Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
path: root/extern
diff options
context:
space:
mode:
authorBrecht Van Lommel <brechtvanlommel@gmail.com>2015-11-24 22:42:10 +0300
committerBrecht Van Lommel <brechtvanlommel@gmail.com>2015-12-10 03:58:10 +0300
commitf9047c3f8c72f1a15a4c051b507306d308f44646 (patch)
tree5116007ad245bbbc95695f13afa7134983e42be4 /extern
parent858b680a50888a071d5d37af261b0c89b47aea8c (diff)
Eigen: fold remaining OpenNL code into intern/eigen.
Differential Revision: https://developer.blender.org/D1662
Diffstat (limited to 'extern')
-rw-r--r--extern/CMakeLists.txt4
-rw-r--r--extern/SConscript1
-rw-r--r--extern/colamd/CMakeLists.txt41
-rw-r--r--extern/colamd/Doc/ChangeLog129
-rw-r--r--extern/colamd/Doc/lesser.txt504
-rw-r--r--extern/colamd/Include/UFconfig.h118
-rw-r--r--extern/colamd/Include/colamd.h255
-rw-r--r--extern/colamd/README.txt127
-rw-r--r--extern/colamd/SConscript14
-rw-r--r--extern/colamd/Source/colamd.c3611
-rw-r--r--extern/colamd/Source/colamd_global.c24
11 files changed, 0 insertions, 4828 deletions
diff --git a/extern/CMakeLists.txt b/extern/CMakeLists.txt
index d0c587b80e4..640de9d80e7 100644
--- a/extern/CMakeLists.txt
+++ b/extern/CMakeLists.txt
@@ -30,10 +30,6 @@ add_subdirectory(rangetree)
add_subdirectory(wcwidth)
add_subdirectory(libmv)
-if(WITH_OPENNL)
- add_subdirectory(colamd)
-endif()
-
if(WITH_BULLET)
if(NOT WITH_SYSTEM_BULLET)
add_subdirectory(bullet2)
diff --git a/extern/SConscript b/extern/SConscript
index 46c177c5bcb..a5d8c1f078e 100644
--- a/extern/SConscript
+++ b/extern/SConscript
@@ -7,7 +7,6 @@ if env['WITH_BF_GLEW_ES']:
else:
SConscript(['glew/SConscript'])
-SConscript(['colamd/SConscript'])
SConscript(['rangetree/SConscript'])
SConscript(['wcwidth/SConscript'])
SConscript(['libmv/SConscript'])
diff --git a/extern/colamd/CMakeLists.txt b/extern/colamd/CMakeLists.txt
deleted file mode 100644
index 3019ee5904e..00000000000
--- a/extern/colamd/CMakeLists.txt
+++ /dev/null
@@ -1,41 +0,0 @@
-# ***** BEGIN GPL LICENSE BLOCK *****
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU General Public License
-# as published by the Free Software Foundation; either version 2
-# of the License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software Foundation,
-# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
-#
-# The Original Code is Copyright (C) 2011, Blender Foundation
-# All rights reserved.
-#
-# Contributor(s): Blender Foundation,
-# Sergey Sharybin
-#
-# ***** END GPL LICENSE BLOCK *****
-
-set(INC
- Include
-)
-
-set(INC_SYS
-
-)
-
-set(SRC
- Source/colamd.c
- Source/colamd_global.c
-
- Include/colamd.h
- Include/UFconfig.h
-)
-
-blender_add_lib(extern_colamd "${SRC}" "${INC}" "${INC_SYS}")
diff --git a/extern/colamd/Doc/ChangeLog b/extern/colamd/Doc/ChangeLog
deleted file mode 100644
index 29308e9ad01..00000000000
--- a/extern/colamd/Doc/ChangeLog
+++ /dev/null
@@ -1,129 +0,0 @@
-May 31, 2007: version 2.7.0
-
- * ported to 64-bit MATLAB
-
- * subdirectories added (Source/, Include/, Lib/, Doc/, MATLAB/, Demo/)
-
-Dec 12, 2006, version 2.5.2
-
- * minor MATLAB cleanup. MATLAB functions renamed colamd2 and symamd2,
- so that they do not conflict with the built-in versions. Note that
- the MATLAB built-in functions colamd and symamd are identical to
- the colamd and symamd functions here.
-
-Aug 31, 2006: Version 2.5.1
-
- * minor change to colamd.m and symamd.m, to use etree instead
- of sparsfun.
-
-Apr. 30, 2006: Version 2.5
-
- * colamd_recommended modified, to do more careful integer overflow
- checking. It now returns size_t, not int. colamd_l_recommended
- also returns size_t. A zero is returned if an error occurs. A
- postive return value denotes success. In v2.4 and earlier,
- -1 was returned on error (an int or long).
-
- * long replaced with UF_long integer, which is long except on WIN64.
-
-Nov 15, 2005:
-
- * minor editting of comments; version number (2.4) unchanged.
-
-Changes from Version 2.3 to 2.4 (Aug 30, 2005)
-
- * Makefile now relies on ../UFconfig/UFconfig.mk
-
- * changed the dense row/col detection. The meaning of the knobs
- has thus changed.
-
- * added an option to turn off aggressive absorption. It was
- always on in versions 2.3 and earlier.
-
- * added a #define'd version number
-
- * added a function pointer (colamd_printf) for COLAMD's printing.
-
- * added a -DNPRINT option, to turn off printing at compile-time.
-
- * added a check for integer overflow in colamd_recommended
-
- * minor changes to allow for more simpler 100% test coverage
-
- * bug fix. If symamd v2.3 fails to allocate its copy of the input
- matrix, then it erroneously frees a calloc'd workspace twice.
- This bug has no effect on the MATLAB symamd mexFunction, since
- mxCalloc terminates the mexFunction if it fails to allocate
- memory. Similarly, UMFPACK is not affected because it does not
- use symamd. The bug has no effect on the colamd ordering
- routine in v2.3.
-
-Changes from Version 2.2 to 2.3 (Sept. 8, 2003)
-
- * removed the call to the MATLAB spparms ('spumoni') function.
- This can take a lot of time if you are ordering many small
- matrices. Only affects the MATLAB interface (colamdmex.c,
- symamdmex.c, colamdtestmex.c, and symamdtestmex.c). The
- usage of the optional 2nd argument to the colamd and symamd
- mexFunctions was changed accordingly.
-
-Changes from Version 2.1 to 2.2 (Sept. 23, 2002)
-
- * extensive testing routines added (colamd_test.m, colamdtestmex.c,
- and symamdtestmex.c), and the Makefile modified accordingly.
-
- * a few typos in the comments corrected
-
- * use of the MATLAB "flops" command removed from colamd_demo, and an
- m-file routine luflops.m added.
-
- * an explicit typecast from unsigned to int added, for COLAMD_C and
- COLAMD_R in colamd.h.
-
- * #include <stdio.h> added to colamd_example.c
-
-
-Changes from Version 2.0 to 2.1 (May 4, 2001)
-
- * TRUE and FALSE are predefined on some systems, so they are defined
- here only if not already defined.
-
- * web site changed
-
- * UNIX Makefile modified, to handle the case if "." is not in your path.
-
-
-Changes from Version 1.0 to 2.0 (January 31, 2000)
-
- No bugs were found in version 1.1. These changes merely add new
- functionality.
-
- * added the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.
-
- * moved the output statistics, from A, to a separate output argument.
- The arguments changed for the C-callable routines.
-
- * added colamd_report and symamd_report.
-
- * added a C-callable symamd routine. Formerly, symamd was only
- available as a mexFunction from MATLAB.
-
- * added error-checking to symamd. Formerly, it assumed its input
- was error-free.
-
- * added the optional stats and knobs arguments to the symamd mexFunction
-
- * deleted colamd_help. A help message is still available from
- "help colamd" and "help symamd" in MATLAB.
-
- * deleted colamdtree.m and symamdtree.m. Now, colamd.m and symamd.m
- also do the elimination tree post-ordering. The Version 1.1
- colamd and symamd mexFunctions, which do not do the post-
- ordering, are now visible as colamdmex and symamdmex from
- MATLAB. Essentialy, the post-ordering is now the default
- behavior of colamd.m and symamd.m, to match the behavior of
- colmmd and symmmd. The post-ordering is only available in the
- MATLAB interface, not the C-callable interface.
-
- * made a slight change to the dense row/column detection in symamd,
- to match the stated specifications.
diff --git a/extern/colamd/Doc/lesser.txt b/extern/colamd/Doc/lesser.txt
deleted file mode 100644
index 8add30ad590..00000000000
--- a/extern/colamd/Doc/lesser.txt
+++ /dev/null
@@ -1,504 +0,0 @@
- GNU LESSER GENERAL PUBLIC LICENSE
- Version 2.1, February 1999
-
- Copyright (C) 1991, 1999 Free Software Foundation, Inc.
- 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-[This is the first released version of the Lesser GPL. It also counts
- as the successor of the GNU Library Public License, version 2, hence
- the version number 2.1.]
-
- Preamble
-
- The licenses for most software are designed to take away your
-freedom to share and change it. By contrast, the GNU General Public
-Licenses are intended to guarantee your freedom to share and change
-free software--to make sure the software is free for all its users.
-
- This license, the Lesser General Public License, applies to some
-specially designated software packages--typically libraries--of the
-Free Software Foundation and other authors who decide to use it. You
-can use it too, but we suggest you first think carefully about whether
-this license or the ordinary General Public License is the better
-strategy to use in any particular case, based on the explanations below.
-
- When we speak of free software, we are referring to freedom of use,
-not price. Our General Public Licenses are designed to make sure that
-you have the freedom to distribute copies of free software (and charge
-for this service if you wish); that you receive source code or can get
-it if you want it; that you can change the software and use pieces of
-it in new free programs; and that you are informed that you can do
-these things.
-
- To protect your rights, we need to make restrictions that forbid
-distributors to deny you these rights or to ask you to surrender these
-rights. These restrictions translate to certain responsibilities for
-you if you distribute copies of the library or if you modify it.
-
- For example, if you distribute copies of the library, whether gratis
-or for a fee, you must give the recipients all the rights that we gave
-you. You must make sure that they, too, receive or can get the source
-code. If you link other code with the library, you must provide
-complete object files to the recipients, so that they can relink them
-with the library after making changes to the library and recompiling
-it. And you must show them these terms so they know their rights.
-
- We protect your rights with a two-step method: (1) we copyright the
-library, and (2) we offer you this license, which gives you legal
-permission to copy, distribute and/or modify the library.
-
- To protect each distributor, we want to make it very clear that
-there is no warranty for the free library. Also, if the library is
-modified by someone else and passed on, the recipients should know
-that what they have is not the original version, so that the original
-author's reputation will not be affected by problems that might be
-introduced by others.
-
- Finally, software patents pose a constant threat to the existence of
-any free program. We wish to make sure that a company cannot
-effectively restrict the users of a free program by obtaining a
-restrictive license from a patent holder. Therefore, we insist that
-any patent license obtained for a version of the library must be
-consistent with the full freedom of use specified in this license.
-
- Most GNU software, including some libraries, is covered by the
-ordinary GNU General Public License. This license, the GNU Lesser
-General Public License, applies to certain designated libraries, and
-is quite different from the ordinary General Public License. We use
-this license for certain libraries in order to permit linking those
-libraries into non-free programs.
-
- When a program is linked with a library, whether statically or using
-a shared library, the combination of the two is legally speaking a
-combined work, a derivative of the original library. The ordinary
-General Public License therefore permits such linking only if the
-entire combination fits its criteria of freedom. The Lesser General
-Public License permits more lax criteria for linking other code with
-the library.
-
- We call this license the "Lesser" General Public License because it
-does Less to protect the user's freedom than the ordinary General
-Public License. It also provides other free software developers Less
-of an advantage over competing non-free programs. These disadvantages
-are the reason we use the ordinary General Public License for many
-libraries. However, the Lesser license provides advantages in certain
-special circumstances.
-
- For example, on rare occasions, there may be a special need to
-encourage the widest possible use of a certain library, so that it becomes
-a de-facto standard. To achieve this, non-free programs must be
-allowed to use the library. A more frequent case is that a free
-library does the same job as widely used non-free libraries. In this
-case, there is little to gain by limiting the free library to free
-software only, so we use the Lesser General Public License.
-
- In other cases, permission to use a particular library in non-free
-programs enables a greater number of people to use a large body of
-free software. For example, permission to use the GNU C Library in
-non-free programs enables many more people to use the whole GNU
-operating system, as well as its variant, the GNU/Linux operating
-system.
-
- Although the Lesser General Public License is Less protective of the
-users' freedom, it does ensure that the user of a program that is
-linked with the Library has the freedom and the wherewithal to run
-that program using a modified version of the Library.
-
- The precise terms and conditions for copying, distribution and
-modification follow. Pay close attention to the difference between a
-"work based on the library" and a "work that uses the library". The
-former contains code derived from the library, whereas the latter must
-be combined with the library in order to run.
-
- GNU LESSER GENERAL PUBLIC LICENSE
- TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
-
- 0. This License Agreement applies to any software library or other
-program which contains a notice placed by the copyright holder or
-other authorized party saying it may be distributed under the terms of
-this Lesser General Public License (also called "this License").
-Each licensee is addressed as "you".
-
- A "library" means a collection of software functions and/or data
-prepared so as to be conveniently linked with application programs
-(which use some of those functions and data) to form executables.
-
- The "Library", below, refers to any such software library or work
-which has been distributed under these terms. A "work based on the
-Library" means either the Library or any derivative work under
-copyright law: that is to say, a work containing the Library or a
-portion of it, either verbatim or with modifications and/or translated
-straightforwardly into another language. (Hereinafter, translation is
-included without limitation in the term "modification".)
-
- "Source code" for a work means the preferred form of the work for
-making modifications to it. For a library, complete source code means
-all the source code for all modules it contains, plus any associated
-interface definition files, plus the scripts used to control compilation
-and installation of the library.
-
- Activities other than copying, distribution and modification are not
-covered by this License; they are outside its scope. The act of
-running a program using the Library is not restricted, and output from
-such a program is covered only if its contents constitute a work based
-on the Library (independent of the use of the Library in a tool for
-writing it). Whether that is true depends on what the Library does
-and what the program that uses the Library does.
-
- 1. You may copy and distribute verbatim copies of the Library's
-complete source code as you receive it, in any medium, provided that
-you conspicuously and appropriately publish on each copy an
-appropriate copyright notice and disclaimer of warranty; keep intact
-all the notices that refer to this License and to the absence of any
-warranty; and distribute a copy of this License along with the
-Library.
-
- You may charge a fee for the physical act of transferring a copy,
-and you may at your option offer warranty protection in exchange for a
-fee.
-
- 2. You may modify your copy or copies of the Library or any portion
-of it, thus forming a work based on the Library, and copy and
-distribute such modifications or work under the terms of Section 1
-above, provided that you also meet all of these conditions:
-
- a) The modified work must itself be a software library.
-
- b) You must cause the files modified to carry prominent notices
- stating that you changed the files and the date of any change.
-
- c) You must cause the whole of the work to be licensed at no
- charge to all third parties under the terms of this License.
-
- d) If a facility in the modified Library refers to a function or a
- table of data to be supplied by an application program that uses
- the facility, other than as an argument passed when the facility
- is invoked, then you must make a good faith effort to ensure that,
- in the event an application does not supply such function or
- table, the facility still operates, and performs whatever part of
- its purpose remains meaningful.
-
- (For example, a function in a library to compute square roots has
- a purpose that is entirely well-defined independent of the
- application. Therefore, Subsection 2d requires that any
- application-supplied function or table used by this function must
- be optional: if the application does not supply it, the square
- root function must still compute square roots.)
-
-These requirements apply to the modified work as a whole. If
-identifiable sections of that work are not derived from the Library,
-and can be reasonably considered independent and separate works in
-themselves, then this License, and its terms, do not apply to those
-sections when you distribute them as separate works. But when you
-distribute the same sections as part of a whole which is a work based
-on the Library, the distribution of the whole must be on the terms of
-this License, whose permissions for other licensees extend to the
-entire whole, and thus to each and every part regardless of who wrote
-it.
-
-Thus, it is not the intent of this section to claim rights or contest
-your rights to work written entirely by you; rather, the intent is to
-exercise the right to control the distribution of derivative or
-collective works based on the Library.
-
-In addition, mere aggregation of another work not based on the Library
-with the Library (or with a work based on the Library) on a volume of
-a storage or distribution medium does not bring the other work under
-the scope of this License.
