Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorErwin Coumans <blender@erwincoumans.com>2011-03-12 23:34:17 +0300
committerErwin Coumans <blender@erwincoumans.com>2011-03-12 23:34:17 +0300
commit5e374328a87c1b418f8454d5ef38470484804961 (patch)
tree1d6de85165175c5192f74dbd423e1d5cb48f8ff6 /extern/bullet2/src/LinearMath/btMatrix3x3.h
parent8c526e79e31d40d56a6fecce9343c74bd9fe62d8 (diff)
update Bullet physics sdk to latest trunk/version 2.78
add PhysicsConstraints.exportBulletFile(char* fileName) python command I'll be checking the bf-committers mailing list, in case this commit broke stuff scons needs to be updated, I'll do that in a second.
Diffstat (limited to 'extern/bullet2/src/LinearMath/btMatrix3x3.h')
-rw-r--r--extern/bullet2/src/LinearMath/btMatrix3x3.h1129
1 files changed, 641 insertions, 488 deletions
diff --git a/extern/bullet2/src/LinearMath/btMatrix3x3.h b/extern/bullet2/src/LinearMath/btMatrix3x3.h
index e45afc3c055..d0234a04369 100644
--- a/extern/bullet2/src/LinearMath/btMatrix3x3.h
+++ b/extern/bullet2/src/LinearMath/btMatrix3x3.h
@@ -13,162 +13,179 @@ subject to the following restrictions:
*/
-#ifndef btMatrix3x3_H
-#define btMatrix3x3_H
-
-#include "btScalar.h"
+#ifndef BT_MATRIX3x3_H
+#define BT_MATRIX3x3_H
#include "btVector3.h"
#include "btQuaternion.h"
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btMatrix3x3Data btMatrix3x3DoubleData
+#else
+#define btMatrix3x3Data btMatrix3x3FloatData
+#endif //BT_USE_DOUBLE_PRECISION
/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
- * Make sure to only include a pure orthogonal matrix without scaling. */
+* Make sure to only include a pure orthogonal matrix without scaling. */
class btMatrix3x3 {
- public:
- /** @brief No initializaion constructor */
- btMatrix3x3 () {}
-
-// explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
-
- /**@brief Constructor from Quaternion */
- explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
- /*
- template <typename btScalar>
- Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
- setEulerYPR(yaw, pitch, roll);
- }
- */
- /** @brief Constructor with row major formatting */
- btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
- const btScalar& yx, const btScalar& yy, const btScalar& yz,
- const btScalar& zx, const btScalar& zy, const btScalar& zz)
- {
- setValue(xx, xy, xz,
- yx, yy, yz,
- zx, zy, zz);
- }
- /** @brief Copy constructor */
- SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
- {
- m_el[0] = other.m_el[0];
- m_el[1] = other.m_el[1];
- m_el[2] = other.m_el[2];
- }
- /** @brief Assignment Operator */
- SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
- {
- m_el[0] = other.m_el[0];
- m_el[1] = other.m_el[1];
- m_el[2] = other.m_el[2];
- return *this;
- }
- /** @brief Get a column of the matrix as a vector
- * @param i Column number 0 indexed */
- SIMD_FORCE_INLINE btVector3 getColumn(int i) const
- {
- return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
- }
-
+ ///Data storage for the matrix, each vector is a row of the matrix
+ btVector3 m_el[3];
- /** @brief Get a row of the matrix as a vector
- * @param i Row number 0 indexed */
- SIMD_FORCE_INLINE const btVector3& getRow(int i) const
- {
- btFullAssert(0 <= i && i < 3);
- return m_el[i];
- }
+public:
+ /** @brief No initializaion constructor */
+ btMatrix3x3 () {}
- /** @brief Get a mutable reference to a row of the matrix as a vector
- * @param i Row number 0 indexed */
- SIMD_FORCE_INLINE btVector3& operator[](int i)
- {
- btFullAssert(0 <= i && i < 3);
- return m_el[i];
- }
-
- /** @brief Get a const reference to a row of the matrix as a vector
- * @param i Row number 0 indexed */
- SIMD_FORCE_INLINE const btVector3& operator[](int i) const
- {
- btFullAssert(0 <= i && i < 3);
- return m_el[i];
- }
-
- /** @brief Multiply by the target matrix on the right
- * @param m Rotation matrix to be applied
- * Equivilant to this = this * m */
- btMatrix3x3& operator*=(const btMatrix3x3& m);
-
- /** @brief Set from a carray of btScalars
- * @param m A pointer to the beginning of an array of 9 btScalars */
+ // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
+
+ /**@brief Constructor from Quaternion */
+ explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
+ /*
+ template <typename btScalar>
+ Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
+ {
+ setEulerYPR(yaw, pitch, roll);
