Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSergey Sharybin <sergey.vfx@gmail.com>2014-01-30 16:32:23 +0400
committerSergey Sharybin <sergey.vfx@gmail.com>2014-02-13 15:16:53 +0400
commit83617d24d536ec234bbe53b8b0fbcb76e7b5b3ee (patch)
tree1db7504aefb527fefb9fa5c1beb7115fa16b5950 /extern/carve/carve-util.cc
parent51efa8a1f53f230b72210289483dae66f01de51a (diff)
Rework carve integration into boolean modifier
Goal of this commit is to support NGons for boolean modifier (currently mesh is being tessellated before performing boolean operation) and also solve the limitation of loosing edge custom data layers after boolean operation is performed. Main idea is to make it so boolean modifier uses Carve library directly via it's C-API, avoiding BSP intermediate level which was doubling amount of memory needed for the operation and which also used quite reasonable amount of overhead time. Perhaps memory usage and CPU usage are the same after all the features are implemented but we've got support now: - ORIGINDEX for all the geometry - Interpolation of edge custom data (seams, crease) - NGons support Triangulation rule is changed now as well, so now non-flat polygons are not being merged back after Carve work. This is so because it's not so trivial to support for NGons and having different behavior for quads and NGons is even more creepy. Reviewers: lukastoenne, campbellbarton Differential Revision: https://developer.blender.org/D274
Diffstat (limited to 'extern/carve/carve-util.cc')
-rw-r--r--extern/carve/carve-util.cc778
1 files changed, 778 insertions, 0 deletions
diff --git a/extern/carve/carve-util.cc b/extern/carve/carve-util.cc
new file mode 100644
index 00000000000..b1f9ffbb769
--- /dev/null
+++ b/extern/carve/carve-util.cc
@@ -0,0 +1,778 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2014 Blender Foundation.
+ * All rights reserved.
+ *
+ * Contributor(s): Blender Foundation,
+ * Sergey Sharybin
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "carve-util.h"
+#include "carve-capi.h"
+
+#include <cfloat>
+#include <carve/csg.hpp>
+#include <carve/csg_triangulator.hpp>
+#include <carve/rtree.hpp>
+
+using carve::csg::Intersections;
+using carve::geom::aabb;
+using carve::geom::RTreeNode;
+using carve::geom3d::Vector;
+using carve::math::Matrix3;
+using carve::mesh::Face;
+using carve::mesh::MeshSet;
+using carve::triangulate::triangulate;
+
+typedef std::map< MeshSet<3>::mesh_t*, RTreeNode<3, Face<3> *> * > RTreeCache;
+typedef std::map< MeshSet<3>::mesh_t*, bool > IntersectCache;
+
+namespace {
+
+// Functions adopted from BLI_math.h to use Carve Vector and Matrix.
+
+void axis_angle_normalized_to_mat3(const Vector &normal,
+ const double angle,
+ Matrix3 *matrix)
+{
+ double nsi[3], co, si, ico;
+
+ /* now convert this to a 3x3 matrix */
+ co = cos(angle);
+ si = sin(angle);
+
+ ico = (1.0 - co);
+ nsi[0] = normal[0] * si;
+ nsi[1] = normal[1] * si;
+ nsi[2] = normal[2] * si;
+
+ matrix->m[0][0] = ((normal[0] * normal[0]) * ico) + co;
+ matrix->m[0][1] = ((normal[0] * normal[1]) * ico) + nsi[2];
+ matrix->m[0][2] = ((normal[0] * normal[2]) * ico) - nsi[1];