-
- 3. You may opt to apply the terms of the ordinary GNU General Public
-License instead of this License to a given copy of the Library. To do
-this, you must alter all the notices that refer to this License, so
-that they refer to the ordinary GNU General Public License, version 2,
-instead of to this License. (If a newer version than version 2 of the
-ordinary GNU General Public License has appeared, then you can specify
-that version instead if you wish.) Do not make any other change in
-these notices.
-
- Once this change is made in a given copy, it is irreversible for
-that copy, so the ordinary GNU General Public License applies to all
-subsequent copies and derivative works made from that copy.
-
- This option is useful when you wish to copy part of the code of
-the Library into a program that is not a library.
-
- 4. You may copy and distribute the Library (or a portion or
-derivative of it, under Section 2) in object code or executable form
-under the terms of Sections 1 and 2 above provided that you accompany
-it with the complete corresponding machine-readable source code, which
-must be distributed under the terms of Sections 1 and 2 above on a
-medium customarily used for software interchange.
-
- If distribution of object code is made by offering access to copy
-from a designated place, then offering equivalent access to copy the
-source code from the same place satisfies the requirement to
-distribute the source code, even though third parties are not
-compelled to copy the source along with the object code.
-
- 5. A program that contains no derivative of any portion of the
-Library, but is designed to work with the Library by being compiled or
-linked with it, is called a "work that uses the Library". Such a
-work, in isolation, is not a derivative work of the Library, and
-therefore falls outside the scope of this License.
-
- However, linking a "work that uses the Library" with the Library
-creates an executable that is a derivative of the Library (because it
-contains portions of the Library), rather than a "work that uses the
-library". The executable is therefore covered by this License.
-Section 6 states terms for distribution of such executables.
-
- When a "work that uses the Library" uses material from a header file
-that is part of the Library, the object code for the work may be a
-derivative work of the Library even though the source code is not.
-Whether this is true is especially significant if the work can be
-linked without the Library, or if the work is itself a library. The
-threshold for this to be true is not precisely defined by law.
-
- If such an object file uses only numerical parameters, data
-structure layouts and accessors, and small macros and small inline
-functions (ten lines or less in length), then the use of the object
-file is unrestricted, regardless of whether it is legally a derivative
-work. (Executables containing this object code plus portions of the
-Library will still fall under Section 6.)
-
- Otherwise, if the work is a derivative of the Library, you may
-distribute the object code for the work under the terms of Section 6.
-Any executables containing that work also fall under Section 6,
-whether or not they are linked directly with the Library itself.
-
- 6. As an exception to the Sections above, you may also combine or
-link a "work that uses the Library" with the Library to produce a
-work containing portions of the Library, and distribute that work
-under terms of your choice, provided that the terms permit
-modification of the work for the customer's own use and reverse
-engineering for debugging such modifications.
-
- You must give prominent notice with each copy of the work that the
-Library is used in it and that the Library and its use are covered by
-this License. You must supply a copy of this License. If the work
-during execution displays copyright notices, you must include the
-copyright notice for the Library among them, as well as a reference
-directing the user to the copy of this License. Also, you must do one
-of these things:
-
- a) Accompany the work with the complete corresponding
- machine-readable source code for the Library including whatever
- changes were used in the work (which must be distributed under
- Sections 1 and 2 above); and, if the work is an executable linked
- with the Library, with the complete machine-readable "work that
- uses the Library", as object code and/or source code, so that the
- user can modify the Library and then relink to produce a modified
- executable containing the modified Library. (It is understood
- that the user who changes the contents of definitions files in the
- Library will not necessarily be able to recompile the application
- to use the modified definitions.)
-
- b) Use a suitable shared library mechanism for linking with the
- Library. A suitable mechanism is one that (1) uses at run time a
- copy of the library already present on the user's computer system,
- rather than copying library functions into the executable, and (2)
- will operate properly with a modified version of the library, if
- the user installs one, as long as the modified version is
- interface-compatible with the version that the work was made with.
-
- c) Accompany the work with a written offer, valid for at
- least three years, to give the same user the materials
- specified in Subsection 6a, above, for a charge no more
- than the cost of performing this distribution.
-
- d) If distribution of the work is made by offering access to copy
- from a designated place, offer equivalent access to copy the above
- specified materials from the same place.
-
- e) Verify that the user has already received a copy of these
- materials or that you have already sent this user a copy.
-
- For an executable, the required form of the "work that uses the
-Library" must include any data and utility programs needed for
-reproducing the executable from it. However, as a special exception,
-the materials to be distributed need not include anything that is
-normally distributed (in either source or binary form) with the major
-components (compiler, kernel, and so on) of the operating system on
-which the executable runs, unless that component itself accompanies
-the executable.
-
- It may happen that this requirement contradicts the license
-restrictions of other proprietary libraries that do not normally
-accompany the operating system. Such a contradiction means you cannot
-use both them and the Library together in an executable that you
-distribute.
-
- 7. You may place library facilities that are a work based on the
-Library side-by-side in a single library together with other library
-facilities not covered by this License, and distribute such a combined
-library, provided that the separate distribution of the work based on
-the Library and of the other library facilities is otherwise
-permitted, and provided that you do these two things:
-
- a) Accompany the combined library with a copy of the same work
- based on the Library, uncombined with any other library
- facilities. This must be distributed under the terms of the
- Sections above.
-
- b) Give prominent notice with the combined library of the fact
- that part of it is a work based on the Library, and explaining
- where to find the accompanying uncombined form of the same work.
-
- 8. You may not copy, modify, sublicense, link with, or distribute
-the Library except as expressly provided under this License. Any
-attempt otherwise to copy, modify, sublicense, link with, or
-distribute the Library is void, and will automatically terminate your
-rights under this License. However, parties who have received copies,
-or rights, from you under this License will not have their licenses
-terminated so long as such parties remain in full compliance.
-
- 9. You are not required to accept this License, since you have not
-signed it. However, nothing else grants you permission to modify or
-distribute the Library or its derivative works. These actions are
-prohibited by law if you do not accept this License. Therefore, by
-modifying or distributing the Library (or any work based on the
-Library), you indicate your acceptance of this License to do so, and
-all its terms and conditions for copying, distributing or modifying
-the Library or works based on it.
-
- 10. Each time you redistribute the Library (or any work based on the
-Library), the recipient automatically receives a license from the
-original licensor to copy, distribute, link with or modify the Library
-subject to these terms and conditions. You may not impose any further
-restrictions on the recipients' exercise of the rights granted herein.
-You are not responsible for enforcing compliance by third parties with
-this License.
-
- 11. If, as a consequence of a court judgment or allegation of patent
-infringement or for any other reason (not limited to patent issues),
-conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot
-distribute so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you
-may not distribute the Library at all. For example, if a patent
-license would not permit royalty-free redistribution of the Library by
-all those who receive copies directly or indirectly through you, then
-the only way you could satisfy both it and this License would be to
-refrain entirely from distribution of the Library.
-
-If any portion of this section is held invalid or unenforceable under any
-particular circumstance, the balance of the section is intended to apply,
-and the section as a whole is intended to apply in other circumstances.
-
-It is not the purpose of this section to induce you to infringe any
-patents or other property right claims or to contest validity of any
-such claims; this section has the sole purpose of protecting the
-integrity of the free software distribution system which is
-implemented by public license practices. Many people have made
-generous contributions to the wide range of software distributed
-through that system in reliance on consistent application of that
-system; it is up to the author/donor to decide if he or she is willing
-to distribute software through any other system and a licensee cannot
-impose that choice.
-
-This section is intended to make thoroughly clear what is believed to
-be a consequence of the rest of this License.
-
- 12. If the distribution and/or use of the Library is restricted in
-certain countries either by patents or by copyrighted interfaces, the
-original copyright holder who places the Library under this License may add
-an explicit geographical distribution limitation excluding those countries,
-so that distribution is permitted only in or among countries not thus
-excluded. In such case, this License incorporates the limitation as if
-written in the body of this License.
-
- 13. The Free Software Foundation may publish revised and/or new
-versions of the Lesser General Public License from time to time.
-Such new versions will be similar in spirit to the present version,
-but may differ in detail to address new problems or concerns.
-
-Each version is given a distinguishing version number. If the Library
-specifies a version number of this License which applies to it and
-"any later version", you have the option of following the terms and
-conditions either of that version or of any later version published by
-the Free Software Foundation. If the Library does not specify a
-license version number, you may choose any version ever published by
-the Free Software Foundation.
-
- 14. If you wish to incorporate parts of the Library into other free
-programs whose distribution conditions are incompatible with these,
-write to the author to ask for permission. For software which is
-copyrighted by the Free Software Foundation, write to the Free
-Software Foundation; we sometimes make exceptions for this. Our
-decision will be guided by the two goals of preserving the free status
-of all derivatives of our free software and of promoting the sharing
-and reuse of software generally.
-
- NO WARRANTY
-
- 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
-WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
-EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
-OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
-KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
-LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
-THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
-WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
-AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
-FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
-CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
-LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
-RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
-FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
-SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGES.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Libraries
-
- If you develop a new library, and you want it to be of the greatest
-possible use to the public, we recommend making it free software that
-everyone can redistribute and change. You can do so by permitting
-redistribution under these terms (or, alternatively, under the terms of the
-ordinary General Public License).
-
- To apply these terms, attach the following notices to the library. It is
-safest to attach them to the start of each source file to most effectively
-convey the exclusion of warranty; and each file should have at least the
-"copyright" line and a pointer to where the full notice is found.
-
- <one line to give the library's name and a brief idea of what it does.>
- Copyright (C) <year> <name of author>
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-
-Also add information on how to contact you by electronic and paper mail.
-
-You should also get your employer (if you work as a programmer) or your
-school, if any, to sign a "copyright disclaimer" for the library, if
-necessary. Here is a sample; alter the names:
-
- Yoyodyne, Inc., hereby disclaims all copyright interest in the
- library `Frob' (a library for tweaking knobs) written by James Random Hacker.
-
- <signature of Ty Coon>, 1 April 1990
- Ty Coon, President of Vice
-
-That's all there is to it!
-
-
diff --git a/extern/colamd/Include/UFconfig.h b/extern/colamd/Include/UFconfig.h
deleted file mode 100644
index 7b5e79e544f..00000000000
--- a/extern/colamd/Include/UFconfig.h
+++ /dev/null
@@ -1,118 +0,0 @@
-/* ========================================================================== */
-/* === UFconfig.h =========================================================== */
-/* ========================================================================== */
-
-/* Configuration file for SuiteSparse: a Suite of Sparse matrix packages
- * (AMD, COLAMD, CCOLAMD, CAMD, CHOLMOD, UMFPACK, CXSparse, and others).
- *
- * UFconfig.h provides the definition of the long integer. On most systems,
- * a C program can be compiled in LP64 mode, in which long's and pointers are
- * both 64-bits, and int's are 32-bits. Windows 64, however, uses the LLP64
- * model, in which int's and long's are 32-bits, and long long's and pointers
- * are 64-bits.
- *
- * SuiteSparse packages that include long integer versions are
- * intended for the LP64 mode. However, as a workaround for Windows 64
- * (and perhaps other systems), the long integer can be redefined.
- *
- * If _WIN64 is defined, then the __int64 type is used instead of long.
- *
- * The long integer can also be defined at compile time. For example, this
- * could be added to UFconfig.mk:
- *
- * CFLAGS = -O -D'UF_long=long long' -D'UF_long_max=9223372036854775801' \
- * -D'UF_long_id="%lld"'
- *
- * This file defines UF_long as either long (on all but _WIN64) or
- * __int64 on Windows 64. The intent is that a UF_long is always a 64-bit
- * integer in a 64-bit code. ptrdiff_t might be a better choice than long;
- * it is always the same size as a pointer.
- *
- * This file also defines the SUITESPARSE_VERSION and related definitions.
- *
- * Copyright (c) 2007, University of Florida. No licensing restrictions
- * apply to this file or to the UFconfig directory. Author: Timothy A. Davis.
- */
-
-#ifndef _UFCONFIG_H
-#define _UFCONFIG_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <limits.h>
-
-/* ========================================================================== */
-/* === UF_long ============================================================== */
-/* ========================================================================== */
-
-#ifndef UF_long
-
-#ifdef _WIN64
-
-#define UF_long __int64
-#define UF_long_max _I64_MAX
-#define UF_long_id "%I64d"
-
-#else
-
-#define UF_long long
-#define UF_long_max LONG_MAX
-#define UF_long_id "%ld"
-
-#endif
-#endif
-
-/* ========================================================================== */
-/* === SuiteSparse version ================================================== */
-/* ========================================================================== */
-
-/* SuiteSparse is not a package itself, but a collection of packages, some of
- * which must be used together (UMFPACK requires AMD, CHOLMOD requires AMD,
- * COLAMD, CAMD, and CCOLAMD, etc). A version number is provided here for the
- * collection itself. The versions of packages within each version of
- * SuiteSparse are meant to work together. Combining one packge from one
- * version of SuiteSparse, with another package from another version of
- * SuiteSparse, may or may not work.
- *
- * SuiteSparse Version 3.4.0 contains the following packages:
- *
- * AMD version 2.2.0
- * CAMD version 2.2.0
- * COLAMD version 2.7.1
- * CCOLAMD version 2.7.1
- * CHOLMOD version 1.7.1
- * CSparse version 2.2.3
- * CXSparse version 2.2.3
- * KLU version 1.1.0
- * BTF version 1.1.0
- * LDL version 2.0.1
- * UFconfig version number is the same as SuiteSparse
- * UMFPACK version 5.4.0
- * RBio version 1.1.2
- * UFcollection version 1.2.0
- * LINFACTOR version 1.1.0
- * MESHND version 1.1.1
- * SSMULT version 2.0.0
- * MATLAB_Tools no specific version number
- * SuiteSparseQR version 1.1.2
- *
- * Other package dependencies:
- * BLAS required by CHOLMOD and UMFPACK
- * LAPACK required by CHOLMOD
- * METIS 4.0.1 required by CHOLMOD (optional) and KLU (optional)
- */
-
-#define SUITESPARSE_DATE "May 20, 2009"
-#define SUITESPARSE_VER_CODE(main,sub) ((main) * 1000 + (sub))
-#define SUITESPARSE_MAIN_VERSION 3
-#define SUITESPARSE_SUB_VERSION 4
-#define SUITESPARSE_SUBSUB_VERSION 0
-#define SUITESPARSE_VERSION \
- SUITESPARSE_VER_CODE(SUITESPARSE_MAIN_VERSION,SUITESPARSE_SUB_VERSION)
-
-#ifdef __cplusplus
-}
-#endif
-#endif
diff --git a/extern/colamd/Include/colamd.h b/extern/colamd/Include/colamd.h
deleted file mode 100644
index 26372d8fa96..00000000000
--- a/extern/colamd/Include/colamd.h
+++ /dev/null
@@ -1,255 +0,0 @@
-/* ========================================================================== */
-/* === colamd/symamd prototypes and definitions ============================= */
-/* ========================================================================== */
-
-/* COLAMD / SYMAMD include file
-
- You must include this file (colamd.h) in any routine that uses colamd,
- symamd, or the related macros and definitions.
-
- Authors:
-
- The authors of the code itself are Stefan I. Larimore and Timothy A.
- Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
- developed in collaboration with John Gilbert, Xerox PARC, and Esmond
- Ng, Oak Ridge National Laboratory.
-
- Acknowledgements:
-
- This work was supported by the National Science Foundation, under
- grants DMS-9504974 and DMS-9803599.
-
- Notice:
-
- Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use, copy, modify, and/or distribute
- this program, provided that the Copyright, this License, and the
- Availability of the original version is retained on all copies and made
- accessible to the end-user of any code or package that includes COLAMD
- or any modified version of COLAMD.
-
- Availability:
-
- The colamd/symamd library is available at
-
- http://www.cise.ufl.edu/research/sparse/colamd/
-
- This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h
- file. It is required by the colamd.c, colamdmex.c, and symamdmex.c
- files, and by any C code that calls the routines whose prototypes are
- listed below, or that uses the colamd/symamd definitions listed below.
-
-*/
-
-#ifndef COLAMD_H
-#define COLAMD_H
-
-/* make it easy for C++ programs to include COLAMD */
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* ========================================================================== */
-/* === Include files ======================================================== */
-/* ========================================================================== */
-
-#include <stdlib.h>
-
-/* ========================================================================== */
-/* === COLAMD version ======================================================= */
-/* ========================================================================== */
-
-/* COLAMD Version 2.4 and later will include the following definitions.
- * As an example, to test if the version you are using is 2.4 or later:
- *
- * #ifdef COLAMD_VERSION
- * if (COLAMD_VERSION >= COLAMD_VERSION_CODE (2,4)) ...
