Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSergey Sharybin <sergey.vfx@gmail.com>2012-01-16 20:46:00 +0400
committerSergey Sharybin <sergey.vfx@gmail.com>2012-01-16 20:46:00 +0400
commite81f2853c8785b0a84ecebf7c4db433af434c5c8 (patch)
treef3145e592452e5d2cb2d162ec53813f0e552a2fe /extern/carve/lib/polyhedron.cpp
parentc150d0084f0e1cf86f063d993b31d02fc3e9c71f (diff)
Carve booleans library integration
================================== Merging Carve library integration project into the trunk. This commit switches Boolean modifier to another library which handles mesh boolean operations in much stable and faster way, resolving old well-known limitations of intern boolop library. Carve is integrating as alternative interface for boolop library and which makes it totally transparent for blender sources to switch between old-fashioned boolop and new Carve backends. Detailed changes in this commit: - Integrated needed subset of Carve library sources into extern/ Added script for re-bundling it (currently works only if repo was cloned by git-svn). - Added BOP_CarveInterface for boolop library which can be used by Boolean modifier. - Carve backend is enabled by default, can be disabled by WITH_BF_CARVE SCons option and WITH_CARVE CMake option. - If Boost library is found in build environment it'll be used for unordered collections. If Boost isn't found, it'll fallback to TR1 implementation for GCC compilers. Boost is obligatory if MSVC is used. Tested on Linux 64bit and Windows 7 64bit. NOTE: behavior of flat objects was changed. E.g. Plane-Sphere now gives plane with circle hole, not plane with semisphere. Don't think it's really issue because it's not actually defined behavior in such situations and both of ways might be useful. Since it's only known "regression" think it's OK to deal with it. Details are there http://wiki.blender.org/index.php/User:Nazg-gul/CarveBooleans Special thanks to: - Ken Hughes: author of original carve integration patch. - Campbell Barton: help in project development, review tests. - Tobias Sargeant: author of Carve library, help in resolving some merge stoppers, bug fixing.
Diffstat (limited to 'extern/carve/lib/polyhedron.cpp')
-rw-r--r--extern/carve/lib/polyhedron.cpp1103
1 files changed, 1103 insertions, 0 deletions
diff --git a/extern/carve/lib/polyhedron.cpp b/extern/carve/lib/polyhedron.cpp
new file mode 100644
index 00000000000..93e667ffaf7
--- /dev/null
+++ b/extern/carve/lib/polyhedron.cpp
@@ -0,0 +1,1103 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#if defined(CARVE_DEBUG)
+#define DEBUG_CONTAINS_VERTEX
+#endif
+
+#include <carve/djset.hpp>
+
+#include <carve/geom.hpp>
+#include <carve/poly.hpp>
+
+#include <carve/octree_impl.hpp>
+
+#include <carve/timing.hpp>
+
+#include <algorithm>
+
+#include <carve/mesh.hpp>
+
+#include BOOST_INCLUDE(random.hpp)
+
+namespace {
+ bool emb_test(carve::poly::Polyhedron *poly,
+ std::map<int, std::set<int> > &embedding,
+ carve::geom3d::Vector v,
+ int m_id) {
+
+ std::map<int, carve::PointClass> result;
+#if defined(CARVE_DEBUG)
+ std::cerr << "test " << v << " (m_id:" << m_id << ")" << std::endl;
+#endif
+ poly->testVertexAgainstClosedManifolds(v, result, true);
+ std::set<int> inside;
+ for (std::map<int, carve::PointClass>::iterator j = result.begin();
+ j != result.end();
+ ++j) {
+ if ((*j).first == m_id) continue;
+ if ((*j).second == carve::POINT_IN) inside.insert((*j).first);
+ else if ((*j).second == carve::POINT_ON) {
+#if defined(CARVE_DEBUG)
+ std::cerr << " FAIL" << std::endl;
+#endif
+ return false;
+ }
+ }
+#if defined(CARVE_DEBUG)
+ std::cerr << " OK (inside.size()==" << inside.size() << ")" << std::endl;
+#endif
+ embedding[m_id] = inside;
+ return true;
+ }
