Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2016-05-07 13:32:28 +0300
committerCampbell Barton <ideasman42@gmail.com>2016-05-07 14:48:00 +0300
commit68e856da03ed893f47c73e96aba76798aafed748 (patch)
tree46605fa2029a482899cdb6450bddf2fff5e573de /extern/curve_fit_nd
parentd2296cd5ec433fcfeee958d1490925befdef1447 (diff)
Curve Fitting: better fallback when least-square solution fails
Take curvature into account when calculating handle length. Gives significantly better results for curve dissolve and 10-20% more efficient freehand drawing.
Diffstat (limited to 'extern/curve_fit_nd')
-rw-r--r--extern/curve_fit_nd/intern/curve_fit_cubic.c147
-rw-r--r--extern/curve_fit_nd/intern/curve_fit_inline.h21
2 files changed, 158 insertions, 10 deletions
diff --git a/extern/curve_fit_nd/intern/curve_fit_cubic.c b/extern/curve_fit_nd/intern/curve_fit_cubic.c
index fdcb9f8de7d..2144718fde0 100644
--- a/extern/curve_fit_nd/intern/curve_fit_cubic.c
+++ b/extern/curve_fit_nd/intern/curve_fit_cubic.c
@@ -39,6 +39,9 @@
#include "../curve_fit_nd.h"
+/* Take curvature into account when calculating the least square solution isn't usable. */
+#define USE_CIRCULAR_FALLBACK
+
/* avoid re-calculating lengths multiple times */
#define USE_LENGTH_CACHE
@@ -397,12 +400,98 @@ static void points_calc_center_weighted(
}
}
+#ifdef USE_CIRCULAR_FALLBACK
+
+/**
+ * Return a scale value, used to calculate how much the curve handles should be increased,
+ *
+ * This works by placing each end-point on an imaginary circle,
+ * the placement on the circle is based on the tangent vectors,
+ * where larger differences in tangent angle cover a larger part of the circle.
+ *
+ * Return the scale representing how much larger the distance around the circle is.
+ */
+static double points_calc_circumference_factor(
+ const double tan_l[],
+ const double tan_r[],
+ const uint dims)
+{
+ const double dot = dot_vnvn(tan_l, tan_r, dims);
+ const double len_tangent = dot < 0.0 ? len_vnvn(tan_l, tan_r, dims) : len_negated_vnvn(tan_l, tan_r, dims);
+ if (len_tangent > DBL_EPSILON) {
+ double angle = acos(-fabs(dot));
+ /* Angle may be less than the length when the tangents define >180 degrees of the circle,
+ * (tangents that point away from each other).
+ * We could try support this but will likely cause extreme >1 scales which could cause other issues. */
+ // assert(angle >= len_tangent);
+ double factor = (angle / len_tangent) / (M_PI / 2);
+ factor = 1.0 - pow(1.0 - factor, 1.75);
+ assert(factor < 1.0 + DBL_EPSILON);
+ return factor;
+ }
+ else {
+ /* tangents are exactly aligned (think two opposite sides of a circle). */
+ return 1.0;
+ }
+}
+
+/**
+ * Calculate the scale the handles, which serves as a best-guess
+ * used as a fallback when the least-square solution fails.
+ */
+static double points_calc_cubic_scale(
+ const double v_l[], const double v_r[],
+ const double tan_l[],
+ const double tan_r[],
+ const double coords_length, uint dims)
+{
+ const double len_direct = len_vnvn(v_l, v_r, dims);
+ const double len_circle_factor = points_calc_circumference_factor(tan_l, tan_r, dims) * 1.75;
+ const double len_points = min(coords_length, len_circle_factor * len_direct);
+ return (len_direct + ((len_points - len_direct) * len_circle_factor)) / 3.0;
+}
+
+static void cubic_from_points_fallback(
+ const double *points_offset,
+ const uint points_offset_len,
+ const double tan_l[],
+ const double tan_r[],
+ const uint dims,
+
+ Cubic *r_cubic)
+{
+ const double *p0 = &points_offset[0];
+ const double *p3 = &points_offset[(points_offset_len - 1) * dims];
+
+ double alpha = len_vnvn(p0, p3, dims) / 3.0;
+
+ double *p1 = CUBIC_PT(r_cubic, 1, dims);
+ double *p2 = CUBIC_PT(r_cubic, 2, dims);
+
+ copy_vnvn(CUBIC_PT(r_cubic, 0, dims), p0, dims);
+ copy_vnvn(CUBIC_PT(r_cubic, 3, dims), p3, dims);
+
+#ifdef USE_ORIG_INDEX_DATA
+ r_cubic->orig_span = (points_offset_len - 1);
+#endif
+
+ /* p1 = p0 - (tan_l * alpha_l);
+ * p2 = p3 + (tan_r * alpha_r);
+ */
+ msub_vn_vnvn_fl(p1, p0, tan_l, alpha, dims);
+ madd_vn_vnvn_fl(p2, p3, tan_r, alpha, dims);
+}
+#endif /* USE_CIRCULAR_FALLBACK */
+
/**
* Use least-squares method to find Bezier control points for region.