- * #endif
- *
- * This also works during compile-time:
- *
- * #if defined(COLAMD_VERSION) && (COLAMD_VERSION >= COLAMD_VERSION_CODE (2,4))
- * printf ("This is version 2.4 or later\n") ;
- * #else
- * printf ("This is an early version\n") ;
- * #endif
- *
- * Versions 2.3 and earlier of COLAMD do not include a #define'd version number.
- */
-
-#define COLAMD_DATE "Nov 1, 2007"
-#define COLAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
-#define COLAMD_MAIN_VERSION 2
-#define COLAMD_SUB_VERSION 7
-#define COLAMD_SUBSUB_VERSION 1
-#define COLAMD_VERSION \
- COLAMD_VERSION_CODE(COLAMD_MAIN_VERSION,COLAMD_SUB_VERSION)
-
-/* ========================================================================== */
-/* === Knob and statistics definitions ====================================== */
-/* ========================================================================== */
-
-/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
-#define COLAMD_KNOBS 20
-
-/* number of output statistics. Only stats [0..6] are currently used. */
-#define COLAMD_STATS 20
-
-/* knobs [0] and stats [0]: dense row knob and output statistic. */
-#define COLAMD_DENSE_ROW 0
-
-/* knobs [1] and stats [1]: dense column knob and output statistic. */
-#define COLAMD_DENSE_COL 1
-
-/* knobs [2]: aggressive absorption */
-#define COLAMD_AGGRESSIVE 2
-
-/* stats [2]: memory defragmentation count output statistic */
-#define COLAMD_DEFRAG_COUNT 2
-
-/* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */
-#define COLAMD_STATUS 3
-
-/* stats [4..6]: error info, or info on jumbled columns */
-#define COLAMD_INFO1 4
-#define COLAMD_INFO2 5
-#define COLAMD_INFO3 6
-
-/* error codes returned in stats [3]: */
-#define COLAMD_OK (0)
-#define COLAMD_OK_BUT_JUMBLED (1)
-#define COLAMD_ERROR_A_not_present (-1)
-#define COLAMD_ERROR_p_not_present (-2)
-#define COLAMD_ERROR_nrow_negative (-3)
-#define COLAMD_ERROR_ncol_negative (-4)
-#define COLAMD_ERROR_nnz_negative (-5)
-#define COLAMD_ERROR_p0_nonzero (-6)
-#define COLAMD_ERROR_A_too_small (-7)
-#define COLAMD_ERROR_col_length_negative (-8)
-#define COLAMD_ERROR_row_index_out_of_bounds (-9)
-#define COLAMD_ERROR_out_of_memory (-10)
-#define COLAMD_ERROR_internal_error (-999)
-
-
-/* ========================================================================== */
-/* === Prototypes of user-callable routines ================================= */
-/* ========================================================================== */
-
-/* define UF_long */
-#include "UFconfig.h"
-
-size_t colamd_recommended /* returns recommended value of Alen, */
- /* or 0 if input arguments are erroneous */
-(
- int nnz, /* nonzeros in A */
- int n_row, /* number of rows in A */
- int n_col /* number of columns in A */
-) ;
-
-size_t colamd_l_recommended /* returns recommended value of Alen, */
- /* or 0 if input arguments are erroneous */
-(
- UF_long nnz, /* nonzeros in A */
- UF_long n_row, /* number of rows in A */
- UF_long n_col /* number of columns in A */
-) ;
-
-void colamd_set_defaults /* sets default parameters */
-( /* knobs argument is modified on output */
- double knobs [COLAMD_KNOBS] /* parameter settings for colamd */
-) ;
-
-void colamd_l_set_defaults /* sets default parameters */
-( /* knobs argument is modified on output */
- double knobs [COLAMD_KNOBS] /* parameter settings for colamd */
-) ;
-
-int colamd /* returns (1) if successful, (0) otherwise*/
-( /* A and p arguments are modified on output */
- int n_row, /* number of rows in A */
- int n_col, /* number of columns in A */
- int Alen, /* size of the array A */
- int A [], /* row indices of A, of size Alen */
- int p [], /* column pointers of A, of size n_col+1 */
- double knobs [COLAMD_KNOBS],/* parameter settings for colamd */
- int stats [COLAMD_STATS] /* colamd output statistics and error codes */
-) ;
-
-UF_long colamd_l /* returns (1) if successful, (0) otherwise*/
-( /* A and p arguments are modified on output */
- UF_long n_row, /* number of rows in A */
- UF_long n_col, /* number of columns in A */
- UF_long Alen, /* size of the array A */
- UF_long A [], /* row indices of A, of size Alen */
- UF_long p [], /* column pointers of A, of size n_col+1 */
- double knobs [COLAMD_KNOBS],/* parameter settings for colamd */
- UF_long stats [COLAMD_STATS]/* colamd output statistics and error codes */
-) ;
-
-int symamd /* return (1) if OK, (0) otherwise */
-(
- int n, /* number of rows and columns of A */
- int A [], /* row indices of A */
- int p [], /* column pointers of A */
- int perm [], /* output permutation, size n_col+1 */
- double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
- int stats [COLAMD_STATS], /* output statistics and error codes */
- void * (*allocate) (size_t, size_t),
- /* pointer to calloc (ANSI C) or */
- /* mxCalloc (for MATLAB mexFunction) */
- void (*release) (void *)
- /* pointer to free (ANSI C) or */
- /* mxFree (for MATLAB mexFunction) */
-) ;
-
-UF_long symamd_l /* return (1) if OK, (0) otherwise */
-(
- UF_long n, /* number of rows and columns of A */
- UF_long A [], /* row indices of A */
- UF_long p [], /* column pointers of A */
- UF_long perm [], /* output permutation, size n_col+1 */
- double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
- UF_long stats [COLAMD_STATS], /* output statistics and error codes */
- void * (*allocate) (size_t, size_t),
- /* pointer to calloc (ANSI C) or */
- /* mxCalloc (for MATLAB mexFunction) */
- void (*release) (void *)
- /* pointer to free (ANSI C) or */
- /* mxFree (for MATLAB mexFunction) */
-) ;
-
-void colamd_report
-(
- int stats [COLAMD_STATS]
-) ;
-
-void colamd_l_report
-(
- UF_long stats [COLAMD_STATS]
-) ;
-
-void symamd_report
-(
- int stats [COLAMD_STATS]
-) ;
-
-void symamd_l_report
-(
- UF_long stats [COLAMD_STATS]
-) ;
-
-#ifndef EXTERN
-#define EXTERN extern
-#endif
-
-EXTERN int (*colamd_printf) (const char *, ...) ;
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* COLAMD_H */
diff --git a/extern/colamd/README.txt b/extern/colamd/README.txt
deleted file mode 100644
index 5ed81c71d02..00000000000
--- a/extern/colamd/README.txt
+++ /dev/null
@@ -1,127 +0,0 @@
-The COLAMD ordering method - Version 2.7
--------------------------------------------------------------------------------
-
-The COLAMD column approximate minimum degree ordering algorithm computes
-a permutation vector P such that the LU factorization of A (:,P)
-tends to be sparser than that of A. The Cholesky factorization of
-(A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A.
-SYMAMD is a symmetric minimum degree ordering method based on COLAMD,
-available as a MATLAB-callable function. It constructs a matrix M such
-that M'*M has the same pattern as A, and then uses COLAMD to compute a column
-ordering of M. Colamd and symamd tend to be faster and generate better
-orderings than their MATLAB counterparts, colmmd and symmmd.
-
-To compile and test the colamd m-files and mexFunctions, just unpack the
-COLAMD/ directory from the COLAMD.tar.gz file, and run MATLAB from
-within that directory. Next, type colamd_test to compile and test colamd
-and symamd. This will work on any computer with MATLAB (Unix, PC, or Mac).
-Alternatively, type "make" (in Unix) to compile and run a simple example C
-code, without using MATLAB.
-
-To compile and install the colamd m-files and mexFunctions, just cd to
-COLAMD/MATLAB and type colamd_install in the MATLAB command window.
-A short demo will run. Optionally, type colamd_test to run an extensive tests.
-Type "make" in Unix in the COLAMD directory to compile the C-callable
-library and to run a short demo.
-
-If you have MATLAB 7.2 or earlier, you must first edit UFconfig/UFconfig.h to
-remove the "-largeArrayDims" option from the MEX command (or just use
-colamd_make.m inside MATLAB).
-
-Colamd is a built-in routine in MATLAB, available from The
-Mathworks, Inc. Under most cases, the compiled COLAMD from Versions 2.0 to the
-current version do not differ. Colamd Versions 2.2 and 2.3 differ only in their
-mexFunction interaces to MATLAB. v2.4 fixes a bug in the symamd routine in
-v2.3. The bug (in v2.3 and earlier) has no effect on the MATLAB symamd
-mexFunction. v2.5 adds additional checks for integer overflow, so that
-the "int" version can be safely used with 64-bit pointers. Refer to the
-ChangeLog for more details.
-
-To use colamd and symamd within an application written in C, all you need are
-colamd.c, colamd_global.c, and colamd.h, which are the C-callable
-colamd/symamd codes. See colamd.c for more information on how to call
-colamd from a C program.
-
-Requires UFconfig, in the ../UFconfig directory relative to this directory.
-
- Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
-
- See http://www.cise.ufl.edu/research/sparse/colamd (the colamd.c
- file) for the License.
-
-
-Related papers:
-
- T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
- minimum degree ordering algorithm, ACM Transactions on Mathematical
- Software, vol. 30, no. 3., pp. 353-376, 2004.
-
- T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
- an approximate column minimum degree ordering algorithm, ACM
- Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
- 2004.
-
- "An approximate minimum degree column ordering algorithm",
- S. I. Larimore, MS Thesis, Dept. of Computer and Information
- Science and Engineering, University of Florida, Gainesville, FL,
- 1998. CISE Tech Report TR-98-016. Available at
- ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps
- via anonymous ftp.
-
- Approximate Deficiency for Ordering the Columns of a Matrix,
- J. L. Kern, Senior Thesis, Dept. of Computer and Information
- Science and Engineering, University of Florida, Gainesville, FL,
- 1999. Available at http://www.cise.ufl.edu/~davis/Kern/kern.ps
-
-
-Authors: Stefan I. Larimore and Timothy A. Davis, University of Florida,
-in collaboration with John Gilbert, Xerox PARC (now at UC Santa Barbara),
-and Esmong Ng, Lawrence Berkeley National Laboratory (much of this work
-he did while at Oak Ridge National Laboratory).
-
-COLAMD files:
-
- Demo simple demo
- Doc additional documentation (see colamd.c for more)
- Include include file
- Lib compiled C-callable library
- Makefile primary Unix Makefile
- MATLAB MATLAB functions
- README.txt this file
- Source C source code
-
- ./Demo:
- colamd_example.c simple example
- colamd_example.out output of colamd_example.c
- colamd_l_example.c simple example, long integers
- colamd_l_example.out output of colamd_l_example.c
- Makefile Makefile for C demos
-
- ./Doc:
- ChangeLog change log
- lesser.txt license
-
- ./Include:
- colamd.h include file
-
- ./Lib:
- Makefile Makefile for C-callable library
-
- ./MATLAB:
- colamd2.m MATLAB interface for colamd2
- colamd_demo.m simple demo
- colamd_install.m compile and install colamd2 and symamd2
- colamd_make.m compile colamd2 and symamd2
- colamdmex.ca MATLAB mexFunction for colamd2
- colamd_test.m extensive test
- colamdtestmex.c test function for colamd
- Contents.m contents of the MATLAB directory
- luflops.m test code
- Makefile Makefile for MATLAB functions
- symamd2.m MATLAB interface for symamd2
- symamdmex.c MATLAB mexFunction for symamd2
- symamdtestmex.c test function for symamd
-
- ./Source:
- colamd.c primary source code
- colamd_global.c globally defined function pointers (malloc, free, ...)
diff --git a/extern/colamd/SConscript b/extern/colamd/SConscript
deleted file mode 100644
index 7930e3ace2d..00000000000
--- a/extern/colamd/SConscript
+++ /dev/null
@@ -1,14 +0,0 @@
-#!/usr/bin/python
-import sys
-import os
-
-Import('env')
-
-defs = ''
-cflags = []
-
-src = env.Glob('Source/*.c')
-
-incs = './Include'
-
-env.BlenderLib ( libname = 'extern_colamd', sources=src, includes=Split(incs), defines=Split(defs), libtype=['extern', 'player'], priority=[20,137], compileflags=cflags )
diff --git a/extern/colamd/Source/colamd.c b/extern/colamd/Source/colamd.c
deleted file mode 100644
index 5fe20d62822..00000000000
--- a/extern/colamd/Source/colamd.c
+++ /dev/null
@@ -1,3611 +0,0 @@
-/* ========================================================================== */
-/* === colamd/symamd - a sparse matrix column ordering algorithm ============ */
-/* ========================================================================== */
-
-/* COLAMD / SYMAMD
-
- colamd: an approximate minimum degree column ordering algorithm,
- for LU factorization of symmetric or unsymmetric matrices,
- QR factorization, least squares, interior point methods for
- linear programming problems, and other related problems.
-
- symamd: an approximate minimum degree ordering algorithm for Cholesky
- factorization of symmetric matrices.
-
- Purpose:
-
- Colamd computes a permutation Q such that the Cholesky factorization of
- (AQ)'(AQ) has less fill-in and requires fewer floating point operations
- than A'A. This also provides a good ordering for sparse partial
- pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
- factorization, and P is computed during numerical factorization via
- conventional partial pivoting with row interchanges. Colamd is the
- column ordering method used in SuperLU, part of the ScaLAPACK library.
- It is also available as built-in function in MATLAB Version 6,
- available from MathWorks, Inc. (http://www.mathworks.com). This
- routine can be used in place of colmmd in MATLAB.
-
- Symamd computes a permutation P of a symmetric matrix A such that the
- Cholesky factorization of PAP' has less fill-in and requires fewer
- floating point operations than A. Symamd constructs a matrix M such
- that M'M has the same nonzero pattern of A, and then orders the columns
- of M using colmmd. The column ordering of M is then returned as the
- row and column ordering P of A.
-
- Authors:
-
- The authors of the code itself are Stefan I. Larimore and Timothy A.
- Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
- developed in collaboration with John Gilbert, Xerox PARC, and Esmond
- Ng, Oak Ridge National Laboratory.
-
- Acknowledgements:
-
- This work was supported by the National Science Foundation, under
- grants DMS-9504974 and DMS-9803599.
-
- Copyright and License:
-
- Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
- COLAMD is also available under alternate licenses, contact T. Davis
- for details.
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
- USA
-
- Permission is hereby granted to use or copy this program under the
- terms of the GNU LGPL, provided that the Copyright, this License,
- and the Availability of the original version is retained on all copies.
- User documentation of any code that uses this code or any modified
- version of this code must cite the Copyright, this License, the
- Availability note, and "Used by permission." Permission to modify
- the code and to distribute modified code is granted, provided the
- Copyright, this License, and the Availability note are retained,
- and a notice that the code was modified is included.
-
- Availability:
-
- The colamd/symamd library is available at
-
- http://www.cise.ufl.edu/research/sparse/colamd/
-
- This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c
- file. It requires the colamd.h file. It is required by the colamdmex.c
- and symamdmex.c files, for the MATLAB interface to colamd and symamd.
- Appears as ACM Algorithm 836.
-
- See the ChangeLog file for changes since Version 1.0.
-
- References:
-
- T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
- minimum degree ordering algorithm, ACM Transactions on Mathematical
- Software, vol. 30, no. 3., pp. 353-376, 2004.
-
- T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
- an approximate column minimum degree ordering algorithm, ACM
- Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
- 2004.
-
-*/
-
-/* ========================================================================== */
-/* === Description of user-callable routines ================================ */
-/* ========================================================================== */
-
-/* COLAMD includes both int and UF_long versions of all its routines. The
- * description below is for the int version. For UF_long, all int arguments
- * become UF_long. UF_long is normally defined as long, except for WIN64.
-
- ----------------------------------------------------------------------------
- colamd_recommended:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- size_t colamd_recommended (int nnz, int n_row, int n_col) ;
- size_t colamd_l_recommended (UF_long nnz, UF_long n_row,
- UF_long n_col) ;
-
- Purpose:
-
- Returns recommended value of Alen for use by colamd. Returns 0
- if any input argument is negative. The use of this routine
- is optional. Not needed for symamd, which dynamically allocates
- its own memory.
-
- Note that in v2.4 and earlier, these routines returned int or long.
- They now return a value of type size_t.