+
+
+
+ struct order_faces {
+ bool operator()(const carve::poly::Polyhedron::face_t * const &a,
+ const carve::poly::Polyhedron::face_t * const &b) const {
+ return std::lexicographical_compare(a->vbegin(), a->vend(), b->vbegin(), b->vend());
+ }
+ };
+
+
+
+}
+
+
+
+namespace carve {
+ namespace poly {
+
+
+
+ bool Polyhedron::initSpatialIndex() {
+ static carve::TimingName FUNC_NAME("Polyhedron::initSpatialIndex()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ octree.setBounds(aabb);
+ octree.addFaces(faces);
+ octree.addEdges(edges);
+ octree.splitTree();
+
+ return true;
+ }
+
+
+
+ void Polyhedron::invertAll() {
+ for (size_t i = 0; i < faces.size(); ++i) {
+ faces[i].invert();
+ }
+
+ for (size_t i = 0; i < edges.size(); ++i) {
+ std::vector<const face_t *> &f = connectivity.edge_to_face[i];
+ for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
+ std::swap(f[j], f[j+1]);
+ }
+ }
+
+ for (size_t i = 0; i < manifold_is_negative.size(); ++i) {
+ manifold_is_negative[i] = !manifold_is_negative[i];
+ }
+ }
+
+
+
+ void Polyhedron::invert(const std::vector<bool> &selected_manifolds) {
+ bool altered = false;
+ for (size_t i = 0; i < faces.size(); ++i) {
+ if (faces[i].manifold_id >= 0 &&
+ (unsigned)faces[i].manifold_id < selected_manifolds.size() &&
+ selected_manifolds[faces[i].manifold_id]) {
+ altered = true;
+ faces[i].invert();
+ }
+ }
+
+ if (altered) {
+ for (size_t i = 0; i < edges.size(); ++i) {
+ std::vector<const face_t *> &f = connectivity.edge_to_face[i];
+ for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
+ int m_id = -1;
+ if (f[j]) m_id = f[j]->manifold_id;
+ if (f[j+1]) m_id = f[j+1]->manifold_id;
+ if (m_id >= 0 && (unsigned)m_id < selected_manifolds.size() && selected_manifolds[m_id]) {
+ std::swap(f[j], f[j+1]);
+ }
+ }
+ }
+
+ for (size_t i = 0; i < std::min(selected_manifolds.size(), manifold_is_negative.size()); ++i) {
+ manifold_is_negative[i] = !manifold_is_negative[i];
+ }
+ }
+ }
+
+
+
+ void Polyhedron::initVertexConnectivity() {
+ static carve::TimingName FUNC_NAME("static Polyhedron initVertexConnectivity()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ // allocate space for connectivity info.
+ connectivity.vertex_to_edge.resize(vertices.size());
+ connectivity.vertex_to_face.resize(vertices.size());
+
+ std::vector<size_t> vertex_face_count;
+
+ vertex_face_count.resize(vertices.size());
+
+ // work out how many faces/edges each vertex is connected to, in
+ // order to save on array reallocs.
+ for (unsigned i = 0; i < faces.size(); ++i) {
+ face_t &f = faces[i];
+ for (unsigned j = 0; j < f.nVertices(); j++) {
+ vertex_face_count[vertexToIndex_fast(f.vertex(j))]++;
+ }
+ }
+
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ connectivity.vertex_to_edge[i].reserve(vertex_face_count[i]);
+ connectivity.vertex_to_face[i].reserve(vertex_face_count[i]);
+ }
+
+ // record connectivity from vertex to edges.
+ for (size_t i = 0; i < edges.size(); ++i) {
+ size_t v1i = vertexToIndex_fast(edges[i].v1);
+ size_t v2i = vertexToIndex_fast(edges[i].v2);
+
+ connectivity.vertex_to_edge[v1i].push_back(&edges[i]);
+ connectivity.vertex_to_edge[v2i].push_back(&edges[i]);
+ }
+
+ // record connectivity from vertex to faces.
+ for (size_t i = 0; i < faces.size(); ++i) {
+ face_t &f = faces[i];
+ for (unsigned j = 0; j < f.nVertices(); j++) {
+ size_t vi = vertexToIndex_fast(f.vertex(j));
+ connectivity.vertex_to_face[vi].push_back(&f);
+ }
+ }
+ }
+
+
+
+ bool Polyhedron::initConnectivity() {
+ static carve::TimingName FUNC_NAME("Polyhedron::initConnectivity()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ // temporary measure: initialize connectivity by creating a
+ // half-edge mesh, and then converting back.