+ matrix->m[1][0] = ((normal[0] * normal[1]) * ico) - nsi[2];
+ matrix->m[1][1] = ((normal[1] * normal[1]) * ico) + co;
+ matrix->m[1][2] = ((normal[1] * normal[2]) * ico) + nsi[0];
+ matrix->m[2][0] = ((normal[0] * normal[2]) * ico) + nsi[1];
+ matrix->m[2][1] = ((normal[1] * normal[2]) * ico) - nsi[0];
+ matrix->m[2][2] = ((normal[2] * normal[2]) * ico) + co;
+}
+
+void axis_angle_to_mat3(const Vector &axis,
+ const double angle,
+ Matrix3 *matrix)
+{
+ if (axis.length2() < FLT_EPSILON) {
+ *matrix = Matrix3();
+ return;
+ }
+
+ Vector nor = axis;
+ nor.normalize();
+
+ axis_angle_normalized_to_mat3(nor, angle, matrix);
+}
+
+inline double saacos(double fac)
+{
+ if (fac <= -1.0) return M_PI;
+ else if (fac >= 1.0) return 0.0;
+ else return acos(fac);
+}
+
+bool axis_dominant_v3_to_m3(const Vector &normal,
+ Matrix3 *matrix)
+{
+ Vector up;
+ Vector axis;
+ double angle;
+
+ up.x = 0.0;
+ up.y = 0.0;
+ up.z = 1.0;
+
+ axis = carve::geom::cross(normal, up);
+ angle = saacos(carve::geom::dot(normal, up));
+
+ if (angle >= FLT_EPSILON) {
+ if (axis.length2() < FLT_EPSILON) {
+ axis[0] = 0.0;
+ axis[1] = 1.0;
+ axis[2] = 0.0;
+ }
+
+ axis_angle_to_mat3(axis, angle, matrix);
+ return true;
+ }
+ else {
+ *matrix = Matrix3();
+ return false;
+ }
+}
+
+void meshset_minmax(const MeshSet<3> *mesh,
+ Vector *min,
+ Vector *max)
+{
+ for (uint i = 0; i < mesh->vertex_storage.size(); ++i) {
+ min->x = std::min(min->x, mesh->vertex_storage[i].v.x);
+ min->y = std::min(min->y, mesh->vertex_storage[i].v.y);
+ min->z = std::min(min->z, mesh->vertex_storage[i].v.z);
+ max->x = std::max(max->x, mesh->vertex_storage[i].v.x);
+ max->y = std::max(max->y, mesh->vertex_storage[i].v.y);
+ max->z = std::max(max->z, mesh->vertex_storage[i].v.z);
+ }
+}
+
+} // namespace
+
+void carve_getRescaleMinMax(const MeshSet<3> *left,
+ const MeshSet<3> *right,
+ Vector *min,
+ Vector *max)
+{
+ min->x = max->x = left->vertex_storage[0].v.x;
+ min->y = max->y = left->vertex_storage[0].v.y;
+ min->z = max->z = left->vertex_storage[0].v.z;
+
+ meshset_minmax(left, min, max);
+ meshset_minmax(right, min, max);
+
+ // Make sure we don't scale object with zero scale.
+ if (std::abs(min->x - max->x) < carve::EPSILON) {
+ min->x = -1.0;
+ max->x = 1.0;
+ }
+ if (std::abs(min->y - max->y) < carve::EPSILON) {
+ min->y = -1.0;
+ max->y = 1.0;
+ }
+ if (std::abs(min->z - max->z) < carve::EPSILON) {
+ min->z = -1.0;
+ max->z = 1.0;
+ }
+}
+
+namespace {
+
+void copyMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes,
+ std::vector<MeshSet<3>::mesh_t*> *new_meshes)
+{
+ std::vector<MeshSet<3>::mesh_t*>::const_iterator it = meshes.begin();
+ new_meshes->reserve(meshes.size());
+ for (; it != meshes.end(); it++) {
+ MeshSet<3>::mesh_t *mesh = *it;
+ MeshSet<3>::mesh_t *new_mesh = new MeshSet<3>::mesh_t(mesh->faces);
+
+ new_meshes->push_back(new_mesh);
+ }
+}
+
+MeshSet<3> *meshSetFromMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes)
+{
+ std::vector<MeshSet<3>::mesh_t*> new_meshes;
+
+ copyMeshes(meshes, &new_meshes);
+
+ return new MeshSet<3>(new_meshes);