*/
static void cubic_from_points(
const double *points_offset,
const uint points_offset_len,
+#ifdef USE_CIRCULAR_FALLBACK
+ const double points_offset_coords_length,
+#endif
const double *u_prime,
const double tan_l[],
const double tan_r[],
@@ -482,7 +571,11 @@ static void cubic_from_points(
if (!(alpha_l >= 0.0) ||
!(alpha_r >= 0.0))
{
+#ifdef USE_CIRCULAR_FALLBACK
+ alpha_l = alpha_r = points_calc_cubic_scale(p0, p3, tan_l, tan_r, points_offset_coords_length, dims);
+#else
alpha_l = alpha_r = len_vnvn(p0, p3, dims) / 3.0;
+#endif
/* skip clamping when we're using default handles */
use_clamp = false;
@@ -540,8 +633,11 @@ static void cubic_from_points(
if (p1_dist_sq > dist_sq_max ||
p2_dist_sq > dist_sq_max)
{
-
+#ifdef USE_CIRCULAR_FALLBACK
+ alpha_l = alpha_r = points_calc_cubic_scale(p0, p3, tan_l, tan_r, points_offset_coords_length, dims);
+#else
alpha_l = alpha_r = len_vnvn(p0, p3, dims) / 3.0;
+#endif
/*
* p1 = p0 - (tan_l * alpha_l);
@@ -590,8 +686,10 @@ static void points_calc_coord_length_cache(
}
#endif /* USE_LENGTH_CACHE */
-
-static void points_calc_coord_length(
+/**
+ * \return the accumulated length of \a points_offset.
+ */
+static double points_calc_coord_length(
const double *points_offset,
const uint points_offset_len,
const uint dims,
@@ -624,6 +722,7 @@ static void points_calc_coord_length(
for (uint i = 0; i < points_offset_len; i++) {
r_u[i] /= w;
}
+ return w;
}
/**
@@ -743,6 +842,10 @@ static bool fit_cubic_to_points(
}
double *u = malloc(sizeof(double) * points_offset_len);
+
+#ifdef USE_CIRCULAR_FALLBACK
+ const double points_offset_coords_length =
+#endif
points_calc_coord_length(
points_offset, points_offset_len, dims,
#ifdef USE_LENGTH_CACHE
@@ -755,13 +858,41 @@ static bool fit_cubic_to_points(
/* Parameterize points, and attempt to fit curve */
cubic_from_points(
- points_offset, points_offset_len, u, tan_l, tan_r, dims, r_cubic);
+ points_offset, points_offset_len,
+#ifdef USE_CIRCULAR_FALLBACK
+ points_offset_coords_length,
+#endif
+ u, tan_l, tan_r, dims, r_cubic);
/* Find max deviation of points to fitted curve */
error_max_sq = cubic_calc_error(
r_cubic, points_offset, points_offset_len, u, dims,
&split_index);
+ Cubic *cubic_test = alloca(cubic_alloc_size(dims));
+
+#ifdef USE_CIRCULAR_FALLBACK
+ if (!(error_max_sq < error_threshold_sq)) {
+ /* Don't use the cubic calculated above, instead calculate a new fallback cubic,
+ * since this tends to give more balanced split_index along the curve.
+ * This is because the attempt to calcualte the cubic may contain spikes
+ * along the curve which may give a lop-sided maximum distance. */
+ cubic_from_points_fallback(
+ points_offset, points_offset_len,
+ tan_l, tan_r, dims, cubic_test);
+ const double error_max_sq_test = cubic_calc_error(
+ cubic_test, points_offset, points_offset_len, u, dims,
+ &split_index);
+
+ /* intentionally use the newly calculated 'split_index',
+ * even if the 'error_max_sq_test' is worse. */
+ if (error_max_sq > error_max_sq_test) {
+ error_max_sq = error_max_sq_test;
+ cubic_copy(r_cubic, cubic_test, dims);
+ }
+ }
+#endif
+
*r_error_max_sq = error_max_sq;
*r_split_index = split_index;
@@ -770,7 +901,6 @@ static bool fit_cubic_to_points(
return true;
}
else {
- Cubic *cubic_test = alloca(cubic_alloc_size(dims));
cubic_copy(cubic_test, r_cubic, dims);
/* If error not too large, try some reparameterization and iteration */
@@ -783,8 +913,11 @@ static bool fit_cubic_to_points(
}
cubic_from_points(
- points_offset, points_offset_len, u_prime,
- tan_l, tan_r, dims, cubic_test);
+ points_offset, points_offset_len,
+#ifdef USE_CIRCULAR_FALLBACK
+ points_offset_coords_length,
+#endif
+ u_prime, tan_l, tan_r, dims, cubic_test);
error_max_sq = cubic_calc_error(
cubic_test, points_offset, points_offset_len, u_prime, dims,
&split_index);
diff --git a/extern/curve_fit_nd/intern/curve_fit_inline.h b/extern/curve_fit_nd/intern/curve_fit_inline.h
index 085148cc119..4df566ab4a5 100644
--- a/extern/curve_fit_nd/intern/curve_fit_inline.h
+++ b/extern/curve_fit_nd/intern/curve_fit_inline.h
@@ -219,13 +219,28 @@ MINLINE double len_vnvn(
return sqrt(len_squared_vnvn(v0, v1, dims));
}
-#if 0
-static double len_vn(
+MINLINE double len_vn(
const double v0[], const uint dims)
{
return sqrt(len_squared_vn(v0, dims));
}
-#endif
+
+/* special case, save us negating a copy, then getting the length */
+MINLINE double len_squared_negated_vnvn(
+ const double v0[], const double v1[], const uint dims)
+{
+ double d = 0.0;
+ for (uint j = 0; j < dims; j++) {
+ d += sq(v0[j] + v1[j]);
+ }
+ return d;
+}
+
+MINLINE double len_negated_vnvn(
+ const double v0[], const double v1[], const uint dims)
+{
+ return sqrt(len_squared_negated_vnvn(v0, v1, dims));
+}
MINLINE double normalize_vn(
double v0[], const uint dims)