns)),
+ sStkNPS(pns[1],se.mask,pns[1]->volume.ProjectMinimum(sortaxis,srtsgns))};
+ const int q=nes[0].value<nes[1].value?1:0;
+ int j=stack.size();
+ if(fsort&&(j>0))
+ {
+ /* Insert 0 */
+ j=nearest(&stack[0],&stock[0],nes[q].value,0,stack.size());
+ stack.push_back(0);
+ #if DBVT_USE_MEMMOVE
+ memmove(&stack[j+1],&stack[j],sizeof(int)*(stack.size()-j-1));
+ #else
+ for(int k=stack.size()-1;k>j;--k) stack[k]=stack[k-1];
+ #endif
+ stack[j]=allocate(ifree,stock,nes[q]);
+ /* Insert 1 */
+ j=nearest(&stack[0],&stock[0],nes[1-q].value,j,stack.size());
+ stack.push_back(0);
+ #if DBVT_USE_MEMMOVE
+ memmove(&stack[j+1],&stack[j],sizeof(int)*(stack.size()-j-1));
+ #else
+ for(int k=stack.size()-1;k>j;--k) stack[k]=stack[k-1];
+ #endif
+ stack[j]=allocate(ifree,stock,nes[1-q]);
+ }
+ else
+ {
+ stack.push_back(allocate(ifree,stock,nes[q]));
+ stack.push_back(allocate(ifree,stock,nes[1-q]));
+ }
+ }
+ else
+ {
+ policy.Process(se.node,se.value);
+ }
+ }
+ } while(stack.size());
+ }
+}
+
+//
+DBVT_PREFIX
+inline void btDbvt::collideTU( const btDbvtNode* root,
+ DBVT_IPOLICY)
+{
+DBVT_CHECKTYPE
+if(root)
+ {
+ btAlignedObjectArray<const btDbvtNode*> stack;
+ stack.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(root);
+ do {
+ const btDbvtNode* n=stack[stack.size()-1];
+ stack.pop_back();
+ if(policy.Descent(n))
+ {
+ if(n->isinternal())
+ { stack.push_back(n->childs[0]);stack.push_back(n->childs[1]); }
+ else
+ { policy.Process(n); }
+ }
+ } while(stack.size()>0);
+ }
+}
+
+//
+// PP Cleanup
+//
+
+#undef DBVT_USE_MEMMOVE
+#undef DBVT_USE_TEMPLATE
+#undef DBVT_VIRTUAL_DTOR
+#undef DBVT_VIRTUAL
+#undef DBVT_PREFIX
+#undef DBVT_IPOLICY
+#undef DBVT_CHECKTYPE
+#undef DBVT_IMPL_GENERIC
+#undef DBVT_IMPL_FPU0x86
+#undef DBVT_IMPL_SSE
+
+#endif
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp
new file mode 100644
index 00000000000..c6086f28f19
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp
@@ -0,0 +1,344 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///btDbvtBroadphase implementation by Nathanael Presson
+
+#include "btDbvtBroadphase.h"
+
+//
+// Profiling
+//
+
+#if DBVT_BP_PROFILE
+#include <stdio.h>
+struct ProfileScope
+ {
+ ProfileScope(btClock& clock,unsigned long& value)
+ {
+ m_clock=&clock;
+ m_value=&value;
+ m_base=clock.getTimeMicroseconds();
+ }
+ ~ProfileScope()
+ {
+ (*m_value)+=m_clock->getTimeMicroseconds()-m_base;
+ }
+ btClock* m_clock;
+ unsigned long* m_value;
+ unsigned long m_base;
+ };
+#define SPC(_value_) ProfileScope spc_scope(m_clock,_value_)
+#else
+#define SPC(_value_)
+#endif
+
+//
+// Helpers
+//
+
+//
+template <typename T>
+static inline void listappend(T* item,T*& list)
+{
+item->links[0]=0;
+item->links[1]=list;
+if(list) list->links[0]=item;
+list=item;
+}
+
+//
+template <typename T>
+static inline void listremove(T* item,T*& list)
+{
+if(item->links[0]) item->links[0]->links[1]=item->links[1]; else list=item->links[1];
+if(item->links[1]) item->links[1]->links[0]=item->links[0];
+}
+
+//
+template <typename T>
+static inline int listcount(T* root)
+{
+int n=0;
+while(root) { ++n;root=root->links[1]; }
+return(n);
+}
+
+//
+template <typename T>
+static inline void clear(T& value)
+{
+static const struct ZeroDummy : T {} zerodummy;
+value=zerodummy;
+}
+
+//
+// Colliders
+//
+
+/* Tree collider */
+struct btDbvtTreeCollider : btDbvt::ICollide
+{
+btDbvtBroadphase* pbp;
+ btDbvtTreeCollider(btDbvtBroadphase* p) : pbp(p) {}
+void Process(const btDbvtNode* na,const btDbvtNode* nb)
+ {
+ btDbvtProxy* pa=(btDbvtProxy*)na->data;
+ btDbvtProxy* pb=(btDbvtProxy*)nb->data;
+ #if DBVT_BP_DISCRETPAIRS
+ if(Intersect(pa->aabb,pb->aabb))
+ #endif
+ {
+ if(pa>pb) btSwap(pa,pb);
+ pbp->m_paircache->addOverlappingPair(pa,pb);
+ }
+ }
+};
+
+//
+// btDbvtBroadphase
+//
+
+//
+btDbvtBroadphase::btDbvtBroadphase(btOverlappingPairCache* paircache)
+{
+m_releasepaircache = (paircache!=0)?false:true;
+m_predictedframes = 2;
+m_stageCurrent = 0;
+m_fupdates = 1;
+m_dupdates = 1;
+m_paircache = paircache?
+ paircache :
+ new(btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache();
+m_gid = 0;
+m_pid = 0;
+for(int i=0;i<=STAGECOUNT;++i)
+ {
+ m_stageRoots[i]=0;
+ }
+#if DBVT_BP_PROFILE
+clear(m_profiling);
+#endif
+}
+
+//
+btDbvtBroadphase::~btDbvtBroadphase()
+{
+if(m_releasepaircache)
+{
+ m_paircache->~btOverlappingPairCache();
+ btAlignedFree(m_paircache);
+}
+}
+
+//
+btBroadphaseProxy* btDbvtBroadphase::createProxy( const btVector3& aabbMin,
+ const btVector3& aabbMax,
+ int /*shapeType*/,
+ void* userPtr,
+ short int collisionFilterGroup,
+ short int collisionFilterMask,
+ btDispatcher* /*dispatcher*/,
+ void* /*multiSapProxy*/)
+{
+btDbvtProxy* proxy=new(btAlignedAlloc(sizeof(btDbvtProxy),16)) btDbvtProxy( userPtr,
+ collisionFilterGroup,
+ collisionFilterMask);
+proxy->aabb = btDbvtVolume::FromMM(aabbMin,aabbMax);
+proxy->leaf = m_sets[0].insert(proxy->aabb,proxy);
+proxy->stage = m_stageCurrent;
+proxy->m_uniqueId = ++m_gid;
+listappend(proxy,m_stageRoots[m_stageCurrent]);
+return(proxy);
+}
+
+//
+void btDbvtBroadphase::destroyProxy( btBroadphaseProxy* absproxy,
+ btDispatcher* dispatcher)
+{
+btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
+if(proxy->stage==STAGECOUNT)
+ m_sets[1].remove(proxy->leaf);
+ else
+ m_sets[0].remove(proxy->leaf);
+listremove(proxy,m_stageRoots[proxy->stage]);
+m_paircache->removeOverlappingPairsContainingProxy(proxy,dispatcher);
+btAlignedFree(proxy);
+}
+
+//
+void btDbvtBroadphase::setAabb( btBroadphaseProxy* absproxy,
+ const btVector3& aabbMin,
+ const btVector3& aabbMax,
+ btDispatcher* /*dispatcher*/)
+{
+btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
+btDbvtVolume aabb=btDbvtVolume::FromMM(aabbMin,aabbMax);
+if(NotEqual(aabb,proxy->leaf->volume))
+ {
+ if(proxy->stage==STAGECOUNT)
+ {/* fixed -> dynamic set */
+ m_sets[1].remove(proxy->leaf);
+ proxy->leaf=m_sets[0].insert(aabb,proxy);
+ }
+ else
+ {/* dynamic set */
+ if(Intersect(proxy->leaf->volume,aabb))
+ {/* Moving */
+ const btVector3 delta=(aabbMin+aabbMax)/2-proxy->aabb.Center();
+ #ifdef DBVT_BP_MARGIN
+ m_sets[0].update(proxy->leaf,aabb,delta*m_predictedframes,DBVT_BP_MARGIN);
+ #else
+ m_sets[0].update(proxy->leaf,aabb,delta*m_predictedframes);
+ #endif
+ }
+ else
+ {/* Teleporting */
+ m_sets[0].update(proxy->leaf,aabb);
+ }
+ }
+ listremove(proxy,m_stageRoots[proxy->stage]);
+ proxy->aabb = aabb;
+ proxy->stage = m_stageCurrent;
+ listappend(proxy,m_stageRoots[m_stageCurrent]);
+ }
+}
+
+//
+void btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
+{
+collide(dispatcher);
+#if DBVT_BP_PROFILE
+if(0==(m_pid%DBVT_BP_PROFILING_RATE))
+ {
+ printf("fixed(%u) dynamics(%u) pairs(%u)\r\n",m_sets[1].m_leaves,m_sets[0].m_leaves,m_paircache->getNumOverlappingPairs());
+ unsigned int total=m_profiling.m_total;
+ if(total<=0) total=1;
+ printf("ddcollide: %u%% (%uus)\r\n",(50+m_profiling.m_ddcollide*100)/total,m_profiling.m_ddcollide/DBVT_BP_PROFILING_RATE);
+ printf("fdcollide: %u%% (%uus)\r\n",(50+m_profiling.m_fdcollide*100)/total,m_profiling.m_fdcollide/DBVT_BP_PROFILING_RATE);
+ printf("cleanup: %u%% (%uus)\r\n",(50+m_profiling.m_cleanup*100)/total,m_profiling.m_cleanup/DBVT_BP_PROFILING_RATE);
+ printf("total: %uus\r\n",total/DBVT_BP_PROFILING_RATE);
+ const unsigned long sum=m_profiling.m_ddcollide+
+ m_profiling.m_fdcollide+
+ m_profiling.m_cleanup;
+ printf("leaked: %u%% (%uus)\r\n",100-((50+sum*100)/total),(total-sum)/DBVT_BP_PROFILING_RATE);
+ printf("job counts: %u%%\r\n",(m_profiling.m_jobcount*100)/((m_sets[0].m_leaves+m_sets[1].m_leaves)*DBVT_BP_PROFILING_RATE));
+ clear(m_profiling);
+ m_clock.reset();
+ }
+#endif
+}
+
+//
+void btDbvtBroadphase::collide(btDispatcher* dispatcher)
+{
+SPC(m_profiling.m_total);
+/* optimize */
+m_sets[0].optimizeIncremental(1+(m_sets[0].m_leaves*m_dupdates)/100);
+m_sets[1].optimizeIncremental(1+(m_sets[1].m_leaves*m_fupdates)/100);
+/* dynamic -> fixed set */
+m_stageCurrent=(m_stageCurrent+1)%STAGECOUNT;
+btDbvtProxy* current=m_stageRoots[m_stageCurrent];
+if(current)
+ {
+ btDbvtTreeCollider collider(this);
+ do {
+ btDbvtProxy* next=current->links[1];
+ listremove(current,m_stageRoots[current->stage]);
+ listappend(current,m_stageRoots[STAGECOUNT]);
+ btDbvt::collideTT(m_sets[1].m_root,current->leaf,collider);
+ m_sets[0].remove(current->leaf);
+ current->leaf = m_sets[1].insert(current->aabb,current);
+ current->stage = STAGECOUNT;
+ current = next;
+ } while(current);
+ }
+/* collide dynamics */
+ {
+ btDbvtTreeCollider collider(this);
+ {
+ SPC(m_profiling.m_fdcollide);
+ btDbvt::collideTT(m_sets[0].m_root,m_sets[1].m_root,collider);
+ }
+ {
+ SPC(m_profiling.m_ddcollide);
+ btDbvt::collideTT(m_sets[0].m_root,m_sets[0].m_root,collider);
+ }
+ }
+/* clean up */
+ {
+ SPC(m_profiling.m_cleanup);
+ btBroadphasePairArray& pairs=m_paircache->getOverlappingPairArray();
+ if(pairs.size()>0)
+ {
+ for(int i=0,ni=pairs.size();i<ni;++i)
+ {
+ btBroadphasePair& p=pairs[i];
+ btDbvtProxy* pa=(btDbvtProxy*)p.m_pProxy0;
+ btDbvtProxy* pb=(btDbvtProxy*)p.m_pProxy1;
+ if(!Intersect(pa->aabb,pb->aabb))
+ {
+ if(pa>pb) btSwap(pa,pb);
+ m_paircache->removeOverlappingPair(pa,pb,dispatcher);
+ --ni;--i;
+ }
+ }
+ }
+ }
+++m_pid;
+}
+
+//
+void btDbvtBroadphase::optimize()
+{
+m_sets[0].optimizeTopDown();
+m_sets[1].optimizeTopDown();
+}
+
+//
+btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache()
+{
+return(m_paircache);
+}
+
+//
+const btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() const
+{
+return(m_paircache);
+}
+
+//
+void btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
+{
+
+ ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds;
+
+if(!m_sets[0].empty())
+ if(!m_sets[1].empty()) Merge( m_sets[0].m_root->volume,
+ m_sets[1].m_root->volume,bounds);
+ else
+ bounds=m_sets[0].m_root->volume;
+else if(!m_sets[1].empty()) bounds=m_sets[1].m_root->volume;
+ else
+ bounds=btDbvtVolume::FromCR(btVector3(0,0,0),0);
+aabbMin=bounds.Mins();
+aabbMax=bounds.Maxs();
+}
+
+//
+void btDbvtBroadphase::printStats()
+{}
+
+#if DBVT_BP_PROFILE
+#undef SPC
+#endif
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
new file mode 100644
index 00000000000..3f19075552b
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
@@ -0,0 +1,103 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///btDbvtBroadphase implementation by Nathanael Presson
+#ifndef BT_DBVT_BROADPHASE_H
+#define BT_DBVT_BROADPHASE_H
+
+#include "BulletCollision/BroadphaseCollision/btDbvt.h"
+#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
+
+//
+// Compile time config
+//
+
+#define DBVT_BP_PROFILE 0
+#define DBVT_BP_DISCRETPAIRS 1
+#define DBVT_BP_MARGIN (btScalar)0.05
+
+#if DBVT_BP_PROFILE
+ #define DBVT_BP_PROFILING_RATE 256
+ #include "LinearMath/btQuickprof.h"
+#endif
+
+//
+// btDbvtProxy
+//
+struct btDbvtProxy : btBroadphaseProxy
+{
+/* Fields */
+btDbvtAabbMm aabb;
+btDbvtNode* leaf;
+btDbvtProxy* links[2];
+int stage;
+/* ctor */
+btDbvtProxy(void* userPtr,short int collisionFilterGroup, short int collisionFilterMask) :
+ btBroadphaseProxy(userPtr,collisionFilterGroup,collisionFilterMask)
+ {
+ links[0]=links[1]=0;
+ }
+};
+
+typedef btAlignedObjectArray<btDbvtProxy*> btDbvtProxyArray;
+
+///The btDbvtBroadphase implements a broadphase using two dynamic AABB bounding volume hierarchies/trees (see btDbvt).
+///One tree is used for static/non-moving objects, and another tree is used for dynamic objects. Objects can move from one tree to the other.