+}
+
+MeshSet<3> *meshSetFromTwoMeshes(const std::vector<MeshSet<3>::mesh_t*> &left_meshes,
+ const std::vector<MeshSet<3>::mesh_t*> &right_meshes)
+{
+ std::vector<MeshSet<3>::mesh_t*> new_meshes;
+
+ copyMeshes(left_meshes, &new_meshes);
+ copyMeshes(right_meshes, &new_meshes);
+
+ return new MeshSet<3>(new_meshes);
+}
+
+bool checkEdgeFaceIntersections_do(Intersections &intersections,
+ MeshSet<3>::face_t *face_a,
+ MeshSet<3>::edge_t *edge_b)
+{
+ if (intersections.intersects(edge_b, face_a))
+ return true;
+
+ carve::mesh::MeshSet<3>::vertex_t::vector_t _p;
+ if (face_a->simpleLineSegmentIntersection(carve::geom3d::LineSegment(edge_b->v1()->v, edge_b->v2()->v), _p))
+ return true;
+
+ return false;
+}
+
+bool checkEdgeFaceIntersections(Intersections &intersections,
+ MeshSet<3>::face_t *face_a,
+ MeshSet<3>::face_t *face_b)
+{
+ MeshSet<3>::edge_t *edge_b;
+
+ edge_b = face_b->edge;
+ do {
+ if (checkEdgeFaceIntersections_do(intersections, face_a, edge_b))
+ return true;
+ edge_b = edge_b->next;
+ } while (edge_b != face_b->edge);
+
+ return false;
+}
+
+inline bool facesAreCoplanar(const MeshSet<3>::face_t *a, const MeshSet<3>::face_t *b)
+{
+ carve::geom3d::Ray temp;
+ // XXX: Find a better definition. This may be a source of problems
+ // if floating point inaccuracies cause an incorrect answer.
+ return !carve::geom3d::planeIntersection(a->plane, b->plane, temp);
+}
+
+bool checkMeshSetInterseciton_do(Intersections &intersections,
+ const RTreeNode<3, Face<3> *> *a_node,
+ const RTreeNode<3, Face<3> *> *b_node,
+ bool descend_a = true)
+{
+ if (!a_node->bbox.intersects(b_node->bbox)) {
+ return false;
+ }
+
+ if (a_node->child && (descend_a || !b_node->child)) {
+ for (RTreeNode<3, Face<3> *> *node = a_node->child; node; node = node->sibling) {
+ if (checkMeshSetInterseciton_do(intersections, node, b_node, false)) {
+ return true;
+ }
+ }
+ }
+ else if (b_node->child) {
+ for (RTreeNode<3, Face<3> *> *node = b_node->child; node; node = node->sibling) {
+ if (checkMeshSetInterseciton_do(intersections, a_node, node, true)) {
+ return true;
+ }
+ }
+ }
+ else {
+ for (size_t i = 0; i < a_node->data.size(); ++i) {
+ MeshSet<3>::face_t *fa = a_node->data[i];
+ aabb<3> aabb_a = fa->getAABB();
+ if (aabb_a.maxAxisSeparation(b_node->bbox) > carve::EPSILON) {
+ continue;
+ }
+
+ for (size_t j = 0; j < b_node->data.size(); ++j) {
+ MeshSet<3>::face_t *fb = b_node->data[j];
+ aabb<3> aabb_b = fb->getAABB();
+ if (aabb_b.maxAxisSeparation(aabb_a) > carve::EPSILON) {
+ continue;
+ }
+
+ std::pair<double, double> a_ra = fa->rangeInDirection(fa->plane.N, fa->edge->vert->v);
+ std::pair<double, double> b_ra = fb->rangeInDirection(fa->plane.N, fa->edge->vert->v);
+ if (carve::rangeSeparation(a_ra, b_ra) > carve::EPSILON) {
+ continue;
+ }
+
+ std::pair<double, double> a_rb = fa->rangeInDirection(fb->plane.N, fb->edge->vert->v);
+ std::pair<double, double> b_rb = fb->rangeInDirection(fb->plane.N, fb->edge->vert->v);
+ if (carve::rangeSeparation(a_rb, b_rb) > carve::EPSILON) {
+ continue;
+ }
+
+ if (!facesAreCoplanar(fa, fb)) {
