Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2009-06-21 20:18:38 +0400
committerCampbell Barton <ideasman42@gmail.com>2009-06-21 20:18:38 +0400
commit8ead648fd1ca35f02901764445afc7b675524b67 (patch)
tree48a86dbc7ad44553d6123637eae5f925404512cf /extern/solid/src/complex/DT_Complex.cpp
parentde77b4a9b36cc0f12c8bd458c4a7f662caec38ac (diff)
Spring Cleaning
* removed radiosity render code, DNA and RNA (left in radio render pass options), we'll get GI to replace this probably, better allow baking to vertex colors for people who used this. * removed deprecated solid physics library, sumo integrations and qhull, a dependency * removed ODE, was no longer being build or supported * remove BEOS and AMIGA defines and references in Makefiles.
Diffstat (limited to 'extern/solid/src/complex/DT_Complex.cpp')
-rw-r--r--extern/solid/src/complex/DT_Complex.cpp327
1 files changed, 0 insertions, 327 deletions
diff --git a/extern/solid/src/complex/DT_Complex.cpp b/extern/solid/src/complex/DT_Complex.cpp
deleted file mode 100644
index 023383a8427..00000000000
--- a/extern/solid/src/complex/DT_Complex.cpp
+++ /dev/null
@@ -1,327 +0,0 @@
-/*
- * SOLID - Software Library for Interference Detection
- *
- * Copyright (C) 2001-2003 Dtecta. All rights reserved.
- *
- * This library may be distributed under the terms of the Q Public License
- * (QPL) as defined by Trolltech AS of Norway and appearing in the file
- * LICENSE.QPL included in the packaging of this file.
- *
- * This library may be distributed and/or modified under the terms of the
- * GNU General Public License (GPL) version 2 as published by the Free Software
- * Foundation and appearing in the file LICENSE.GPL included in the
- * packaging of this file.
- *
- * This library is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
- * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- *
- * Commercial use or any other use of this library not covered by either
- * the QPL or the GPL requires an additional license from Dtecta.
- * Please contact info@dtecta.com for enquiries about the terms of commercial
- * use of this library.
- */
-
-#include <new>
-#include <fstream>
-
-#include "DT_Complex.h"
-#include "DT_Minkowski.h"
-#include "DT_Sphere.h"
-#include "DT_Transform.h"
-
-DT_Complex::DT_Complex(const DT_VertexBase *base)
- : m_base(base),
- m_count(0),
- m_leaves(0),
- m_nodes(0)
-{
- assert(base);
- base->addComplex(this);
-}
-
-
-DT_Complex::~DT_Complex()
-{
- DT_Index i;
- for (i = 0; i != m_count; ++i)
- {
- delete m_leaves[i];
- }
- delete [] m_leaves;
- delete [] m_nodes;
-
- m_base->removeComplex(this);
- if (m_base->isOwner())
- {
- delete m_base;
- }
-}
-
-void DT_Complex::finish(DT_Count n, const DT_Convex *p[])
-{
- m_count = n;
-
-
- assert(n >= 1);
-
- m_leaves = new const DT_Convex *[n];
- assert(m_leaves);
-
- DT_CBox *boxes = new DT_CBox[n];
- DT_Index *indices = new DT_Index[n];
- assert(boxes);
-
- DT_Index i;
- for (i = 0; i != n; ++i)
- {
- m_leaves[i] = p[i];
- boxes[i].set(p[i]->bbox());
- indices[i] = i;
- }
-
- m_cbox = boxes[0];
- for (i = 1; i != n; ++i)
- {
- m_cbox = m_cbox.hull(boxes[i]);
- }
-
- if (n == 1)
- {
- m_nodes = 0;
- m_type = DT_BBoxTree::LEAF;
- }
- else
- {
- m_nodes = new DT_BBoxNode[n - 1];
- assert(m_nodes);
-
- int num_nodes = 0;
- new(&m_nodes[num_nodes++]) DT_BBoxNode(0, n, num_nodes, m_nodes, boxes, indices, m_cbox);
-
- assert(num_nodes == n - 1);
-
- m_type = DT_BBoxTree::INTERNAL;
- }
-
- delete [] boxes;
-}
-
-
-MT_BBox DT_Complex::bbox(const MT_Transform& t, MT_Scalar margin) const
-{
- MT_Matrix3x3 abs_b = t.getBasis().absolute();
- MT_Point3 center = t(m_cbox.getCenter());
- MT_Vector3 extent(margin + abs_b[0].dot(m_cbox.getExtent()),
- margin + abs_b[1].dot(m_cbox.getExtent()),
- margin + abs_b[2].dot(m_cbox.getExtent()));
-
- return MT_BBox(center - extent, center + extent);
-}
-
-inline DT_CBox computeCBox(const DT_Convex *p)
-{
- return DT_CBox(p->bbox());
-}
-
-inline DT_CBox computeCBox(MT_Scalar margin, const MT_Transform& xform)
-{
- const MT_Matrix3x3& basis = xform.getBasis();
- return DT_CBox(MT_Point3(MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(0.0)),
- MT_Vector3(basis[0].length() * margin,
- basis[1].length() * margin,
- basis[2].length() * margin));
-}
-
-void DT_Complex::refit()
-{
- DT_RootData<const DT_Convex *> rd(m_nodes, m_leaves);
- DT_Index i = m_count - 1;
- while (i--)
- {
- ::refit(m_nodes[i], rd);
- }
- m_cbox = m_type == DT_BBoxTree::LEAF ? computeCBox(m_leaves[0]) : m_nodes[0].hull();
-}
-
-inline bool ray_cast(const DT_RootData<const DT_Convex *>& rd, DT_Index index, const MT_Point3& source, const MT_Point3& target,
- MT_Scalar& lambda, MT_Vector3& normal)
-{
- return rd.m_leaves[index]->ray_cast(source, target, lambda, normal);
-}
-
-bool DT_Complex::ray_cast(const MT_Point3& source, const MT_Point3& target,
- MT_Scalar& lambda, MT_Vector3& normal) const
-{
- DT_RootData<const DT_Convex *> rd(m_nodes, m_leaves);
-
- return ::ray_cast(DT_BBoxTree(m_cbox, 0, m_type), rd, source, target, lambda, normal);
-}
-
-inline bool intersect(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- MT_Scalar a_margin = pack.m_a.m_plus;
- return ::intersect((a_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
- static_cast<const DT_Convex&>(ta)),