-
- Arguments (all input arguments):
-
- int nnz ; Number of nonzeros in the matrix A. This must
- be the same value as p [n_col] in the call to
- colamd - otherwise you will get a wrong value
- of the recommended memory to use.
-
- int n_row ; Number of rows in the matrix A.
-
- int n_col ; Number of columns in the matrix A.
-
- ----------------------------------------------------------------------------
- colamd_set_defaults:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;
- colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ;
-
- Purpose:
-
- Sets the default parameters. The use of this routine is optional.
-
- Arguments:
-
- double knobs [COLAMD_KNOBS] ; Output only.
-
- NOTE: the meaning of the dense row/col knobs has changed in v2.4
-
- knobs [0] and knobs [1] control dense row and col detection:
-
- Colamd: rows with more than
- max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col))
- entries are removed prior to ordering. Columns with more than
- max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
- entries are removed prior to
- ordering, and placed last in the output column ordering.
-
- Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0].
- Rows and columns with more than
- max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n))
- entries are removed prior to ordering, and placed last in the
- output ordering.
-
- COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
- respectively, in colamd.h. Default values of these two knobs
- are both 10. Currently, only knobs [0] and knobs [1] are
- used, but future versions may use more knobs. If so, they will
- be properly set to their defaults by the future version of
- colamd_set_defaults, so that the code that calls colamd will
- not need to change, assuming that you either use
- colamd_set_defaults, or pass a (double *) NULL pointer as the
- knobs array to colamd or symamd.
-
- knobs [2]: aggressive absorption
-
- knobs [COLAMD_AGGRESSIVE] controls whether or not to do
- aggressive absorption during the ordering. Default is TRUE.
-
-
- ----------------------------------------------------------------------------
- colamd:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- int colamd (int n_row, int n_col, int Alen, int *A, int *p,
- double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ;
- UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
- UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS],
- UF_long stats [COLAMD_STATS]) ;
-
- Purpose:
-
- Computes a column ordering (Q) of A such that P(AQ)=LU or
- (AQ)'AQ=LL' have less fill-in and require fewer floating point
- operations than factorizing the unpermuted matrix A or A'A,
- respectively.
-
- Returns:
-
- TRUE (1) if successful, FALSE (0) otherwise.
-
- Arguments:
-
- int n_row ; Input argument.
-
- Number of rows in the matrix A.
- Restriction: n_row >= 0.
- Colamd returns FALSE if n_row is negative.
-
- int n_col ; Input argument.
-
- Number of columns in the matrix A.
- Restriction: n_col >= 0.
- Colamd returns FALSE if n_col is negative.
-
- int Alen ; Input argument.
-
- Restriction (see note):
- Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col
- Colamd returns FALSE if these conditions are not met.
-
- Note: this restriction makes an modest assumption regarding
- the size of the two typedef's structures in colamd.h.
- We do, however, guarantee that
-
- Alen >= colamd_recommended (nnz, n_row, n_col)
-
- will be sufficient. Note: the macro version does not check
- for integer overflow, and thus is not recommended. Use
- the colamd_recommended routine instead.
-
- int A [Alen] ; Input argument, undefined on output.
-
- A is an integer array of size Alen. Alen must be at least as
- large as the bare minimum value given above, but this is very
- low, and can result in excessive run time. For best
- performance, we recommend that Alen be greater than or equal to
- colamd_recommended (nnz, n_row, n_col), which adds
- nnz/5 to the bare minimum value given above.
-
- On input, the row indices of the entries in column c of the
- matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
- in a given column c need not be in ascending order, and
- duplicate row indices may be be present. However, colamd will
- work a little faster if both of these conditions are met
- (Colamd puts the matrix into this format, if it finds that the
- the conditions are not met).
-
- The matrix is 0-based. That is, rows are in the range 0 to
- n_row-1, and columns are in the range 0 to n_col-1. Colamd
- returns FALSE if any row index is out of range.
-
- The contents of A are modified during ordering, and are
- undefined on output.
-
- int p [n_col+1] ; Both input and output argument.
-
- p is an integer array of size n_col+1. On input, it holds the
- "pointers" for the column form of the matrix A. Column c of
- the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
- entry, p [0], must be zero, and p [c] <= p [c+1] must hold
- for all c in the range 0 to n_col-1. The value p [n_col] is
- thus the total number of entries in the pattern of the matrix A.
- Colamd returns FALSE if these conditions are not met.
-
- On output, if colamd returns TRUE, the array p holds the column
- permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
- the first column index in the new ordering, and p [n_col-1] is
- the last. That is, p [k] = j means that column j of A is the
- kth pivot column, in AQ, where k is in the range 0 to n_col-1
- (p [0] = j means that column j of A is the first column in AQ).
-
- If colamd returns FALSE, then no permutation is returned, and
- p is undefined on output.
-
- double knobs [COLAMD_KNOBS] ; Input argument.
-
- See colamd_set_defaults for a description.
-
- int stats [COLAMD_STATS] ; Output argument.
-
- Statistics on the ordering, and error status.
- See colamd.h for related definitions.
- Colamd returns FALSE if stats is not present.
-
- stats [0]: number of dense or empty rows ignored.
-
- stats [1]: number of dense or empty columns ignored (and
- ordered last in the output permutation p)
- Note that a row can become "empty" if it
- contains only "dense" and/or "empty" columns,
- and similarly a column can become "empty" if it
- only contains "dense" and/or "empty" rows.
-
- stats [2]: number of garbage collections performed.
- This can be excessively high if Alen is close
- to the minimum required value.
-
- stats [3]: status code. < 0 is an error code.
- > 1 is a warning or notice.
-
- 0 OK. Each column of the input matrix contained
- row indices in increasing order, with no
- duplicates.
-
- 1 OK, but columns of input matrix were jumbled
- (unsorted columns or duplicate entries). Colamd
- had to do some extra work to sort the matrix
- first and remove duplicate entries, but it
- still was able to return a valid permutation
- (return value of colamd was TRUE).
-
- stats [4]: highest numbered column that
- is unsorted or has duplicate
- entries.
- stats [5]: last seen duplicate or
- unsorted row index.
- stats [6]: number of duplicate or
- unsorted row indices.
-
- -1 A is a null pointer
-
- -2 p is a null pointer
-
- -3 n_row is negative
-
- stats [4]: n_row
-
- -4 n_col is negative
-
- stats [4]: n_col
-
- -5 number of nonzeros in matrix is negative
-
- stats [4]: number of nonzeros, p [n_col]
-
- -6 p [0] is nonzero
-
- stats [4]: p [0]
-
- -7 A is too small
-
- stats [4]: required size
- stats [5]: actual size (Alen)
-
- -8 a column has a negative number of entries
-
- stats [4]: column with < 0 entries
- stats [5]: number of entries in col
-
- -9 a row index is out of bounds
-
- stats [4]: column with bad row index
- stats [5]: bad row index
- stats [6]: n_row, # of rows of matrx
-
- -10 (unused; see symamd.c)
-
- -999 (unused; see symamd.c)
-
- Future versions may return more statistics in the stats array.
-
- Example:
-
- See http://www.cise.ufl.edu/research/sparse/colamd/example.c
- for a complete example.
-
- To order the columns of a 5-by-4 matrix with 11 nonzero entries in
- the following nonzero pattern
-
- x 0 x 0
- x 0 x x
- 0 x x 0
- 0 0 x x
- x x 0 0
-
- with default knobs and no output statistics, do the following:
-
- #include "colamd.h"
- #define ALEN 100
- int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
- int p [ ] = {0, 3, 5, 9, 11} ;
- int stats [COLAMD_STATS] ;
- colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;
-
- The permutation is returned in the array p, and A is destroyed.
-
- ----------------------------------------------------------------------------
- symamd:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- int symamd (int n, int *A, int *p, int *perm,
- double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS],
- void (*allocate) (size_t, size_t), void (*release) (void *)) ;
- UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
- double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS],
- void (*allocate) (size_t, size_t), void (*release) (void *)) ;
-
- Purpose:
-
- The symamd routine computes an ordering P of a symmetric sparse
- matrix A such that the Cholesky factorization PAP' = LL' remains
- sparse. It is based on a column ordering of a matrix M constructed
- so that the nonzero pattern of M'M is the same as A. The matrix A
- is assumed to be symmetric; only the strictly lower triangular part
- is accessed. You must pass your selected memory allocator (usually
- calloc/free or mxCalloc/mxFree) to symamd, for it to allocate
- memory for the temporary matrix M.
-
- Returns:
-
- TRUE (1) if successful, FALSE (0) otherwise.
-
- Arguments:
-
- int n ; Input argument.
-
- Number of rows and columns in the symmetrix matrix A.
- Restriction: n >= 0.
- Symamd returns FALSE if n is negative.
-
- int A [nnz] ; Input argument.
-
- A is an integer array of size nnz, where nnz = p [n].
-
- The row indices of the entries in column c of the matrix are
- held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
- given column c need not be in ascending order, and duplicate
- row indices may be present. However, symamd will run faster
- if the columns are in sorted order with no duplicate entries.
-
- The matrix is 0-based. That is, rows are in the range 0 to
- n-1, and columns are in the range 0 to n-1. Symamd
- returns FALSE if any row index is out of range.
-
- The contents of A are not modified.
-
- int p [n+1] ; Input argument.
-
- p is an integer array of size n+1. On input, it holds the
- "pointers" for the column form of the matrix A. Column c of
- the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
- entry, p [0], must be zero, and p [c] <= p [c+1] must hold
- for all c in the range 0 to n-1. The value p [n] is
- thus the total number of entries in the pattern of the matrix A.
- Symamd returns FALSE if these conditions are not met.
-
- The contents of p are not modified.
-
- int perm [n+1] ; Output argument.
-
- On output, if symamd returns TRUE, the array perm holds the
- permutation P, where perm [0] is the first index in the new
- ordering, and perm [n-1] is the last. That is, perm [k] = j
- means that row and column j of A is the kth column in PAP',
- where k is in the range 0 to n-1 (perm [0] = j means
- that row and column j of A are the first row and column in
- PAP'). The array is used as a workspace during the ordering,
- which is why it must be of length n+1, not just n.
-
- double knobs [COLAMD_KNOBS] ; Input argument.
-
- See colamd_set_defaults for a description.
-
- int stats [COLAMD_STATS] ; Output argument.
-
- Statistics on the ordering, and error status.
- See colamd.h for related definitions.
- Symamd returns FALSE if stats is not present.
-
- stats [0]: number of dense or empty row and columns ignored
- (and ordered last in the output permutation
- perm). Note that a row/column can become
- "empty" if it contains only "dense" and/or
- "empty" columns/rows.
-
- stats [1]: (same as stats [0])
-
- stats [2]: number of garbage collections performed.
-
- stats [3]: status code. < 0 is an error code.
- > 1 is a warning or notice.
-
- 0 OK. Each column of the input matrix contained
- row indices in increasing order, with no
- duplicates.
-
- 1 OK, but columns of input matrix were jumbled
- (unsorted columns or duplicate entries). Symamd
- had to do some extra work to sort the matrix
- first and remove duplicate entries, but it
- still was able to return a valid permutation
- (return value of symamd was TRUE).
-
- stats [4]: highest numbered column that
- is unsorted or has duplicate
- entries.
- stats [5]: last seen duplicate or
- unsorted row index.
- stats [6]: number of duplicate or
- unsorted row indices.
-
- -1 A is a null pointer
-
- -2 p is a null pointer
-
- -3 (unused, see colamd.c)
-
- -4 n is negative
-
- stats [4]: n
-
- -5 number of nonzeros in matrix is negative
-
- stats [4]: # of nonzeros (p [n]).
-
- -6 p [0] is nonzero
-
- stats [4]: p [0]
-
- -7 (unused)
-
- -8 a column has a negative number of entries
-
- stats [4]: column with < 0 entries
- stats [5]: number of entries in col
-
- -9 a row index is out of bounds
-
- stats [4]: column with bad row index
- stats [5]: bad row index
- stats [6]: n_row, # of rows of matrx
-
- -10 out of memory (unable to allocate temporary
- workspace for M or count arrays using the
- "allocate" routine passed into symamd).
-
- Future versions may return more statistics in the stats array.
-
- void * (*allocate) (size_t, size_t)
-
- A pointer to a function providing memory allocation. The
- allocated memory must be returned initialized to zero. For a
- C application, this argument should normally be a pointer to
- calloc. For a MATLAB mexFunction, the routine mxCalloc is
- passed instead.
-
- void (*release) (size_t, size_t)
-
- A pointer to a function that frees memory allocated by the
- memory allocation routine above. For a C application, this
- argument should normally be a pointer to free. For a MATLAB
- mexFunction, the routine mxFree is passed instead.
-
-
- ----------------------------------------------------------------------------
- colamd_report:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- colamd_report (int stats [COLAMD_STATS]) ;
- colamd_l_report (UF_long stats [COLAMD_STATS]) ;
-
- Purpose:
-
- Prints the error status and statistics recorded in the stats
- array on the standard error output (for a standard C routine)
- or on the MATLAB output (for a mexFunction).
-
- Arguments:
-
- int stats [COLAMD_STATS] ; Input only. Statistics from colamd.
-
-
- ----------------------------------------------------------------------------
- symamd_report:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- symamd_report (int stats [COLAMD_STATS]) ;
- symamd_l_report (UF_long stats [COLAMD_STATS]) ;
-
- Purpose:
-
- Prints the error status and statistics recorded in the stats
- array on the standard error output (for a standard C routine)
- or on the MATLAB output (for a mexFunction).
-
- Arguments:
-
- int stats [COLAMD_STATS] ; Input only. Statistics from symamd.
-
-
-*/
-
-/* ========================================================================== */
-/* === Scaffolding code definitions ======================================== */
-/* ========================================================================== */
-
-/* Ensure that debugging is turned off: */
-#ifndef NDEBUG
-#define NDEBUG
-#endif
-
-/* turn on debugging by uncommenting the following line
- #undef NDEBUG
-*/
-
-/*
- Our "scaffolding code" philosophy: In our opinion, well-written library
- code should keep its "debugging" code, and just normally have it turned off
- by the compiler so as not to interfere with performance. This serves
- several purposes:
-
- (1) assertions act as comments to the reader, telling you what the code
- expects at that point. All assertions will always be true (unless
- there really is a bug, of course).
-
- (2) leaving in the scaffolding code assists anyone who would like to modify
- the code, or understand the algorithm (by reading the debugging output,
- one can get a glimpse into what the code is doing).
-
- (3) (gasp!) for actually finding bugs. This code has been heavily tested
- and "should" be fully functional and bug-free ... but you never know...
-
- The code will become outrageously slow when debugging is
- enabled. To control the level of debugging output, set an environment
- variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging,
- you should see the following message on the standard output:
-
- colamd: debug version, D = 1 (THIS WILL BE SLOW!)
-
- or a similar message for symamd. If you don't, then debugging has not
- been enabled.