+ if (checkEdgeFaceIntersections(intersections, fa, fb)) {
+ return true;
+ }
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+bool checkMeshSetInterseciton(RTreeNode<3, Face<3> *> *rtree_a, RTreeNode<3, Face<3> *> *rtree_b)
+{
+ Intersections intersections;
+ return checkMeshSetInterseciton_do(intersections, rtree_a, rtree_b);
+}
+
+void getIntersectedOperandMeshes(std::vector<MeshSet<3>::mesh_t*> *meshes,
+ const MeshSet<3>::aabb_t &otherAABB,
+ std::vector<MeshSet<3>::mesh_t*> *operandMeshes,
+ RTreeCache *rtree_cache,
+ IntersectCache *intersect_cache)
+{
+ std::vector<MeshSet<3>::mesh_t*>::iterator it = meshes->begin();
+ std::vector< RTreeNode<3, Face<3> *> *> meshRTree;
+
+ while (it != meshes->end()) {
+ MeshSet<3>::mesh_t *mesh = *it;
+ bool isAdded = false;
+
+ RTreeNode<3, Face<3> *> *rtree;
+ bool intersects;
+
+ RTreeCache::iterator rtree_found = rtree_cache->find(mesh);
+ if (rtree_found != rtree_cache->end()) {
+ rtree = rtree_found->second;
+ }
+ else {
+ rtree = RTreeNode<3, Face<3> *>::construct_STR(mesh->faces.begin(), mesh->faces.end(), 4, 4);
+ (*rtree_cache)[mesh] = rtree;
+ }
+
+ IntersectCache::iterator intersect_found = intersect_cache->find(mesh);
+ if (intersect_found != intersect_cache->end()) {
+ intersects = intersect_found->second;
+ }
+ else {
+ intersects = rtree->bbox.intersects(otherAABB);
+ (*intersect_cache)[mesh] = intersects;
+ }
+
+ if (intersects) {
+ bool isIntersect = false;
+
+ std::vector<MeshSet<3>::mesh_t*>::iterator operand_it = operandMeshes->begin();
+ std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
+ for (; operand_it!=operandMeshes->end(); operand_it++, tree_it++) {
+ RTreeNode<3, Face<3> *> *operandRTree = *tree_it;
+
+ if (checkMeshSetInterseciton(rtree, operandRTree)) {
+ isIntersect = true;
+ break;
+ }
+ }
+
+ if (!isIntersect) {
+ operandMeshes->push_back(mesh);
+ meshRTree.push_back(rtree);
+
+ it = meshes->erase(it);
+ isAdded = true;
+ }
+ }
+
+ if (!isAdded) {
+ //delete rtree;
+ it++;
+ }
+ }
+
+ std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
+ for (; tree_it != meshRTree.end(); tree_it++) {
+ //delete *tree_it;
+ }
+}
+
+MeshSet<3> *getIntersectedOperand(std::vector<MeshSet<3>::mesh_t*> *meshes,
+ const MeshSet<3>::aabb_t &otherAABB,
+ RTreeCache *rtree_cache,
+ IntersectCache *intersect_cache)
+{
+ std::vector<MeshSet<3>::mesh_t*> operandMeshes;
+ getIntersectedOperandMeshes(meshes, otherAABB, &operandMeshes, rtree_cache, intersect_cache);
+
+ if (operandMeshes.size() == 0)
+ return NULL;
+
+ return meshSetFromMeshes(operandMeshes);
+}
+
+MeshSet<3> *unionIntersectingMeshes(carve::csg::CSG *csg,
+ MeshSet<3> *poly,
+ const MeshSet<3>::aabb_t &otherAABB)
+{
+ if (poly->meshes.size() <= 1) {
+ return poly;
+ }
+
+ std::vector<MeshSet<3>::mesh_t*> orig_meshes =
+ std::vector<MeshSet<3>::mesh_t*>(poly->meshes.begin(), poly->meshes.end());
+
+ RTreeCache rtree_cache;
+ IntersectCache intersect_cache;
+
+ MeshSet<3> *left = getIntersectedOperand(&orig_meshes,
+ otherAABB,
+ &rtree_cache,
+ &intersect_cache);
+
+ if (!left) {
+ // No maniforlds which intersects another object at all.