+///This is a very fast broadphase, especially for very dynamic worlds where many objects are moving. Its insert/add and remove of objects is generally faster than the sweep and prune broadphases btAxisSweep3 and bt32BitAxisSweep3.
+struct btDbvtBroadphase : btBroadphaseInterface
+{
+/* Config */
+enum {
+ DYNAMIC_SET = 0, /* Dynamic set index */
+ FIXED_SET = 1, /* Fixed set index */
+ STAGECOUNT = 2 /* Number of stages */
+ };
+/* Fields */
+btDbvt m_sets[2]; // Dbvt sets
+btDbvtProxy* m_stageRoots[STAGECOUNT+1]; // Stages list
+btOverlappingPairCache* m_paircache; // Pair cache
+btScalar m_predictedframes; // Frames predicted
+int m_stageCurrent; // Current stage
+int m_fupdates; // % of fixed updates per frame
+int m_dupdates; // % of dynamic updates per frame
+int m_pid; // Parse id
+int m_gid; // Gen id
+bool m_releasepaircache; // Release pair cache on delete
+#if DBVT_BP_PROFILE
+btClock m_clock;
+struct {
+ unsigned long m_total;
+ unsigned long m_ddcollide;
+ unsigned long m_fdcollide;
+ unsigned long m_cleanup;
+ unsigned long m_jobcount;
+ } m_profiling;
+#endif
+/* Methods */
+btDbvtBroadphase(btOverlappingPairCache* paircache=0);
+~btDbvtBroadphase();
+void collide(btDispatcher* dispatcher);
+void optimize();
+/* btBroadphaseInterface Implementation */
+btBroadphaseProxy* createProxy(const btVector3& aabbMin,const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
+void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
+void calculateOverlappingPairs(btDispatcher* dispatcher);
+btOverlappingPairCache* getOverlappingPairCache();
+const btOverlappingPairCache* getOverlappingPairCache() const;
+void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const;
+void printStats();
+};
+
+#endif
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDispatcher.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDispatcher.h
index 3d958cc8fef..6db71a0170e 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDispatcher.h
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btDispatcher.h
@@ -16,7 +16,7 @@ subject to the following restrictions:
#ifndef _DISPATCHER_H
#define _DISPATCHER_H
-#include "../../LinearMath/btScalar.h"
+#include "LinearMath/btScalar.h"
class btCollisionAlgorithm;
struct btBroadphaseProxy;
@@ -43,7 +43,9 @@ struct btDispatcherInfo
m_useContinuous(false),
m_debugDraw(0),
m_enableSatConvex(false),
- m_enableSPU(false),
+ m_enableSPU(true),
+ m_useEpa(true),
+ m_allowedCcdPenetration(btScalar(0.04)),
m_stackAllocator(0)
{
@@ -51,17 +53,19 @@ struct btDispatcherInfo
btScalar m_timeStep;
int m_stepCount;
int m_dispatchFunc;
- btScalar m_timeOfImpact;
+ mutable btScalar m_timeOfImpact;
bool m_useContinuous;
class btIDebugDraw* m_debugDraw;
bool m_enableSatConvex;
bool m_enableSPU;
+ bool m_useEpa;
+ btScalar m_allowedCcdPenetration;
btStackAlloc* m_stackAllocator;
};
-/// btDispatcher can be used in combination with broadphase to dispatch overlapping pairs.
-/// For example for pairwise collision detection or user callbacks (game logic).
+///The btDispatcher interface class can be used in combination with broadphase to dispatch calculations for overlapping pairs.
+///For example for pairwise collision detection, calculating contact points stored in btPersistentManifold or user callbacks (game logic).
class btDispatcher
{
@@ -81,12 +85,18 @@ public:
virtual bool needsResponse(btCollisionObject* body0,btCollisionObject* body1)=0;
- virtual void dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,btDispatcherInfo& dispatchInfo)=0;
+ virtual void dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,const btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher) =0;
virtual int getNumManifolds() const = 0;
virtual btPersistentManifold* getManifoldByIndexInternal(int index) = 0;
+ virtual btPersistentManifold** getInternalManifoldPointer() = 0;
+
+ virtual void* allocateCollisionAlgorithm(int size) = 0;
+
+ virtual void freeCollisionAlgorithm(void* ptr) = 0;
+
};
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.cpp
new file mode 100644
index 00000000000..3f866ab7c5f
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.cpp
@@ -0,0 +1,466 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btMultiSapBroadphase.h"
+
+#include "btSimpleBroadphase.h"
+#include "LinearMath/btAabbUtil2.h"
+#include "btQuantizedBvh.h"
+
+/// btSapBroadphaseArray m_sapBroadphases;
+
+/// btOverlappingPairCache* m_overlappingPairs;
+extern int gOverlappingPairs;
+
+/*
+class btMultiSapSortedOverlappingPairCache : public btSortedOverlappingPairCache
+{
+public:
+
+ virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+ {
+ return btSortedOverlappingPairCache::addOverlappingPair((btBroadphaseProxy*)proxy0->m_multiSapParentProxy,(btBroadphaseProxy*)proxy1->m_multiSapParentProxy);
+ }
+};
+
+*/
+
+btMultiSapBroadphase::btMultiSapBroadphase(int /*maxProxies*/,btOverlappingPairCache* pairCache)
+:m_overlappingPairs(pairCache),
+m_optimizedAabbTree(0),
+m_ownsPairCache(false),
+m_invalidPair(0)
+{
+ if (!m_overlappingPairs)
+ {
+ m_ownsPairCache = true;
+ void* mem = btAlignedAlloc(sizeof(btSortedOverlappingPairCache),16);
+ m_overlappingPairs = new (mem)btSortedOverlappingPairCache();
+ }
+
+ struct btMultiSapOverlapFilterCallback : public btOverlapFilterCallback
+ {
+ virtual ~btMultiSapOverlapFilterCallback()
+ {}
+ // return true when pairs need collision
+ virtual bool needBroadphaseCollision(btBroadphaseProxy* childProxy0,btBroadphaseProxy* childProxy1) const
+ {
+ btBroadphaseProxy* multiProxy0 = (btBroadphaseProxy*)childProxy0->m_multiSapParentProxy;
+ btBroadphaseProxy* multiProxy1 = (btBroadphaseProxy*)childProxy1->m_multiSapParentProxy;
+
+ bool collides = (multiProxy0->m_collisionFilterGroup & multiProxy1->m_collisionFilterMask) != 0;
+ collides = collides && (multiProxy1->m_collisionFilterGroup & multiProxy0->m_collisionFilterMask);
+
+ return collides;
+ }
+ };
+
+ void* mem = btAlignedAlloc(sizeof(btMultiSapOverlapFilterCallback),16);
+ m_filterCallback = new (mem)btMultiSapOverlapFilterCallback();
+
+ m_overlappingPairs->setOverlapFilterCallback(m_filterCallback);
+// mem = btAlignedAlloc(sizeof(btSimpleBroadphase),16);
+// m_simpleBroadphase = new (mem) btSimpleBroadphase(maxProxies,m_overlappingPairs);
+}
+
+btMultiSapBroadphase::~btMultiSapBroadphase()
+{
+ if (m_ownsPairCache)
+ {
+ m_overlappingPairs->~btOverlappingPairCache();
+ btAlignedFree(m_overlappingPairs);
+ }
+}
+
+
+void btMultiSapBroadphase::buildTree(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax)
+{
+ m_optimizedAabbTree = new btQuantizedBvh();
+ m_optimizedAabbTree->setQuantizationValues(bvhAabbMin,bvhAabbMax);
+ QuantizedNodeArray& nodes = m_optimizedAabbTree->getLeafNodeArray();
+ for (int i=0;i<m_sapBroadphases.size();i++)
+ {
+ btQuantizedBvhNode node;
+ btVector3 aabbMin,aabbMax;
+ m_sapBroadphases[i]->getBroadphaseAabb(aabbMin,aabbMax);
+ m_optimizedAabbTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0);
+ m_optimizedAabbTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1);
+ int partId = 0;
+ node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | i;
+ nodes.push_back(node);
+ }
+ m_optimizedAabbTree->buildInternal();
+}
+
+btBroadphaseProxy* btMultiSapBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher,void* /*ignoreMe*/)
+{
+ //void* ignoreMe -> we could think of recursive multi-sap, if someone is interested
+
+ void* mem = btAlignedAlloc(sizeof(btMultiSapProxy),16);
+ btMultiSapProxy* proxy = new (mem)btMultiSapProxy(aabbMin, aabbMax,shapeType,userPtr, collisionFilterGroup,collisionFilterMask);
+ m_multiSapProxies.push_back(proxy);
+
+ ///this should deal with inserting/removal into child broadphases
+ setAabb(proxy,aabbMin,aabbMax,dispatcher);
+ return proxy;
+}
+
+void btMultiSapBroadphase::destroyProxy(btBroadphaseProxy* /*proxy*/,btDispatcher* /*dispatcher*/)
+{
+ ///not yet
+ btAssert(0);
+
+}
+
+
+void btMultiSapBroadphase::addToChildBroadphase(btMultiSapProxy* parentMultiSapProxy, btBroadphaseProxy* childProxy, btBroadphaseInterface* childBroadphase)
+{
+ void* mem = btAlignedAlloc(sizeof(btBridgeProxy),16);
+ btBridgeProxy* bridgeProxyRef = new(mem) btBridgeProxy;
+ bridgeProxyRef->m_childProxy = childProxy;
+ bridgeProxyRef->m_childBroadphase = childBroadphase;
+ parentMultiSapProxy->m_bridgeProxies.push_back(bridgeProxyRef);
+}
+
+
+bool boxIsContainedWithinBox(const btVector3& amin,const btVector3& amax,const btVector3& bmin,const btVector3& bmax);
+bool boxIsContainedWithinBox(const btVector3& amin,const btVector3& amax,const btVector3& bmin,const btVector3& bmax)
+{
+return
+amin.getX() >= bmin.getX() && amax.getX() <= bmax.getX() &&
+amin.getY() >= bmin.getY() && amax.getY() <= bmax.getY() &&
+amin.getZ() >= bmin.getZ() && amax.getZ() <= bmax.getZ();
+}
+
+
+
+
+
+
+//#include <stdio.h>
+
+void btMultiSapBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher)
+{
+ btMultiSapProxy* multiProxy = static_cast<btMultiSapProxy*>(proxy);
+ multiProxy->m_aabbMin = aabbMin;
+ multiProxy->m_aabbMax = aabbMax;
+
+
+// bool fullyContained = false;
+// bool alreadyInSimple = false;
+
+
+
+
+ struct MyNodeOverlapCallback : public btNodeOverlapCallback
+ {
+ btMultiSapBroadphase* m_multiSap;
+ btMultiSapProxy* m_multiProxy;
+ btDispatcher* m_dispatcher;
+
+ MyNodeOverlapCallback(btMultiSapBroadphase* multiSap,btMultiSapProxy* multiProxy,btDispatcher* dispatcher)
+ :m_multiSap(multiSap),
+ m_multiProxy(multiProxy),
+ m_dispatcher(dispatcher)
+ {
+
+ }
+
+ virtual void processNode(int /*nodeSubPart*/, int broadphaseIndex)
+ {
+ btBroadphaseInterface* childBroadphase = m_multiSap->getBroadphaseArray()[broadphaseIndex];
+
+ int containingBroadphaseIndex = -1;
+ //already found?