- pack.m_b, v);
-}
-
-bool intersect(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Convex& b, MT_Vector3& v)
-{
- DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);
-
- return intersect(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v);
-}
-
-inline bool intersect(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- MT_Scalar a_margin = pack.m_a.m_plus;
- DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
- MT_Scalar b_margin = pack.m_b.m_plus;
- return ::intersect((a_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
- static_cast<const DT_Convex&>(ta)),
- (b_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) :
- static_cast<const DT_Convex&>(tb)),
- v);
-}
-
-bool intersect(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin, MT_Vector3& v)
-{
- DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
- DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
-
-
- return intersect(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
- DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v);
-}
-
-inline bool common_point(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- MT_Scalar a_margin = pack.m_a.m_plus;
- return ::common_point((a_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
- static_cast<const DT_Convex&>(ta)),
- pack.m_b, v, pa, pb);
-}
-
-bool common_point(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Convex& b, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);
-
- return common_point(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v, pb, pa);
-}
-
-inline bool common_point(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- MT_Scalar a_margin = pack.m_a.m_plus;
- DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
- MT_Scalar b_margin = pack.m_b.m_plus;
- return ::common_point((a_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
- static_cast<const DT_Convex&>(ta)),
- (b_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) :
- static_cast<const DT_Convex&>(tb)),
- v, pa, pb);
-}
-
-bool common_point(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin,
- MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
- DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
-
- return common_point(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
- DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v, pa, pb);
-}
-
-inline bool penetration_depth(const DT_HybridPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- return ::hybrid_penetration_depth(ta, pack.m_a.m_plus, pack.m_b, pack.m_margin, v, pa, pb);
-}
-
-bool penetration_depth(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Convex& b, MT_Scalar b_margin, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_HybridPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b, b_margin);
-
- MT_Scalar max_pen_len = MT_Scalar(0.0);
- return penetration_depth(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v, pa, pb, max_pen_len);
-}
-
-inline bool penetration_depth(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
- return ::hybrid_penetration_depth(ta, pack.m_a.m_plus, tb, pack.m_a.m_plus, v, pa, pb);
-}
-
-bool penetration_depth(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin,
- MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
-{
- DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
- DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
-
- MT_Scalar max_pen_len = MT_Scalar(0.0);
- return penetration_depth(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
- DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v, pa, pb, max_pen_len);
-}
-
-
-
-inline MT_Scalar closest_points(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Scalar max_dist2, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- MT_Scalar a_margin = pack.m_a.m_plus;
- return ::closest_points((a_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
- static_cast<const DT_Convex&>(ta)),
- pack.m_b, max_dist2, pa, pb);
-}
-
-MT_Scalar closest_points(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Convex& b, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);
-
- return closest_points(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, MT_INFINITY, pa, pb);
-}
-
-inline MT_Scalar closest_points(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Scalar max_dist2, MT_Point3& pa, MT_Point3& pb)
-{
- DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
- MT_Scalar a_margin = pack.m_a.m_plus;
- DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
- MT_Scalar b_margin = pack.m_b.m_plus;
- return ::closest_points((a_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
- static_cast<const DT_Convex&>(ta)),
- (b_margin > MT_Scalar(0.0) ?
- static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) :
- static_cast<const DT_Convex&>(tb)), max_dist2, pa, pb);
-}
-
-MT_Scalar closest_points(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
- const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin,
- MT_Point3& pa, MT_Point3& pb)
-{
- DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
- DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
-
- return closest_points(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
- DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, MT_INFINITY, pa, pb);
-}
-
-