+ return poly;
+ }
+
+ while (orig_meshes.size()) {
+ MeshSet<3> *right = getIntersectedOperand(&orig_meshes,
+ otherAABB,
+ &rtree_cache,
+ &intersect_cache);
+
+ if (!right) {
+ // No more intersecting manifolds which intersects other object
+ break;
+ }
+
+ try {
+ if (left->meshes.size()==0) {
+ delete left;
+
+ left = right;
+ }
+ else {
+ MeshSet<3> *result = csg->compute(left, right,
+ carve::csg::CSG::UNION,
+ NULL, carve::csg::CSG::CLASSIFY_EDGE);
+
+ delete left;
+ delete right;
+
+ left = result;
+ }
+ }
+ catch (carve::exception e) {
+ std::cerr << "CSG failed, exception " << e.str() << std::endl;
+
+ MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, right->meshes);
+
+ delete left;
+ delete right;
+
+ left = result;
+ }
+ catch (...) {
+ delete left;
+ delete right;
+
+ throw "Unknown error in Carve library";
+ }
+ }
+
+ for (RTreeCache::iterator it = rtree_cache.begin();
+ it != rtree_cache.end();
+ it++)
+ {
+ delete it->second;
+ }
+
+ // Append all meshes which doesn't have intersection with another operand as-is.
+ if (orig_meshes.size()) {
+ MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, orig_meshes);
+
+ delete left;
+ left = result;
+ }
+
+ return left;
+}
+
+} // namespace
+
+// TODO(sergey): This function is to be totally re-implemented to make it
+// more clear what's going on and hopefully optimize it as well.
+void carve_unionIntersections(carve::csg::CSG *csg,
+ MeshSet<3> **left_r,
+ MeshSet<3> **right_r)
+{
+ MeshSet<3> *left = *left_r, *right = *right_r;
+
+ if (left->meshes.size() == 1 && right->meshes.size() == 0) {
+ return;
+ }
+
+ MeshSet<3>::aabb_t leftAABB = left->getAABB();
+ MeshSet<3>::aabb_t rightAABB = right->getAABB();;
+
+ left = unionIntersectingMeshes(csg, left, rightAABB);
+ right = unionIntersectingMeshes(csg, right, leftAABB);
+
+ if (left != *left_r) {
+ delete *left_r;
+ }
+
+ if (right != *right_r)
+ delete *right_r;
+
+ *left_r = left;
+ *right_r = right;
+}
+
+static inline void add_newell_cross_v3_v3v3(const Vector &v_prev,
+ const Vector &v_curr,
+ Vector *n)
+{
+ (*n)[0] += (v_prev[1] - v_curr[1]) * (v_prev[2] + v_curr[2]);
+ (*n)[1] += (v_prev[2] - v_curr[2]) * (v_prev[0] + v_curr[0]);
+ (*n)[2] += (v_prev[0] - v_curr[0]) * (v_prev[1] + v_curr[1]);
+}
+
+// Axis matrix is being set for non-flat ngons only.
+bool carve_checkPolyPlanarAndGetNormal(const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ Matrix3 *axis_matrix_r)
+{
+ if (verts_per_poly == 3) {
+ // Triangles are always planar.
+ return true;
+ }
+ else if (verts_per_poly == 4) {
+ // Presumably faster than using generig n-gon check for quads.