+ for (int i=0;i<m_multiProxy->m_bridgeProxies.size();i++)
+ {
+
+ if (m_multiProxy->m_bridgeProxies[i]->m_childBroadphase == childBroadphase)
+ {
+ containingBroadphaseIndex = i;
+ break;
+ }
+ }
+ if (containingBroadphaseIndex<0)
+ {
+ //add it
+ btBroadphaseProxy* childProxy = childBroadphase->createProxy(m_multiProxy->m_aabbMin,m_multiProxy->m_aabbMax,m_multiProxy->m_shapeType,m_multiProxy->m_clientObject,m_multiProxy->m_collisionFilterGroup,m_multiProxy->m_collisionFilterMask, m_dispatcher,m_multiProxy);
+ m_multiSap->addToChildBroadphase(m_multiProxy,childProxy,childBroadphase);
+
+ }
+ }
+ };
+
+ MyNodeOverlapCallback myNodeCallback(this,multiProxy,dispatcher);
+
+
+
+
+ m_optimizedAabbTree->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax);
+ int i;
+
+ for ( i=0;i<multiProxy->m_bridgeProxies.size();i++)
+ {
+ btVector3 worldAabbMin,worldAabbMax;
+ multiProxy->m_bridgeProxies[i]->m_childBroadphase->getBroadphaseAabb(worldAabbMin,worldAabbMax);
+ bool overlapsBroadphase = TestAabbAgainstAabb2(worldAabbMin,worldAabbMax,multiProxy->m_aabbMin,multiProxy->m_aabbMax);
+ if (!overlapsBroadphase)
+ {
+ //remove it now
+ btBridgeProxy* bridgeProxy = multiProxy->m_bridgeProxies[i];
+
+ btBroadphaseProxy* childProxy = bridgeProxy->m_childProxy;
+ bridgeProxy->m_childBroadphase->destroyProxy(childProxy,dispatcher);
+
+ multiProxy->m_bridgeProxies.swap( i,multiProxy->m_bridgeProxies.size()-1);
+ multiProxy->m_bridgeProxies.pop_back();
+
+ }
+ }
+
+
+ /*
+
+ if (1)
+ {
+
+ //find broadphase that contain this multiProxy
+ int numChildBroadphases = getBroadphaseArray().size();
+ for (int i=0;i<numChildBroadphases;i++)
+ {
+ btBroadphaseInterface* childBroadphase = getBroadphaseArray()[i];
+ btVector3 worldAabbMin,worldAabbMax;
+ childBroadphase->getBroadphaseAabb(worldAabbMin,worldAabbMax);
+ bool overlapsBroadphase = TestAabbAgainstAabb2(worldAabbMin,worldAabbMax,multiProxy->m_aabbMin,multiProxy->m_aabbMax);
+
+ // fullyContained = fullyContained || boxIsContainedWithinBox(worldAabbMin,worldAabbMax,multiProxy->m_aabbMin,multiProxy->m_aabbMax);
+ int containingBroadphaseIndex = -1;
+
+ //if already contains this
+
+ for (int i=0;i<multiProxy->m_bridgeProxies.size();i++)
+ {
+ if (multiProxy->m_bridgeProxies[i]->m_childBroadphase == childBroadphase)
+ {
+ containingBroadphaseIndex = i;
+ }
+ alreadyInSimple = alreadyInSimple || (multiProxy->m_bridgeProxies[i]->m_childBroadphase == m_simpleBroadphase);
+ }
+
+ if (overlapsBroadphase)
+ {
+ if (containingBroadphaseIndex<0)
+ {
+ btBroadphaseProxy* childProxy = childBroadphase->createProxy(aabbMin,aabbMax,multiProxy->m_shapeType,multiProxy->m_clientObject,multiProxy->m_collisionFilterGroup,multiProxy->m_collisionFilterMask, dispatcher);
+ childProxy->m_multiSapParentProxy = multiProxy;
+ addToChildBroadphase(multiProxy,childProxy,childBroadphase);
+ }
+ } else
+ {
+ if (containingBroadphaseIndex>=0)
+ {
+ //remove
+ btBridgeProxy* bridgeProxy = multiProxy->m_bridgeProxies[containingBroadphaseIndex];
+
+ btBroadphaseProxy* childProxy = bridgeProxy->m_childProxy;
+ bridgeProxy->m_childBroadphase->destroyProxy(childProxy,dispatcher);
+
+ multiProxy->m_bridgeProxies.swap( containingBroadphaseIndex,multiProxy->m_bridgeProxies.size()-1);
+ multiProxy->m_bridgeProxies.pop_back();
+ }
+ }
+ }
+
+
+ ///If we are in no other child broadphase, stick the proxy in the global 'simple' broadphase (brute force)
+ ///hopefully we don't end up with many entries here (can assert/provide feedback on stats)
+ if (0)//!multiProxy->m_bridgeProxies.size())
+ {
+ ///we don't pass the userPtr but our multisap proxy. We need to patch this, before processing an actual collision
+ ///this is needed to be able to calculate the aabb overlap
+ btBroadphaseProxy* childProxy = m_simpleBroadphase->createProxy(aabbMin,aabbMax,multiProxy->m_shapeType,multiProxy->m_clientObject,multiProxy->m_collisionFilterGroup,multiProxy->m_collisionFilterMask, dispatcher);
+ childProxy->m_multiSapParentProxy = multiProxy;
+ addToChildBroadphase(multiProxy,childProxy,m_simpleBroadphase);
+ }
+ }
+
+ if (!multiProxy->m_bridgeProxies.size())
+ {
+ ///we don't pass the userPtr but our multisap proxy. We need to patch this, before processing an actual collision
+ ///this is needed to be able to calculate the aabb overlap
+ btBroadphaseProxy* childProxy = m_simpleBroadphase->createProxy(aabbMin,aabbMax,multiProxy->m_shapeType,multiProxy->m_clientObject,multiProxy->m_collisionFilterGroup,multiProxy->m_collisionFilterMask, dispatcher);
+ childProxy->m_multiSapParentProxy = multiProxy;
+ addToChildBroadphase(multiProxy,childProxy,m_simpleBroadphase);
+ }
+*/
+
+
+ //update
+ for ( i=0;i<multiProxy->m_bridgeProxies.size();i++)
+ {
+ btBridgeProxy* bridgeProxyRef = multiProxy->m_bridgeProxies[i];
+ bridgeProxyRef->m_childBroadphase->setAabb(bridgeProxyRef->m_childProxy,aabbMin,aabbMax,dispatcher);
+ }
+
+}
+bool stopUpdating=false;
+
+
+
+class btMultiSapBroadphasePairSortPredicate
+{
+ public:
+
+ bool operator() ( const btBroadphasePair& a1, const btBroadphasePair& b1 )
+ {
+ btMultiSapBroadphase::btMultiSapProxy* aProxy0 = a1.m_pProxy0 ? (btMultiSapBroadphase::btMultiSapProxy*)a1.m_pProxy0->m_multiSapParentProxy : 0;
+ btMultiSapBroadphase::btMultiSapProxy* aProxy1 = a1.m_pProxy1 ? (btMultiSapBroadphase::btMultiSapProxy*)a1.m_pProxy1->m_multiSapParentProxy : 0;
+ btMultiSapBroadphase::btMultiSapProxy* bProxy0 = b1.m_pProxy0 ? (btMultiSapBroadphase::btMultiSapProxy*)b1.m_pProxy0->m_multiSapParentProxy : 0;
+ btMultiSapBroadphase::btMultiSapProxy* bProxy1 = b1.m_pProxy1 ? (btMultiSapBroadphase::btMultiSapProxy*)b1.m_pProxy1->m_multiSapParentProxy : 0;
+
+ return aProxy0 > bProxy0 ||
+ (aProxy0 == bProxy0 && aProxy1 > bProxy1) ||
+ (aProxy0 == bProxy0 && aProxy1 == bProxy1 && a1.m_algorithm > b1.m_algorithm);
+ }
+};
+
+
+ ///calculateOverlappingPairs is optional: incremental algorithms (sweep and prune) might do it during the set aabb
+void btMultiSapBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
+{
+
+// m_simpleBroadphase->calculateOverlappingPairs(dispatcher);
+
+ if (!stopUpdating && getOverlappingPairCache()->hasDeferredRemoval())
+ {
+
+ btBroadphasePairArray& overlappingPairArray = getOverlappingPairCache()->getOverlappingPairArray();
+
+ // quicksort(overlappingPairArray,0,overlappingPairArray.size());
+
+ overlappingPairArray.quickSort(btMultiSapBroadphasePairSortPredicate());
+
+ //perform a sort, to find duplicates and to sort 'invalid' pairs to the end
+ // overlappingPairArray.heapSort(btMultiSapBroadphasePairSortPredicate());
+
+ overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
+ m_invalidPair = 0;
+
+
+ int i;
+
+ btBroadphasePair previousPair;
+ previousPair.m_pProxy0 = 0;
+ previousPair.m_pProxy1 = 0;
+ previousPair.m_algorithm = 0;
+
+
+ for (i=0;i<overlappingPairArray.size();i++)
+ {
+
+ btBroadphasePair& pair = overlappingPairArray[i];
+
+ btMultiSapProxy* aProxy0 = pair.m_pProxy0 ? (btMultiSapProxy*)pair.m_pProxy0->m_multiSapParentProxy : 0;
+ btMultiSapProxy* aProxy1 = pair.m_pProxy1 ? (btMultiSapProxy*)pair.m_pProxy1->m_multiSapParentProxy : 0;
+ btMultiSapProxy* bProxy0 = previousPair.m_pProxy0 ? (btMultiSapProxy*)previousPair.m_pProxy0->m_multiSapParentProxy : 0;
+ btMultiSapProxy* bProxy1 = previousPair.m_pProxy1 ? (btMultiSapProxy*)previousPair.m_pProxy1->m_multiSapParentProxy : 0;
+
+ bool isDuplicate = (aProxy0 == bProxy0) && (aProxy1 == bProxy1);
+
+ previousPair = pair;
+
+ bool needsRemoval = false;
+
+ if (!isDuplicate)
+ {
+ bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
+
+ if (hasOverlap)
+ {
+ needsRemoval = false;//callback->processOverlap(pair);
+ } else
+ {
+ needsRemoval = true;
+ }
+ } else
+ {
+ //remove duplicate
+ needsRemoval = true;
+ //should have no algorithm
+ btAssert(!pair.m_algorithm);
+ }
+
+ if (needsRemoval)
+ {
+ getOverlappingPairCache()->cleanOverlappingPair(pair,dispatcher);
+
+ // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
+ // m_overlappingPairArray.pop_back();
+ pair.m_pProxy0 = 0;
+ pair.m_pProxy1 = 0;
+ m_invalidPair++;
+ gOverlappingPairs--;
+ }
+
+ }
+
+ ///if you don't like to skip the invalid pairs in the array, execute following code:
+ #define CLEAN_INVALID_PAIRS 1
+ #ifdef CLEAN_INVALID_PAIRS
+
+ //perform a sort, to sort 'invalid' pairs to the end
+ //overlappingPairArray.heapSort(btMultiSapBroadphasePairSortPredicate());
+ overlappingPairArray.quickSort(btMultiSapBroadphasePairSortPredicate());
+
+ overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
+ m_invalidPair = 0;
+ #endif//CLEAN_INVALID_PAIRS
+
+ //printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
+ }
+
+
+}
+
+
+bool btMultiSapBroadphase::testAabbOverlap(btBroadphaseProxy* childProxy0,btBroadphaseProxy* childProxy1)
+{
+ btMultiSapProxy* multiSapProxy0 = (btMultiSapProxy*)childProxy0->m_multiSapParentProxy;
+ btMultiSapProxy* multiSapProxy1 = (btMultiSapProxy*)childProxy1->m_multiSapParentProxy;
+
+ return TestAabbAgainstAabb2(multiSapProxy0->m_aabbMin,multiSapProxy0->m_aabbMax,
+ multiSapProxy1->m_aabbMin,multiSapProxy1->m_aabbMax);
+
+}
+
+
+void btMultiSapBroadphase::printStats()
+{
+/* printf("---------------------------------\n");
+
+ printf("btMultiSapBroadphase.h\n");
+ printf("numHandles = %d\n",m_multiSapProxies.size());
+ //find broadphase that contain this multiProxy
+ int numChildBroadphases = getBroadphaseArray().size();
+ for (int i=0;i<numChildBroadphases;i++)
+ {
+
+ btBroadphaseInterface* childBroadphase = getBroadphaseArray()[i];
+ childBroadphase->printStats();
+
+ }
+ */
+
+}
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.h
new file mode 100644
index 00000000000..a0c002de856
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btMultiSapBroadphase.h
@@ -0,0 +1,144 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+#ifndef BT_MULTI_SAP_BROADPHASE
+#define BT_MULTI_SAP_BROADPHASE
+
+#include "btBroadphaseInterface.h"
+#include "LinearMath/btAlignedObjectArray.h"
+#include "btOverlappingPairCache.h"
+
+
+class btBroadphaseInterface;
+class btSimpleBroadphase;
+
+
+typedef btAlignedObjectArray<btBroadphaseInterface*> btSapBroadphaseArray;
+
+///The btMultiSapBroadphase is a broadphase that contains multiple SAP broadphases.
+///The user can add SAP broadphases that cover the world. A btBroadphaseProxy can be in multiple child broadphases at the same time.
+///A btQuantizedBvh acceleration structures finds overlapping SAPs for each btBroadphaseProxy.
+///See http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=328
+///and http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1329
+class btMultiSapBroadphase :public btBroadphaseInterface
+{
+ btSapBroadphaseArray m_sapBroadphases;
+
+ btSimpleBroadphase* m_simpleBroadphase;
+
+ btOverlappingPairCache* m_overlappingPairs;
+
+ class btQuantizedBvh* m_optimizedAabbTree;
+
+
+ bool m_ownsPairCache;
+
+ btOverlapFilterCallback* m_filterCallback;
+
+ int m_invalidPair;
+
+ struct btBridgeProxy
+ {
+ btBroadphaseProxy* m_childProxy;
+ btBroadphaseInterface* m_childBroadphase;
+ };
+
+
+public:
+
+ struct btMultiSapProxy : public btBroadphaseProxy
+ {
+
+ ///array with all the entries that this proxy belongs to
+ btAlignedObjectArray<btBridgeProxy*> m_bridgeProxies;
+ btVector3 m_aabbMin;
+ btVector3 m_aabbMax;
+
+ int m_shapeType;
+
+/* void* m_userPtr;
+ short int m_collisionFilterGroup;
+ short int m_collisionFilterMask;
+*/
+ btMultiSapProxy(const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask)
+ :btBroadphaseProxy(userPtr,collisionFilterGroup,collisionFilterMask),
+ m_aabbMin(aabbMin),
+ m_aabbMax(aabbMax),
+ m_shapeType(shapeType)
+ {
+ m_multiSapParentProxy =this;
+ }
+
+
+ };
+
+protected:
+
+
+ btAlignedObjectArray<btMultiSapProxy*> m_multiSapProxies;
+
+public:
+
+ btMultiSapBroadphase(int maxProxies = 16384,btOverlappingPairCache* pairCache=0);
+
+
+ btSapBroadphaseArray& getBroadphaseArray()
+ {
+ return m_sapBroadphases;
+ }
+
+ const btSapBroadphaseArray& getBroadphaseArray() const
+ {
+ return m_sapBroadphases;
+ }
+
+ virtual ~btMultiSapBroadphase();
+
+ virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher,void* multiSapProxy);
+ virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+ virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher);
+
+ void addToChildBroadphase(btMultiSapProxy* parentMultiSapProxy, btBroadphaseProxy* childProxy, btBroadphaseInterface* childBroadphase);
+
+ ///calculateOverlappingPairs is optional: incremental algorithms (sweep and prune) might do it during the set aabb
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
+
+ bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+
+ virtual btOverlappingPairCache* getOverlappingPairCache()
+ {
+ return m_overlappingPairs;
+ }
+ virtual const btOverlappingPairCache* getOverlappingPairCache() const
+ {
+ return m_overlappingPairs;
+ }
+
+ ///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
+ ///will add some transform later
+ virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
+ {
+ aabbMin.setValue(-1e30f,-1e30f,-1e30f);
+ aabbMax.setValue(1e30f,1e30f,1e30f);
+ }
+
+ void buildTree(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax);
+
+ virtual void printStats();
+
+ void quicksort (btBroadphasePairArray& a, int lo, int hi);
+
+};
+
+#endif //BT_MULTI_SAP_BROADPHASE
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp
index 60f0a41a9d7..ff65cdde79f 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp
@@ -1,4 +1,3 @@
-
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
@@ -21,66 +20,415 @@ subject to the following restrictions:
#include "btDispatcher.h"
#include "btCollisionAlgorithm.h"
+#include <stdio.h>
+
int gOverlappingPairs = 0;
-btOverlappingPairCache::btOverlappingPairCache():
-m_blockedForChanges(false),
-m_overlapFilterCallback(0)
-//m_NumOverlapBroadphasePair(0)
+int gRemovePairs =0;
+int gAddedPairs =0;
+int gFindPairs =0;
+
+
+
+
+btHashedOverlappingPairCache::btHashedOverlappingPairCache():
+ m_overlapFilterCallback(0),
+ m_blockedForChanges(false)
{
+ int initialAllocatedSize= 2;
+ m_overlappingPairArray.reserve(initialAllocatedSize);
+ growTables();
}
-btOverlappingPairCache::~btOverlappingPairCache()
+
+
+btHashedOverlappingPairCache::~btHashedOverlappingPairCache()
{
//todo/test: show we erase/delete data, or is it automatic
}
-void btOverlappingPairCache::removeOverlappingPair(btBroadphasePair& findPair)
+
+void btHashedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher)
{
-