+
+ std::vector<mesh::Vertex<3> > vertex_storage;
+ vertex_storage.reserve(vertices.size());
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ vertex_storage.push_back(mesh::Vertex<3>(vertices[i].v));
+ }
+
+ std::vector<mesh::Face<3> *> mesh_faces;
+ std::unordered_map<const mesh::Face<3> *, size_t> face_map;
+ {
+ std::vector<mesh::Vertex<3> *> vert_ptrs;
+ for (size_t i = 0; i < faces.size(); ++i) {
+ const face_t &src = faces[i];
+ vert_ptrs.clear();
+ vert_ptrs.reserve(src.nVertices());
+ for (size_t j = 0; j < src.nVertices(); ++j) {
+ size_t vi = vertexToIndex_fast(src.vertex(j));
+ vert_ptrs.push_back(&vertex_storage[vi]);
+ }
+ mesh::Face<3> *face = new mesh::Face<3>(vert_ptrs.begin(), vert_ptrs.end());
+ mesh_faces.push_back(face);
+ face_map[face] = i;
+ }
+ }
+
+ std::vector<mesh::Mesh<3> *> meshes;
+ mesh::Mesh<3>::create(mesh_faces.begin(), mesh_faces.end(), meshes);
+ mesh::MeshSet<3> *meshset = new mesh::MeshSet<3>(vertex_storage, meshes);
+
+ manifold_is_closed.resize(meshset->meshes.size());
+ manifold_is_negative.resize(meshset->meshes.size());
+
+ std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> > edge_map;
+
+ if (meshset->vertex_storage.size()) {
+ mesh::Vertex<3> *Vbase = &meshset->vertex_storage[0];
+ for (size_t m = 0; m < meshset->meshes.size(); ++m) {
+ mesh::Mesh<3> *mesh = meshset->meshes[m];
+ manifold_is_closed[m] = mesh->isClosed();
+ for (size_t f = 0; f < mesh->faces.size(); ++f) {
+ mesh::Face<3> *src = mesh->faces[f];
+ mesh::Edge<3> *e = src->edge;
+ faces[face_map[src]].manifold_id = m;
+ do {
+ edge_map[std::make_pair(e->v1() - Vbase, e->v2() - Vbase)].push_back(e);
+ e = e->next;
+ } while (e != src->edge);
+ }
+ }
+ }
+
+ size_t n_edges = 0;
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) {
+ if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) {
+ n_edges++;
+ }
+ }
+
+ edges.clear();
+ edges.reserve(n_edges);
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) {
+ if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) {
+ edges.push_back(edge_t(&vertices[(*i).first.first], &vertices[(*i).first.second], this));
+ }
+ }
+
+ initVertexConnectivity();
+
+ for (size_t f = 0; f < faces.size(); ++f) {
+ face_t &face = faces[f];
+ size_t N = face.nVertices();
+ for (size_t v = 0; v < N; ++v) {
+ size_t v1i = vertexToIndex_fast(face.vertex(v));
+ size_t v2i = vertexToIndex_fast(face.vertex((v+1)%N));
+ std::vector<const edge_t *> found_edge;
+
+ CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end()));
+ CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end()));
+
+ std::set_intersection(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end(),
+ connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end(),
+ std::back_inserter(found_edge));
+
+ CARVE_ASSERT(found_edge.size() == 1);
+
+ face.edge(v) = found_edge[0];
+ }
+ }
+
+ connectivity.edge_to_face.resize(edges.size());
+
+ for (size_t i = 0; i < edges.size(); ++i) {
+ size_t v1i = vertexToIndex_fast(edges[i].v1);
+ size_t v2i = vertexToIndex_fast(edges[i].v2);
+ std::list<mesh::Edge<3> *> &efwd = edge_map[std::make_pair(v1i, v2i)];
+ std::list<mesh::Edge<3> *> &erev = edge_map[std::make_pair(v1i, v2i)];
+
+ for (std::list<mesh::Edge<3> *>::iterator j = efwd.begin(); j != efwd.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]);
+ if (edge->rev == NULL) {
+ connectivity.edge_to_face[i].push_back(NULL);
+ } else {
+ connectivity.edge_to_face[i].push_back(&faces[face_map[edge->rev->face]]);
+ }
+ }
+ }
+ for (std::list<mesh::Edge<3> *>::iterator j = erev.begin(); j != erev.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ if (edge->rev == NULL) {
+ connectivity.edge_to_face[i].push_back(NULL);
+ connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]);
+ }
+ }
+ }
+ }
+
+ delete meshset;
+
+ return true;
+ }
+
+
+
+ bool Polyhedron::calcManifoldEmbedding() {
+ // this could be significantly sped up using bounding box tests
+ // to work out what pairs of manifolds are embedding candidates.