+ }
+ */
+ /** @brief Constructor with row major formatting */
+ btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
+ const btScalar& yx, const btScalar& yy, const btScalar& yz,
+ const btScalar& zx, const btScalar& zy, const btScalar& zz)
+ {
+ setValue(xx, xy, xz,
+ yx, yy, yz,
+ zx, zy, zz);
+ }
+ /** @brief Copy constructor */
+ SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
+ {
+ m_el[0] = other.m_el[0];
+ m_el[1] = other.m_el[1];
+ m_el[2] = other.m_el[2];
+ }
+ /** @brief Assignment Operator */
+ SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
+ {
+ m_el[0] = other.m_el[0];
+ m_el[1] = other.m_el[1];
+ m_el[2] = other.m_el[2];
+ return *this;
+ }
+
+ /** @brief Get a column of the matrix as a vector
+ * @param i Column number 0 indexed */
+ SIMD_FORCE_INLINE btVector3 getColumn(int i) const
+ {
+ return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
+ }
+
+
+ /** @brief Get a row of the matrix as a vector
+ * @param i Row number 0 indexed */
+ SIMD_FORCE_INLINE const btVector3& getRow(int i) const
+ {
+ btFullAssert(0 <= i && i < 3);
+ return m_el[i];
+ }
+
+ /** @brief Get a mutable reference to a row of the matrix as a vector
+ * @param i Row number 0 indexed */
+ SIMD_FORCE_INLINE btVector3& operator[](int i)
+ {
+ btFullAssert(0 <= i && i < 3);
+ return m_el[i];
+ }
+
+ /** @brief Get a const reference to a row of the matrix as a vector
+ * @param i Row number 0 indexed */
+ SIMD_FORCE_INLINE const btVector3& operator[](int i) const
+ {
+ btFullAssert(0 <= i && i < 3);
+ return m_el[i];
+ }
+
+ /** @brief Multiply by the target matrix on the right
+ * @param m Rotation matrix to be applied
+ * Equivilant to this = this * m */
+ btMatrix3x3& operator*=(const btMatrix3x3& m);
+
+ /** @brief Adds by the target matrix on the right
+ * @param m matrix to be applied
+ * Equivilant to this = this + m */
+ btMatrix3x3& operator+=(const btMatrix3x3& m);
+
+ /** @brief Substractss by the target matrix on the right
+ * @param m matrix to be applied
+ * Equivilant to this = this - m */
+ btMatrix3x3& operator-=(const btMatrix3x3& m);
+
+ /** @brief Set from the rotational part of a 4x4 OpenGL matrix
+ * @param m A pointer to the beginning of the array of scalars*/
void setFromOpenGLSubMatrix(const btScalar *m)
- {
- m_el[0].setValue(m[0],m[4],m[8]);
- m_el[1].setValue(m[1],m[5],m[9]);
- m_el[2].setValue(m[2],m[6],m[10]);
+ {
+ m_el[0].setValue(m[0],m[4],m[8]);
+ m_el[1].setValue(m[1],m[5],m[9]);
+ m_el[2].setValue(m[2],m[6],m[10]);
- }
- /** @brief Set the values of the matrix explicitly (row major)
- * @param xx Top left
- * @param xy Top Middle
- * @param xz Top Right
- * @param yx Middle Left
- * @param yy Middle Middle
- * @param yz Middle Right
- * @param zx Bottom Left
- * @param zy Bottom Middle
- * @param zz Bottom Right*/
- void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
- const btScalar& yx, const btScalar& yy, const btScalar& yz,
- const btScalar& zx, const btScalar& zy, const btScalar& zz)
- {
- m_el[0].setValue(xx,xy,xz);
- m_el[1].setValue(yx,yy,yz);
- m_el[2].setValue(zx,zy,zz);
- }
+ }
+ /** @brief Set the values of the matrix explicitly (row major)
+ * @param xx Top left
+ * @param xy Top Middle
+ * @param xz Top Right
+ * @param yx Middle Left
+ * @param yy Middle Middle
+ * @param yz Middle Right
+ * @param zx Bottom Left
+ * @param zy Bottom Middle
+ * @param zz Bottom Right*/
+ void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
+ const btScalar& yx, const btScalar& yy, const btScalar& yz,
+ const btScalar& zx, const btScalar& zy, const btScalar& zz)
+ {
+ m_el[0].setValue(xx,xy,xz);
+ m_el[1].setValue(yx,yy,yz);
+ m_el[2].setValue(zx,zy,zz);
+ }
+
+ /** @brief Set the matrix from a quaternion
+ * @param q The Quaternion to match */
+ void setRotation(const btQuaternion& q)
+ {
+ btScalar d = q.length2();
+ btFullAssert(d != btScalar(0.0));
+ btScalar s = btScalar(2.0) / d;
+ btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
+ btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
+ btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
+ btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
+ setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
+ xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
+ xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
+ }
- /** @brief Set the matrix from a quaternion