- int findIndex = m_overlappingPairArray.findLinearSearch(findPair);
- if (findIndex < m_overlappingPairArray.size())
+ if (pair.m_algorithm)
+ {
+ {
+ pair.m_algorithm->~btCollisionAlgorithm();
+ dispatcher->freeCollisionAlgorithm(pair.m_algorithm);
+ pair.m_algorithm=0;
+ }
+ }
+}
+
+
+
+
+void btHashedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+{
+
+ class CleanPairCallback : public btOverlapCallback
+ {
+ btBroadphaseProxy* m_cleanProxy;
+ btOverlappingPairCache* m_pairCache;
+ btDispatcher* m_dispatcher;
+
+ public:
+ CleanPairCallback(btBroadphaseProxy* cleanProxy,btOverlappingPairCache* pairCache,btDispatcher* dispatcher)
+ :m_cleanProxy(cleanProxy),
+ m_pairCache(pairCache),
+ m_dispatcher(dispatcher)
+ {
+ }
+ virtual bool processOverlap(btBroadphasePair& pair)
+ {
+ if ((pair.m_pProxy0 == m_cleanProxy) ||
+ (pair.m_pProxy1 == m_cleanProxy))
+ {
+ m_pairCache->cleanOverlappingPair(pair,m_dispatcher);
+ }
+ return false;
+ }
+
+ };
+
+ CleanPairCallback cleanPairs(proxy,this,dispatcher);
+
+ processAllOverlappingPairs(&cleanPairs,dispatcher);
+
+}
+
+
+
+
+void btHashedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+{
+
+ class RemovePairCallback : public btOverlapCallback
{
- gOverlappingPairs--;
- btBroadphasePair& pair = m_overlappingPairArray[findIndex];
- cleanOverlappingPair(pair);
+ btBroadphaseProxy* m_obsoleteProxy;
+
+ public:
+ RemovePairCallback(btBroadphaseProxy* obsoleteProxy)
+ :m_obsoleteProxy(obsoleteProxy)
+ {
+ }
+ virtual bool processOverlap(btBroadphasePair& pair)
+ {
+ return ((pair.m_pProxy0 == m_obsoleteProxy) ||
+ (pair.m_pProxy1 == m_obsoleteProxy));
+ }
- m_overlappingPairArray.swap(findIndex,m_overlappingPairArray.size()-1);
+ };
+
+
+ RemovePairCallback removeCallback(proxy);
+
+ processAllOverlappingPairs(&removeCallback,dispatcher);
+}
+
+
+
+
+
+btBroadphasePair* btHashedOverlappingPairCache::findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
+{
+ gFindPairs++;
+ if(proxy0>proxy1) btSwap(proxy0,proxy1);
+ int proxyId1 = proxy0->getUid();
+ int proxyId2 = proxy1->getUid();
+
+ /*if (proxyId1 > proxyId2)
+ btSwap(proxyId1, proxyId2);*/
+
+ int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1), static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1));
+
+ if (hash >= m_hashTable.size())
+ {
+ return NULL;
+ }
+
+ int index = m_hashTable[hash];
+ while (index != BT_NULL_PAIR && equalsPair(m_overlappingPairArray[index], proxyId1, proxyId2) == false)
+ {
+ index = m_next[index];
+ }
+
+ if (index == BT_NULL_PAIR)
+ {
+ return NULL;
+ }
+
+ btAssert(index < m_overlappingPairArray.size());
+
+ return &m_overlappingPairArray[index];
+}
+
+//#include <stdio.h>
+
+void btHashedOverlappingPairCache::growTables()
+{
+
+ int newCapacity = m_overlappingPairArray.capacity();
+
+ if (m_hashTable.size() < newCapacity)
+ {
+ //grow hashtable and next table
+ int curHashtableSize = m_hashTable.size();
+
+ m_hashTable.resize(newCapacity);
+ m_next.resize(newCapacity);
+
+
+ int i;
+
+ for (i= 0; i < newCapacity; ++i)
+ {
+ m_hashTable[i] = BT_NULL_PAIR;
+ }
+ for (i = 0; i < newCapacity; ++i)
+ {
+ m_next[i] = BT_NULL_PAIR;
+ }
+
+ for(i=0;i<curHashtableSize;i++)
+ {
+
+ const btBroadphasePair& pair = m_overlappingPairArray[i];
+ int proxyId1 = pair.m_pProxy0->getUid();
+ int proxyId2 = pair.m_pProxy1->getUid();
+ /*if (proxyId1 > proxyId2)
+ btSwap(proxyId1, proxyId2);*/
+ int hashValue = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
+ m_next[i] = m_hashTable[hashValue];
+ m_hashTable[hashValue] = i;
+ }
+
+
+ }
+}
+
+btBroadphasePair* btHashedOverlappingPairCache::internalAddPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
+{
+ if(proxy0>proxy1) btSwap(proxy0,proxy1);
+ int proxyId1 = proxy0->getUid();
+ int proxyId2 = proxy1->getUid();
+
+ /*if (proxyId1 > proxyId2)
+ btSwap(proxyId1, proxyId2);*/
+
+ int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
+
+
+ btBroadphasePair* pair = internalFindPair(proxy0, proxy1, hash);
+ if (pair != NULL)
+ {
+ return pair;
+ }
+ /*for(int i=0;i<m_overlappingPairArray.size();++i)
+ {
+ if( (m_overlappingPairArray[i].m_pProxy0==proxy0)&&
+ (m_overlappingPairArray[i].m_pProxy1==proxy1))
+ {
+ printf("Adding duplicated %u<>%u\r\n",proxyId1,proxyId2);
+ internalFindPair(proxy0, proxy1, hash);
+ }
+ }*/
+ int count = m_overlappingPairArray.size();
+ int oldCapacity = m_overlappingPairArray.capacity();
+ void* mem = &m_overlappingPairArray.expand();
+ int newCapacity = m_overlappingPairArray.capacity();
+
+ if (oldCapacity < newCapacity)
+ {
+ growTables();
+ //hash with new capacity
+ hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1));
+ }
+
+ pair = new (mem) btBroadphasePair(*proxy0,*proxy1);
+// pair->m_pProxy0 = proxy0;
+// pair->m_pProxy1 = proxy1;
+ pair->m_algorithm = 0;
+ pair->m_userInfo = 0;
+
+
+ m_next[count] = m_hashTable[hash];
+ m_hashTable[hash] = count;
+
+ return pair;
+}
+
+
+
+void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1,btDispatcher* dispatcher)
+{
+ gRemovePairs++;
+ if(proxy0>proxy1) btSwap(proxy0,proxy1);
+ int proxyId1 = proxy0->getUid();
+ int proxyId2 = proxy1->getUid();
+
+ /*if (proxyId1 > proxyId2)
+ btSwap(proxyId1, proxyId2);*/
+
+ int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1));
+
+ btBroadphasePair* pair = internalFindPair(proxy0, proxy1, hash);
+ if (pair == NULL)
+ {
+ return 0;
+ }
+
+ cleanOverlappingPair(*pair,dispatcher);
+
+ void* userData = pair->m_userInfo;
+
+ btAssert(pair->m_pProxy0->getUid() == proxyId1);
+ btAssert(pair->m_pProxy1->getUid() == proxyId2);
+
+ int pairIndex = int(pair - &m_overlappingPairArray[0]);
+ btAssert(pairIndex < m_overlappingPairArray.size());
+
+ // Remove the pair from the hash table.
+ int index = m_hashTable[hash];
+ btAssert(index != BT_NULL_PAIR);
+
+ int previous = BT_NULL_PAIR;
+ while (index != pairIndex)
+ {
+ previous = index;
+ index = m_next[index];
+ }
+
+ if (previous != BT_NULL_PAIR)
+ {
+ btAssert(m_next[previous] == pairIndex);
+ m_next[previous] = m_next[pairIndex];
+ }
+ else
+ {
+ m_hashTable[hash] = m_next[pairIndex];
+ }
+
+ // We now move the last pair into spot of the
+ // pair being removed. We need to fix the hash
+ // table indices to support the move.
+
+ int lastPairIndex = m_overlappingPairArray.size() - 1;
+
+ // If the removed pair is the last pair, we are done.
+ if (lastPairIndex == pairIndex)
+ {
m_overlappingPairArray.pop_back();
+ return userData;
+ }
+
+ // Remove the last pair from the hash table.
+ const btBroadphasePair* last = &m_overlappingPairArray[lastPairIndex];
+ /* missing swap here too, Nat. */
+ int lastHash = static_cast<int>(getHash(static_cast<unsigned int>(last->m_pProxy0->getUid()), static_cast<unsigned int>(last->m_pProxy1->getUid())) & (m_overlappingPairArray.capacity()-1));
+
+ index = m_hashTable[lastHash];
+ btAssert(index != BT_NULL_PAIR);
+
+ previous = BT_NULL_PAIR;
+ while (index != lastPairIndex)
+ {
+ previous = index;
+ index = m_next[index];
+ }
+
+ if (previous != BT_NULL_PAIR)
+ {
+ btAssert(m_next[previous] == lastPairIndex);
+ m_next[previous] = m_next[lastPairIndex];
+ }
+ else
+ {
+ m_hashTable[lastHash] = m_next[lastPairIndex];
+ }
+
+ // Copy the last pair into the remove pair's spot.
+ m_overlappingPairArray[pairIndex] = m_overlappingPairArray[lastPairIndex];
+
+ // Insert the last pair into the hash table
+ m_next[pairIndex] = m_hashTable[lastHash];
+ m_hashTable[lastHash] = pairIndex;
+
+ m_overlappingPairArray.pop_back();
+
+ return userData;
+}
+//#include <stdio.h>
+
+void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher)
+{
+
+ int i;
+
+// printf("m_overlappingPairArray.size()=%d\n",m_overlappingPairArray.size());
+ for (i=0;i<m_overlappingPairArray.size();)
+ {
+
+ btBroadphasePair* pair = &m_overlappingPairArray[i];
+ if (callback->processOverlap(*pair))
+ {
+ removeOverlappingPair(pair->m_pProxy0,pair->m_pProxy1,dispatcher);
+
+ gOverlappingPairs--;
+ } else
+ {
+ i++;
+ }
}
}
-void btOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair)
+
+void* btSortedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1, btDispatcher* dispatcher )
{
- if (pair.m_algorithm)
+ if (!hasDeferredRemoval())
{
+ btBroadphasePair findPair(*proxy0,*proxy1);
+
+ int findIndex = m_overlappingPairArray.findLinearSearch(findPair);
+ if (findIndex < m_overlappingPairArray.size())
{
- delete pair.m_algorithm;;
- pair.m_algorithm=0;
+ gOverlappingPairs--;
+ btBroadphasePair& pair = m_overlappingPairArray[findIndex];
+ void* userData = pair.m_userInfo;
+ cleanOverlappingPair(pair,dispatcher);
+
+ m_overlappingPairArray.swap(findIndex,m_overlappingPairArray.capacity()-1);
+ m_overlappingPairArray.pop_back();
+ return userData;
}
}
+
+ return 0;
}
-void btOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+
+
+
+btBroadphasePair* btSortedOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
//don't add overlap with own
assert(proxy0 != proxy1);
if (!needsBroadphaseCollision(proxy0,proxy1))
- return;
-
-
- btBroadphasePair pair(*proxy0,*proxy1);
+ return 0;
- m_overlappingPairArray.push_back(pair);
+ void* mem = &m_overlappingPairArray.expand();
+ btBroadphasePair* pair = new (mem) btBroadphasePair(*proxy0,*proxy1);
gOverlappingPairs++;
+ gAddedPairs++;
+ return pair;
}
@@ -88,7 +436,7 @@ void btOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0,btBroa
///use a different solution. It is mainly used for Removing overlapping pairs. Removal could be delayed.
///we could keep a linked list in each proxy, and store pair in one of the proxies (with lowest memory address)
///Also we can use a 2D bitmap, which can be useful for a future GPU implementation
- btBroadphasePair* btOverlappingPairCache::findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+ btBroadphasePair* btSortedOverlappingPairCache::findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
if (!needsBroadphaseCollision(proxy0,proxy1))
return 0;
@@ -109,18 +457,81 @@ void btOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0,btBroa
-void btOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy)
+
+
+
+
+
+//#include <stdio.h>
+
+void btSortedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher)
+{
+
+ int i;
+
+ for (i=0;i<m_overlappingPairArray.size();)
+ {
+
+ btBroadphasePair* pair = &m_overlappingPairArray[i];
+ if (callback->processOverlap(*pair))
+ {
+ cleanOverlappingPair(*pair,dispatcher);
+
+ m_overlappingPairArray.swap(i,m_overlappingPairArray.capacity()-1);
+ m_overlappingPairArray.pop_back();
+ gOverlappingPairs--;
+ } else
+ {
+ i++;
+ }
+ }
+}
+
+
+
+
+btSortedOverlappingPairCache::btSortedOverlappingPairCache():
+ m_blockedForChanges(false),
+ m_hasDeferredRemoval(true),
+ m_overlapFilterCallback(0)
+{
+ int initialAllocatedSize= 2;
+ m_overlappingPairArray.reserve(initialAllocatedSize);
+}
+
+btSortedOverlappingPairCache::~btSortedOverlappingPairCache()
+{
+ //todo/test: show we erase/delete data, or is it automatic
+}
+
+void btSortedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher)
+{
+ if (pair.m_algorithm)
+ {
+ {
+ pair.m_algorithm->~btCollisionAlgorithm();
+ dispatcher->freeCollisionAlgorithm(pair.m_algorithm);
+ pair.m_algorithm=0;
+ gRemovePairs--;
+ }
+ }
+}
+
+
+void btSortedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
class CleanPairCallback : public btOverlapCallback
{
btBroadphaseProxy* m_cleanProxy;
btOverlappingPairCache* m_pairCache;
+ btDispatcher* m_dispatcher;
public:
- CleanPairCallback(btBroadphaseProxy* cleanProxy,btOverlappingPairCache* pairCache)
+ CleanPairCallback(btBroadphaseProxy* cleanProxy,btOverlappingPairCache* pairCache,btDispatcher* dispatcher)
:m_cleanProxy(cleanProxy),
- m_pairCache(pairCache)
+ m_pairCache(pairCache),
+ m_dispatcher(dispatcher)
{
}
virtual bool processOverlap(btBroadphasePair& pair)
@@ -128,22 +539,21 @@ void btOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy)
if ((pair.m_pProxy0 == m_cleanProxy) ||
(pair.m_pProxy1 == m_cleanProxy))
{
- m_pairCache->cleanOverlappingPair(pair);
+ m_pairCache->cleanOverlappingPair(pair,m_dispatcher);
}
return false;
}
};
- CleanPairCallback cleanPairs(proxy,this);
+ CleanPairCallback cleanPairs(proxy,this,dispatcher);
- processAllOverlappingPairs(&cleanPairs);
+ processAllOverlappingPairs(&cleanPairs,dispatcher);
}
-
-void btOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy)
+void btSortedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
class RemovePairCallback : public btOverlapCallback
@@ -163,34 +573,7 @@ void btOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseP
};
-
RemovePairCallback removeCallback(proxy);
- processAllOverlappingPairs(&removeCallback);
-}
-
-
-
-void btOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback)
-{
-
- int i;
-
- for (i=0;i<m_overlappingPairArray.size();)
- {
-
- btBroadphasePair* pair = &m_overlappingPairArray[i];
- if (callback->processOverlap(*pair))
- {
- cleanOverlappingPair(*pair);
-
- m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
- m_overlappingPairArray.pop_back();
- gOverlappingPairs--;
- } else
- {
- i++;
- }
- }
+ processAllOverlappingPairs(&removeCallback,dispatcher);
}
-
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h
index a81fe3264df..66679bd218a 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h
@@ -1,4 +1,3 @@
-
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
@@ -20,9 +19,13 @@ subject to the following restrictions:
#include "btBroadphaseInterface.h"
#include "btBroadphaseProxy.h"
-#include "../../LinearMath/btPoint3.h"
-#include "../../LinearMath/btAlignedObjectArray.h"
+#include "btOverlappingPairCallback.h"
+
+#include "LinearMath/btPoint3.h"
+#include "LinearMath/btAlignedObjectArray.h"
+class btDispatcher;
+typedef btAlignedObjectArray<btBroadphasePair> btBroadphasePairArray;
struct btOverlapCallback
{
@@ -30,6 +33,7 @@ struct btOverlapCallback
{}
//return true for deletion of the pair
virtual bool processOverlap(btBroadphasePair& pair) = 0;
+
};
struct btOverlapFilterCallback
@@ -40,38 +44,261 @@ struct btOverlapFilterCallback
virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const = 0;
};
-///btOverlappingPairCache maintains the objects with overlapping AABB
+
+
+
+
+
+
+extern int gRemovePairs;
+extern int gAddedPairs;
+extern int gFindPairs;
+
+const int BT_NULL_PAIR=0xffffffff;
+
+///The btOverlappingPairCache provides an interface for overlapping pair management (add, remove, storage), used by the btBroadphaseInterface broadphases.
+///The btHashedOverlappingPairCache and btSortedOverlappingPairCache classes are two implementations.