+ // A per-manifold AABB could also be used to speed up
+ // testVertexAgainstClosedManifolds().
+
+ static carve::TimingName FUNC_NAME("Polyhedron::calcManifoldEmbedding()");
+ static carve::TimingName CME_V("Polyhedron::calcManifoldEmbedding() (vertices)");
+ static carve::TimingName CME_E("Polyhedron::calcManifoldEmbedding() (edges)");
+ static carve::TimingName CME_F("Polyhedron::calcManifoldEmbedding() (faces)");
+
+ carve::TimingBlock block(FUNC_NAME);
+
+ const unsigned MCOUNT = manifoldCount();
+ if (MCOUNT < 2) return true;
+
+ std::set<int> vertex_manifolds;
+ std::map<int, std::set<int> > embedding;
+
+ carve::Timing::start(CME_V);
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ vertex_manifolds.clear();
+ if (vertexManifolds(&vertices[i], set_inserter(vertex_manifolds)) != 1) continue;
+ int m_id = *vertex_manifolds.begin();
+ if (embedding.find(m_id) == embedding.end()) {
+ if (emb_test(this, embedding, vertices[i].v, m_id) && embedding.size() == MCOUNT) {
+ carve::Timing::stop();
+ goto done;
+ }
+ }
+ }
+ carve::Timing::stop();
+
+ carve::Timing::start(CME_E);
+ for (size_t i = 0; i < edges.size(); ++i) {
+ if (connectivity.edge_to_face[i].size() == 2) {
+ int m_id;
+ const face_t *f1 = connectivity.edge_to_face[i][0];
+ const face_t *f2 = connectivity.edge_to_face[i][1];
+ if (f1) m_id = f1->manifold_id;
+ if (f2) m_id = f2->manifold_id;
+ if (embedding.find(m_id) == embedding.end()) {
+ if (emb_test(this, embedding, (edges[i].v1->v + edges[i].v2->v) / 2, m_id) && embedding.size() == MCOUNT) {
+ carve::Timing::stop();
+ goto done;
+ }
+ }
+ }
+ }
+ carve::Timing::stop();
+
+ carve::Timing::start(CME_F);
+ for (size_t i = 0; i < faces.size(); ++i) {
+ int m_id = faces[i].manifold_id;
+ if (embedding.find(m_id) == embedding.end()) {
+ carve::geom2d::P2 pv;
+ if (!carve::geom2d::pickContainedPoint(faces[i].projectedVertices(), pv)) continue;
+ carve::geom3d::Vector v = carve::poly::face::unproject(faces[i], pv);
+ if (emb_test(this, embedding, v, m_id) && embedding.size() == MCOUNT) {
+ carve::Timing::stop();
+ goto done;
+ }
+ }
+ }
+ carve::Timing::stop();
+
+ CARVE_FAIL("could not find test points");
+
+ // std::cerr << "could not find test points!!!" << std::endl;
+ // return true;
+ done:;
+ for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << (*i).first << " : ";
+ std::copy((*i).second.begin(), (*i).second.end(), std::ostream_iterator<int>(std::cerr, ","));
+ std::cerr << std::endl;
+#endif
+ (*i).second.insert(-1);
+ }
+ std::set<int> parents, new_parents;
+ parents.insert(-1);
+
+ while (embedding.size()) {
+ new_parents.clear();
+ for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
+ if ((*i).second.size() == 1) {
+ if (parents.find(*(*i).second.begin()) != parents.end()) {
+ new_parents.insert((*i).first);
+#if defined(CARVE_DEBUG)
+ std::cerr << "parent(" << (*i).first << "): " << *(*i).second.begin() << std::endl;
+#endif
+ } else {
+#if defined(CARVE_DEBUG)
+ std::cerr << "no parent: " << (*i).first << " (looking for: " << *(*i).second.begin() << ")" << std::endl;
+#endif
+ }
+ }
+ }
+ for (std::set<int>::const_iterator i = new_parents.begin(); i != new_parents.end(); ++i) {
+ embedding.erase(*i);
+ }
+ for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
+ size_t n = 0;
+ for (std::set<int>::const_iterator j = parents.begin(); j != parents.end(); ++j) {
+ n += (*i).second.erase((*j));
+ }
+ CARVE_ASSERT(n != 0);
+ }
+ parents.swap(new_parents);
+ }
+
+ return true;
+ }
+
+
+
+ bool Polyhedron::init() {