- * @param q The Quaternion to match */
- void setRotation(const btQuaternion& q)
- {
- btScalar d = q.length2();
- btFullAssert(d != btScalar(0.0));
- btScalar s = btScalar(2.0) / d;
- btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
- btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
- btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
- btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
- setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
- xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
- xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
- }
-
-
- /** @brief Set the matrix from euler angles using YPR around YXZ respectively
- * @param yaw Yaw about Y axis
- * @param pitch Pitch about X axis
- * @param roll Roll about Z axis
- */
- void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
- setEulerZYX(roll, pitch, yaw);
- }
+
+ /** @brief Set the matrix from euler angles using YPR around YXZ respectively
+ * @param yaw Yaw about Y axis
+ * @param pitch Pitch about X axis
+ * @param roll Roll about Z axis
+ */
+ void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
+ {
+ setEulerZYX(roll, pitch, yaw);
+ }
/** @brief Set the matrix from euler angles YPR around ZYX axes
- * @param eulerX Roll about X axis
- * @param eulerY Pitch around Y axis
- * @param eulerZ Yaw aboud Z axis
- *
- * These angles are used to produce a rotation matrix. The euler
- * angles are applied in ZYX order. I.e a vector is first rotated
- * about X then Y and then Z
- **/
+ * @param eulerX Roll about X axis
+ * @param eulerY Pitch around Y axis
+ * @param eulerZ Yaw aboud Z axis
+ *
+ * These angles are used to produce a rotation matrix. The euler
+ * angles are applied in ZYX order. I.e a vector is first rotated
+ * about X then Y and then Z
+ **/
void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
- ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
+ ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
btScalar ci ( btCos(eulerX));
btScalar cj ( btCos(eulerY));
btScalar ch ( btCos(eulerZ));
@@ -179,227 +196,233 @@ class btMatrix3x3 {
btScalar cs = ci * sh;
btScalar sc = si * ch;
btScalar ss = si * sh;
-
+
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
- cj * sh, sj * ss + cc, sj * cs - sc,
- -sj, cj * si, cj * ci);
+ cj * sh, sj * ss + cc, sj * cs - sc,
+ -sj, cj * si, cj * ci);
}
- /**@brief Set the matrix to the identity */
- void setIdentity()
- {
- setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
- btScalar(0.0), btScalar(1.0), btScalar(0.0),
- btScalar(0.0), btScalar(0.0), btScalar(1.0));
- }
+ /**@brief Set the matrix to the identity */
+ void setIdentity()
+ {
+ setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
+ btScalar(0.0), btScalar(1.0), btScalar(0.0),
+ btScalar(0.0), btScalar(0.0), btScalar(1.0));
+ }
+
+ static const btMatrix3x3& getIdentity()
+ {
+ static const btMatrix3x3 identityMatrix(btScalar(1.0), btScalar(0.0), btScalar(0.0),
+ btScalar(0.0), btScalar(1.0), btScalar(0.0),
+ btScalar(0.0), btScalar(0.0), btScalar(1.0));
+ return identityMatrix;
+ }
+
+ /**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
+ * @param m The array to be filled */
+ void getOpenGLSubMatrix(btScalar *m) const
+ {
+ m[0] = btScalar(m_el[0].x());
+ m[1] = btScalar(m_el[1].x());
+ m[2] = btScalar(m_el[2].x());
+ m[3] = btScalar(0.0);
+ m[4] = btScalar(m_el[0].y());
+ m[5] = btScalar(m_el[1].y());
+ m[6] = btScalar(m_el[2].y());
+ m[7] = btScalar(0.0);
+ m[8] = btScalar(m_el[0].z());
+ m[9] = btScalar(m_el[1].z());
+ m[10] = btScalar(m_el[2].z());
+ m[11] = btScalar(0.0);
+ }
+
+ /**@brief Get the matrix represented as a quaternion
+ * @param q The quaternion which will be set */
+ void getRotation(btQuaternion& q) const
+ {
+ btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
+ btScalar temp[4];
- static const btMatrix3x3& getIdentity()
+ if (trace > btScalar(0.0))
+ {
+ btScalar s = btSqrt(trace + btScalar(1.0));
+ temp[3]=(s * btScalar(0.5));
+ s = btScalar(0.5) / s;
+
+ temp[0]=((m_el[2].y() - m_el[1].z()) * s);
+ temp[1]=((m_el[0].z() - m_el[2].x()) * s);
+ temp[2]=((m_el[1].x() - m_el[0].y()) * s);
+ }
+ else
{
- static const btMatrix3x3 identityMatrix(btScalar(1.0), btScalar(0.0), btScalar(0.0),
- btScalar(0.0), btScalar(1.0), btScalar(0.0),
- btScalar(0.0), btScalar(0.0), btScalar(1.0));
- return identityMatrix;
+ int i = m_el[0].x() < m_el[1].y() ?