-
-*/
-
-/* ========================================================================== */
-/* === Include files ======================================================== */
-/* ========================================================================== */
-
-#include "colamd.h"
-#include <limits.h>
-#include <math.h>
-
-#ifdef MATLAB_MEX_FILE
-#include "mex.h"
-#include "matrix.h"
-#endif /* MATLAB_MEX_FILE */
-
-#if !defined (NPRINT) || !defined (NDEBUG)
-#include <stdio.h>
-#endif
-
-#ifndef NULL
-#define NULL ((void *) 0)
-#endif
-
-/* ========================================================================== */
-/* === int or UF_long ======================================================= */
-/* ========================================================================== */
-
-/* define UF_long */
-#include "UFconfig.h"
-
-#ifdef DLONG
-
-#define Int UF_long
-#define ID UF_long_id
-#define Int_MAX UF_long_max
-
-#define COLAMD_recommended colamd_l_recommended
-#define COLAMD_set_defaults colamd_l_set_defaults
-#define COLAMD_MAIN colamd_l
-#define SYMAMD_MAIN symamd_l
-#define COLAMD_report colamd_l_report
-#define SYMAMD_report symamd_l_report
-
-#else
-
-#define Int int
-#define ID "%d"
-#define Int_MAX INT_MAX
-
-#define COLAMD_recommended colamd_recommended
-#define COLAMD_set_defaults colamd_set_defaults
-#define COLAMD_MAIN colamd
-#define SYMAMD_MAIN symamd
-#define COLAMD_report colamd_report
-#define SYMAMD_report symamd_report
-
-#endif
-
-/* ========================================================================== */
-/* === Row and Column structures ============================================ */
-/* ========================================================================== */
-
-/* User code that makes use of the colamd/symamd routines need not directly */
-/* reference these structures. They are used only for colamd_recommended. */
-
-typedef struct Colamd_Col_struct
-{
- Int start ; /* index for A of first row in this column, or DEAD */
- /* if column is dead */
- Int length ; /* number of rows in this column */
- union
- {
- Int thickness ; /* number of original columns represented by this */
- /* col, if the column is alive */
- Int parent ; /* parent in parent tree super-column structure, if */
- /* the column is dead */
- } shared1 ;
- union
- {
- Int score ; /* the score used to maintain heap, if col is alive */
- Int order ; /* pivot ordering of this column, if col is dead */
- } shared2 ;
- union
- {
- Int headhash ; /* head of a hash bucket, if col is at the head of */
- /* a degree list */
- Int hash ; /* hash value, if col is not in a degree list */
- Int prev ; /* previous column in degree list, if col is in a */
- /* degree list (but not at the head of a degree list) */
- } shared3 ;
- union
- {
- Int degree_next ; /* next column, if col is in a degree list */
- Int hash_next ; /* next column, if col is in a hash list */
- } shared4 ;
-
-} Colamd_Col ;
-
-typedef struct Colamd_Row_struct
-{
- Int start ; /* index for A of first col in this row */
- Int length ; /* number of principal columns in this row */
- union
- {
- Int degree ; /* number of principal & non-principal columns in row */
- Int p ; /* used as a row pointer in init_rows_cols () */
- } shared1 ;
- union
- {
- Int mark ; /* for computing set differences and marking dead rows*/
- Int first_column ;/* first column in row (used in garbage collection) */
- } shared2 ;
-
-} Colamd_Row ;
-
-/* ========================================================================== */
-/* === Definitions ========================================================== */
-/* ========================================================================== */
-
-/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
-#define PUBLIC
-#define PRIVATE static
-
-#define DENSE_DEGREE(alpha,n) \
- ((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
-
-#define MAX(a,b) (((a) > (b)) ? (a) : (b))
-#define MIN(a,b) (((a) < (b)) ? (a) : (b))
-
-#define ONES_COMPLEMENT(r) (-(r)-1)
-
-/* -------------------------------------------------------------------------- */
-/* Change for version 2.1: define TRUE and FALSE only if not yet defined */
-/* -------------------------------------------------------------------------- */
-
-#ifndef TRUE
-#define TRUE (1)
-#endif
-
-#ifndef FALSE
-#define FALSE (0)
-#endif
-
-/* -------------------------------------------------------------------------- */
-
-#define EMPTY (-1)
-
-/* Row and column status */
-#define ALIVE (0)
-#define DEAD (-1)
-
-/* Column status */
-#define DEAD_PRINCIPAL (-1)
-#define DEAD_NON_PRINCIPAL (-2)
-
-/* Macros for row and column status update and checking. */
-#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
-#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
-#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
-#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
-#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
-#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
-#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
-#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
-#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
-
-/* ========================================================================== */
-/* === Colamd reporting mechanism =========================================== */
-/* ========================================================================== */
-
-#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
-/* In MATLAB, matrices are 1-based to the user, but 0-based internally */
-#define INDEX(i) ((i)+1)
-#else
-/* In C, matrices are 0-based and indices are reported as such in *_report */
-#define INDEX(i) (i)
-#endif
-
-/* All output goes through the PRINTF macro. */
-#define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; }
-
-/* ========================================================================== */
-/* === Prototypes of PRIVATE routines ======================================= */
-/* ========================================================================== */
-
-PRIVATE Int init_rows_cols
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int p [],
- Int stats [COLAMD_STATS]
-) ;
-
-PRIVATE void init_scoring
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int head [],
- double knobs [COLAMD_KNOBS],
- Int *p_n_row2,
- Int *p_n_col2,
- Int *p_max_deg
-) ;
-
-PRIVATE Int find_ordering
-(
- Int n_row,
- Int n_col,
- Int Alen,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int head [],
- Int n_col2,
- Int max_deg,
- Int pfree,
- Int aggressive
-) ;
-
-PRIVATE void order_children
-(
- Int n_col,
- Colamd_Col Col [],
- Int p []
-) ;
-
-PRIVATE void detect_super_cols
-(
-
-#ifndef NDEBUG
- Int n_col,
- Colamd_Row Row [],
-#endif /* NDEBUG */
-
- Colamd_Col Col [],
- Int A [],
- Int head [],
- Int row_start,
- Int row_length
-) ;
-
-PRIVATE Int garbage_collection
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int *pfree
-) ;
-
-PRIVATE Int clear_mark
-(
- Int tag_mark,
- Int max_mark,
- Int n_row,
- Colamd_Row Row []
-) ;
-
-PRIVATE void print_report
-(
- char *method,
- Int stats [COLAMD_STATS]
-) ;
-
-/* ========================================================================== */
-/* === Debugging prototypes and definitions ================================= */
-/* ========================================================================== */
-
-#ifndef NDEBUG
-
-#include <assert.h>
-
-/* colamd_debug is the *ONLY* global variable, and is only */
-/* present when debugging */
-
-PRIVATE Int colamd_debug = 0 ; /* debug print level */
-
-#define DEBUG0(params) { PRINTF (params) ; }
-#define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; }
-#define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; }
-#define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; }
-#define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; }
-
-#ifdef MATLAB_MEX_FILE
-#define ASSERT(expression) (mxAssert ((expression), ""))
-#else
-#define ASSERT(expression) (assert (expression))
-#endif /* MATLAB_MEX_FILE */
-
-PRIVATE void colamd_get_debug /* gets the debug print level from getenv */
-(
- char *method
-) ;
-
-PRIVATE void debug_deg_lists
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int head [],
- Int min_score,
- Int should,
- Int max_deg
-) ;
-
-PRIVATE void debug_mark
-(
- Int n_row,
- Colamd_Row Row [],
- Int tag_mark,
- Int max_mark
-) ;
-
-PRIVATE void debug_matrix
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A []
-) ;
-
-PRIVATE void debug_structures
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int n_col2
-) ;
-
-#else /* NDEBUG */
-
-/* === No debugging ========================================================= */
-
-#define DEBUG0(params) ;
-#define DEBUG1(params) ;
-#define DEBUG2(params) ;
-#define DEBUG3(params) ;
-#define DEBUG4(params) ;
-
-#define ASSERT(expression)
-
-#endif /* NDEBUG */
-
-/* ========================================================================== */
-/* === USER-CALLABLE ROUTINES: ============================================== */
-/* ========================================================================== */
-
-/* ========================================================================== */
-/* === colamd_recommended =================================================== */
-/* ========================================================================== */
-
-/*
- The colamd_recommended routine returns the suggested size for Alen. This
- value has been determined to provide good balance between the number of
- garbage collections and the memory requirements for colamd. If any
- argument is negative, or if integer overflow occurs, a 0 is returned as an
- error condition. 2*nnz space is required for the row and column
- indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is
- required for the Col and Row arrays, respectively, which are internal to
- colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the
- minimal amount of "elbow room", and nnz/5 more space is recommended for
- run time efficiency.
-
- Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10.
-
- This function is not needed when using symamd.
-*/
-
-/* add two values of type size_t, and check for integer overflow */
-static size_t t_add (size_t a, size_t b, int *ok)
-{
- (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
- return ((*ok) ? (a + b) : 0) ;
-}
-
-/* compute a*k where k is a small integer, and check for integer overflow */
-static size_t t_mult (size_t a, size_t k, int *ok)
-{
- size_t i, s = 0 ;
- for (i = 0 ; i < k ; i++)
- {
- s = t_add (s, a, ok) ;
- }
- return (s) ;
-}
-
-/* size of the Col and Row structures */
-#define COLAMD_C(n_col,ok) \
- ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int)))
-
-#define COLAMD_R(n_row,ok) \
- ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int)))
-
-
-PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */
-(
- /* === Parameters ======================================================= */
-
- Int nnz, /* number of nonzeros in A */
- Int n_row, /* number of rows in A */
- Int n_col /* number of columns in A */
-)
-{
- size_t s, c, r ;
- int ok = TRUE ;
- if (nnz < 0 || n_row < 0 || n_col < 0)
- {
- return (0) ;
- }
- s = t_mult (nnz, 2, &ok) ; /* 2*nnz */
- c = COLAMD_C (n_col, &ok) ; /* size of column structures */
- r = COLAMD_R (n_row, &ok) ; /* size of row structures */
- s = t_add (s, c, &ok) ;
- s = t_add (s, r, &ok) ;
- s = t_add (s, n_col, &ok) ; /* elbow room */
- s = t_add (s, nnz/5, &ok) ; /* elbow room */
- ok = ok && (s < Int_MAX) ;
- return (ok ? s : 0) ;
-}
-
-
-/* ========================================================================== */
-/* === colamd_set_defaults ================================================== */
-/* ========================================================================== */
-
-/*
- The colamd_set_defaults routine sets the default values of the user-
- controllable parameters for colamd and symamd:
-
- Colamd: rows with more than max (16, knobs [0] * sqrt (n_col))
- entries are removed prior to ordering. Columns with more than
- max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed
- prior to ordering, and placed last in the output column ordering.
-
- Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n))
- entries are removed prior to ordering, and placed last in the
- output ordering.
-
- knobs [0] dense row control
-
- knobs [1] dense column control
-
- knobs [2] if nonzero, do aggresive absorption
-
- knobs [3..19] unused, but future versions might use this
-
-*/
-
-PUBLIC void COLAMD_set_defaults
-(
- /* === Parameters ======================================================= */
-
- double knobs [COLAMD_KNOBS] /* knob array */
-)
-{
- /* === Local variables ================================================== */
-
- Int i ;
-
- if (!knobs)
- {
- return ; /* no knobs to initialize */
- }
- for (i = 0 ; i < COLAMD_KNOBS ; i++)
- {
- knobs [i] = 0 ;
- }
- knobs [COLAMD_DENSE_ROW] = 10 ;
- knobs [COLAMD_DENSE_COL] = 10 ;
- knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
-}
-
-
-/* ========================================================================== */
-/* === symamd =============================================================== */
-/* ========================================================================== */
-
-PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
-(
- /* === Parameters ======================================================= */
-
- Int n, /* number of rows and columns of A */
- Int A [], /* row indices of A */
- Int p [], /* column pointers of A */
- Int perm [], /* output permutation, size n+1 */
- double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
- Int stats [COLAMD_STATS], /* output statistics and error codes */
- void * (*allocate) (size_t, size_t),
- /* pointer to calloc (ANSI C) or */
- /* mxCalloc (for MATLAB mexFunction) */
- void (*release) (void *)
- /* pointer to free (ANSI C) or */
- /* mxFree (for MATLAB mexFunction) */
-)
-{
- /* === Local variables ================================================== */
-
- Int *count ; /* length of each column of M, and col pointer*/
- Int *mark ; /* mark array for finding duplicate entries */
- Int *M ; /* row indices of matrix M */
- size_t Mlen ; /* length of M */
- Int n_row ; /* number of rows in M */
- Int nnz ; /* number of entries in A */
- Int i ; /* row index of A */
- Int j ; /* column index of A */
- Int k ; /* row index of M */
- Int mnz ; /* number of nonzeros in M */
- Int pp ; /* index into a column of A */
- Int last_row ; /* last row seen in the current column */
- Int length ; /* number of nonzeros in a column */
-
- double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */
- double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */
-
-#ifndef NDEBUG
- colamd_get_debug ("symamd") ;
-#endif /* NDEBUG */
-
- /* === Check the input arguments ======================================== */
-
- if (!stats)
- {
- DEBUG0 (("symamd: stats not present\n")) ;
- return (FALSE) ;
- }
- for (i = 0 ; i < COLAMD_STATS ; i++)
- {
- stats [i] = 0 ;
- }
- stats [COLAMD_STATUS] = COLAMD_OK ;
- stats [COLAMD_INFO1] = -1 ;
- stats [COLAMD_INFO2] = -1 ;
-
- if (!A)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
- DEBUG0 (("symamd: A not present\n")) ;
- return (FALSE) ;
- }
-
- if (!p) /* p is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
- DEBUG0 (("symamd: p not present\n")) ;
- return (FALSE) ;
- }
-
- if (n < 0) /* n must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
- stats [COLAMD_INFO1] = n ;
- DEBUG0 (("symamd: n negative %d\n", n)) ;
- return (FALSE) ;
- }
-
- nnz = p [n] ;
- if (nnz < 0) /* nnz must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
- stats [COLAMD_INFO1] = nnz ;
- DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ;
- return (FALSE) ;
- }
-
- if (p [0] != 0)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
- stats [COLAMD_INFO1] = p [0] ;
- DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ;
- return (FALSE) ;
- }
-
- /* === If no knobs, set default knobs =================================== */
-
- if (!knobs)
- {
- COLAMD_set_defaults (default_knobs) ;
- knobs = default_knobs ;
- }
-
- /* === Allocate count and mark ========================================== */
-
- count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
- if (!count)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
- DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ;
- return (FALSE) ;
- }
-
- mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
- if (!mark)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
- (*release) ((void *) count) ;
- DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ;
- return (FALSE) ;
- }
-
- /* === Compute column counts of M, check if A is valid ================== */
-
- stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
-
- for (i = 0 ; i < n ; i++)
- {
- mark [i] = -1 ;
- }
-
- for (j = 0 ; j < n ; j++)
- {
- last_row = -1 ;
-
- length = p [j+1] - p [j] ;
- if (length < 0)
- {
- /* column pointers must be non-decreasing */
- stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
- stats [COLAMD_INFO1] = j ;
- stats [COLAMD_INFO2] = length ;
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ;
- DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ;
- return (FALSE) ;
- }
-
- for (pp = p [j] ; pp < p [j+1] ; pp++)
- {
- i = A [pp] ;
- if (i < 0 || i >= n)
- {
- /* row index i, in column j, is out of bounds */
- stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
- stats [COLAMD_INFO1] = j ;
- stats [COLAMD_INFO2] = i ;
- stats [COLAMD_INFO3] = n ;
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ;
- DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ;
- return (FALSE) ;
- }
-
- if (i <= last_row || mark [i] == j)
- {
- /* row index is unsorted or repeated (or both), thus col */
- /* is jumbled. This is a notice, not an error condition. */
- stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
- stats [COLAMD_INFO1] = j ;
- stats [COLAMD_INFO2] = i ;
- (stats [COLAMD_INFO3]) ++ ;
- DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ;
- }
-
- if (i > j && mark [i] != j)
- {
- /* row k of M will contain column indices i and j */
- count [i]++ ;
- count [j]++ ;
- }
-
- /* mark the row as having been seen in this column */
- mark [i] = j ;
-
- last_row = i ;
- }
- }
-
- /* v2.4: removed free(mark) */
-
- /* === Compute column pointers of M ===================================== */
-
- /* use output permutation, perm, for column pointers of M */
- perm [0] = 0 ;
- for (j = 1 ; j <= n ; j++)
- {
- perm [j] = perm [j-1] + count [j-1] ;
- }
- for (j = 0 ; j < n ; j++)
- {
- count [j] = perm [j] ;
- }
-
- /* === Construct M ====================================================== */
-
- mnz = perm [n] ;
- n_row = mnz / 2 ;
- Mlen = COLAMD_recommended (mnz, n_row, n) ;
- M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
- DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n",
- n_row, n, mnz, (double) Mlen)) ;
-
- if (!M)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ;
- DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ;
- return (FALSE) ;
- }
-
- k = 0 ;
-
- if (stats [COLAMD_STATUS] == COLAMD_OK)
- {
- /* Matrix is OK */
- for (j = 0 ; j < n ; j++)
- {
- ASSERT (p [j+1] - p [j] >= 0) ;
- for (pp = p [j] ; pp < p [j+1] ; pp++)
- {
- i = A [pp] ;
- ASSERT (i >= 0 && i < n) ;
- if (i > j)
- {
- /* row k of M contains column indices i and j */
- M [count [i]++] = k ;
- M [count [j]++] = k ;
- k++ ;
- }
- }
- }
- }
- else
- {
- /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
- DEBUG0 (("symamd: Duplicates in A.\n")) ;
- for (i = 0 ; i < n ; i++)
- {
- mark [i] = -1 ;
- }
- for (j = 0 ; j < n ; j++)
- {
- ASSERT (p [j+1] - p [j] >= 0) ;
- for (pp = p [j] ; pp < p [j+1] ; pp++)
- {
- i = A [pp] ;
- ASSERT (i >= 0 && i < n) ;
- if (i > j && mark [i] != j)
- {
- /* row k of M contains column indices i and j */
- M [count [i]++] = k ;
- M [count [j]++] = k ;
- k++ ;
- mark [i] = j ;
- }
- }
- }
- /* v2.4: free(mark) moved below */
- }
-
- /* count and mark no longer needed */
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ; /* v2.4: free (mark) moved here */
- ASSERT (k == n_row) ;
-
- /* === Adjust the knobs for M =========================================== */
-
- for (i = 0 ; i < COLAMD_KNOBS ; i++)
- {
- cknobs [i] = knobs [i] ;
- }
-
- /* there are no dense rows in M */
- cknobs [COLAMD_DENSE_ROW] = -1 ;
- cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ;
-
- /* === Order the columns of M =========================================== */
-
- /* v2.4: colamd cannot fail here, so the error check is removed */
- (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ;
-
- /* Note that the output permutation is now in perm */
-
- /* === get the statistics for symamd from colamd ======================== */
-
- /* a dense column in colamd means a dense row and col in symamd */
- stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ;
-
- /* === Free M =========================================================== */
-
- (*release) ((void *) M) ;
- DEBUG0 (("symamd: done.\n")) ;
- return (TRUE) ;
-
-}
-
-/* ========================================================================== */
-/* === colamd =============================================================== */
-/* ========================================================================== */
-
-/*
- The colamd routine computes a column ordering Q of a sparse matrix
- A such that the LU factorization P(AQ) = LU remains sparse, where P is
- selected via partial pivoting. The routine can also be viewed as
- providing a permutation Q such that the Cholesky factorization
- (AQ)'(AQ) = LL' remains sparse.