+ static carve::TimingName FUNC_NAME("Polyhedron::init()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ aabb.fit(vertices.begin(), vertices.end(), vec_adapt_vertex_ref());
+
+ connectivity.vertex_to_edge.clear();
+ connectivity.vertex_to_face.clear();
+ connectivity.edge_to_face.clear();
+
+ if (!initConnectivity()) return false;
+ if (!initSpatialIndex()) return false;
+
+ return true;
+ }
+
+
+
+ void Polyhedron::faceRecalc() {
+ for (size_t i = 0; i < faces.size(); ++i) {
+ if (!faces[i].recalc()) {
+ std::ostringstream out;
+ out << "face " << i << " recalc failed";
+ throw carve::exception(out.str());
+ }
+ }
+ }
+
+
+
+ Polyhedron::Polyhedron(const Polyhedron &poly) {
+ faces.reserve(poly.faces.size());
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ faces.push_back(src);
+ }
+ commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(const Polyhedron &poly, const std::vector<bool> &selected_manifolds) {
+ size_t n_faces = 0;
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id >= 0 &&
+ (unsigned)src.manifold_id < selected_manifolds.size() &&
+ selected_manifolds[src.manifold_id]) {
+ n_faces++;
+ }
+ }
+
+ faces.reserve(n_faces);
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id >= 0 &&
+ (unsigned)src.manifold_id < selected_manifolds.size() &&
+ selected_manifolds[src.manifold_id]) {
+ faces.push_back(src);
+ }
+ }
+
+ commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(const Polyhedron &poly, int m_id) {
+ size_t n_faces = 0;
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id == m_id) n_faces++;
+ }
+
+ faces.reserve(n_faces);
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id == m_id) faces.push_back(src);
+ }
+
+ commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(const std::vector<carve::geom3d::Vector> &_vertices,
+ int n_faces,
+ const std::vector<int> &face_indices) {
+ // The polyhedron is defined by a vector of vertices, which we
+ // want to copy, and a face index list, from which we need to
+ // generate a set of Faces.
+
+ vertices.clear();
+ vertices.resize(_vertices.size());
+ for (size_t i = 0; i < _vertices.size(); ++i) {
+ vertices[i].v = _vertices[i];
+ }
+
+ faces.reserve(n_faces);
+
+ std::vector<int>::const_iterator iter = face_indices.begin();
+ std::vector<const vertex_t *> v;
+ for (int i = 0; i < n_faces; ++i) {
+ int vertexCount = *iter++;
+
+ v.clear();
+
+ while (vertexCount--) {
+ CARVE_ASSERT(*iter >= 0);
+ CARVE_ASSERT((unsigned)*iter < vertices.size());
+ v.push_back(&vertices[*iter++]);
+ }
+ faces.push_back(face_t(v));
+ }
+
+ setFaceAndVertexOwner();
+
+ if (!init()) {
+ throw carve::exception("polyhedron creation failed");
+ }
+ }
+
+
+
+ Polyhedron::Polyhedron(std::vector<face_t> &_faces,
+ std::vector<vertex_t> &_vertices,
+ bool _recalc) {
+ faces.swap(_faces);
+ vertices.swap(_vertices);
+
+ setFaceAndVertexOwner();
+
+ if (_recalc) faceRecalc();
+
+ if (!init()) {
+ throw carve::exception("polyhedron creation failed");
+ }
+ }
+
+
+
+ Polyhedron::Polyhedron(std::vector<face_t> &_faces,
+ bool _recalc) {
+ faces.swap(_faces);
+ commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(std::list<face_t> &_faces,
+ bool _recalc) {
+ faces.reserve(_faces.size());
+ std::copy(_faces.begin(), _faces.end(), std::back_inserter(faces));
+ commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
+ std::vector<vertex_t> &vertices,
+ std::unordered_map<const vertex_t *, const vertex_t *> &vmap) {
+ // Given a set of faces, copy all referenced vertices into a
+ // single vertex array and update the faces to point into that
+ // array. On exit, vmap contains a mapping from old pointer to
+ // new pointer.