+ (m_el[1].y() < m_el[2].z() ? 2 : 1) :
+ (m_el[0].x() < m_el[2].z() ? 2 : 0);
+ int j = (i + 1) % 3;
+ int k = (i + 2) % 3;
+
+ btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
+ temp[i] = s * btScalar(0.5);
+ s = btScalar(0.5) / s;
+
+ temp[3] = (m_el[k][j] - m_el[j][k]) * s;
+ temp[j] = (m_el[j][i] + m_el[i][j]) * s;
+ temp[k] = (m_el[k][i] + m_el[i][k]) * s;
}
+ q.setValue(temp[0],temp[1],temp[2],temp[3]);
+ }
+
+ /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
+ * @param yaw Yaw around Y axis
+ * @param pitch Pitch around X axis
+ * @param roll around Z axis */
+ void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
+ {
+
+ // first use the normal calculus
+ yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
+ pitch = btScalar(btAsin(-m_el[2].x()));
+ roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
- /**@brief Fill the values of the matrix into a 9 element array
- * @param m The array to be filled */
- void getOpenGLSubMatrix(btScalar *m) const
+ // on pitch = +/-HalfPI
+ if (btFabs(pitch)==SIMD_HALF_PI)
{
- m[0] = btScalar(m_el[0].x());
- m[1] = btScalar(m_el[1].x());
- m[2] = btScalar(m_el[2].x());
- m[3] = btScalar(0.0);
- m[4] = btScalar(m_el[0].y());
- m[5] = btScalar(m_el[1].y());
- m[6] = btScalar(m_el[2].y());
- m[7] = btScalar(0.0);
- m[8] = btScalar(m_el[0].z());
- m[9] = btScalar(m_el[1].z());
- m[10] = btScalar(m_el[2].z());
- m[11] = btScalar(0.0);
+ if (yaw>0)
+ yaw-=SIMD_PI;
+ else
+ yaw+=SIMD_PI;
+
+ if (roll>0)
+ roll-=SIMD_PI;
+ else
+ roll+=SIMD_PI;
}
+ };
- /**@brief Get the matrix represented as a quaternion
- * @param q The quaternion which will be set */
- void getRotation(btQuaternion& q) const
+
+ /**@brief Get the matrix represented as euler angles around ZYX
+ * @param yaw Yaw around X axis
+ * @param pitch Pitch around Y axis
+ * @param roll around X axis
+ * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
+ void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
+ {
+ struct Euler
{
- btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
- btScalar temp[4];
-
- if (trace > btScalar(0.0))
+ btScalar yaw;
+ btScalar pitch;
+ btScalar roll;
+ };
+
+ Euler euler_out;
+ Euler euler_out2; //second solution
+ //get the pointer to the raw data
+
+ // Check that pitch is not at a singularity
+ if (btFabs(m_el[2].x()) >= 1)
+ {
+ euler_out.yaw = 0;
+ euler_out2.yaw = 0;
+
+ // From difference of angles formula
+ btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
+ if (m_el[2].x() > 0) //gimbal locked up
{
- btScalar s = btSqrt(trace + btScalar(1.0));
- temp[3]=(s * btScalar(0.5));
- s = btScalar(0.5) / s;
-
- temp[0]=((m_el[2].y() - m_el[1].z()) * s);
- temp[1]=((m_el[0].z() - m_el[2].x()) * s);
- temp[2]=((m_el[1].x() - m_el[0].y()) * s);
- }
- else
+ euler_out.pitch = SIMD_PI / btScalar(2.0);
+ euler_out2.pitch = SIMD_PI / btScalar(2.0);
+ euler_out.roll = euler_out.pitch + delta;
+ euler_out2.roll = euler_out.pitch + delta;
+ }
+ else // gimbal locked down
{
- int i = m_el[0].x() < m_el[1].y() ?