+class btOverlappingPairCache : public btOverlappingPairCallback
+{
+public:
+ virtual ~btOverlappingPairCache() {} // this is needed so we can get to the derived class destructor
+
+ virtual btBroadphasePair* getOverlappingPairArrayPtr() = 0;
+
+ virtual const btBroadphasePair* getOverlappingPairArrayPtr() const = 0;
+
+ virtual btBroadphasePairArray& getOverlappingPairArray() = 0;
+
+ virtual void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher) = 0;
+
+ virtual int getNumOverlappingPairs() const = 0;
+
+ virtual void cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher) = 0;
+
+ virtual void setOverlapFilterCallback(btOverlapFilterCallback* callback) = 0;
+
+ virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher) = 0;
+
+ virtual btBroadphasePair* findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) = 0;
+
+ virtual bool hasDeferredRemoval() = 0;
+
+};
+
+/// Hash-space based Pair Cache, thanks to Erin Catto, Box2D, http://www.box2d.org, and Pierre Terdiman, Codercorner, http://codercorner.com
+class btHashedOverlappingPairCache : public btOverlappingPairCache
+{
+ btBroadphasePairArray m_overlappingPairArray;
+ btOverlapFilterCallback* m_overlapFilterCallback;
+ bool m_blockedForChanges;
+
+
+public:
+ btHashedOverlappingPairCache();
+ virtual ~btHashedOverlappingPairCache();
+
+
+ void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+
+ virtual void* removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher);
+
+ SIMD_FORCE_INLINE bool needsBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const
+ {
+ if (m_overlapFilterCallback)
+ return m_overlapFilterCallback->needBroadphaseCollision(proxy0,proxy1);
+
+ bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
+ collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
+
+ return collides;
+ }
+
+ // Add a pair and return the new pair. If the pair already exists,
+ // no new pair is created and the old one is returned.
+ virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+ {
+ gAddedPairs++;
+
+ if (!needsBroadphaseCollision(proxy0,proxy1))
+ return 0;
+
+ return internalAddPair(proxy0,proxy1);
+ }
+
+
+
+ void cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+
+
+ virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher);
+
+ virtual btBroadphasePair* getOverlappingPairArrayPtr()
+ {
+ return &m_overlappingPairArray[0];
+ }
+
+ const btBroadphasePair* getOverlappingPairArrayPtr() const
+ {
+ return &m_overlappingPairArray[0];
+ }
+
+ btBroadphasePairArray& getOverlappingPairArray()
+ {
+ return m_overlappingPairArray;
+ }
+
+ const btBroadphasePairArray& getOverlappingPairArray() const
+ {
+ return m_overlappingPairArray;
+ }
+
+ void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher);
+
+
+
+ btBroadphasePair* findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
+
+ int GetCount() const { return m_overlappingPairArray.size(); }
+// btBroadphasePair* GetPairs() { return m_pairs; }
+
+ btOverlapFilterCallback* getOverlapFilterCallback()
+ {
+ return m_overlapFilterCallback;
+ }
+
+ void setOverlapFilterCallback(btOverlapFilterCallback* callback)
+ {
+ m_overlapFilterCallback = callback;
+ }
+
+ int getNumOverlappingPairs() const
+ {
+ return m_overlappingPairArray.size();
+ }
+private:
+
+ btBroadphasePair* internalAddPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+
+ void growTables();
+
+ SIMD_FORCE_INLINE bool equalsPair(const btBroadphasePair& pair, int proxyId1, int proxyId2)
+ {
+ return pair.m_pProxy0->getUid() == proxyId1 && pair.m_pProxy1->getUid() == proxyId2;
+ }
+
+ /*
+ // Thomas Wang's hash, see: http://www.concentric.net/~Ttwang/tech/inthash.htm
+ // This assumes proxyId1 and proxyId2 are 16-bit.
+ SIMD_FORCE_INLINE int getHash(int proxyId1, int proxyId2)
+ {
+ int key = (proxyId2 << 16) | proxyId1;
+ key = ~key + (key << 15);
+ key = key ^ (key >> 12);
+ key = key + (key << 2);
+ key = key ^ (key >> 4);
+ key = key * 2057;
+ key = key ^ (key >> 16);
+ return key;
+ }
+ */
+
+
+
+ SIMD_FORCE_INLINE unsigned int getHash(unsigned int proxyId1, unsigned int proxyId2)
+ {
+ int key = static_cast<int>(((unsigned int)proxyId1) | (((unsigned int)proxyId2) <<16));
+ // Thomas Wang's hash
+
+ key += ~(key << 15);
+ key ^= (key >> 10);
+ key += (key << 3);
+ key ^= (key >> 6);
+ key += ~(key << 11);
+ key ^= (key >> 16);
+ return static_cast<unsigned int>(key);
+ }
+
+
+
+
+
+ SIMD_FORCE_INLINE btBroadphasePair* internalFindPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, int hash)
+ {
+ int proxyId1 = proxy0->getUid();
+ int proxyId2 = proxy1->getUid();
+ #if 0 // wrong, 'equalsPair' use unsorted uids, copy-past devil striked again. Nat.
+ if (proxyId1 > proxyId2)
+ btSwap(proxyId1, proxyId2);
+ #endif
+
+ int index = m_hashTable[hash];
+
+ while( index != BT_NULL_PAIR && equalsPair(m_overlappingPairArray[index], proxyId1, proxyId2) == false)
+ {
+ index = m_next[index];
+ }
+
+ if ( index == BT_NULL_PAIR )
+ {
+ return NULL;
+ }
+
+ btAssert(index < m_overlappingPairArray.size());
+
+ return &m_overlappingPairArray[index];
+ }
+
+ virtual bool hasDeferredRemoval()
+ {
+ return false;
+ }
+
+public:
+
+ btAlignedObjectArray<int> m_hashTable;
+ btAlignedObjectArray<int> m_next;
+
+};
+
+
+
+
+///btSortedOverlappingPairCache maintains the objects with overlapping AABB
///Typically managed by the Broadphase, Axis3Sweep or btSimpleBroadphase
-class btOverlappingPairCache : public btBroadphaseInterface
+class btSortedOverlappingPairCache : public btOverlappingPairCache
{
protected:
//avoid brute-force finding all the time
- btAlignedObjectArray<btBroadphasePair> m_overlappingPairArray;
-
+ btBroadphasePairArray m_overlappingPairArray;
+
//during the dispatch, check that user doesn't destroy/create proxy
bool m_blockedForChanges;
+
+ ///by default, do the removal during the pair traversal
+ bool m_hasDeferredRemoval;
//if set, use the callback instead of the built in filter in needBroadphaseCollision
btOverlapFilterCallback* m_overlapFilterCallback;
+
public:
- btOverlappingPairCache();
- virtual ~btOverlappingPairCache();
+ btSortedOverlappingPairCache();
+ virtual ~btSortedOverlappingPairCache();
- virtual void processAllOverlappingPairs(btOverlapCallback*);
+ virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher);
- void removeOverlappingPair(btBroadphasePair& pair);
+ void* removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher);
- void cleanOverlappingPair(btBroadphasePair& pair);
+ void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher);
- void addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+ btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
btBroadphasePair* findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
- void cleanProxyFromPairs(btBroadphaseProxy* proxy);
+ void cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
- void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy);
+ void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
inline bool needsBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const
@@ -84,10 +311,19 @@ class btOverlappingPairCache : public btBroadphaseInterface
return collides;
}
-
+
+ btBroadphasePairArray& getOverlappingPairArray()
+ {
+ return m_overlappingPairArray;
+ }
+
+ const btBroadphasePairArray& getOverlappingPairArray() const
+ {
+ return m_overlappingPairArray;
+ }
+
- virtual void refreshOverlappingPairs() =0;
btBroadphasePair* getOverlappingPairArrayPtr()
{
@@ -114,7 +350,88 @@ class btOverlappingPairCache : public btBroadphaseInterface
m_overlapFilterCallback = callback;
}
+ virtual bool hasDeferredRemoval()
+ {
+ return m_hasDeferredRemoval;
+ }
+
+
+};
+
+
+
+///btNullPairCache skips add/removal of overlapping pairs. Userful for benchmarking and testing.
+class btNullPairCache : public btOverlappingPairCache
+{
+
+ btBroadphasePairArray m_overlappingPairArray;
+
+public:
+
+ virtual btBroadphasePair* getOverlappingPairArrayPtr()
+ {
+ return &m_overlappingPairArray[0];
+ }
+ const btBroadphasePair* getOverlappingPairArrayPtr() const
+ {
+ return &m_overlappingPairArray[0];
+ }
+ btBroadphasePairArray& getOverlappingPairArray()
+ {
+ return m_overlappingPairArray;
+ }
+
+ virtual void cleanOverlappingPair(btBroadphasePair& /*pair*/,btDispatcher* /*dispatcher*/)
+ {
+
+ }
+
+ virtual int getNumOverlappingPairs() const
+ {
+ return 0;
+ }
+
+ virtual void cleanProxyFromPairs(btBroadphaseProxy* /*proxy*/,btDispatcher* /*dispatcher*/)
+ {
+
+ }
+
+ virtual void setOverlapFilterCallback(btOverlapFilterCallback* /*callback*/)
+ {
+ }
+
+ virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* /*dispatcher*/)
+ {
+ }
+
+ virtual btBroadphasePair* findPair(btBroadphaseProxy* /*proxy0*/, btBroadphaseProxy* /*proxy1*/)
+ {
+ return 0;
+ }
+
+ virtual bool hasDeferredRemoval()
+ {
+ return true;
+ }
+
+ virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* /*proxy0*/,btBroadphaseProxy* /*proxy1*/)
+ {
+ return 0;
+ }
+
+ virtual void* removeOverlappingPair(btBroadphaseProxy* /*proxy0*/,btBroadphaseProxy* /*proxy1*/,btDispatcher* /*dispatcher*/)
+ {
+ return 0;
+ }
+
+ virtual void removeOverlappingPairsContainingProxy(btBroadphaseProxy* /*proxy0*/,btDispatcher* /*dispatcher*/)
+ {
+ }
+
+
};
+
+
#endif //OVERLAPPING_PAIR_CACHE_H
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h
new file mode 100644
index 00000000000..9c7b6f81367
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h
@@ -0,0 +1,40 @@
+
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef OVERLAPPING_PAIR_CALLBACK_H
+#define OVERLAPPING_PAIR_CALLBACK_H
+
+class btDispatcher;
+struct btBroadphasePair;
+
+///The btOverlappingPairCallback class is an additional optional broadphase user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache.
+class btOverlappingPairCallback
+{
+public:
+ virtual ~btOverlappingPairCallback()
+ {
+
+ }
+
+ virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) = 0;
+
+ virtual void* removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher) = 0;
+
+ virtual void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy0,btDispatcher* dispatcher) = 0;
+
+};
+
+#endif //OVERLAPPING_PAIR_CALLBACK_H
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp
new file mode 100644
index 00000000000..a30bd1fd9e1
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp
@@ -0,0 +1,1025 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btQuantizedBvh.h"
+
+#include "LinearMath/btAabbUtil2.h"
+#include "LinearMath/btIDebugDraw.h"
+
+
+btQuantizedBvh::btQuantizedBvh() : m_useQuantization(false),
+ //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY)
+ m_traversalMode(TRAVERSAL_STACKLESS)
+ //m_traversalMode(TRAVERSAL_RECURSIVE)
+ ,m_subtreeHeaderCount(0) //PCK: add this line
+{
+
+}
+
+
+
+
+
+void btQuantizedBvh::buildInternal()
+{
+ ///assumes that caller filled in the m_quantizedLeafNodes
+ m_useQuantization = true;
+ int numLeafNodes = 0;
+
+ if (m_useQuantization)
+ {
+ //now we have an array of leafnodes in m_leafNodes
+ numLeafNodes = m_quantizedLeafNodes.size();
+
+ m_quantizedContiguousNodes.resize(2*numLeafNodes);
+
+ }
+
+ m_curNodeIndex = 0;
+
+ buildTree(0,numLeafNodes);
+
+ ///if the entire tree is small then subtree size, we need to create a header info for the tree
+ if(m_useQuantization && !m_SubtreeHeaders.size())
+ {
+ btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
+ subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
+ subtree.m_rootNodeIndex = 0;
+ subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
+ }
+
+ //PCK: update the copy of the size
+ m_subtreeHeaderCount = m_SubtreeHeaders.size();
+
+ //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary
+ m_quantizedLeafNodes.clear();
+ m_leafNodes.clear();
+}
+
+
+
+///just for debugging, to visualize the individual patches/subtrees
+#ifdef DEBUG_PATCH_COLORS
+btVector3 color[4]=
+{
+ btVector3(255,0,0),
+ btVector3(0,255,0),
+ btVector3(0,0,255),
+ btVector3(0,255,255)
+};
+#endif //DEBUG_PATCH_COLORS
+
+
+
+void btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin)
+{
+ //enlarge the AABB to avoid division by zero when initializing the quantization values
+ btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin);
+ m_bvhAabbMin = bvhAabbMin - clampValue;
+ m_bvhAabbMax = bvhAabbMax + clampValue;
+ btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin;
+ m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize;
+ m_useQuantization = true;
+}
+
+
+
+
+btQuantizedBvh::~btQuantizedBvh()
+{
+}
+
+#ifdef DEBUG_TREE_BUILDING
+int gStackDepth = 0;
+int gMaxStackDepth = 0;
+#endif //DEBUG_TREE_BUILDING
+
+void btQuantizedBvh::buildTree (int startIndex,int endIndex)
+{
+#ifdef DEBUG_TREE_BUILDING
+ gStackDepth++;
+ if (gStackDepth > gMaxStackDepth)
+ gMaxStackDepth = gStackDepth;
+#endif //DEBUG_TREE_BUILDING
+
+
+ int splitAxis, splitIndex, i;
+ int numIndices =endIndex-startIndex;
+ int curIndex = m_curNodeIndex;
+
+ assert(numIndices>0);
+
+ if (numIndices==1)
+ {
+#ifdef DEBUG_TREE_BUILDING
+ gStackDepth--;
+#endif //DEBUG_TREE_BUILDING
+
+ assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex);
+
+ m_curNodeIndex++;
+ return;
+ }
+ //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.
+
+ splitAxis = calcSplittingAxis(startIndex,endIndex);
+
+ splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis);
+
+ int internalNodeIndex = m_curNodeIndex;
+
+ setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);
+ setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);
+
+ for (i=startIndex;i<endIndex;i++)
+ {
+ mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i));
+ }
+
+ m_curNodeIndex++;
+
+
+ //internalNode->m_escapeIndex;
+
+ int leftChildNodexIndex = m_curNodeIndex;
+
+ //build left child tree
+ buildTree(startIndex,splitIndex);
+
+ int rightChildNodexIndex = m_curNodeIndex;
+ //build right child tree
+ buildTree(splitIndex,endIndex);
+
+#ifdef DEBUG_TREE_BUILDING
+ gStackDepth--;
+#endif //DEBUG_TREE_BUILDING
+
+ int escapeIndex = m_curNodeIndex - curIndex;
+
+ if (m_useQuantization)
+ {
+ //escapeIndex is the number of nodes of this subtree
+ const int sizeQuantizedNode =sizeof(btQuantizedBvhNode);
+ const int treeSizeInBytes = escapeIndex * sizeQuantizedNode;
+ if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES)
+ {
+ updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex);
+ }
+ }
+
+ setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex);
+
+}
+
+void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex)
+{
+ btAssert(m_useQuantization);
+
+ btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex];
+ int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex();
+ int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode));
+
+ btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex];
+ int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex();
+ int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode));
+
+ if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
+ {
+ btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
+ subtree.setAabbFromQuantizeNode(leftChildNode);
+ subtree.m_rootNodeIndex = leftChildNodexIndex;
+ subtree.m_subtreeSize = leftSubTreeSize;
+ }
+
+ if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
+ {
+ btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
+ subtree.setAabbFromQuantizeNode(rightChildNode);
+ subtree.m_rootNodeIndex = rightChildNodexIndex;
+ subtree.m_subtreeSize = rightSubTreeSize;
+ }
+
+ //PCK: update the copy of the size
+ m_subtreeHeaderCount = m_SubtreeHeaders.size();
+}
+
+
+int btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis)
+{
+ int i;
+ int splitIndex =startIndex;
+ int numIndices = endIndex - startIndex;
+ btScalar splitValue;
+
+ btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
+ for (i=startIndex;i<endIndex;i++)
+ {
+ btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
+ means+=center;
+ }
+ means *= (btScalar(1.)/(btScalar)numIndices);
+
+ splitValue = means[splitAxis];
+
+ //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
+ for (i=startIndex;i<endIndex;i++)
+ {
+ btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
+ if (center[splitAxis] > splitValue)
+ {
+ //swap
+ swapLeafNodes(i,splitIndex);
+ splitIndex++;
+ }
+ }
+
+ //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex
+ //otherwise the tree-building might fail due to stack-overflows in certain cases.