-*/
-
-PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows in A */
- Int n_col, /* number of columns in A */
- Int Alen, /* length of A */
- Int A [], /* row indices of A */
- Int p [], /* pointers to columns in A */
- double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
- Int stats [COLAMD_STATS] /* output statistics and error codes */
-)
-{
- /* === Local variables ================================================== */
-
- Int i ; /* loop index */
- Int nnz ; /* nonzeros in A */
- size_t Row_size ; /* size of Row [], in integers */
- size_t Col_size ; /* size of Col [], in integers */
- size_t need ; /* minimum required length of A */
- Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */
- Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */
- Int n_col2 ; /* number of non-dense, non-empty columns */
- Int n_row2 ; /* number of non-dense, non-empty rows */
- Int ngarbage ; /* number of garbage collections performed */
- Int max_deg ; /* maximum row degree */
- double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
- Int aggressive ; /* do aggressive absorption */
- int ok ;
-
-#ifndef NDEBUG
- colamd_get_debug ("colamd") ;
-#endif /* NDEBUG */
-
- /* === Check the input arguments ======================================== */
-
- if (!stats)
- {
- DEBUG0 (("colamd: stats not present\n")) ;
- return (FALSE) ;
- }
- for (i = 0 ; i < COLAMD_STATS ; i++)
- {
- stats [i] = 0 ;
- }
- stats [COLAMD_STATUS] = COLAMD_OK ;
- stats [COLAMD_INFO1] = -1 ;
- stats [COLAMD_INFO2] = -1 ;
-
- if (!A) /* A is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
- DEBUG0 (("colamd: A not present\n")) ;
- return (FALSE) ;
- }
-
- if (!p) /* p is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
- DEBUG0 (("colamd: p not present\n")) ;
- return (FALSE) ;
- }
-
- if (n_row < 0) /* n_row must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
- stats [COLAMD_INFO1] = n_row ;
- DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
- return (FALSE) ;
- }
-
- if (n_col < 0) /* n_col must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
- stats [COLAMD_INFO1] = n_col ;
- DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
- return (FALSE) ;
- }
-
- nnz = p [n_col] ;
- if (nnz < 0) /* nnz must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
- stats [COLAMD_INFO1] = nnz ;
- DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
- return (FALSE) ;
- }
-
- if (p [0] != 0)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
- stats [COLAMD_INFO1] = p [0] ;
- DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
- return (FALSE) ;
- }
-
- /* === If no knobs, set default knobs =================================== */
-
- if (!knobs)
- {
- COLAMD_set_defaults (default_knobs) ;
- knobs = default_knobs ;
- }
-
- aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ;
-
- /* === Allocate the Row and Col arrays from array A ===================== */
-
- ok = TRUE ;
- Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */
- Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */
-
- /* need = 2*nnz + n_col + Col_size + Row_size ; */
- need = t_mult (nnz, 2, &ok) ;
- need = t_add (need, n_col, &ok) ;
- need = t_add (need, Col_size, &ok) ;
- need = t_add (need, Row_size, &ok) ;
-
- if (!ok || need > (size_t) Alen || need > Int_MAX)
- {
- /* not enough space in array A to perform the ordering */
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
- stats [COLAMD_INFO1] = need ;
- stats [COLAMD_INFO2] = Alen ;
- DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
- return (FALSE) ;
- }
-
- Alen -= Col_size + Row_size ;
- Col = (Colamd_Col *) &A [Alen] ;
- Row = (Colamd_Row *) &A [Alen + Col_size] ;
-
- /* === Construct the row and column data structures ===================== */
-
- if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
- {
- /* input matrix is invalid */
- DEBUG0 (("colamd: Matrix invalid\n")) ;
- return (FALSE) ;
- }
-
- /* === Initialize scores, kill dense rows/columns ======================= */
-
- init_scoring (n_row, n_col, Row, Col, A, p, knobs,
- &n_row2, &n_col2, &max_deg) ;
-
- /* === Order the supercolumns =========================================== */
-
- ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
- n_col2, max_deg, 2*nnz, aggressive) ;
-
- /* === Order the non-principal columns ================================== */
-
- order_children (n_col, Col, p) ;
-
- /* === Return statistics in stats ======================================= */
-
- stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
- stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
- stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
- DEBUG0 (("colamd: done.\n")) ;
- return (TRUE) ;
-}
-
-
-/* ========================================================================== */
-/* === colamd_report ======================================================== */
-/* ========================================================================== */
-
-PUBLIC void COLAMD_report
-(
- Int stats [COLAMD_STATS]
-)
-{
- print_report ("colamd", stats) ;
-}
-
-
-/* ========================================================================== */
-/* === symamd_report ======================================================== */
-/* ========================================================================== */
-
-PUBLIC void SYMAMD_report
-(
- Int stats [COLAMD_STATS]
-)
-{
- print_report ("symamd", stats) ;
-}
-
-
-
-/* ========================================================================== */
-/* === NON-USER-CALLABLE ROUTINES: ========================================== */
-/* ========================================================================== */
-
-/* There are no user-callable routines beyond this point in the file */
-
-
-/* ========================================================================== */
-/* === init_rows_cols ======================================================= */
-/* ========================================================================== */
-
-/*
- Takes the column form of the matrix in A and creates the row form of the
- matrix. Also, row and column attributes are stored in the Col and Row
- structs. If the columns are un-sorted or contain duplicate row indices,
- this routine will also sort and remove duplicate row indices from the
- column form of the matrix. Returns FALSE if the matrix is invalid,
- TRUE otherwise. Not user-callable.
-*/
-
-PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows of A */
- Int n_col, /* number of columns of A */
- Colamd_Row Row [], /* of size n_row+1 */
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* row indices of A, of size Alen */
- Int p [], /* pointers to columns in A, of size n_col+1 */
- Int stats [COLAMD_STATS] /* colamd statistics */
-)
-{
- /* === Local variables ================================================== */
-
- Int col ; /* a column index */
- Int row ; /* a row index */
- Int *cp ; /* a column pointer */
- Int *cp_end ; /* a pointer to the end of a column */
- Int *rp ; /* a row pointer */
- Int *rp_end ; /* a pointer to the end of a row */
- Int last_row ; /* previous row */
-
- /* === Initialize columns, and check column pointers ==================== */
-
- for (col = 0 ; col < n_col ; col++)
- {
- Col [col].start = p [col] ;
- Col [col].length = p [col+1] - p [col] ;
-
- if (Col [col].length < 0)
- {
- /* column pointers must be non-decreasing */
- stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = Col [col].length ;
- DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
- return (FALSE) ;
- }
-
- Col [col].shared1.thickness = 1 ;
- Col [col].shared2.score = 0 ;
- Col [col].shared3.prev = EMPTY ;
- Col [col].shared4.degree_next = EMPTY ;
- }
-
- /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
-
- /* === Scan columns, compute row degrees, and check row indices ========= */
-
- stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].length = 0 ;
- Row [row].shared2.mark = -1 ;
- }
-
- for (col = 0 ; col < n_col ; col++)
- {
- last_row = -1 ;
-
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
-
- while (cp < cp_end)
- {
- row = *cp++ ;
-
- /* make sure row indices within range */
- if (row < 0 || row >= n_row)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- stats [COLAMD_INFO3] = n_row ;
- DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
- return (FALSE) ;
- }
-
- if (row <= last_row || Row [row].shared2.mark == col)
- {
- /* row index are unsorted or repeated (or both), thus col */
- /* is jumbled. This is a notice, not an error condition. */
- stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- (stats [COLAMD_INFO3]) ++ ;
- DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
- }
-
- if (Row [row].shared2.mark != col)
- {
- Row [row].length++ ;
- }
- else
- {
- /* this is a repeated entry in the column, */
- /* it will be removed */
- Col [col].length-- ;
- }
-
- /* mark the row as having been seen in this column */
- Row [row].shared2.mark = col ;
-
- last_row = row ;
- }
- }
-
- /* === Compute row pointers ============================================= */
-
- /* row form of the matrix starts directly after the column */
- /* form of matrix in A */
- Row [0].start = p [n_col] ;
- Row [0].shared1.p = Row [0].start ;
- Row [0].shared2.mark = -1 ;
- for (row = 1 ; row < n_row ; row++)
- {
- Row [row].start = Row [row-1].start + Row [row-1].length ;
- Row [row].shared1.p = Row [row].start ;
- Row [row].shared2.mark = -1 ;
- }
-
- /* === Create row form ================================================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- /* if cols jumbled, watch for repeated row indices */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- row = *cp++ ;
- if (Row [row].shared2.mark != col)
- {
- A [(Row [row].shared1.p)++] = col ;
- Row [row].shared2.mark = col ;
- }
- }
- }
- }
- else
- {
- /* if cols not jumbled, we don't need the mark (this is faster) */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- A [(Row [*cp++].shared1.p)++] = col ;
- }
- }
- }
-
- /* === Clear the row marks and set row degrees ========================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].shared2.mark = 0 ;
- Row [row].shared1.degree = Row [row].length ;
- }
-
- /* === See if we need to re-create columns ============================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
-
-#ifndef NDEBUG
- /* make sure column lengths are correct */
- for (col = 0 ; col < n_col ; col++)
- {
- p [col] = Col [col].length ;
- }
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- p [*rp++]-- ;
- }
- }
- for (col = 0 ; col < n_col ; col++)
- {
- ASSERT (p [col] == 0) ;
- }
- /* now p is all zero (different than when debugging is turned off) */
-#endif /* NDEBUG */
-
- /* === Compute col pointers ========================================= */
-
- /* col form of the matrix starts at A [0]. */
- /* Note, we may have a gap between the col form and the row */
- /* form if there were duplicate entries, if so, it will be */
- /* removed upon the first garbage collection */
- Col [0].start = 0 ;
- p [0] = Col [0].start ;
- for (col = 1 ; col < n_col ; col++)
- {
- /* note that the lengths here are for pruned columns, i.e. */
- /* no duplicate row indices will exist for these columns */
- Col [col].start = Col [col-1].start + Col [col-1].length ;
- p [col] = Col [col].start ;
- }
-
- /* === Re-create col form =========================================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- A [(p [*rp++])++] = row ;
- }
- }
- }
-
- /* === Done. Matrix is not (or no longer) jumbled ====================== */
-
- return (TRUE) ;
-}
-
-
-/* ========================================================================== */
-/* === init_scoring ========================================================= */
-/* ========================================================================== */
-
-/*
- Kills dense or empty columns and rows, calculates an initial score for
- each column, and places all columns in the degree lists. Not user-callable.
-*/
-
-PRIVATE void init_scoring
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows of A */
- Int n_col, /* number of columns of A */
- Colamd_Row Row [], /* of size n_row+1 */
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* column form and row form of A */
- Int head [], /* of size n_col+1 */
- double knobs [COLAMD_KNOBS],/* parameters */
- Int *p_n_row2, /* number of non-dense, non-empty rows */
- Int *p_n_col2, /* number of non-dense, non-empty columns */
- Int *p_max_deg /* maximum row degree */
-)
-{
- /* === Local variables ================================================== */
-
- Int c ; /* a column index */
- Int r, row ; /* a row index */
- Int *cp ; /* a column pointer */
- Int deg ; /* degree of a row or column */
- Int *cp_end ; /* a pointer to the end of a column */
- Int *new_cp ; /* new column pointer */
- Int col_length ; /* length of pruned column */
- Int score ; /* current column score */
- Int n_col2 ; /* number of non-dense, non-empty columns */
- Int n_row2 ; /* number of non-dense, non-empty rows */
- Int dense_row_count ; /* remove rows with more entries than this */
- Int dense_col_count ; /* remove cols with more entries than this */
- Int min_score ; /* smallest column score */
- Int max_deg ; /* maximum row degree */
- Int next_col ; /* Used to add to degree list.*/
-
-#ifndef NDEBUG
- Int debug_count ; /* debug only. */
-#endif /* NDEBUG */
-
- /* === Extract knobs ==================================================== */
-
- /* Note: if knobs contains a NaN, this is undefined: */
- if (knobs [COLAMD_DENSE_ROW] < 0)
- {
- /* only remove completely dense rows */
- dense_row_count = n_col-1 ;
- }
- else
- {
- dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ;
- }
- if (knobs [COLAMD_DENSE_COL] < 0)
- {
- /* only remove completely dense columns */
- dense_col_count = n_row-1 ;
- }
- else
- {
- dense_col_count =
- DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ;
- }
-
- DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
- max_deg = 0 ;
- n_col2 = n_col ;
- n_row2 = n_row ;
-
- /* === Kill empty columns =============================================== */
-
- /* Put the empty columns at the end in their natural order, so that LU */
- /* factorization can proceed as far as possible. */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- deg = Col [c].length ;
- if (deg == 0)
- {
- /* this is a empty column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense columns =============================================== */
-
- /* Put the dense columns at the end, in their natural order */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip any dead columns */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- deg = Col [c].length ;
- if (deg > dense_col_count)
- {
- /* this is a dense column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- /* decrement the row degrees */
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- Row [*cp++].shared1.degree-- ;
- }
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense and empty rows ======================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- deg = Row [r].shared1.degree ;
- ASSERT (deg >= 0 && deg <= n_col) ;
- if (deg > dense_row_count || deg == 0)
- {
- /* kill a dense or empty row */
- KILL_ROW (r) ;
- --n_row2 ;
- }
- else
- {
- /* keep track of max degree of remaining rows */
- max_deg = MAX (max_deg, deg) ;
- }
- }
- DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
-
- /* === Compute initial column scores ==================================== */
-
- /* At this point the row degrees are accurate. They reflect the number */
- /* of "live" (non-dense) columns in each row. No empty rows exist. */
- /* Some "live" columns may contain only dead rows, however. These are */
- /* pruned in the code below. */
-
- /* now find the initial matlab score for each column */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip dead column */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- score = 0 ;
- cp = &A [Col [c].start] ;
- new_cp = cp ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- /* skip if dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- /* compact the column */
- *new_cp++ = row ;
- /* add row's external degree */
- score += Row [row].shared1.degree - 1 ;
- /* guard against integer overflow */
- score = MIN (score, n_col) ;
- }
- /* determine pruned column length */
- col_length = (Int) (new_cp - &A [Col [c].start]) ;
- if (col_length == 0)
- {
- /* a newly-made null column (all rows in this col are "dense" */
- /* and have already been killed) */
- DEBUG2 (("Newly null killed: %d\n", c)) ;
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- else
- {
- /* set column length and set score */
- ASSERT (score >= 0) ;
- ASSERT (score <= n_col) ;
- Col [c].length = col_length ;
- Col [c].shared2.score = score ;
- }
- }
- DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
- n_col-n_col2)) ;
-
- /* At this point, all empty rows and columns are dead. All live columns */
- /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
- /* yet). Rows may contain dead columns, but all live rows contain at */
- /* least one live column. */
-
-#ifndef NDEBUG
- debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
-#endif /* NDEBUG */
-
- /* === Initialize degree lists ========================================== */
-
-#ifndef NDEBUG
- debug_count = 0 ;
-#endif /* NDEBUG */
-
- /* clear the hash buckets */
- for (c = 0 ; c <= n_col ; c++)
- {
- head [c] = EMPTY ;
- }
- min_score = n_col ;
- /* place in reverse order, so low column indices are at the front */
- /* of the lists. This is to encourage natural tie-breaking */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* only add principal columns to degree lists */
- if (COL_IS_ALIVE (c))
- {
- DEBUG4 (("place %d score %d minscore %d ncol %d\n",
- c, Col [c].shared2.score, min_score, n_col)) ;
-
- /* === Add columns score to DList =============================== */
-
- score = Col [c].shared2.score ;
-
- ASSERT (min_score >= 0) ;
- ASSERT (min_score <= n_col) ;
- ASSERT (score >= 0) ;
- ASSERT (score <= n_col) ;
- ASSERT (head [score] >= EMPTY) ;
-
- /* now add this column to dList at proper score location */
- next_col = head [score] ;
- Col [c].shared3.prev = EMPTY ;
- Col [c].shared4.degree_next = next_col ;
-
- /* if there already was a column with the same score, set its */
- /* previous pointer to this new column */
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = c ;
- }
- head [score] = c ;
-
- /* see if this score is less than current min */
- min_score = MIN (min_score, score) ;
-
-#ifndef NDEBUG
- debug_count++ ;
-#endif /* NDEBUG */
-
- }
- }
-
-#ifndef NDEBUG
- DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n",
- debug_count, n_col, n_col-debug_count)) ;
- ASSERT (debug_count == n_col2) ;
- debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
-#endif /* NDEBUG */
-
- /* === Return number of remaining columns, and max row degree =========== */
-
- *p_n_col2 = n_col2 ;
- *p_n_row2 = n_row2 ;
- *p_max_deg = max_deg ;
-}
-
-
-/* ========================================================================== */
-/* === find_ordering ======================================================== */
-/* ========================================================================== */
-
-/*
- Order the principal columns of the supercolumn form of the matrix
- (no supercolumns on input). Uses a minimum approximate column minimum
- degree ordering method. Not user-callable.