- (m_el[1].y() < m_el[2].z() ? 2 : 1) :
- (m_el[0].x() < m_el[2].z() ? 2 : 0);
- int j = (i + 1) % 3;
- int k = (i + 2) % 3;
-
- btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
- temp[i] = s * btScalar(0.5);
- s = btScalar(0.5) / s;
-
- temp[3] = (m_el[k][j] - m_el[j][k]) * s;
- temp[j] = (m_el[j][i] + m_el[i][j]) * s;
- temp[k] = (m_el[k][i] + m_el[i][k]) * s;
+ euler_out.pitch = -SIMD_PI / btScalar(2.0);
+ euler_out2.pitch = -SIMD_PI / btScalar(2.0);
+ euler_out.roll = -euler_out.pitch + delta;
+ euler_out2.roll = -euler_out.pitch + delta;
}
- q.setValue(temp[0],temp[1],temp[2],temp[3]);
}
-
- /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
- * @param yaw Yaw around Y axis
- * @param pitch Pitch around X axis
- * @param roll around Z axis */
- void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
+ else
{
-
- // first use the normal calculus
- yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
- pitch = btScalar(btAsin(-m_el[2].x()));
- roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
-
- // on pitch = +/-HalfPI
- if (btFabs(pitch)==SIMD_HALF_PI)
- {
- if (yaw>0)
- yaw-=SIMD_PI;
- else
- yaw+=SIMD_PI;
-
- if (roll>0)
- roll-=SIMD_PI;
- else
- roll+=SIMD_PI;
- }
- };
-
+ euler_out.pitch = - btAsin(m_el[2].x());
+ euler_out2.pitch = SIMD_PI - euler_out.pitch;
- /**@brief Get the matrix represented as euler angles around ZYX
- * @param yaw Yaw around X axis
- * @param pitch Pitch around Y axis
- * @param roll around X axis
- * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
- void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
- {
- struct Euler{btScalar yaw, pitch, roll;};
- Euler euler_out;
- Euler euler_out2; //second solution
- //get the pointer to the raw data
-
- // Check that pitch is not at a singularity
- if (btFabs(m_el[2].x()) >= 1)
- {
- euler_out.yaw = 0;
- euler_out2.yaw = 0;
-
- // From difference of angles formula
- btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
- if (m_el[2].x() > 0) //gimbal locked up
- {
- euler_out.pitch = SIMD_PI / btScalar(2.0);
- euler_out2.pitch = SIMD_PI / btScalar(2.0);
- euler_out.roll = euler_out.pitch + delta;
- euler_out2.roll = euler_out.pitch + delta;
- }
- else // gimbal locked down
- {
- euler_out.pitch = -SIMD_PI / btScalar(2.0);
- euler_out2.pitch = -SIMD_PI / btScalar(2.0);
- euler_out.roll = -euler_out.pitch + delta;
- euler_out2.roll = -euler_out.pitch + delta;
- }
- }
- else
- {
- euler_out.pitch = - btAsin(m_el[2].x());
- euler_out2.pitch = SIMD_PI - euler_out.pitch;
-
- euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
- m_el[2].z()/btCos(euler_out.pitch));
- euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
+ euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
+ m_el[2].z()/btCos(euler_out.pitch));
+ euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
m_el[2].z()/btCos(euler_out2.pitch));
-
- euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
- m_el[0].x()/btCos(euler_out.pitch));
- euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
- m_el[0].x()/btCos(euler_out2.pitch));
- }
-
- if (solution_number == 1)
- {
- yaw = euler_out.yaw;
- pitch = euler_out.pitch;
- roll = euler_out.roll;
- }
- else
- {
- yaw = euler_out2.yaw;
- pitch = euler_out2.pitch;
- roll = euler_out2.roll;
- }
- }
-
- /**@brief Create a scaled copy of the matrix
- * @param s Scaling vector The elements of the vector will scale each column */
-
- btMatrix3x3 scaled(const btVector3& s) const
- {
- return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
- m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
- m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
- }
- /**@brief Return the determinant of the matrix */
- btScalar determinant() const;
- /**@brief Return the adjoint of the matrix */
- btMatrix3x3 adjoint() const;
- /**@brief Return the matrix with all values non negative */
- btMatrix3x3 absolute() const;
- /**@brief Return the transpose of the matrix */
- btMatrix3x3 transpose() const;
- /**@brief Return the inverse of the matrix */
- btMatrix3x3 inverse() const;
-
- btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
- btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
-
- SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
- {
- return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
+ euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
+ m_el[0].x()/btCos(euler_out.pitch));
+ euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
+ m_el[0].x()/btCos(euler_out2.pitch));
}
- SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
- {
- return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
+
+ if (solution_number == 1)
+ {
+ yaw = euler_out.yaw;
+ pitch = euler_out.pitch;
+ roll = euler_out.roll;
}
- SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
- {
- return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
+ else
+ {
+ yaw = euler_out2.yaw;
+ pitch = euler_out2.pitch;
+ roll = euler_out2.roll;
}
-
-
- /**@brief diagonalizes this matrix by the Jacobi method.
- * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
- * coordinate system, i.e., old_this = rot * new_this * rot^T.
- * @param threshold See iteration
- * @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
- * by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
- *
- * Note that this matrix is assumed to be symmetric.
- */
- void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
+ }
+
+ /**@brief Create a scaled copy of the matrix
+ * @param s Scaling vector The elements of the vector will scale each column */
+
+ btMatrix3x3 scaled(const btVector3& s) const
+ {
+ return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
+ m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
+ m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
+ }
+
+ /**@brief Return the determinant of the matrix */
+ btScalar determinant() const;
+ /**@brief Return the adjoint of the matrix */
+ btMatrix3x3 adjoint() const;
+ /**@brief Return the matrix with all values non negative */
+ btMatrix3x3 absolute() const;
+ /**@brief Return the transpose of the matrix */
+ btMatrix3x3 transpose() const;
+ /**@brief Return the inverse of the matrix */
+ btMatrix3x3 inverse() const;
+
+ btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
+ btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
+
+ SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
+ {
+ return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
+ }
+ SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
+ {
+ return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
+ }
+ SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
+ {
+ return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
+ }
+
+
+ /**@brief diagonalizes this matrix by the Jacobi method.
+ * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
+ * coordinate system, i.e., old_this = rot * new_this * rot^T.
+ * @param threshold See iteration
+ * @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
+ * by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
+ *
+ * Note that this matrix is assumed to be symmetric.
+ */
+ void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
+ {
+ rot.setIdentity();
+ for (int step = maxSteps; step > 0; step--)
{
- rot.setIdentity();
- for (int step = maxSteps; step > 0; step--)
- {
// find off-diagonal element [p][q] with largest magnitude
int p = 0;
int q = 1;
@@ -408,27 +431,27 @@ class btMatrix3x3 {
btScalar v = btFabs(m_el[0][2]);
if (v > max)
{
- q = 2;
- r = 1;
- max = v;
+ q = 2;
+ r = 1;
+ max = v;
}
v = btFabs(m_el[1][2]);
if (v > max)
{
- p = 1;
- q = 2;
- r = 0;
- max = v;
+ p = 1;
+ q = 2;
+ r = 0;
+ max = v;
}
btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
if (max <= t)
{
- if (max <= SIMD_EPSILON * t)
- {
- return;
- }
- step = 1;
+ if (max <= SIMD_EPSILON * t)
+ {
+ return;
+ }
+ step = 1;
}
// compute Jacobi rotation J which leads to a zero for element [p][q]
@@ -439,17 +462,17 @@ class btMatrix3x3 {
btScalar sin;
if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
{
- t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
- : 1 / (theta - btSqrt(1 + theta2));
- cos = 1 / btSqrt(1 + t * t);
- sin = cos * t;
+ t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
+ : 1 / (theta - btSqrt(1 + theta2));
+ cos = 1 / btSqrt(1 + t * t);
+ sin = cos * t;
}
else
{
- // approximation for large theta-value, i.e., a nearly diagonal matrix
- t = 1 / (theta * (2 + btScalar(0.5) / theta2));
- cos = 1 - btScalar(0.5) * t * t;
- sin = cos * t;
+ // approximation for large theta-value, i.e., a nearly diagonal matrix
+ t = 1 / (theta * (2 + btScalar(0.5) / theta2));
+ cos = 1 - btScalar(0.5) * t * t;
+ sin = cos * t;
}
// apply rotation to matrix (this = J^T * this * J)
@@ -464,155 +487,285 @@ class btMatrix3x3 {
// apply rotation to rot (rot = rot * J)
for (int i = 0; i < 3; i++)
{
- btVector3& row = rot[i];
- mrp = row[p];
- mrq = row[q];
- row[p] = cos * mrp - sin * mrq;
- row[q] = cos * mrq + sin * mrp;
+ btVector3& row = rot[i];
+ mrp = row[p];
+ mrq = row[q];
+ row[p] = cos * mrp - sin * mrq;
+ row[q] = cos * mrq + sin * mrp;
}
- }
}
+ }
-
- protected:
- /**@brief Calculate the matrix cofactor
- * @param r1 The first row to use for calculating the cofactor
- * @param c1 The first column to use for calculating the cofactor
- * @param r1 The second row to use for calculating the cofactor
- * @param c1 The second column to use for calculating the cofactor
- * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
- */
- btScalar cofac(int r1, int c1, int r2, int c2) const
- {
- return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
- }
- ///Data storage for the matrix, each vector is a row of the matrix
- btVector3 m_el[3];
- };
-
- SIMD_FORCE_INLINE btMatrix3x3&
- btMatrix3x3::operator*=(const btMatrix3x3& m)
- {
- setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
- m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
- m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
- return *this;
- }
-
- SIMD_FORCE_INLINE btScalar
- btMatrix3x3::determinant() const
- {
- return triple((*this)[0], (*this)[1], (*this)[2]);
- }
-
