Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSebastián Barschkis <sebbas@sebbas.org>2019-12-16 17:40:15 +0300
committerSebastián Barschkis <sebbas@sebbas.org>2019-12-16 18:27:26 +0300
commit4ff7c5eed6b546ae42692f3a869a5ccc095a9cb4 (patch)
tree03f8233788ae46e66672f711e3cf42d8d00d01cc /extern/mantaflow/preprocessed/noisefield.cpp
parent6a3f2b30d206df23120cd212132adea821b6c20e (diff)
Mantaflow [Part 1]: Added preprocessed Mantaflow source files
Includes preprocessed Mantaflow source files for both OpenMP and TBB (if OpenMP is not present, TBB files will be used instead). These files come directly from the Mantaflow repository. Future updates to the core fluid solver will take place by updating the files. Reviewed By: sergey, mont29 Maniphest Tasks: T59995 Differential Revision: https://developer.blender.org/D3850
Diffstat (limited to 'extern/mantaflow/preprocessed/noisefield.cpp')
-rw-r--r--extern/mantaflow/preprocessed/noisefield.cpp325
1 files changed, 325 insertions, 0 deletions
diff --git a/extern/mantaflow/preprocessed/noisefield.cpp b/extern/mantaflow/preprocessed/noisefield.cpp
new file mode 100644
index 00000000000..98a92309b05
--- /dev/null
+++ b/extern/mantaflow/preprocessed/noisefield.cpp
@@ -0,0 +1,325 @@
+
+
+// DO NOT EDIT !
+// This file is generated using the MantaFlow preprocessor (prep generate).
+
+/******************************************************************************
+ *
+ * MantaFlow fluid solver framework
+ * Copyright 2011 Tobias Pfaff, Nils Thuerey
+ *
+ * This program is free software, distributed under the terms of the
+ * Apache License, Version 2.0
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Noise field
+ *
+ ******************************************************************************/
+
+#include "noisefield.h"
+#include "randomstream.h"
+#include "grid.h"
+
+using namespace std;
+
+//*****************************************************************************
+// Wavelet noise
+
+#if FLOATINGPOINT_PRECISION == 1
+# define TILENAME "waveletNoiseTile.bin"
+#else
+# define TILENAME "waveletNoiseTileD.bin"
+#endif
+
+namespace Manta {
+
+int WaveletNoiseField::randomSeed = 13322223;
+Real *WaveletNoiseField::mNoiseTile = NULL;
+std::atomic<int> WaveletNoiseField::mNoiseReferenceCount(0);
+
+static Real _aCoeffs[32] = {
+ 0.000334, -0.001528, 0.000410, 0.003545, -0.000938, -0.008233, 0.002172, 0.019120,
+ -0.005040, -0.044412, 0.011655, 0.103311, -0.025936, -0.243780, 0.033979, 0.655340,
+ 0.655340, 0.033979, -0.243780, -0.025936, 0.103311, 0.011655, -0.044412, -0.005040,
+ 0.019120, 0.002172, -0.008233, -0.000938, 0.003546, 0.000410, -0.001528, 0.000334};
+
+void WaveletNoiseField::downsample(Real *from, Real *to, int n, int stride)
+{
+ const Real *a = &_aCoeffs[16];
+ for (int i = 0; i < n / 2; i++) {
+ to[i * stride] = 0;
+ for (int k = 2 * i - 16; k < 2 * i + 16; k++) {
+ to[i * stride] += a[k - 2 * i] * from[modFast128(k) * stride];
+ }
+ }
+}
+
+static Real _pCoeffs[4] = {0.25, 0.75, 0.75, 0.25};
+
+void WaveletNoiseField::upsample(Real *from, Real *to, int n, int stride)
+{
+ const Real *pp = &_pCoeffs[1];
+
+ for (int i = 0; i < n; i++) {
+ to[i * stride] = 0;
+ for (int k = i / 2 - 1; k < i / 2 + 3; k++) {