-*/
-
-PRIVATE Int find_ordering /* return the number of garbage collections */
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows of A */
- Int n_col, /* number of columns of A */
- Int Alen, /* size of A, 2*nnz + n_col or larger */
- Colamd_Row Row [], /* of size n_row+1 */
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* column form and row form of A */
- Int head [], /* of size n_col+1 */
- Int n_col2, /* Remaining columns to order */
- Int max_deg, /* Maximum row degree */
- Int pfree, /* index of first free slot (2*nnz on entry) */
- Int aggressive
-)
-{
- /* === Local variables ================================================== */
-
- Int k ; /* current pivot ordering step */
- Int pivot_col ; /* current pivot column */
- Int *cp ; /* a column pointer */
- Int *rp ; /* a row pointer */
- Int pivot_row ; /* current pivot row */
- Int *new_cp ; /* modified column pointer */
- Int *new_rp ; /* modified row pointer */
- Int pivot_row_start ; /* pointer to start of pivot row */
- Int pivot_row_degree ; /* number of columns in pivot row */
- Int pivot_row_length ; /* number of supercolumns in pivot row */
- Int pivot_col_score ; /* score of pivot column */
- Int needed_memory ; /* free space needed for pivot row */
- Int *cp_end ; /* pointer to the end of a column */
- Int *rp_end ; /* pointer to the end of a row */
- Int row ; /* a row index */
- Int col ; /* a column index */
- Int max_score ; /* maximum possible score */
- Int cur_score ; /* score of current column */
- unsigned Int hash ; /* hash value for supernode detection */
- Int head_column ; /* head of hash bucket */
- Int first_col ; /* first column in hash bucket */
- Int tag_mark ; /* marker value for mark array */
- Int row_mark ; /* Row [row].shared2.mark */
- Int set_difference ; /* set difference size of row with pivot row */
- Int min_score ; /* smallest column score */
- Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
- Int max_mark ; /* maximum value of tag_mark */
- Int pivot_col_thickness ; /* number of columns represented by pivot col */
- Int prev_col ; /* Used by Dlist operations. */
- Int next_col ; /* Used by Dlist operations. */
- Int ngarbage ; /* number of garbage collections performed */
-
-#ifndef NDEBUG
- Int debug_d ; /* debug loop counter */
- Int debug_step = 0 ; /* debug loop counter */
-#endif /* NDEBUG */
-
- /* === Initialization and clear mark ==================================== */
-
- max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
- tag_mark = clear_mark (0, max_mark, n_row, Row) ;
- min_score = 0 ;
- ngarbage = 0 ;
- DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
-
- /* === Order the columns ================================================ */
-
- for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
- {
-
-#ifndef NDEBUG
- if (debug_step % 100 == 0)
- {
- DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
- }
- else
- {
- DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
- }
- debug_step++ ;
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k, max_deg) ;
- debug_matrix (n_row, n_col, Row, Col, A) ;
-#endif /* NDEBUG */
-
- /* === Select pivot column, and order it ============================ */
-
- /* make sure degree list isn't empty */
- ASSERT (min_score >= 0) ;
- ASSERT (min_score <= n_col) ;
- ASSERT (head [min_score] >= EMPTY) ;
-
-#ifndef NDEBUG
- for (debug_d = 0 ; debug_d < min_score ; debug_d++)
- {
- ASSERT (head [debug_d] == EMPTY) ;
- }
-#endif /* NDEBUG */
-
- /* get pivot column from head of minimum degree list */
- while (head [min_score] == EMPTY && min_score < n_col)
- {
- min_score++ ;
- }
- pivot_col = head [min_score] ;
- ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
- next_col = Col [pivot_col].shared4.degree_next ;
- head [min_score] = next_col ;
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = EMPTY ;
- }
-
- ASSERT (COL_IS_ALIVE (pivot_col)) ;
-
- /* remember score for defrag check */
- pivot_col_score = Col [pivot_col].shared2.score ;
-
- /* the pivot column is the kth column in the pivot order */
- Col [pivot_col].shared2.order = k ;
-
- /* increment order count by column thickness */
- pivot_col_thickness = Col [pivot_col].shared1.thickness ;
- k += pivot_col_thickness ;
- ASSERT (pivot_col_thickness > 0) ;
- DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ;
-
- /* === Garbage_collection, if necessary ============================= */
-
- needed_memory = MIN (pivot_col_score, n_col - k) ;
- if (pfree + needed_memory >= Alen)
- {
- pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
- ngarbage++ ;
- /* after garbage collection we will have enough */
- ASSERT (pfree + needed_memory < Alen) ;
- /* garbage collection has wiped out the Row[].shared2.mark array */
- tag_mark = clear_mark (0, max_mark, n_row, Row) ;
-
-#ifndef NDEBUG
- debug_matrix (n_row, n_col, Row, Col, A) ;
-#endif /* NDEBUG */
- }
-
- /* === Compute pivot row pattern ==================================== */
-
- /* get starting location for this new merged row */
- pivot_row_start = pfree ;
-
- /* initialize new row counts to zero */
- pivot_row_degree = 0 ;
-
- /* tag pivot column as having been visited so it isn't included */
- /* in merged pivot row */
- Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
-
- /* pivot row is the union of all rows in the pivot column pattern */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
- /* skip if row is dead */
- if (ROW_IS_ALIVE (row))
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- /* add the column, if alive and untagged */
- col_thickness = Col [col].shared1.thickness ;
- if (col_thickness > 0 && COL_IS_ALIVE (col))
- {
- /* tag column in pivot row */
- Col [col].shared1.thickness = -col_thickness ;
- ASSERT (pfree < Alen) ;
- /* place column in pivot row */
- A [pfree++] = col ;
- pivot_row_degree += col_thickness ;
- }
- }
- }
- }
-
- /* clear tag on pivot column */
- Col [pivot_col].shared1.thickness = pivot_col_thickness ;
- max_deg = MAX (max_deg, pivot_row_degree) ;
-
-#ifndef NDEBUG
- DEBUG3 (("check2\n")) ;
- debug_mark (n_row, Row, tag_mark, max_mark) ;
-#endif /* NDEBUG */
-
- /* === Kill all rows used to construct pivot row ==================== */
-
- /* also kill pivot row, temporarily */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* may be killing an already dead row */
- row = *cp++ ;
- DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
- KILL_ROW (row) ;
- }
-
- /* === Select a row index to use as the new pivot row =============== */
-
- pivot_row_length = pfree - pivot_row_start ;
- if (pivot_row_length > 0)
- {
- /* pick the "pivot" row arbitrarily (first row in col) */
- pivot_row = A [Col [pivot_col].start] ;
- DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
- }
- else
- {
- /* there is no pivot row, since it is of zero length */
- pivot_row = EMPTY ;
- ASSERT (pivot_row_length == 0) ;
- }
- ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
-
- /* === Approximate degree computation =============================== */
-
- /* Here begins the computation of the approximate degree. The column */
- /* score is the sum of the pivot row "length", plus the size of the */
- /* set differences of each row in the column minus the pattern of the */
- /* pivot row itself. The column ("thickness") itself is also */
- /* excluded from the column score (we thus use an approximate */
- /* external degree). */
-
- /* The time taken by the following code (compute set differences, and */
- /* add them up) is proportional to the size of the data structure */
- /* being scanned - that is, the sum of the sizes of each column in */
- /* the pivot row. Thus, the amortized time to compute a column score */
- /* is proportional to the size of that column (where size, in this */
- /* context, is the column "length", or the number of row indices */
- /* in that column). The number of row indices in a column is */
- /* monotonically non-decreasing, from the length of the original */
- /* column on input to colamd. */
-
- /* === Compute set differences ====================================== */
-
- DEBUG3 (("** Computing set differences phase. **\n")) ;
-
- /* pivot row is currently dead - it will be revived later. */
-
- DEBUG3 (("Pivot row: ")) ;
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- DEBUG3 (("Col: %d\n", col)) ;
-
- /* clear tags used to construct pivot row pattern */
- col_thickness = -Col [col].shared1.thickness ;
- ASSERT (col_thickness > 0) ;
- Col [col].shared1.thickness = col_thickness ;
-
- /* === Remove column from degree list =========================== */
-
- cur_score = Col [col].shared2.score ;
- prev_col = Col [col].shared3.prev ;
- next_col = Col [col].shared4.degree_next ;
- ASSERT (cur_score >= 0) ;
- ASSERT (cur_score <= n_col) ;
- ASSERT (cur_score >= EMPTY) ;
- if (prev_col == EMPTY)
- {
- head [cur_score] = next_col ;
- }
- else
- {
- Col [prev_col].shared4.degree_next = next_col ;
- }
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = prev_col ;
- }
-
- /* === Scan the column ========================================== */
-
- cp = &A [Col [col].start] ;
- cp_end = cp + Col [col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- ASSERT (row != pivot_row) ;
- set_difference = row_mark - tag_mark ;
- /* check if the row has been seen yet */
- if (set_difference < 0)
- {
- ASSERT (Row [row].shared1.degree <= max_deg) ;
- set_difference = Row [row].shared1.degree ;
- }
- /* subtract column thickness from this row's set difference */
- set_difference -= col_thickness ;
- ASSERT (set_difference >= 0) ;
- /* absorb this row if the set difference becomes zero */
- if (set_difference == 0 && aggressive)
- {
- DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
- KILL_ROW (row) ;
- }
- else
- {
- /* save the new mark */
- Row [row].shared2.mark = set_difference + tag_mark ;
- }
- }
- }
-
-#ifndef NDEBUG
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k-pivot_row_degree, max_deg) ;
-#endif /* NDEBUG */
-
- /* === Add up set differences for each column ======================= */
-
- DEBUG3 (("** Adding set differences phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- hash = 0 ;
- cur_score = 0 ;
- cp = &A [Col [col].start] ;
- /* compact the column */
- new_cp = cp ;
- cp_end = cp + Col [col].length ;
-
- DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
-
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- ASSERT(row >= 0 && row < n_row) ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- DEBUG4 ((" Row %d, dead\n", row)) ;
- continue ;
- }
- DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark));
- ASSERT (row_mark >= tag_mark) ;
- /* compact the column */
- *new_cp++ = row ;
- /* compute hash function */
- hash += row ;
- /* add set difference */
- cur_score += row_mark - tag_mark ;
- /* integer overflow... */
- cur_score = MIN (cur_score, n_col) ;
- }
-
- /* recompute the column's length */
- Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
-
- /* === Further mass elimination ================================= */
-
- if (Col [col].length == 0)
- {
- DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
- /* nothing left but the pivot row in this column */
- KILL_PRINCIPAL_COL (col) ;
- pivot_row_degree -= Col [col].shared1.thickness ;
- ASSERT (pivot_row_degree >= 0) ;
- /* order it */
- Col [col].shared2.order = k ;
- /* increment order count by column thickness */
- k += Col [col].shared1.thickness ;
- }
- else
- {
- /* === Prepare for supercolumn detection ==================== */
-
- DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
-
- /* save score so far */
- Col [col].shared2.score = cur_score ;
-
- /* add column to hash table, for supercolumn detection */
- hash %= n_col + 1 ;
-
- DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
- ASSERT (((Int) hash) <= n_col) ;
-
- head_column = head [hash] ;
- if (head_column > EMPTY)
- {
- /* degree list "hash" is non-empty, use prev (shared3) of */
- /* first column in degree list as head of hash bucket */
- first_col = Col [head_column].shared3.headhash ;
- Col [head_column].shared3.headhash = col ;
- }
- else
- {
- /* degree list "hash" is empty, use head as hash bucket */
- first_col = - (head_column + 2) ;
- head [hash] = - (col + 2) ;
- }
- Col [col].shared4.hash_next = first_col ;
-
- /* save hash function in Col [col].shared3.hash */
- Col [col].shared3.hash = (Int) hash ;
- ASSERT (COL_IS_ALIVE (col)) ;
- }
- }
-
- /* The approximate external column degree is now computed. */
-
- /* === Supercolumn detection ======================================== */
-
- DEBUG3 (("** Supercolumn detection phase. **\n")) ;
-
- detect_super_cols (
-
-#ifndef NDEBUG
- n_col, Row,
-#endif /* NDEBUG */
-
- Col, A, head, pivot_row_start, pivot_row_length) ;
-
- /* === Kill the pivotal column ====================================== */
-
- KILL_PRINCIPAL_COL (pivot_col) ;
-
- /* === Clear mark =================================================== */
-
- tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
-
-#ifndef NDEBUG
- DEBUG3 (("check3\n")) ;
- debug_mark (n_row, Row, tag_mark, max_mark) ;
-#endif /* NDEBUG */
-
- /* === Finalize the new pivot row, and column scores ================ */
-
- DEBUG3 (("** Finalize scores phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- /* compact the pivot row */
- new_rp = rp ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- /* skip dead columns */
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
- *new_rp++ = col ;
- /* add new pivot row to column */
- A [Col [col].start + (Col [col].length++)] = pivot_row ;
-
- /* retrieve score so far and add on pivot row's degree. */
- /* (we wait until here for this in case the pivot */
- /* row's degree was reduced due to mass elimination). */
- cur_score = Col [col].shared2.score + pivot_row_degree ;
-
- /* calculate the max possible score as the number of */
- /* external columns minus the 'k' value minus the */
- /* columns thickness */
- max_score = n_col - k - Col [col].shared1.thickness ;
-
- /* make the score the external degree of the union-of-rows */
- cur_score -= Col [col].shared1.thickness ;
-
- /* make sure score is less or equal than the max score */
- cur_score = MIN (cur_score, max_score) ;
- ASSERT (cur_score >= 0) ;
-
- /* store updated score */
- Col [col].shared2.score = cur_score ;
-
- /* === Place column back in degree list ========================= */
-
- ASSERT (min_score >= 0) ;
- ASSERT (min_score <= n_col) ;
- ASSERT (cur_score >= 0) ;
- ASSERT (cur_score <= n_col) ;
- ASSERT (head [cur_score] >= EMPTY) ;
- next_col = head [cur_score] ;
- Col [col].shared4.degree_next = next_col ;
- Col [col].shared3.prev = EMPTY ;
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = col ;
- }
- head [cur_score] = col ;
-
- /* see if this score is less than current min */
- min_score = MIN (min_score, cur_score) ;
-
- }
-
-#ifndef NDEBUG
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k, max_deg) ;
-#endif /* NDEBUG */
-
- /* === Resurrect the new pivot row ================================== */
-
- if (pivot_row_degree > 0)
- {
- /* update pivot row length to reflect any cols that were killed */
- /* during super-col detection and mass elimination */
- Row [pivot_row].start = pivot_row_start ;
- Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
- ASSERT (Row [pivot_row].length > 0) ;
- Row [pivot_row].shared1.degree = pivot_row_degree ;
- Row [pivot_row].shared2.mark = 0 ;
- /* pivot row is no longer dead */
-
- DEBUG1 (("Resurrect Pivot_row %d deg: %d\n",
- pivot_row, pivot_row_degree)) ;
- }
- }
-
- /* === All principal columns have now been ordered ====================== */
-
- return (ngarbage) ;
-}
-
-
-/* ========================================================================== */
-/* === order_children ======================================================= */
-/* ========================================================================== */
-
-/*
- The find_ordering routine has ordered all of the principal columns (the
- representatives of the supercolumns). The non-principal columns have not
- yet been ordered. This routine orders those columns by walking up the
- parent tree (a column is a child of the column which absorbed it). The
- final permutation vector is then placed in p [0 ... n_col-1], with p [0]
- being the first column, and p [n_col-1] being the last. It doesn't look
- like it at first glance, but be assured that this routine takes time linear
- in the number of columns. Although not immediately obvious, the time
- taken by this routine is O (n_col), that is, linear in the number of
- columns. Not user-callable.