+
+ const Vector &v1 = vertices[verts_of_poly[0]],
+ &v2 = vertices[verts_of_poly[1]],
+ &v3 = vertices[verts_of_poly[2]],
+ &v4 = vertices[verts_of_poly[3]];
+
+ Vector vec1, vec2, vec3, cross;
+
+ vec1 = v2 - v1;
+ vec2 = v4 - v1;
+ vec3 = v3 - v1;
+
+ cross = carve::geom::cross(vec1, vec2);
+
+ double production = carve::geom::dot(cross, vec3);
+
+ // TODO(sergey): Check on whether we could have length-independent
+ // magnitude here.
+ double magnitude = 1e-3 * cross.length2();
+
+ return fabs(production) < magnitude;
+ }
+ else {
+ const Vector *vert_prev = &vertices[verts_of_poly[verts_per_poly - 1]];
+ const Vector *vert_curr = &vertices[verts_of_poly[0]];
+
+ Vector normal = carve::geom::VECTOR(0.0, 0.0, 0.0);
+ for (int i = 0; i < verts_per_poly; i++) {
+ add_newell_cross_v3_v3v3(*vert_prev, *vert_curr, &normal);
+ vert_prev = vert_curr;
+ vert_curr = &vertices[verts_of_poly[(i + 1) % verts_per_poly]];
+ }
+
+ if (normal.length2() < FLT_EPSILON) {
+ // Degenerated face, couldn't triangulate properly anyway.
+ return true;
+ }
+ else {
+ double magnitude = normal.length2();
+
+ normal.normalize();
+ axis_dominant_v3_to_m3(normal, axis_matrix_r);
+
+ Vector first_projected = *axis_matrix_r * vertices[verts_of_poly[0]];
+ double min_z = first_projected[2], max_z = first_projected[2];
+
+ for (int i = 1; i < verts_per_poly; i++) {
+ const Vector &vertex = vertices[verts_of_poly[i]];
+ Vector projected = *axis_matrix_r * vertex;
+ if (projected[2] < min_z) {
+ min_z = projected[2];
+ }
+ if (projected[2] > max_z) {
+ max_z = projected[2];
+ }
+ }
+
+ if (std::abs(min_z - max_z) > FLT_EPSILON * magnitude) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+namespace {
+
+int triangulateNGon_carveTriangulator(const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ const Matrix3 &axis_matrix,
+ std::vector<carve::triangulate::tri_idx> *triangles)
+{
+ // Project vertices to 2D plane.
+ Vector projected;
+ std::vector<carve::geom::vector<2> > poly_2d;
+ poly_2d.reserve(verts_per_poly);
+ for (int i = 0; i < verts_per_poly; ++i) {
+ projected = axis_matrix * vertices[verts_of_poly[i]];
+ poly_2d.push_back(carve::geom::VECTOR(projected[0], projected[1]));
+ }
+
+ carve::triangulate::triangulate(poly_2d, *triangles);
+
+ return triangles->size();
+}
+
+int triangulateNGon_importerTriangulator(struct ImportMeshData *import_data,
+ CarveMeshImporter *mesh_importer,
+ const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ const Matrix3 &axis_matrix,
+ std::vector<carve::triangulate::tri_idx> *triangles)
+{
+ typedef float Vector2D[2];
+ typedef unsigned int Triangle[3];
+
+ // Project vertices to 2D plane.
+ Vector2D *poly_2d = new Vector2D[verts_per_poly];
+ Vector projected;
+ for (int i = 0; i < verts_per_poly; ++i) {
+ projected = axis_matrix * vertices[verts_of_poly[i]];
+ poly_2d[i][0] = projected[0];
+ poly_2d[i][1] = projected[1];
+ }
+
+ Triangle *api_triangles = new Triangle[verts_per_poly - 2];
+ int num_triangles =
+ mesh_importer->triangulate2DPoly(import_data,
+ poly_2d,
+ verts_per_poly,
+ api_triangles);
+
+ triangles->reserve(num_triangles);
+ for (int i = 0; i < num_triangles; ++i) {
+ triangles->push_back(
+ carve::triangulate::tri_idx(api_triangles[i][0],
+ api_triangles[i][1],
+ api_triangles[i][2]));
+ }
+
+ delete poly_2d;
+ delete api_triangles;
+
+ return num_triangles;
+}
+
+} // namespace
+
+int carve_triangulatePoly(struct ImportMeshData *import_data,
+ CarveMeshImporter *mesh_importer,
+ int poly_index,
+ int start_loop_index,
+ const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ const Matrix3 &axis_matrix,
+ std::vector<int> *face_indices,
+ std::vector<int> *orig_loop_index_map,
+ std::vector<int> *orig_poly_index_map)
+{
+ int num_triangles = 0;
+
+ assert(verts_per_poly > 3);
+
+ if (verts_per_poly == 4) {
+ // Quads we triangulate by 1-3 diagonal, it is an original behavior
+ // of boolean modifier.