+
+ vertices.clear();
+ vmap.clear();
+
+ for (size_t i = 0, il = faces.size(); i != il; ++i) {
+ face_t &f = faces[i];
+
+ for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
+ vmap[f.vertex(j)] = NULL;
+ }
+ }
+
+ vertices.reserve(vmap.size());
+
+ for (std::unordered_map<const vertex_t *, const vertex_t *>::iterator i = vmap.begin(),
+ e = vmap.end();
+ i != e;
+ ++i) {
+ vertices.push_back(*(*i).first);
+ (*i).second = &vertices.back();
+ }
+
+ for (size_t i = 0, il = faces.size(); i != il; ++i) {
+ face_t &f = faces[i];
+
+ for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
+ f.vertex(j) = vmap[f.vertex(j)];
+ }
+ }
+ }
+
+
+
+ void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
+ std::vector<vertex_t> &vertices) {
+ std::unordered_map<const vertex_t *, const vertex_t *> vmap;
+ collectFaceVertices(faces, vertices, vmap);
+ }
+
+
+
+ void Polyhedron::setFaceAndVertexOwner() {
+ for (size_t i = 0; i < vertices.size(); ++i) vertices[i].owner = this;
+ for (size_t i = 0; i < faces.size(); ++i) faces[i].owner = this;
+ }
+
+
+
+ void Polyhedron::commonFaceInit(bool _recalc) {
+ collectFaceVertices(faces, vertices);
+ setFaceAndVertexOwner();
+ if (_recalc) faceRecalc();
+
+ if (!init()) {
+ throw carve::exception("polyhedron creation failed");
+ }
+ }
+
+
+
+ Polyhedron::~Polyhedron() {
+ }
+
+
+
+ void Polyhedron::testVertexAgainstClosedManifolds(const carve::geom3d::Vector &v,
+ std::map<int, PointClass> &result,
+ bool ignore_orientation) const {
+
+ for (size_t i = 0; i < faces.size(); i++) {
+ if (!manifold_is_closed[faces[i].manifold_id]) continue; // skip open manifolds
+ if (faces[i].containsPoint(v)) {
+ result[faces[i].manifold_id] = POINT_ON;
+ }
+ }
+
+ double ray_len = aabb.extent.length() * 2;
+
+ std::vector<const face_t *> possible_faces;
+
+ std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
+
+ boost::mt19937 rng;
+ boost::uniform_on_sphere<double> distrib(3);
+ boost::variate_generator<boost::mt19937 &, boost::uniform_on_sphere<double> > gen(rng, distrib);
+
+ for (;;) {
+ carve::geom3d::Vector ray_dir;
+ ray_dir = gen();
+
+ carve::geom3d::Vector v2 = v + ray_dir * ray_len;
+
+ bool failed = false;
+ carve::geom3d::LineSegment line(v, v2);
+ carve::geom3d::Vector intersection;
+
+ possible_faces.clear();
+ manifold_intersections.clear();
+ octree.findFacesNear(line, possible_faces);
+
+ for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
+ if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue; // skip open manifolds
+ if (result.find(possible_faces[i]->manifold_id) != result.end()) continue; // already ON
+
+ switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
+ case INTERSECT_FACE: {
+ manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
+ break;
+ }
+ case INTERSECT_NONE: {
+ break;
+ }
+ default: {
+ failed = true;
+ break;
+ }
+ }
+ }
+
+ if (!failed) break;
+ }
+
+ std::vector<int> crossings(manifold_is_closed.size(), 0);
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const face_t *f = manifold_intersections[i].first;
+ crossings[f->manifold_id]++;
+ }
+
+ for (size_t i = 0; i < crossings.size(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "crossing: " << i << " = " << crossings[i] << " is_negative = " << manifold_is_negative[i] << std::endl;
+#endif
+ if (!manifold_is_closed[i]) continue;
+ if (result.find(i) != result.end()) continue;
+ PointClass pc = (crossings[i] & 1) ? POINT_IN : POINT_OUT;
+ if (!ignore_orientation && manifold_is_negative[i]) pc = (PointClass)-pc;
+ result[i] = pc;
+ }
+ }
+
+
+
+ PointClass Polyhedron::containsVertex(const carve::geom3d::Vector &v,
+ const face_t **hit_face,
+ bool even_odd,
+ int manifold_id) const {
+ if (hit_face) *hit_face = NULL;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{containsVertex " << v << "}" << std::endl;
+#endif
+
+ if (!aabb.containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(aabb short circuit)}" << std::endl;
+#endif
+ // XXX: if the top level manifolds are negative, this should be POINT_IN.
+ // for the moment, this only works for a single manifold.
+ if (manifold_is_negative.size() == 1 && manifold_is_negative[0]) return POINT_IN;
+ return POINT_OUT;
+ }
+
+ for (size_t i = 0; i < faces.size(); i++) {
+ if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
+
+ // XXX: Do allow the tested vertex to be ON an open
+ // manifold. This was here originally because of the
+ // possibility of an open manifold contained within a closed
+ // manifold.