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::absolute() const
- {
- return btMatrix3x3(
- btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
- btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
- btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
- }
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::transpose() const
+ /**@brief Calculate the matrix cofactor
+ * @param r1 The first row to use for calculating the cofactor
+ * @param c1 The first column to use for calculating the cofactor
+ * @param r1 The second row to use for calculating the cofactor
+ * @param c1 The second column to use for calculating the cofactor
+ * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
+ */
+ btScalar cofac(int r1, int c1, int r2, int c2) const
{
- return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
- m_el[0].y(), m_el[1].y(), m_el[2].y(),
- m_el[0].z(), m_el[1].z(), m_el[2].z());
- }
-
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::adjoint() const
- {
- return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
- cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
- cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
- }
-
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::inverse() const
- {
- btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
- btScalar det = (*this)[0].dot(co);
- btFullAssert(det != btScalar(0.0));
- btScalar s = btScalar(1.0) / det;
- return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
- co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
- co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
- }
-
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
- {
- return btMatrix3x3(
- m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
- m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
- m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
- m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
- m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
- m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
- m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
- m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
- m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
- }
-
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
- {
- return btMatrix3x3(
- m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
- m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
- m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
-
+ return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
}
- SIMD_FORCE_INLINE btVector3
- operator*(const btMatrix3x3& m, const btVector3& v)
- {
- return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
- }
-
+ void serialize(struct btMatrix3x3Data& dataOut) const;
- SIMD_FORCE_INLINE btVector3
- operator*(const btVector3& v, const btMatrix3x3& m)
- {
- return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
- }
+ void serializeFloat(struct btMatrix3x3FloatData& dataOut) const;
- SIMD_FORCE_INLINE btMatrix3x3
- operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
- {
- return btMatrix3x3(
- m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
- m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
- m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
- }
+ void deSerialize(const struct btMatrix3x3Data& dataIn);
+
+ void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
+
+ void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
+
+};
+
+
+SIMD_FORCE_INLINE btMatrix3x3&
+btMatrix3x3::operator*=(const btMatrix3x3& m)
+{
+ setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
+ m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
+ m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
+ return *this;
+}
+
+SIMD_FORCE_INLINE btMatrix3x3&
+btMatrix3x3::operator+=(const btMatrix3x3& m)
+{
+ setValue(
+ m_el[0][0]+m.m_el[0][0],
+ m_el[0][1]+m.m_el[0][1],
+ m_el[0][2]+m.m_el[0][2],
+ m_el[1][0]+m.m_el[1][0],
+ m_el[1][1]+m.m_el[1][1],
+ m_el[1][2]+m.m_el[1][2],
+ m_el[2][0]+m.m_el[2][0],
+ m_el[2][1]+m.m_el[2][1],
+ m_el[2][2]+m.m_el[2][2]);
+ return *this;
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+operator*(const btMatrix3x3& m, const btScalar & k)
+{
+ return btMatrix3x3(
+ m[0].x()*k,m[0].y()*k,m[0].z()*k,
+ m[1].x()*k,m[1].y()*k,m[1].z()*k,
+ m[2].x()*k,m[2].y()*k,m[2].z()*k);
+}
+
+ SIMD_FORCE_INLINE btMatrix3x3
+operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
+{
+ return btMatrix3x3(
+ m1[0][0]+m2[0][0],
+ m1[0][1]+m2[0][1],
+ m1[0][2]+m2[0][2],
+ m1[1][0]+m2[1][0],
+ m1[1][1]+m2[1][1],
+ m1[1][2]+m2[1][2],
+ m1[2][0]+m2[2][0],
+ m1[2][1]+m2[2][1],
+ m1[2][2]+m2[2][2]);
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
+{
+ return btMatrix3x3(
+ m1[0][0]-m2[0][0],
+ m1[0][1]-m2[0][1],
+ m1[0][2]-m2[0][2],
+ m1[1][0]-m2[1][0],
+ m1[1][1]-m2[1][1],
+ m1[1][2]-m2[1][2],
+ m1[2][0]-m2[2][0],
+ m1[2][1]-m2[2][1],
+ m1[2][2]-m2[2][2]);
+}
+
+
+SIMD_FORCE_INLINE btMatrix3x3&
+btMatrix3x3::operator-=(const btMatrix3x3& m)
+{
+ setValue(
+ m_el[0][0]-m.m_el[0][0],
+ m_el[0][1]-m.m_el[0][1],
+ m_el[0][2]-m.m_el[0][2],
+ m_el[1][0]-m.m_el[1][0],
+ m_el[1][1]-m.m_el[1][1],
+ m_el[1][2]-m.m_el[1][2],