+ //unbalanced1 is unsafe: it can cause stack overflows
+ //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));
+
+ //unbalanced2 should work too: always use center (perfect balanced trees)
+ //bool unbalanced2 = true;
+
+ //this should be safe too:
+ int rangeBalancedIndices = numIndices/3;
+ bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));
+
+ if (unbalanced)
+ {
+ splitIndex = startIndex+ (numIndices>>1);
+ }
+
+ bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex));
+ (void)unbal;
+ btAssert(!unbal);
+
+ return splitIndex;
+}
+
+
+int btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex)
+{
+ int i;
+
+ btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
+ btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
+ int numIndices = endIndex-startIndex;
+
+ for (i=startIndex;i<endIndex;i++)
+ {
+ btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
+ means+=center;
+ }
+ means *= (btScalar(1.)/(btScalar)numIndices);
+
+ for (i=startIndex;i<endIndex;i++)
+ {
+ btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
+ btVector3 diff2 = center-means;
+ diff2 = diff2 * diff2;
+ variance += diff2;
+ }
+ variance *= (btScalar(1.)/ ((btScalar)numIndices-1) );
+
+ return variance.maxAxis();
+}
+
+
+
+void btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
+{
+ //either choose recursive traversal (walkTree) or stackless (walkStacklessTree)
+
+ if (m_useQuantization)
+ {
+ ///quantize query AABB
+ unsigned short int quantizedQueryAabbMin[3];
+ unsigned short int quantizedQueryAabbMax[3];
+ quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0);
+ quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1);
+
+ switch (m_traversalMode)
+ {
+ case TRAVERSAL_STACKLESS:
+ walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex);
+ break;
+ case TRAVERSAL_STACKLESS_CACHE_FRIENDLY:
+ walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
+ break;
+ case TRAVERSAL_RECURSIVE:
+ {
+ const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0];
+ walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
+ }
+ break;
+ default:
+ //unsupported
+ btAssert(0);
+ }
+ } else
+ {
+ walkStacklessTree(nodeCallback,aabbMin,aabbMax);
+ }
+}
+
+
+int maxIterations = 0;
+
+void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
+{
+ btAssert(!m_useQuantization);
+
+ const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0];
+ int escapeIndex, curIndex = 0;
+ int walkIterations = 0;
+ bool isLeafNode;
+ //PCK: unsigned instead of bool
+ unsigned aabbOverlap;
+
+ while (curIndex < m_curNodeIndex)
+ {
+ //catch bugs in tree data
+ assert (walkIterations < m_curNodeIndex);
+
+ walkIterations++;
+ aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg);
+ isLeafNode = rootNode->m_escapeIndex == -1;
+
+ //PCK: unsigned instead of bool
+ if (isLeafNode && (aabbOverlap != 0))
+ {
+ nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex);
+ }
+
+ //PCK: unsigned instead of bool
+ if ((aabbOverlap != 0) || isLeafNode)
+ {
+ rootNode++;
+ curIndex++;
+ } else
+ {
+ escapeIndex = rootNode->m_escapeIndex;
+ rootNode += escapeIndex;
+ curIndex += escapeIndex;
+ }
+ }
+ if (maxIterations < walkIterations)
+ maxIterations = walkIterations;
+
+}
+
+/*
+///this was the original recursive traversal, before we optimized towards stackless traversal
+void btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
+{
+ bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax);
+ if (aabbOverlap)
+ {
+ isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild);
+ if (isLeafNode)
+ {
+ nodeCallback->processNode(rootNode);
+ } else
+ {
+ walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax);
+ walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax);
+ }
+ }
+
+}
+*/
+
+void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
+{
+ btAssert(m_useQuantization);
+
+ bool isLeafNode;
+ //PCK: unsigned instead of bool
+ unsigned aabbOverlap;
+
+ //PCK: unsigned instead of bool
+ aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax);
+ isLeafNode = currentNode->isLeafNode();
+
+ //PCK: unsigned instead of bool
+ if (aabbOverlap != 0)
+ {
+ if (isLeafNode)
+ {
+ nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex());
+ } else
+ {
+ //process left and right children
+ const btQuantizedBvhNode* leftChildNode = currentNode+1;
+ walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
+
+ const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex();
+ walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
+ }
+ }
+}
+
+
+
+
+
+void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const
+{
+ btAssert(m_useQuantization);
+
+ int curIndex = startNodeIndex;
+ int walkIterations = 0;
+ int subTreeSize = endNodeIndex - startNodeIndex;
+ (void)subTreeSize;
+
+ const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
+ int escapeIndex;
+
+ bool isLeafNode;
+ //PCK: unsigned instead of bool
+ unsigned boxBoxOverlap = 0;
+ unsigned rayBoxOverlap = 0;
+
+ btScalar lambda_max = 1.0;
+#define RAYAABB2
+#ifdef RAYAABB2
+ btVector3 rayFrom = raySource;
+ btVector3 rayDirection = (rayTarget-raySource);
+ rayDirection.normalize ();
+ lambda_max = rayDirection.dot(rayTarget-raySource);
+ ///what about division by zero? --> just set rayDirection[i] to 1.0
+ rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[0];
+ rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[1];
+ rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[2];
+ unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0};
+#endif
+
+ /* Quick pruning by quantized box */
+ btVector3 rayAabbMin = raySource;
+ btVector3 rayAabbMax = raySource;
+ rayAabbMin.setMin(rayTarget);
+ rayAabbMax.setMax(rayTarget);
+
+ /* Add box cast extents to bounding box */
+ rayAabbMin += aabbMin;
+ rayAabbMax += aabbMax;
+
+ unsigned short int quantizedQueryAabbMin[3];
+ unsigned short int quantizedQueryAabbMax[3];
+ quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0);
+ quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1);
+
+ while (curIndex < endNodeIndex)
+ {
+
+//#define VISUALLY_ANALYZE_BVH 1
+#ifdef VISUALLY_ANALYZE_BVH
+ //some code snippet to debugDraw aabb, to visually analyze bvh structure
+ static int drawPatch = 0;
+ //need some global access to a debugDrawer
+ extern btIDebugDraw* debugDrawerPtr;
+ if (curIndex==drawPatch)
+ {
+ btVector3 aabbMin,aabbMax;
+ aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
+ aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
+ btVector3 color(1,0,0);
+ debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
+ }
+#endif//VISUALLY_ANALYZE_BVH
+
+ //catch bugs in tree data
+ assert (walkIterations < subTreeSize);
+
+ walkIterations++;
+ //PCK: unsigned instead of bool
+ // only interested if this is closer than any previous hit
+ btScalar param = 1.0;
+ rayBoxOverlap = 0;
+ boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
+ isLeafNode = rootNode->isLeafNode();
+ if (boxBoxOverlap)
+ {
+ btVector3 bounds[2];
+ bounds[0] = unQuantize(rootNode->m_quantizedAabbMin);
+ bounds[1] = unQuantize(rootNode->m_quantizedAabbMax);
+ /* Add box cast extents */
+ bounds[0] += aabbMin;
+ bounds[1] += aabbMax;
+ btVector3 normal;
+#if 0
+ bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max);
+ bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal);
+ if (ra2 != ra)
+ {
+ printf("functions don't match\n");
+ }
+#endif
+#ifdef RAYAABB2
+ ///careful with this check: need to check division by zero (above) and fix the unQuantize method
+ ///thanks Joerg/hiker for the reproduction case!
+ ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858
+
+ rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max);
+#else
+ rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
+#endif
+ }
+
+ if (isLeafNode && rayBoxOverlap)
+ {
+ nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex());
+ }
+
+ //PCK: unsigned instead of bool
+ if ((rayBoxOverlap != 0) || isLeafNode)
+ {
+ rootNode++;
+ curIndex++;
+ } else
+ {
+ escapeIndex = rootNode->getEscapeIndex();
+ rootNode += escapeIndex;
+ curIndex += escapeIndex;
+ }
+ }
+ if (maxIterations < walkIterations)
+ maxIterations = walkIterations;
+
+}
+
+void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const
+{
+ btAssert(m_useQuantization);
+
+ int curIndex = startNodeIndex;
+ int walkIterations = 0;
+ int subTreeSize = endNodeIndex - startNodeIndex;
+ (void)subTreeSize;
+
+ const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
+ int escapeIndex;
+
+ bool isLeafNode;
+ //PCK: unsigned instead of bool
+ unsigned aabbOverlap;
+
+ while (curIndex < endNodeIndex)
+ {
+
+//#define VISUALLY_ANALYZE_BVH 1
+#ifdef VISUALLY_ANALYZE_BVH
+ //some code snippet to debugDraw aabb, to visually analyze bvh structure
+ static int drawPatch = 0;
+ //need some global access to a debugDrawer
+ extern btIDebugDraw* debugDrawerPtr;
+ if (curIndex==drawPatch)
+ {
+ btVector3 aabbMin,aabbMax;
+ aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
+ aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
+ btVector3 color(1,0,0);
+ debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
+ }
+#endif//VISUALLY_ANALYZE_BVH
+
+ //catch bugs in tree data
+ assert (walkIterations < subTreeSize);
+
+ walkIterations++;
+ //PCK: unsigned instead of bool
+ aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
+ isLeafNode = rootNode->isLeafNode();
+
+ if (isLeafNode && aabbOverlap)
+ {
+ nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex());
+ }
+
+ //PCK: unsigned instead of bool
+ if ((aabbOverlap != 0) || isLeafNode)
+ {
+ rootNode++;
+ curIndex++;
+ } else
+ {
+ escapeIndex = rootNode->getEscapeIndex();
+ rootNode += escapeIndex;
+ curIndex += escapeIndex;
+ }
+ }
+ if (maxIterations < walkIterations)
+ maxIterations = walkIterations;
+
+}
+
+//This traversal can be called from Playstation 3 SPU
+void btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
+{
+ btAssert(m_useQuantization);
+
+ int i;
+
+
+ for (i=0;i<this->m_SubtreeHeaders.size();i++)
+ {
+ const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
+
+ //PCK: unsigned instead of bool
+ unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
+ if (overlap != 0)
+ {
+ walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
+ subtree.m_rootNodeIndex,
+ subtree.m_rootNodeIndex+subtree.m_subtreeSize);
+ }
+ }
+}
+
+
+void btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const
+{
+ bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS;
+ if (fast_path)
+ {
+ walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, btVector3(0, 0, 0), btVector3(0, 0, 0), 0, m_curNodeIndex);
+ } else {
+ /* Otherwise fallback to AABB overlap test */
+ btVector3 aabbMin = raySource;
+ btVector3 aabbMax = raySource;
+ aabbMin.setMin(rayTarget);
+ aabbMax.setMax(rayTarget);
+ reportAabbOverlappingNodex(nodeCallback,aabbMin,aabbMax);
+ }
+}
+
+
+void btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const
+{
+ bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS;
+ if (fast_path)
+ {
+ walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex);
+ } else {
+ /* Slow path:
+ Construct the bounding box for the entire box cast and send that down the tree */
+ btVector3 qaabbMin = raySource;
+ btVector3 qaabbMax = raySource;
+ qaabbMin.setMin(rayTarget);
+ qaabbMax.setMax(rayTarget);
+ qaabbMin += aabbMin;
+ qaabbMax += aabbMax;
+ reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax);
+ }
+}
+
+
+void btQuantizedBvh::swapLeafNodes(int i,int splitIndex)
+{
+ if (m_useQuantization)
+ {
+ btQuantizedBvhNode tmp = m_quantizedLeafNodes[i];
+ m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex];
+ m_quantizedLeafNodes[splitIndex] = tmp;
+ } else
+ {
+ btOptimizedBvhNode tmp = m_leafNodes[i];
+ m_leafNodes[i] = m_leafNodes[splitIndex];
+ m_leafNodes[splitIndex] = tmp;
+ }
+}
+
+void btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex)
+{
+ if (m_useQuantization)
+ {
+ m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex];
+ } else
+ {
+ m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex];
+ }
+}
+
+//PCK: include
+#include <new>
+
+//PCK: consts
+static const unsigned BVH_ALIGNMENT = 16;
+static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1;
+
+static const unsigned BVH_ALIGNMENT_BLOCKS = 2;
+
+
+
+unsigned int btQuantizedBvh::getAlignmentSerializationPadding()
+{
+ return BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT;
+}
+
+unsigned btQuantizedBvh::calculateSerializeBufferSize()
+{
+ unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding();
+ baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount;
+ if (m_useQuantization)
+ {
+ return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode);
+ }
+ return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode);
+}
+
+bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian)
+{
+ assert(m_subtreeHeaderCount == m_SubtreeHeaders.size());
+ m_subtreeHeaderCount = m_SubtreeHeaders.size();
+
+/* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
+ {
+ ///check alignedment for buffer?