+
+ // if (!manifold_is_closed[faces[i].manifold_id]) continue;
+
+ if (faces[i].containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:ON(hits face " << &faces[i] << ")}" << std::endl;
+#endif
+ if (hit_face) *hit_face = &faces[i];
+ return POINT_ON;
+ }
+ }
+
+ double ray_len = aabb.extent.length() * 2;
+
+ std::vector<const face_t *> possible_faces;
+
+ std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
+
+ for (;;) {
+ double a1 = random() / double(RAND_MAX) * M_TWOPI;
+ double a2 = random() / double(RAND_MAX) * M_TWOPI;
+
+ carve::geom3d::Vector ray_dir = carve::geom::VECTOR(sin(a1) * sin(a2), cos(a1) * sin(a2), cos(a2));
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{testing ray: " << ray_dir << "}" << std::endl;
+#endif
+
+ carve::geom3d::Vector v2 = v + ray_dir * ray_len;
+
+ bool failed = false;
+ carve::geom3d::LineSegment line(v, v2);
+ carve::geom3d::Vector intersection;
+
+ possible_faces.clear();
+ manifold_intersections.clear();
+ octree.findFacesNear(line, possible_faces);
+
+ for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
+ if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
+
+ if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue;
+
+ switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
+ case INTERSECT_FACE: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersects face: " << possible_faces[i]
+ << " dp: " << dot(ray_dir, possible_faces[i]->plane_eqn.N) << "}" << std::endl;
+#endif
+
+ if (!even_odd && fabs(dot(ray_dir, possible_faces[i]->plane_eqn.N)) < EPSILON) {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(small dot product)}" << std::endl;
+#endif
+
+ failed = true;
+ break;
+ }
+ manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
+ break;
+ }
+ case INTERSECT_NONE: {
+ break;
+ }
+ default: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(degenerate intersection)}" << std::endl;
+#endif
+ failed = true;
+ break;
+ }
+ }
+ }
+
+ if (!failed) {
+ if (even_odd) {
+ return (manifold_intersections.size() & 1) ? POINT_IN : POINT_OUT;
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersections ok [count:"
+ << manifold_intersections.size()
+ << "], sorting}"
+ << std::endl;
+#endif
+
+ carve::geom3d::sortInDirectionOfRay(ray_dir,
+ manifold_intersections.begin(),
+ manifold_intersections.end(),
+ carve::geom3d::vec_adapt_pair_second());
+
+ std::vector<int> crossings(manifold_is_closed.size(), 0);
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const face_t *f = manifold_intersections[i].first;
+ if (dot(ray_dir, f->plane_eqn.N) < 0.0) {
+ crossings[f->manifold_id]++;
+ } else {
+ crossings[f->manifold_id]--;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ for (size_t i = 0; i < crossings.size(); ++i) {
+ std::cerr << "{manifold " << i << " crossing count: " << crossings[i] << "}" << std::endl;
+ }
+#endif
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const face_t *f = manifold_intersections[i].first;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersection at "
+ << manifold_intersections[i].second
+ << " id: "
+ << f->manifold_id
+ << " count: "
+ << crossings[f->manifold_id]
+ << "}"
+ << std::endl;
+#endif
+
+ if (crossings[f->manifold_id] < 0) {
+ // inside this manifold.