+ //
+ // TODO(sergey): Consider using shortest diagonal here. However
+ // display code in Blende use static 1-3 split, so some experiments
+ // are needed here.
+ face_indices->push_back(3);
+ face_indices->push_back(verts_of_poly[0]);
+ face_indices->push_back(verts_of_poly[1]);
+ face_indices->push_back(verts_of_poly[2]);
+
+ orig_loop_index_map->push_back(start_loop_index);
+ orig_loop_index_map->push_back(start_loop_index + 1);
+ orig_loop_index_map->push_back(-1);
+ orig_poly_index_map->push_back(poly_index);
+
+ face_indices->push_back(3);
+ face_indices->push_back(verts_of_poly[0]);
+ face_indices->push_back(verts_of_poly[2]);
+ face_indices->push_back(verts_of_poly[3]);
+
+ orig_loop_index_map->push_back(-1);
+ orig_loop_index_map->push_back(start_loop_index + 2);
+ orig_loop_index_map->push_back(start_loop_index + 3);
+ orig_poly_index_map->push_back(poly_index);
+
+ num_triangles = 2;
+ }
+ else {
+ std::vector<carve::triangulate::tri_idx> triangles;
+ triangles.reserve(verts_per_poly - 2);
+
+ // Make triangulator callback optional so we could do some tests
+ // in the future.
+ if (mesh_importer->triangulate2DPoly) {
+ num_triangles =
+ triangulateNGon_importerTriangulator(import_data,
+ mesh_importer,
+ vertices,
+ verts_per_poly,
+ verts_of_poly,
+ axis_matrix,
+ &triangles);
+ }
+ else {
+ num_triangles =
+ triangulateNGon_carveTriangulator(vertices,
+ verts_per_poly,
+ verts_of_poly,
+ axis_matrix,
+ &triangles);
+ }
+
+ for (int i = 0; i < triangles.size(); ++i) {
+ int v1 = triangles[i].c,
+ v2 = triangles[i].b,
+ v3 = triangles[i].a;
+
+ // Sanity check of the triangle.
+ assert(v1 != v2);
+ assert(v1 != v3);
+ assert(v2 != v3);
+ assert(v1 < verts_per_poly);
+ assert(v2 < verts_per_poly);
+ assert(v3 < verts_per_poly);
+
+ face_indices->push_back(3);
+ face_indices->push_back(verts_of_poly[v3]);
+ face_indices->push_back(verts_of_poly[v2]);
+ face_indices->push_back(verts_of_poly[v1]);
+
+#define CHECK_TRIANGLE_LOOP_INDEX(v1, v2) \
+ { \
+ if (v2 == v1 + 1) { \
+ orig_loop_index_map->push_back(start_loop_index + v1); \
+ } \
+ else { \
+ orig_loop_index_map->push_back(-1); \
+ } \
+ } (void) 0
+
+ CHECK_TRIANGLE_LOOP_INDEX(v1, v2);
+ CHECK_TRIANGLE_LOOP_INDEX(v2, v3);
+ CHECK_TRIANGLE_LOOP_INDEX(v3, v1);
+
+#undef CHECK_TRIANGLE_LOOP_INDEX
+
+ orig_poly_index_map->push_back(poly_index);
+ }
+ }
+
+ return num_triangles;
+}