+ to[i * stride] += 0.5 * pp[k - i / 2] * from[modSlow(k, n / 2) * stride];
+ } // new */
+ }
+}
+
+WaveletNoiseField::WaveletNoiseField(FluidSolver *parent, int fixedSeed, int loadFromFile)
+ : PbClass(parent),
+ mPosOffset(0.),
+ mPosScale(1.),
+ mValOffset(0.),
+ mValScale(1.),
+ mClamp(false),
+ mClampNeg(0),
+ mClampPos(1),
+ mTimeAnim(0),
+ mGsInvX(0),
+ mGsInvY(0),
+ mGsInvZ(0)
+{
+ Real scale = 1.0 / parent->getGridSize().max();
+ mGsInvX = scale;
+ mGsInvY = scale;
+ mGsInvZ = parent->is3D() ? scale : 1;
+
+ // use global random seed with offset if none is given
+ if (fixedSeed == -1) {
+ fixedSeed = randomSeed + 123;
+ }
+ RandomStream randStreamPos(fixedSeed);
+ mSeedOffset = Vec3(randStreamPos.getVec3Norm());
+
+ generateTile(loadFromFile);
+};
+
+string WaveletNoiseField::toString()
+{
+ std::ostringstream out;
+ out << "NoiseField: name '" << mName << "' "
+ << " pos off=" << mPosOffset << " scale=" << mPosScale << " val off=" << mValOffset
+ << " scale=" << mValScale << " clamp =" << mClamp << " val=" << mClampNeg << " to "
+ << mClampPos << " timeAni =" << mTimeAnim
+ << " gridInv =" << Vec3(mGsInvX, mGsInvY, mGsInvZ);
+ return out.str();
+}
+
+void WaveletNoiseField::generateTile(int loadFromFile)
+{
+ // generate tile
+ const int n = NOISE_TILE_SIZE;
+ const int n3 = n * n * n, n3d = n3 * 3;
+
+ if (mNoiseTile) {
+ mNoiseReferenceCount++;
+ return;
+ }
+ Real *noise3 = new Real[n3d];
+ if (loadFromFile) {
+ FILE *fp = fopen(TILENAME, "rb");
+ if (fp) {
+ assertMsg(fread(noise3, sizeof(Real), n3d, fp) == n3d,
+ "Failed to read wavelet noise tile, file invalid/corrupt? (" << TILENAME << ") ");
+ fclose(fp);
+ debMsg("Noise tile loaded from file " TILENAME, 1);
+ mNoiseTile = noise3;
+ mNoiseReferenceCount++;
+ return;
+ }
+ }
+
+ debMsg("Generating 3x " << n << "^3 noise tile ", 1);
+ Real *temp13 = new Real[n3d];
+ Real *temp23 = new Real[n3d];
+
+ // initialize
+ for (int i = 0; i < n3d; i++) {
+ temp13[i] = temp23[i] = noise3[i] = 0.;
+ }
+
+ // Step 1. Fill the tile with random numbers in the range -1 to 1.
+ RandomStream randStreamTile(randomSeed);
+ for (int i = 0; i < n3d; i++) {
+ // noise3[i] = (randStream.getReal() + randStream2.getReal()) -1.; // produces repeated
+ // values??
+ noise3[i] = randStreamTile.getRandNorm(0, 1);
+ }
+
+ // Steps 2 and 3. Downsample and upsample the tile
+ for (int tile = 0; tile < 3; tile++) {
+ for (int iy = 0; iy < n; iy++)
+ for (int iz = 0; iz < n; iz++) {
+ const int i = iy * n + iz * n * n + tile * n3;
+ downsample(&noise3[i], &temp13[i], n, 1);
+ upsample(&temp13[i], &temp23[i], n, 1);
+ }
+ for (int ix = 0; ix < n; ix++)
+ for (int iz = 0; iz < n; iz++) {
+ const int i = ix + iz * n * n + tile * n3;
+ downsample(&temp23[i], &temp13[i], n, n);
+ upsample(&temp13[i], &temp23[i], n, n);
+ }
+ for (int ix = 0; ix < n; ix++)
+ for (int iy = 0; iy < n; iy++) {
+ const int i = ix + iy * n + tile * n3;
+ downsample(&temp23[i], &temp13[i], n, n * n);
+ upsample(&temp13[i], &temp23[i], n, n * n);
+ }
+ }
+
+ // Step 4. Subtract out the coarse-scale contribution
+ for (int i = 0; i < n3d; i++) {
+ noise3[i] -= temp23[i];
+ }
+
+ // Avoid even/odd variance difference by adding odd-offset version of noise to itself.