+ btAssert(0);
+ return false;
+ }
+*/
+
+ btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer;
+
+ // construct the class so the virtual function table, etc will be set up
+ // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor
+ new (targetBvh) btQuantizedBvh;
+
+ if (i_swapEndian)
+ {
+ targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex));
+
+
+ btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin);
+ btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax);
+ btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization);
+
+ targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode);
+ targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount));
+ }
+ else
+ {
+ targetBvh->m_curNodeIndex = m_curNodeIndex;
+ targetBvh->m_bvhAabbMin = m_bvhAabbMin;
+ targetBvh->m_bvhAabbMax = m_bvhAabbMax;
+ targetBvh->m_bvhQuantization = m_bvhQuantization;
+ targetBvh->m_traversalMode = m_traversalMode;
+ targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount;
+ }
+
+ targetBvh->m_useQuantization = m_useQuantization;
+
+ unsigned char *nodeData = (unsigned char *)targetBvh;
+ nodeData += sizeof(btQuantizedBvh);
+
+ unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+ nodeData += sizeToAdd;
+
+ int nodeCount = m_curNodeIndex;
+
+ if (m_useQuantization)
+ {
+ targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
+
+ if (i_swapEndian)
+ {
+ for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
+ {
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]);
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]);
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]);
+
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]);
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]);
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]);
+
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex));
+ }
+ }
+ else
+ {
+ for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
+ {
+
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0];
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1];
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2];
+
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0];
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1];
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2];
+
+ targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex;
+
+
+ }
+ }
+ nodeData += sizeof(btQuantizedBvhNode) * nodeCount;
+ }
+ else
+ {
+ targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
+
+ if (i_swapEndian)
+ {
+ for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
+ {
+ btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg);
+ btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg);
+
+ targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex));
+ targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart));
+ targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex));
+ }
+ }
+ else
+ {
+ for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
+ {
+ targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg;
+ targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg;
+
+ targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex;
+ targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart;
+ targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex;
+ }
+ }
+ nodeData += sizeof(btOptimizedBvhNode) * nodeCount;
+ }
+
+ sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+ nodeData += sizeToAdd;
+
+ // Now serialize the subtree headers
+ targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount);
+ if (i_swapEndian)
+ {
+ for (int i = 0; i < m_subtreeHeaderCount; i++)
+ {
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]);
+
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]);
+
+ targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex));
+ targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize));
+ }
+ }
+ else
+ {
+ for (int i = 0; i < m_subtreeHeaderCount; i++)
+ {
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]);
+
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]);
+ targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]);
+
+ targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex);
+ targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize);
+ targetBvh->m_SubtreeHeaders[i] = m_SubtreeHeaders[i];
+ }
+ }
+
+ nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount;
+
+ return true;
+}
+
+btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
+{
+
+ if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
+ {
+ return NULL;
+ }
+ btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer;
+
+ if (i_swapEndian)
+ {
+ bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex));
+
+ btUnSwapVector3Endian(bvh->m_bvhAabbMin);
+ btUnSwapVector3Endian(bvh->m_bvhAabbMax);
+ btUnSwapVector3Endian(bvh->m_bvhQuantization);
+
+ bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode);
+ bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount));
+ }
+
+ unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize();
+ btAssert(calculatedBufSize <= i_dataBufferSize);
+
+ if (calculatedBufSize > i_dataBufferSize)
+ {
+ return NULL;
+ }
+
+ unsigned char *nodeData = (unsigned char *)bvh;
+ nodeData += sizeof(btQuantizedBvh);
+
+ unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+ nodeData += sizeToAdd;
+
+ int nodeCount = bvh->m_curNodeIndex;
+
+ // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor
+ // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor
+ new (bvh) btQuantizedBvh(*bvh, false);
+
+ if (bvh->m_useQuantization)
+ {
+ bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
+
+ if (i_swapEndian)
+ {
+ for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
+ {
+ bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]);
+ bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]);
+ bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]);
+
+ bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]);
+ bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]);
+ bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]);
+
+ bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex));
+ }
+ }
+ nodeData += sizeof(btQuantizedBvhNode) * nodeCount;
+ }
+ else
+ {
+ bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
+
+ if (i_swapEndian)
+ {
+ for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
+ {
+ btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg);
+ btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg);
+
+ bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex));
+ bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart));
+ bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex));
+ }
+ }
+ nodeData += sizeof(btOptimizedBvhNode) * nodeCount;
+ }
+
+ sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+ nodeData += sizeToAdd;
+
+ // Now serialize the subtree headers
+ bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount);
+ if (i_swapEndian)
+ {
+ for (int i = 0; i < bvh->m_subtreeHeaderCount; i++)
+ {
+ bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]);
+ bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]);
+ bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]);
+
+ bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]);
+ bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]);
+ bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]);
+
+ bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex));
+ bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize));
+ }
+ }
+
+ return bvh;
+}
+
+// Constructor that prevents btVector3's default constructor from being called
+btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) :
+m_bvhAabbMin(self.m_bvhAabbMin),
+m_bvhAabbMax(self.m_bvhAabbMax),
+m_bvhQuantization(self.m_bvhQuantization)
+{
+
+
+}
+
+
+
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.h
new file mode 100644
index 00000000000..8a149b533fa
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btQuantizedBvh.h
@@ -0,0 +1,486 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef QUANTIZED_BVH_H
+#define QUANTIZED_BVH_H
+
+//#define DEBUG_CHECK_DEQUANTIZATION 1
+#ifdef DEBUG_CHECK_DEQUANTIZATION
+#ifdef __SPU__
+#define printf spu_printf
+#endif //__SPU__
+
+#include <stdio.h>
+#include <stdlib.h>
+#endif //DEBUG_CHECK_DEQUANTIZATION
+
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btAlignedAllocator.h"
+
+
+//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp
+
+
+//Note: currently we have 16 bytes per quantized node
+#define MAX_SUBTREE_SIZE_IN_BYTES 2048
+
+// 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one
+// actually) triangles each (since the sign bit is reserved
+#define MAX_NUM_PARTS_IN_BITS 10
+
+///btQuantizedBvhNode is a compressed aabb node, 16 bytes.
+///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
+ATTRIBUTE_ALIGNED16 (struct) btQuantizedBvhNode
+{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ //12 bytes
+ unsigned short int m_quantizedAabbMin[3];
+ unsigned short int m_quantizedAabbMax[3];
+ //4 bytes
+ int m_escapeIndexOrTriangleIndex;
+
+ bool isLeafNode() const
+ {
+ //skipindex is negative (internal node), triangleindex >=0 (leafnode)
+ return (m_escapeIndexOrTriangleIndex >= 0);
+ }
+ int getEscapeIndex() const
+ {
+ btAssert(!isLeafNode());
+ return -m_escapeIndexOrTriangleIndex;
+ }
+ int getTriangleIndex() const
+ {
+ btAssert(isLeafNode());
+ // Get only the lower bits where the triangle index is stored
+ return (m_escapeIndexOrTriangleIndex&~((~0)<<(31-MAX_NUM_PARTS_IN_BITS)));
+ }
+ int getPartId() const
+ {
+ btAssert(isLeafNode());
+ // Get only the highest bits where the part index is stored
+ return (m_escapeIndexOrTriangleIndex>>(31-MAX_NUM_PARTS_IN_BITS));
+ }
+}
+;
+
+/// btOptimizedBvhNode contains both internal and leaf node information.
+/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes.
+ATTRIBUTE_ALIGNED16 (struct) btOptimizedBvhNode
+{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ //32 bytes
+ btVector3 m_aabbMinOrg;
+ btVector3 m_aabbMaxOrg;
+
+ //4
+ int m_escapeIndex;
+
+ //8
+ //for child nodes
+ int m_subPart;
+ int m_triangleIndex;
+ int m_padding[5];//bad, due to alignment
+
+
+};
+
+
+///btBvhSubtreeInfo provides info to gather a subtree of limited size
+ATTRIBUTE_ALIGNED16(class) btBvhSubtreeInfo
+{
+public:
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ //12 bytes
+ unsigned short int m_quantizedAabbMin[3];
+ unsigned short int m_quantizedAabbMax[3];
+ //4 bytes, points to the root of the subtree
+ int m_rootNodeIndex;
+ //4 bytes
+ int m_subtreeSize;
+ int m_padding[3];
+
+ btBvhSubtreeInfo()
+ {
+ //memset(&m_padding[0], 0, sizeof(m_padding));
+ }
+
+
+ void setAabbFromQuantizeNode(const btQuantizedBvhNode& quantizedNode)
+ {
+ m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0];
+ m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1];
+ m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2];
+ m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0];
+ m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1];
+ m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2];
+ }
+}
+;
+
+
+class btNodeOverlapCallback
+{
+public:
+ virtual ~btNodeOverlapCallback() {};
+
+ virtual void processNode(int subPart, int triangleIndex) = 0;
+};
+
+#include "LinearMath/btAlignedAllocator.h"
+#include "LinearMath/btAlignedObjectArray.h"
+
+
+
+///for code readability:
+typedef btAlignedObjectArray<btOptimizedBvhNode> NodeArray;
+typedef btAlignedObjectArray<btQuantizedBvhNode> QuantizedNodeArray;
+typedef btAlignedObjectArray<btBvhSubtreeInfo> BvhSubtreeInfoArray;
+
+
+///The btQuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU.
+///It is used by the btBvhTriangleMeshShape as midphase, and by the btMultiSapBroadphase.
+///It is recommended to use quantization for better performance and lower memory requirements.
+ATTRIBUTE_ALIGNED16(class) btQuantizedBvh
+{
+protected:
+
+ NodeArray m_leafNodes;
+ NodeArray m_contiguousNodes;
+
+ QuantizedNodeArray m_quantizedLeafNodes;
+
+ QuantizedNodeArray m_quantizedContiguousNodes;
+
+ int m_curNodeIndex;
+
+
+ //quantization data
+ bool m_useQuantization;
+ btVector3 m_bvhAabbMin;
+ btVector3 m_bvhAabbMax;
+ btVector3 m_bvhQuantization;
+public:
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ enum btTraversalMode
+ {
+ TRAVERSAL_STACKLESS = 0,
+ TRAVERSAL_STACKLESS_CACHE_FRIENDLY,
+ TRAVERSAL_RECURSIVE
+ };
+protected:
+
+ btTraversalMode m_traversalMode;
+
+ BvhSubtreeInfoArray m_SubtreeHeaders;
+
+ //This is only used for serialization so we don't have to add serialization directly to btAlignedObjectArray
+ int m_subtreeHeaderCount;
+
+
+ ///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!)
+ ///this might be refactored into a virtual, it is usually not calculated at run-time
+ void setInternalNodeAabbMin(int nodeIndex, const btVector3& aabbMin)
+ {
+ if (m_useQuantization)
+ {
+ quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin,0);
+ } else
+ {
+ m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin;
+
+ }
+ }
+ void setInternalNodeAabbMax(int nodeIndex,const btVector3& aabbMax)
+ {
+ if (m_useQuantization)
+ {
+ quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax,1);
+ } else
+ {
+ m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax;
+ }
+ }
+
+ btVector3 getAabbMin(int nodeIndex) const
+ {
+ if (m_useQuantization)
+ {
+ return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]);
+ }
+ //non-quantized
+ return m_leafNodes[nodeIndex].m_aabbMinOrg;
+
+ }
+ btVector3 getAabbMax(int nodeIndex) const
+ {
+ if (m_useQuantization)
+ {
+ return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]);
+ }
+ //non-quantized
+ return m_leafNodes[nodeIndex].m_aabbMaxOrg;
+
+ }
+
+
+ void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
+ {
+ if (m_useQuantization)
+ {
+ m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex;
+ }
+ else
+ {
+ m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex;
+ }
+
+ }
+
+ void mergeInternalNodeAabb(int nodeIndex,const btVector3& newAabbMin,const btVector3& newAabbMax)
+ {
+ if (m_useQuantization)
+ {
+ unsigned short int quantizedAabbMin[3];
+ unsigned short int quantizedAabbMax[3];
+ quantize(quantizedAabbMin,newAabbMin,0);
+ quantize(quantizedAabbMax,newAabbMax,1);
+ for (int i=0;i<3;i++)
+ {
+ if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i])
+ m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i];
+
+ if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i])
+ m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i];
+
+ }
+ } else
+ {
+ //non-quantized
+ m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin);
+ m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
+ }
+ }
+
+ void swapLeafNodes(int firstIndex,int secondIndex);
+
+ void assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex);
+
+protected:
+
+
+
+ void buildTree (int startIndex,int endIndex);
+
+ int calcSplittingAxis(int startIndex,int endIndex);
+
+ int sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis);
+
+ void walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
+
+ void walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
+ void walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const;
+
+ ///tree traversal designed for small-memory processors like PS3 SPU
+ void walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
+
+ ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
+ void walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
+
+ ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
+ void walkRecursiveQuantizedTreeAgainstQuantizedTree(const btQuantizedBvhNode* treeNodeA,const btQuantizedBvhNode* treeNodeB,btNodeOverlapCallback* nodeCallback) const;
+
+
+#define USE_BANCHLESS 1
+#ifdef USE_BANCHLESS
+ //This block replaces the block below and uses no branches, and replaces the 8 bit return with a 32 bit return for improved performance (~3x on XBox 360)
+ SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) const
+ {
+ return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
+ & (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
+ & (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
+ 1, 0));
+ }
+#else
+ SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) const
+ {
+ bool overlap = true;
+ overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
+ overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
+ overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
+ return overlap;
+ }
+#endif //USE_BANCHLESS
+
+ void updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex);
+
+public:
+ btQuantizedBvh();
+
+ virtual ~btQuantizedBvh();
+
+
+ ///***************************************** expert/internal use only *************************
+ void setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin=btScalar(1.0));
+ QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; }
+ ///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized
+ void buildInternal();
+ ///***************************************** expert/internal use only *************************
+
+ void reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
+ void reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const;
+ void reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const;
+
+ SIMD_FORCE_INLINE void quantize(unsigned short* out, const btVector3& point,int isMax) const
+ {
+
+ btAssert(m_useQuantization);
+
+ btAssert(point.getX() <= m_bvhAabbMax.getX());
+ btAssert(point.getY() <= m_bvhAabbMax.getY());
+ btAssert(point.getZ() <= m_bvhAabbMax.getZ());
+
+ btAssert(point.getX() >= m_bvhAabbMin.getX());
+ btAssert(point.getY() >= m_bvhAabbMin.getY());
+ btAssert(point.getZ() >= m_bvhAabbMin.getZ());
+
+ btVector3 v = (point - m_bvhAabbMin) * m_bvhQuantization;
+ ///Make sure rounding is done in a way that unQuantize(quantizeWithClamp(...)) is conservative
+ ///end-points always set the first bit, so that they are sorted properly (so that neighbouring AABBs overlap properly)
+ ///todo: double-check this
+ if (isMax)
+ {
+ out[0] = (unsigned short) (((unsigned short)(v.getX()+btScalar(1.)) | 1));
+ out[1] = (unsigned short) (((unsigned short)(v.getY()+btScalar(1.)) | 1));
+ out[2] = (unsigned short) (((unsigned short)(v.getZ()+btScalar(1.)) | 1));
+ } else
+ {
+ out[0] = (unsigned short) (((unsigned short)(v.getX()) & 0xfffe));
+ out[1] = (unsigned short) (((unsigned short)(v.getY()) & 0xfffe));
+ out[2] = (unsigned short) (((unsigned short)(v.getZ()) & 0xfffe));
+ }
+
+
+#ifdef DEBUG_CHECK_DEQUANTIZATION
+ btVector3 newPoint = unQuantize(out);
+ if (isMax)
+ {
+ if (newPoint.getX() < point.getX())
+ {
+ printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
+ }
+ if (newPoint.getY() < point.getY())
+ {
+ printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
+ }
+ if (newPoint.getZ() < point.getZ())
+ {
+
+ printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
+ }
+ } else
+ {
+ if (newPoint.getX() > point.getX())
+ {
+ printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
+ }
+ if (newPoint.getY() > point.getY())
+ {
+ printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
+ }
+ if (newPoint.getZ() > point.getZ())
+ {
+ printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
+ }
+ }
+#endif //DEBUG_CHECK_DEQUANTIZATION
+
+ }
+
+
+ SIMD_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const btVector3& point2,int isMax) const
+ {
+
+ btAssert(m_useQuantization);
+
+ btVector3 clampedPoint(point2);
+ clampedPoint.setMax(m_bvhAabbMin);
+ clampedPoint.setMin(m_bvhAabbMax);
+
+ quantize(out,clampedPoint,isMax);
+
+ }
+
+ SIMD_FORCE_INLINE btVector3 unQuantize(const unsigned short* vecIn) const
+ {
+ btVector3 vecOut;
+ vecOut.setValue(
+ (btScalar)(vecIn[0]) / (m_bvhQuantization.getX()),
+ (btScalar)(vecIn[1]) / (m_bvhQuantization.getY()),
+ (btScalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
+ vecOut += m_bvhAabbMin;
+ return vecOut;
+ }
+
+ ///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees.