+ m_el[2][0]-m.m_el[2][0],
+ m_el[2][1]-m.m_el[2][1],
+ m_el[2][2]-m.m_el[2][2]);
+ return *this;
+}
+
+
+SIMD_FORCE_INLINE btScalar
+btMatrix3x3::determinant() const
+{
+ return btTriple((*this)[0], (*this)[1], (*this)[2]);
+}
+
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::absolute() const
+{
+ return btMatrix3x3(
+ btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
+ btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
+ btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::transpose() const
+{
+ return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
+ m_el[0].y(), m_el[1].y(), m_el[2].y(),
+ m_el[0].z(), m_el[1].z(), m_el[2].z());
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::adjoint() const
+{
+ return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
+ cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
+ cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::inverse() const
+{
+ btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
+ btScalar det = (*this)[0].dot(co);
+ btFullAssert(det != btScalar(0.0));
+ btScalar s = btScalar(1.0) / det;
+ return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
+ co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
+ co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
+{
+ return btMatrix3x3(
+ m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
+ m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
+ m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
+ m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
+ m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
+ m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
+ m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
+ m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
+ m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
+{
+ return btMatrix3x3(
+ m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
+ m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
+ m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
+
+}
+
+SIMD_FORCE_INLINE btVector3
+operator*(const btMatrix3x3& m, const btVector3& v)
+{
+ return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
+}
+
+
+SIMD_FORCE_INLINE btVector3
+operator*(const btVector3& v, const btMatrix3x3& m)
+{
+ return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
+{
+ return btMatrix3x3(
+ m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
+ m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
+ m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
+}
/*
- SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
- return btMatrix3x3(
- m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
- m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
- m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
- m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
- m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
- m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
- m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
- m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
- m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
+SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
+return btMatrix3x3(
+m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
+m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
+m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
+m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
+m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
+m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
+m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
+m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
+m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
}
*/
/**@brief Equality operator between two matrices
- * It will test all elements are equal. */
+* It will test all elements are equal. */
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
- return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
- m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
- m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
+ return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
+ m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
+ m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
+}
+
+///for serialization
+struct btMatrix3x3FloatData
+{
+ btVector3FloatData m_el[3];
+};
+
+///for serialization
+struct btMatrix3x3DoubleData
+{
+ btVector3DoubleData m_el[3];
+};
+
+
+
+
+SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
+{
+ for (int i=0;i<3;i++)
+ m_el[i].serialize(dataOut.m_el[i]);
}
-#endif
+SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
+{
+ for (int i=0;i<3;i++)
+ m_el[i].serializeFloat(dataOut.m_el[i]);
+}
+
+
+SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
+{
+ for (int i=0;i<3;i++)
+ m_el[i].deSerialize(dataIn.m_el[i]);
+}
+
+SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
+{
+ for (int i=0;i<3;i++)
+ m_el[i].deSerializeFloat(dataIn.m_el[i]);
+}
+
+SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
+{
+ for (int i=0;i<3;i++)
+ m_el[i].deSerializeDouble(dataIn.m_el[i]);
+}
+
+#endif //BT_MATRIX3x3_H
+