+ int offset = n / 2;
+ if (offset % 2 == 0)
+ offset++;
+
+ if (n != 128)
+ errMsg("WaveletNoise::Fast 128 mod used, change for non-128 resolution");
+
+ int icnt = 0;
+ for (int tile = 0; tile < 3; tile++)
+ for (int ix = 0; ix < n; ix++)
+ for (int iy = 0; iy < n; iy++)
+ for (int iz = 0; iz < n; iz++) {
+ temp13[icnt] = noise3[modFast128(ix + offset) + modFast128(iy + offset) * n +
+ modFast128(iz + offset) * n * n + tile * n3];
+ icnt++;
+ }
+
+ for (int i = 0; i < n3d; i++) {
+ noise3[i] += temp13[i];
+ }
+
+ mNoiseTile = noise3;
+ mNoiseReferenceCount++;
+ delete[] temp13;
+ delete[] temp23;
+
+ if (loadFromFile) {
+ FILE *fp = fopen(TILENAME, "wb");
+ if (fp) {
+ fwrite(noise3, sizeof(Real), n3d, fp);
+ fclose(fp);
+ debMsg("Noise field saved to file ", 1);
+ }
+ }
+}
+
+void WaveletNoiseField::downsampleNeumann(const Real *from, Real *to, int n, int stride)
+{
+ // if these values are not local incorrect results are generated
+ static const Real *const aCoCenter = &_aCoeffs[16];
+ for (int i = 0; i < n / 2; i++) {
+ to[i * stride] = 0;
+ for (int k = 2 * i - 16; k < 2 * i + 16; k++) {
+ // handle boundary
+ Real fromval;
+ if (k < 0) {
+ fromval = from[0];
+ }
+ else if (k > n - 1) {
+ fromval = from[(n - 1) * stride];
+ }
+ else {
+ fromval = from[k * stride];
+ }
+ to[i * stride] += aCoCenter[k - 2 * i] * fromval;
+ }
+ }
+}
+
+void WaveletNoiseField::upsampleNeumann(const Real *from, Real *to, int n, int stride)
+{
+ static const Real *const pp = &_pCoeffs[1];
+ for (int i = 0; i < n; i++) {
+ to[i * stride] = 0;
+ for (int k = i / 2 - 1; k < i / 2 + 3; k++) {
+ Real fromval;
+ if (k > n / 2 - 1) {
+ fromval = from[(n / 2 - 1) * stride];
+ }
+ else if (k < 0) {
+ fromval = from[0];
+ }
+ else {
+ fromval = from[k * stride];
+ }
+ to[i * stride] += 0.5 * pp[k - i / 2] * fromval;
+ }
+ }
+}
+
+void WaveletNoiseField::computeCoefficients(Grid<Real> &input,
+ Grid<Real> &tempIn1,
+ Grid<Real> &tempIn2)
+{
+ // generate tile
+ const int sx = input.getSizeX();
+ const int sy = input.getSizeY();
+ const int sz = input.getSizeZ();
+ const int n3 = sx * sy * sz;
+ // just for compatibility with wavelet turb code
+ Real *temp13 = &tempIn1(0, 0, 0);
+ Real *temp23 = &tempIn2(0, 0, 0);
+ Real *noise3 = &input(0, 0, 0);
+
+ // clear grids
+ for (int i = 0; i < n3; i++) {
+ temp13[i] = temp23[i] = 0.f;
+ }
+
+ // Steps 2 and 3. Downsample and upsample the tile
+ for (int iz = 0; iz < sz; iz++)
+ for (int iy = 0; iy < sy; iy++) {
+ const int i = iz * sx * sy + iy * sx;
+ downsampleNeumann(&noise3[i], &temp13[i], sx, 1);
+ upsampleNeumann(&temp13[i], &temp23[i], sx, 1);
+ }
+
+ for (int iz = 0; iz < sz; iz++)
+ for (int ix = 0; ix < sx; ix++) {
+ const int i = iz * sx * sy + ix;
+ downsampleNeumann(&temp23[i], &temp13[i], sy, sx);
+ upsampleNeumann(&temp13[i], &temp23[i], sy, sx);
+ }
+
+ if (input.is3D()) {
+ for (int iy = 0; iy < sy; iy++)
+ for (int ix = 0; ix < sx; ix++) {
+ const int i = iy * sx + ix;
+ downsampleNeumann(&temp23[i], &temp13[i], sz, sy * sx);
+ upsampleNeumann(&temp13[i], &temp23[i], sz, sy * sx);
+ }
+ }
+
+ // Step 4. Subtract out the coarse-scale contribution
+ for (int i = 0; i < n3; i++) {
+ Real residual = noise3[i] - temp23[i];
+ temp13[i] = sqrtf(fabs(residual));
+ }
+
+ // copy back, and compute actual weight for wavelet turbulence...
+ Real smoothingFactor = 1. / 6.;
+ if (!input.is3D())
+ smoothingFactor = 1. / 4.;
+ FOR_IJK_BND(input, 1)
+ {
+ // apply some brute force smoothing
+ Real res = temp13[k * sx * sy + j * sx + i - 1] + temp13[k * sx * sy + j * sx + i + 1];
+ res += temp13[k * sx * sy + j * sx + i - sx] + temp13[k * sx * sy + j * sx + i + sx];
+ if (input.is3D())
+ res += temp13[k * sx * sy + j * sx + i - sx * sy] +
+ temp13[k * sx * sy + j * sx + i + sx * sy];
+ input(i, j, k) = res * smoothingFactor;
+ }
+}
+
+} // namespace Manta