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:IN}" << std::endl;
+#endif
+
+ return POINT_IN;
+ } else if (crossings[f->manifold_id] > 0) {
+ // outside this manifold, but it's an infinite manifold. (for instance, an inverted cube)
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(default)}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const carve::geom::aabb<3> &aabb,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(aabb, outEdges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const carve::geom3d::LineSegment &line,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(line, outEdges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const carve::geom3d::Vector &v,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(v, outEdges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const face_t &face,
+ std::vector<const edge_t *> &edges) const {
+ edges.clear();
+ octree.findEdgesNear(face, edges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const edge_t &edge,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(edge, outEdges);
+ }
+
+
+
+ void Polyhedron::findFacesNear(const carve::geom3d::LineSegment &line,
+ std::vector<const face_t *> &outFaces) const {
+ outFaces.clear();
+ octree.findFacesNear(line, outFaces);
+ }
+
+
+
+ void Polyhedron::findFacesNear(const carve::geom::aabb<3> &aabb,
+ std::vector<const face_t *> &outFaces) const {
+ outFaces.clear();
+ octree.findFacesNear(aabb, outFaces);
+ }
+
+
+
+ void Polyhedron::findFacesNear(const edge_t &edge,
+ std::vector<const face_t *> &outFaces) const {
+ outFaces.clear();
+ octree.findFacesNear(edge, outFaces);
+ }
+
+
+
+ void Polyhedron::transform(const carve::math::Matrix &xform) {
+ for (size_t i = 0; i < vertices.size(); i++) {
+ vertices[i].v = xform * vertices[i].v;
+ }
+ for (size_t i = 0; i < faces.size(); i++) {
+ faces[i].recalc();
+ }
+ init();
+ }
+
+
+
+ void Polyhedron::print(std::ostream &o) const {
+ o << "Polyhedron@" << this << " {" << std::endl;
+ for (std::vector<vertex_t >::const_iterator
+ i = vertices.begin(), e = vertices.end(); i != e; ++i) {
+ o << " V@" << &(*i) << " " << (*i).v << std::endl;
+ }
+ for (std::vector<edge_t >::const_iterator
+ i = edges.begin(), e = edges.end(); i != e; ++i) {
+ o << " E@" << &(*i) << " {" << std::endl;
+ o << " V@" << (*i).v1 << " - " << "V@" << (*i).v2 << std::endl;
+ const std::vector<const face_t *> &faces = connectivity.edge_to_face[edgeToIndex_fast(&(*i))];
+ for (size_t j = 0; j < (faces.size() & ~1U); j += 2) {
+ o << " fp: F@" << faces[j] << ", F@" << faces[j+1] << std::endl;
+ }
+ o << " }" << std::endl;
+ }
+ for (std::vector<face_t >::const_iterator
+ i = faces.begin(), e = faces.end(); i != e; ++i) {
+ o << " F@" << &(*i) << " {" << std::endl;
+ o << " vertices {" << std::endl;
+ for (face_t::const_vertex_iter_t j = (*i).vbegin(), je = (*i).vend(); j != je; ++j) {
+ o << " V@" << (*j) << std::endl;
+ }
+ o << " }" << std::endl;
+ o << " edges {" << std::endl;
+ for (face_t::const_edge_iter_t j = (*i).ebegin(), je = (*i).eend(); j != je; ++j) {
+ o << " E@" << (*j) << std::endl;
+ }
+ carve::geom::plane<3> p = (*i).plane_eqn;
+ o << " }" << std::endl;
+ o << " normal " << (*i).plane_eqn.N << std::endl;
+ o << " aabb " << (*i).aabb << std::endl;
+ o << " plane_eqn ";
+ carve::geom::operator<< <3>(o, p);
+ o << std::endl;
+ o << " }" << std::endl;
+ }
+
+ o << "}" << std::endl;
+ }
+
+
+
+ void Polyhedron::canonicalize() {
+ orderVertices();
+ for (size_t i = 0; i < faces.size(); i++) {
+ face_t &f = faces[i];
+ size_t j = std::distance(f.vbegin(),
+ std::min_element(f.vbegin(),
+ f.vend()));
+ if (j) {
+ {
+ std::vector<const vertex_t *> temp;
+ temp.reserve(f.nVertices());
+ std::copy(f.vbegin() + j, f.vend(), std::back_inserter(temp));
+ std::copy(f.vbegin(), f.vbegin() + j, std::back_inserter(temp));
+ std::copy(temp.begin(), temp.end(), f.vbegin());
+ }
+ {
+ std::vector<const edge_t *> temp;
+ temp.reserve(f.nEdges());
+ std::copy(f.ebegin() + j, f.eend(), std::back_inserter(temp));
+ std::copy(f.ebegin(), f.ebegin() + j, std::back_inserter(temp));
+ std::copy(temp.begin(), temp.end(), f.ebegin());
+ }
+ }
+ }
+
+ std::vector<face_t *> face_ptrs;
+ face_ptrs.reserve(faces.size());
+ for (size_t i = 0; i < faces.size(); ++i) face_ptrs.push_back(&faces[i]);
+ std::sort(face_ptrs.begin(), face_ptrs.end(), order_faces());
+ std::vector<face_t> sorted_faces;
+ sorted_faces.reserve(faces.size());
+ for (size_t i = 0; i < faces.size(); ++i) sorted_faces.push_back(*face_ptrs[i]);
+ std::swap(faces, sorted_faces);
+ }
+
+ }
+}
+