+ void setTraversalMode(btTraversalMode traversalMode)
+ {
+ m_traversalMode = traversalMode;
+ }
+
+
+ SIMD_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray()
+ {
+ return m_quantizedContiguousNodes;
+ }
+
+
+ SIMD_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray()
+ {
+ return m_SubtreeHeaders;
+ }
+
+
+ /////Calculate space needed to store BVH for serialization
+ unsigned calculateSerializeBufferSize();
+
+ /// Data buffer MUST be 16 byte aligned
+ virtual bool serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian);
+
+ ///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
+ static btQuantizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
+
+ static unsigned int getAlignmentSerializationPadding();
+
+ SIMD_FORCE_INLINE bool isQuantized()
+ {
+ return m_useQuantization;
+ }
+
+private:
+ // Special "copy" constructor that allows for in-place deserialization
+ // Prevents btVector3's default constructor from being called, but doesn't inialize much else
+ // ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need)
+ btQuantizedBvh(btQuantizedBvh &other, bool ownsMemory);
+
+}
+;
+
+
+#endif //QUANTIZED_BVH_H
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp
index 30bcbe0c5f1..2d27f22567f 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp
@@ -14,83 +14,86 @@ subject to the following restrictions:
*/
#include "btSimpleBroadphase.h"
-#include <BulletCollision/BroadphaseCollision/btDispatcher.h>
-#include <BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h>
+#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
+#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btMatrix3x3.h"
#include <new>
+extern int gOverlappingPairs;
void btSimpleBroadphase::validate()
{
- for (int i=0;i<m_numProxies;i++)
+ for (int i=0;i<m_numHandles;i++)
{
- for (int j=i+1;j<m_numProxies;j++)
+ for (int j=i+1;j<m_numHandles;j++)
{
- assert(m_pProxies[i] != m_pProxies[j]);
+ btAssert(&m_pHandles[i] != &m_pHandles[j]);
}
}
}
-btSimpleBroadphase::btSimpleBroadphase(int maxProxies)
- :btOverlappingPairCache(),
- m_firstFreeProxy(0),
- m_numProxies(0),
- m_maxProxies(maxProxies)
+btSimpleBroadphase::btSimpleBroadphase(int maxProxies, btOverlappingPairCache* overlappingPairCache)
+ :m_pairCache(overlappingPairCache),
+ m_ownsPairCache(false),
+ m_invalidPair(0)
{
- m_proxies = new btSimpleBroadphaseProxy[maxProxies];
- m_freeProxies = new int[maxProxies];
- m_pProxies = new btSimpleBroadphaseProxy*[maxProxies];
-
+ if (!overlappingPairCache)
+ {
+ void* mem = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16);
+ m_pairCache = new (mem)btHashedOverlappingPairCache();
+ m_ownsPairCache = true;
+ }
+
+ // allocate handles buffer and put all handles on free list
+ m_pHandlesRawPtr = btAlignedAlloc(sizeof(btSimpleBroadphaseProxy)*maxProxies,16);
+ m_pHandles = new(m_pHandlesRawPtr) btSimpleBroadphaseProxy[maxProxies];
+ m_maxHandles = maxProxies;
+ m_numHandles = 0;
+ m_firstFreeHandle = 0;
+ m_firstAllocatedHandle = -1;
- int i;
- for (i=0;i<m_maxProxies;i++)
{
- m_freeProxies[i] = i;
+ for (int i = m_firstFreeHandle; i < maxProxies; i++)
+ {
+ m_pHandles[i].SetNextFree(i + 1);
+ m_pHandles[i].m_uniqueId = i+2;//any UID will do, we just avoid too trivial values (0,1) for debugging purposes
+ m_pHandles[i].SetNextAllocated(-1);
+ }
+ m_pHandles[maxProxies - 1].SetNextFree(0);
+ m_pHandles[maxProxies - 1].SetNextAllocated(-1);
+
}
+
}
btSimpleBroadphase::~btSimpleBroadphase()
{
- delete[] m_proxies;
- delete []m_freeProxies;
- delete [] m_pProxies;
+ btAlignedFree(m_pHandlesRawPtr);
- /*int i;
- for (i=m_numProxies-1;i>=0;i--)
+ if (m_ownsPairCache)
{
- BP_Proxy* proxy = m_pProxies[i];
- destroyProxy(proxy);
+ m_pairCache->~btOverlappingPairCache();
+ btAlignedFree(m_pairCache);
}
- */
}
-btBroadphaseProxy* btSimpleBroadphase::createProxy( const btVector3& min, const btVector3& max,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask)
+btBroadphaseProxy* btSimpleBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* /*dispatcher*/,void* multiSapProxy)
{
- if (m_numProxies >= m_maxProxies)
+ if (m_numHandles >= m_maxHandles)
{
- assert(0);
+ btAssert(0);
return 0; //should never happen, but don't let the game crash ;-)
}
- assert(min[0]<= max[0] && min[1]<= max[1] && min[2]<= max[2]);
-
- int freeIndex= m_freeProxies[m_firstFreeProxy];
- btSimpleBroadphaseProxy* proxy = new (&m_proxies[freeIndex])btSimpleBroadphaseProxy(min,max,shapeType,userPtr,collisionFilterGroup,collisionFilterMask);
- m_firstFreeProxy++;
-
- btSimpleBroadphaseProxy* proxy1 = &m_proxies[0];
-
- int index = int(proxy - proxy1);
- btAssert(index == freeIndex);
+ assert(aabbMin[0]<= aabbMax[0] && aabbMin[1]<= aabbMax[1] && aabbMin[2]<= aabbMax[2]);
- m_pProxies[m_numProxies] = proxy;
- m_numProxies++;
- //validate();
+ int newHandleIndex = allocHandle();
+ btSimpleBroadphaseProxy* proxy = new (&m_pHandles[newHandleIndex])btSimpleBroadphaseProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask,multiSapProxy);
return proxy;
}
@@ -124,34 +127,19 @@ protected:
};
};
-void btSimpleBroadphase::destroyProxy(btBroadphaseProxy* proxyOrg)
+void btSimpleBroadphase::destroyProxy(btBroadphaseProxy* proxyOrg,btDispatcher* dispatcher)
{
- int i;
-
btSimpleBroadphaseProxy* proxy0 = static_cast<btSimpleBroadphaseProxy*>(proxyOrg);
- btSimpleBroadphaseProxy* proxy1 = &m_proxies[0];
-
- int index = int(proxy0 - proxy1);
- btAssert (index < m_maxProxies);
- m_freeProxies[--m_firstFreeProxy] = index;
+ freeHandle(proxy0);
+
+ m_pairCache->removeOverlappingPairsContainingProxy(proxyOrg,dispatcher);
- removeOverlappingPairsContainingProxy(proxyOrg);
-
- for (i=0;i<m_numProxies;i++)
- {
- if (m_pProxies[i] == proxyOrg)
- {
- m_pProxies[i] = m_pProxies[m_numProxies-1];
- break;
- }
- }
- m_numProxies--;
//validate();
}
-void btSimpleBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)
+void btSimpleBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* /*dispatcher*/)
{
btSimpleBroadphaseProxy* sbp = getSimpleProxyFromProxy(proxy);
sbp->m_min = aabbMin;
@@ -186,37 +174,137 @@ public:
}
};
-void btSimpleBroadphase::refreshOverlappingPairs()
+void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
{
//first check for new overlapping pairs
int i,j;
- for (i=0;i<m_numProxies;i++)
+ if (m_firstAllocatedHandle >= 0)
{
- btBroadphaseProxy* proxy0 = m_pProxies[i];
- for (j=i+1;j<m_numProxies;j++)
+
+ btSimpleBroadphaseProxy* proxy0 = &m_pHandles[m_firstAllocatedHandle];
+
+ for (i=0;i<m_numHandles;i++)
{
- btBroadphaseProxy* proxy1 = m_pProxies[j];
- btSimpleBroadphaseProxy* p0 = getSimpleProxyFromProxy(proxy0);
- btSimpleBroadphaseProxy* p1 = getSimpleProxyFromProxy(proxy1);
+ btSimpleBroadphaseProxy* proxy1 = &m_pHandles[m_firstAllocatedHandle];
- if (aabbOverlap(p0,p1))
+ for (j=0;j<m_numHandles;j++)
{
- if ( !findPair(proxy0,proxy1))
+
+ if (proxy0 != proxy1)
{
- addOverlappingPair(proxy0,proxy1);
+ btSimpleBroadphaseProxy* p0 = getSimpleProxyFromProxy(proxy0);
+ btSimpleBroadphaseProxy* p1 = getSimpleProxyFromProxy(proxy1);
+
+ if (aabbOverlap(p0,p1))
+ {
+ if ( !m_pairCache->findPair(proxy0,proxy1))
+ {
+ m_pairCache->addOverlappingPair(proxy0,proxy1);
+ }
+ } else
+ {
+ if (!m_pairCache->hasDeferredRemoval())
+ {
+ if ( m_pairCache->findPair(proxy0,proxy1))
+ {
+ m_pairCache->removeOverlappingPair(proxy0,proxy1,dispatcher);
+ }
+ }
+
+ }
}
+ proxy1 = &m_pHandles[proxy1->GetNextAllocated()];
+
}
+ proxy0 = &m_pHandles[proxy0->GetNextAllocated()];
}
- }
+ if (m_ownsPairCache && m_pairCache->hasDeferredRemoval())
+ {
+
+ btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
+
+ //perform a sort, to find duplicates and to sort 'invalid' pairs to the end
+ overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
+
+ overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
+ m_invalidPair = 0;
+
+
+ btBroadphasePair previousPair;
+ previousPair.m_pProxy0 = 0;
+ previousPair.m_pProxy1 = 0;
+ previousPair.m_algorithm = 0;
+
+
+ for (i=0;i<overlappingPairArray.size();i++)
+ {
+
+ btBroadphasePair& pair = overlappingPairArray[i];
- CheckOverlapCallback checkOverlap;
+ bool isDuplicate = (pair == previousPair);
- processAllOverlappingPairs(&checkOverlap);
+ previousPair = pair;
+ bool needsRemoval = false;
+ if (!isDuplicate)
+ {
+ bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
+
+ if (hasOverlap)
+ {
+ needsRemoval = false;//callback->processOverlap(pair);
+ } else
+ {
+ needsRemoval = true;
+ }
+ } else
+ {
+ //remove duplicate
+ needsRemoval = true;
+ //should have no algorithm
+ btAssert(!pair.m_algorithm);
+ }
+
+ if (needsRemoval)
+ {
+ m_pairCache->cleanOverlappingPair(pair,dispatcher);
+
+ // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
+ // m_overlappingPairArray.pop_back();
+ pair.m_pProxy0 = 0;
+ pair.m_pProxy1 = 0;
+ m_invalidPair++;
+ gOverlappingPairs--;
+ }
+
+ }
+
+ ///if you don't like to skip the invalid pairs in the array, execute following code:
+ #define CLEAN_INVALID_PAIRS 1
+ #ifdef CLEAN_INVALID_PAIRS
+
+ //perform a sort, to sort 'invalid' pairs to the end
+ overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
+
+ overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
+ m_invalidPair = 0;
+ #endif//CLEAN_INVALID_PAIRS
+
+ }
+ }
}
+bool btSimpleBroadphase::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+{
+ btSimpleBroadphaseProxy* p0 = getSimpleProxyFromProxy(proxy0);
+ btSimpleBroadphaseProxy* p1 = getSimpleProxyFromProxy(proxy1);
+ return aabbOverlap(p0,p1);
+}
+
+
+
diff --git a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h
index fb155e7047c..49dfeb84900 100644
--- a/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h
+++ b/extern/bullet2/src/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h
@@ -24,35 +24,78 @@ struct btSimpleBroadphaseProxy : public btBroadphaseProxy
{
btVector3 m_min;
btVector3 m_max;
+ int m_nextFree;
+ int m_nextAllocated;
+// int m_handleId;
+
btSimpleBroadphaseProxy() {};
- btSimpleBroadphaseProxy(const btPoint3& minpt,const btPoint3& maxpt,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask)
- :btBroadphaseProxy(userPtr,collisionFilterGroup,collisionFilterMask),
+ btSimpleBroadphaseProxy(const btPoint3& minpt,const btPoint3& maxpt,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask,void* multiSapProxy)
+ :btBroadphaseProxy(userPtr,collisionFilterGroup,collisionFilterMask,multiSapProxy),
m_min(minpt),m_max(maxpt)
{
(void)shapeType;
}
+
+ SIMD_FORCE_INLINE void SetNextFree(int next) {m_nextFree = next;}
+ SIMD_FORCE_INLINE int GetNextFree() const {return m_nextFree;}
+
+ SIMD_FORCE_INLINE void SetNextAllocated(int next) {m_nextAllocated = next;}
+ SIMD_FORCE_INLINE int GetNextAllocated() const {return m_nextAllocated;}
+
};
-///SimpleBroadphase is a brute force aabb culling broadphase based on O(n^2) aabb checks
-class btSimpleBroadphase : public btOverlappingPairCache
+///The SimpleBroadphase is just a unit-test for btAxisSweep3, bt32BitAxisSweep3, or btDbvtBroadphase, so use those classes instead.
+///It is a brute force aabb culling broadphase based on O(n^2) aabb checks
+class btSimpleBroadphase : public btBroadphaseInterface
{
protected:
- btSimpleBroadphaseProxy* m_proxies;
- int* m_freeProxies;
- int m_firstFreeProxy;
+ int m_numHandles; // number of active handles
+ int m_maxHandles; // max number of handles
+ btSimpleBroadphaseProxy* m_pHandles; // handles pool
+ void* m_pHandlesRawPtr;
+ int m_firstFreeHandle; // free handles list
+ int m_firstAllocatedHandle;
- btSimpleBroadphaseProxy** m_pProxies;
- int m_numProxies;
+ int allocHandle()
+ {
-
+ int freeHandle = m_firstFreeHandle;
+ m_firstFreeHandle = m_pHandles[freeHandle].GetNextFree();
+
+ m_pHandles[freeHandle].SetNextAllocated(m_firstAllocatedHandle);
+ m_firstAllocatedHandle = freeHandle;
+
+ m_numHandles++;
+
+ return freeHandle;
+ }
+
+ void freeHandle(btSimpleBroadphaseProxy* proxy)
+ {
+ int handle = int(proxy-m_pHandles);
+ btAssert(handle >= 0 && handle < m_maxHandles);
+
+ proxy->SetNextFree(m_firstFreeHandle);
+ m_firstFreeHandle = handle;
+
+ m_firstAllocatedHandle = proxy->GetNextAllocated();
+ proxy->SetNextAllocated(-1);
+
+ m_numHandles--;
+ }
+
+
+ btOverlappingPairCache* m_pairCache;
+ bool m_ownsPairCache;
+
+ int m_invalidPair;
- int m_maxProxies;
inline btSimpleBroadphaseProxy* getSimpleProxyFromProxy(btBroadphaseProxy* proxy)
@@ -67,26 +110,48 @@ protected:
protected:
- virtual void refreshOverlappingPairs();
+
+
public:
- btSimpleBroadphase(int maxProxies=16384);
+ btSimpleBroadphase(int maxProxies=16384,btOverlappingPairCache* overlappingPairCache=0);
virtual ~btSimpleBroadphase();
static bool aabbOverlap(btSimpleBroadphaseProxy* proxy0,btSimpleBroadphaseProxy* proxy1);
- virtual btBroadphaseProxy* createProxy( const btVector3& min, const btVector3& max,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask);
+ virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher,void* multiSapProxy);
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
- virtual void destroyProxy(btBroadphaseProxy* proxy);
- virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax);
+ virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+ virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher);
-
-
+ btOverlappingPairCache* getOverlappingPairCache()
+ {
+ return m_pairCache;
+ }
+ const btOverlappingPairCache* getOverlappingPairCache() const
+ {
+ return m_pairCache;
+ }
+
+ bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+ ///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
+ ///will add some transform later
+ virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
+ {
+ aabbMin.setValue(-1e30f,-1e30f,-1e30f);
+ aabbMax.setValue(1e30f,1e30f,1e30f);
+ }
+ virtual void printStats()
+ {
+// printf("btSimpleBroadphase.h\n");
+// printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
+ }
};