-*/
-
-PRIVATE void order_children
-(
- /* === Parameters ======================================================= */
-
- Int n_col, /* number of columns of A */
- Colamd_Col Col [], /* of size n_col+1 */
- Int p [] /* p [0 ... n_col-1] is the column permutation*/
-)
-{
- /* === Local variables ================================================== */
-
- Int i ; /* loop counter for all columns */
- Int c ; /* column index */
- Int parent ; /* index of column's parent */
- Int order ; /* column's order */
-
- /* === Order each non-principal column ================================== */
-
- for (i = 0 ; i < n_col ; i++)
- {
- /* find an un-ordered non-principal column */
- ASSERT (COL_IS_DEAD (i)) ;
- if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
- {
- parent = i ;
- /* once found, find its principal parent */
- do
- {
- parent = Col [parent].shared1.parent ;
- } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
-
- /* now, order all un-ordered non-principal columns along path */
- /* to this parent. collapse tree at the same time */
- c = i ;
- /* get order of parent */
- order = Col [parent].shared2.order ;
-
- do
- {
- ASSERT (Col [c].shared2.order == EMPTY) ;
-
- /* order this column */
- Col [c].shared2.order = order++ ;
- /* collaps tree */
- Col [c].shared1.parent = parent ;
-
- /* get immediate parent of this column */
- c = Col [c].shared1.parent ;
-
- /* continue until we hit an ordered column. There are */
- /* guarranteed not to be anymore unordered columns */
- /* above an ordered column */
- } while (Col [c].shared2.order == EMPTY) ;
-
- /* re-order the super_col parent to largest order for this group */
- Col [parent].shared2.order = order ;
- }
- }
-
- /* === Generate the permutation ========================================= */
-
- for (c = 0 ; c < n_col ; c++)
- {
- p [Col [c].shared2.order] = c ;
- }
-}
-
-
-/* ========================================================================== */
-/* === detect_super_cols ==================================================== */
-/* ========================================================================== */
-
-/*
- Detects supercolumns by finding matches between columns in the hash buckets.
- Check amongst columns in the set A [row_start ... row_start + row_length-1].
- The columns under consideration are currently *not* in the degree lists,
- and have already been placed in the hash buckets.
-
- The hash bucket for columns whose hash function is equal to h is stored
- as follows:
-
- if head [h] is >= 0, then head [h] contains a degree list, so:
-
- head [h] is the first column in degree bucket h.
- Col [head [h]].headhash gives the first column in hash bucket h.
-
- otherwise, the degree list is empty, and:
-
- -(head [h] + 2) is the first column in hash bucket h.
-
- For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
- column" pointer. Col [c].shared3.hash is used instead as the hash number
- for that column. The value of Col [c].shared4.hash_next is the next column
- in the same hash bucket.
-
- Assuming no, or "few" hash collisions, the time taken by this routine is
- linear in the sum of the sizes (lengths) of each column whose score has
- just been computed in the approximate degree computation.
- Not user-callable.
-*/
-
-PRIVATE void detect_super_cols
-(
- /* === Parameters ======================================================= */
-
-#ifndef NDEBUG
- /* these two parameters are only needed when debugging is enabled: */
- Int n_col, /* number of columns of A */
- Colamd_Row Row [], /* of size n_row+1 */
-#endif /* NDEBUG */
-
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* row indices of A */
- Int head [], /* head of degree lists and hash buckets */
- Int row_start, /* pointer to set of columns to check */
- Int row_length /* number of columns to check */
-)
-{
- /* === Local variables ================================================== */
-
- Int hash ; /* hash value for a column */
- Int *rp ; /* pointer to a row */
- Int c ; /* a column index */
- Int super_c ; /* column index of the column to absorb into */
- Int *cp1 ; /* column pointer for column super_c */
- Int *cp2 ; /* column pointer for column c */
- Int length ; /* length of column super_c */
- Int prev_c ; /* column preceding c in hash bucket */
- Int i ; /* loop counter */
- Int *rp_end ; /* pointer to the end of the row */
- Int col ; /* a column index in the row to check */
- Int head_column ; /* first column in hash bucket or degree list */
- Int first_col ; /* first column in hash bucket */
-
- /* === Consider each column in the row ================================== */
-
- rp = &A [row_start] ;
- rp_end = rp + row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
-
- /* get hash number for this column */
- hash = Col [col].shared3.hash ;
- ASSERT (hash <= n_col) ;
-
- /* === Get the first column in this hash bucket ===================== */
-
- head_column = head [hash] ;
- if (head_column > EMPTY)
- {
- first_col = Col [head_column].shared3.headhash ;
- }
- else
- {
- first_col = - (head_column + 2) ;
- }
-
- /* === Consider each column in the hash bucket ====================== */
-
- for (super_c = first_col ; super_c != EMPTY ;
- super_c = Col [super_c].shared4.hash_next)
- {
- ASSERT (COL_IS_ALIVE (super_c)) ;
- ASSERT (Col [super_c].shared3.hash == hash) ;
- length = Col [super_c].length ;
-
- /* prev_c is the column preceding column c in the hash bucket */
- prev_c = super_c ;
-
- /* === Compare super_c with all columns after it ================ */
-
- for (c = Col [super_c].shared4.hash_next ;
- c != EMPTY ; c = Col [c].shared4.hash_next)
- {
- ASSERT (c != super_c) ;
- ASSERT (COL_IS_ALIVE (c)) ;
- ASSERT (Col [c].shared3.hash == hash) ;
-
- /* not identical if lengths or scores are different */
- if (Col [c].length != length ||
- Col [c].shared2.score != Col [super_c].shared2.score)
- {
- prev_c = c ;
- continue ;
- }
-
- /* compare the two columns */
- cp1 = &A [Col [super_c].start] ;
- cp2 = &A [Col [c].start] ;
-
- for (i = 0 ; i < length ; i++)
- {
- /* the columns are "clean" (no dead rows) */
- ASSERT (ROW_IS_ALIVE (*cp1)) ;
- ASSERT (ROW_IS_ALIVE (*cp2)) ;
- /* row indices will same order for both supercols, */
- /* no gather scatter nessasary */
- if (*cp1++ != *cp2++)
- {
- break ;
- }
- }
-
- /* the two columns are different if the for-loop "broke" */
- if (i != length)
- {
- prev_c = c ;
- continue ;
- }
-
- /* === Got it! two columns are identical =================== */
-
- ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
-
- Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
- Col [c].shared1.parent = super_c ;
- KILL_NON_PRINCIPAL_COL (c) ;
- /* order c later, in order_children() */
- Col [c].shared2.order = EMPTY ;
- /* remove c from hash bucket */
- Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
- }
- }
-
- /* === Empty this hash bucket ======================================= */
-
- if (head_column > EMPTY)
- {
- /* corresponding degree list "hash" is not empty */
- Col [head_column].shared3.headhash = EMPTY ;
- }
- else
- {
- /* corresponding degree list "hash" is empty */
- head [hash] = EMPTY ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === garbage_collection =================================================== */
-/* ========================================================================== */
-
-/*
- Defragments and compacts columns and rows in the workspace A. Used when
- all avaliable memory has been used while performing row merging. Returns
- the index of the first free position in A, after garbage collection. The
- time taken by this routine is linear is the size of the array A, which is
- itself linear in the number of nonzeros in the input matrix.
- Not user-callable.
-*/
-
-PRIVATE Int garbage_collection /* returns the new value of pfree */
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows */
- Int n_col, /* number of columns */
- Colamd_Row Row [], /* row info */
- Colamd_Col Col [], /* column info */
- Int A [], /* A [0 ... Alen-1] holds the matrix */
- Int *pfree /* &A [0] ... pfree is in use */
-)
-{
- /* === Local variables ================================================== */
-
- Int *psrc ; /* source pointer */
- Int *pdest ; /* destination pointer */
- Int j ; /* counter */
- Int r ; /* a row index */
- Int c ; /* a column index */
- Int length ; /* length of a row or column */
-
-#ifndef NDEBUG
- Int debug_rows ;
- DEBUG2 (("Defrag..\n")) ;
- for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
- debug_rows = 0 ;
-#endif /* NDEBUG */
-
- /* === Defragment the columns =========================================== */
-
- pdest = &A[0] ;
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- psrc = &A [Col [c].start] ;
-
- /* move and compact the column */
- ASSERT (pdest <= psrc) ;
- Col [c].start = (Int) (pdest - &A [0]) ;
- length = Col [c].length ;
- for (j = 0 ; j < length ; j++)
- {
- r = *psrc++ ;
- if (ROW_IS_ALIVE (r))
- {
- *pdest++ = r ;
- }
- }
- Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
- }
- }
-
- /* === Prepare to defragment the rows =================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_DEAD (r) || (Row [r].length == 0))
- {
- /* This row is already dead, or is of zero length. Cannot compact
- * a row of zero length, so kill it. NOTE: in the current version,
- * there are no zero-length live rows. Kill the row (for the first
- * time, or again) just to be safe. */
- KILL_ROW (r) ;
- }
- else
- {
- /* save first column index in Row [r].shared2.first_column */
- psrc = &A [Row [r].start] ;
- Row [r].shared2.first_column = *psrc ;
- ASSERT (ROW_IS_ALIVE (r)) ;
- /* flag the start of the row with the one's complement of row */
- *psrc = ONES_COMPLEMENT (r) ;
-#ifndef NDEBUG
- debug_rows++ ;
-#endif /* NDEBUG */
- }
- }
-
- /* === Defragment the rows ============================================== */
-
- psrc = pdest ;
- while (psrc < pfree)
- {
- /* find a negative number ... the start of a row */
- if (*psrc++ < 0)
- {
- psrc-- ;
- /* get the row index */
- r = ONES_COMPLEMENT (*psrc) ;
- ASSERT (r >= 0 && r < n_row) ;
- /* restore first column index */
- *psrc = Row [r].shared2.first_column ;
- ASSERT (ROW_IS_ALIVE (r)) ;
- ASSERT (Row [r].length > 0) ;
- /* move and compact the row */
- ASSERT (pdest <= psrc) ;
- Row [r].start = (Int) (pdest - &A [0]) ;
- length = Row [r].length ;
- for (j = 0 ; j < length ; j++)
- {
- c = *psrc++ ;
- if (COL_IS_ALIVE (c))
- {
- *pdest++ = c ;
- }
- }
- Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
- ASSERT (Row [r].length > 0) ;
-#ifndef NDEBUG
- debug_rows-- ;
-#endif /* NDEBUG */
- }
- }
- /* ensure we found all the rows */
- ASSERT (debug_rows == 0) ;
-
- /* === Return the new value of pfree ==================================== */
-
- return ((Int) (pdest - &A [0])) ;
-}
-
-
-/* ========================================================================== */
-/* === clear_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Clears the Row [].shared2.mark array, and returns the new tag_mark.
- Return value is the new tag_mark. Not user-callable.
-*/
-
-PRIVATE Int clear_mark /* return the new value for tag_mark */
-(
- /* === Parameters ======================================================= */
-
- Int tag_mark, /* new value of tag_mark */
- Int max_mark, /* max allowed value of tag_mark */
-
- Int n_row, /* number of rows in A */
- Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
-)
-{
- /* === Local variables ================================================== */
-
- Int r ;
-
- if (tag_mark <= 0 || tag_mark >= max_mark)
- {
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- Row [r].shared2.mark = 0 ;
- }
- }
- tag_mark = 1 ;
- }
-
- return (tag_mark) ;
-}
-
-
-/* ========================================================================== */
-/* === print_report ========================================================= */
-/* ========================================================================== */
-
-PRIVATE void print_report
-(
- char *method,
- Int stats [COLAMD_STATS]
-)
-{
-
- Int i1, i2, i3 ;
-
- PRINTF (("\n%s version %d.%d, %s: ", method,
- COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ;
-
- if (!stats)
- {
- PRINTF (("No statistics available.\n")) ;
- return ;
- }
-
- i1 = stats [COLAMD_INFO1] ;
- i2 = stats [COLAMD_INFO2] ;
- i3 = stats [COLAMD_INFO3] ;
-
- if (stats [COLAMD_STATUS] >= 0)
- {
- PRINTF (("OK. ")) ;
- }
- else
- {
- PRINTF (("ERROR. ")) ;
- }
-
- switch (stats [COLAMD_STATUS])
- {
-
- case COLAMD_OK_BUT_JUMBLED:
-
- PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
-
- PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n",
- method, i3)) ;
-
- PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n",
- method, INDEX (i2))) ;
-
- PRINTF(("%s: last seen in column: %d",
- method, INDEX (i1))) ;
-
- /* no break - fall through to next case instead */
-
- case COLAMD_OK:
-
- PRINTF(("\n")) ;
-
- PRINTF(("%s: number of dense or empty rows ignored: %d\n",
- method, stats [COLAMD_DENSE_ROW])) ;
-
- PRINTF(("%s: number of dense or empty columns ignored: %d\n",
- method, stats [COLAMD_DENSE_COL])) ;
-
- PRINTF(("%s: number of garbage collections performed: %d\n",
- method, stats [COLAMD_DEFRAG_COUNT])) ;
- break ;
-
- case COLAMD_ERROR_A_not_present:
-
- PRINTF(("Array A (row indices of matrix) not present.\n")) ;
- break ;
-
- case COLAMD_ERROR_p_not_present:
-
- PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
- break ;
-
- case COLAMD_ERROR_nrow_negative:
-
- PRINTF(("Invalid number of rows (%d).\n", i1)) ;
- break ;
-
- case COLAMD_ERROR_ncol_negative:
-
- PRINTF(("Invalid number of columns (%d).\n", i1)) ;
- break ;
-
- case COLAMD_ERROR_nnz_negative:
-
- PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ;
- break ;
-
- case COLAMD_ERROR_p0_nonzero:
-
- PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1));
- break ;
-
- case COLAMD_ERROR_A_too_small:
-
- PRINTF(("Array A too small.\n")) ;
- PRINTF((" Need Alen >= %d, but given only Alen = %d.\n",
- i1, i2)) ;
- break ;
-
- case COLAMD_ERROR_col_length_negative:
-
- PRINTF
- (("Column %d has a negative number of nonzero entries (%d).\n",
- INDEX (i1), i2)) ;
- break ;
-
- case COLAMD_ERROR_row_index_out_of_bounds:
-
- PRINTF
- (("Row index (row %d) out of bounds (%d to %d) in column %d.\n",
- INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ;
- break ;
-
- case COLAMD_ERROR_out_of_memory:
-
- PRINTF(("Out of memory.\n")) ;
- break ;
-
- /* v2.4: internal-error case deleted */
- }
-}
-
-
-
-
-/* ========================================================================== */
-/* === colamd debugging routines ============================================ */
-/* ========================================================================== */
-
-/* When debugging is disabled, the remainder of this file is ignored. */
-
-#ifndef NDEBUG
-
-
-/* ========================================================================== */
-/* === debug_structures ===================================================== */
-/* ========================================================================== */
-
-/*
- At this point, all empty rows and columns are dead. All live columns
- are "clean" (containing no dead rows) and simplicial (no supercolumns
- yet). Rows may contain dead columns, but all live rows contain at
- least one live column.
-*/
-
-PRIVATE void debug_structures
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int n_col2
-)
-{
- /* === Local variables ================================================== */
-
- Int i ;
- Int c ;
- Int *cp ;
- Int *cp_end ;
- Int len ;
- Int score ;
- Int r ;
- Int *rp ;
- Int *rp_end ;
- Int deg ;
-
- /* === Check A, Row, and Col ============================================ */
-
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- len = Col [c].length ;
- score = Col [c].shared2.score ;
- DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
- ASSERT (len > 0) ;
- ASSERT (score >= 0) ;
- ASSERT (Col [c].shared1.thickness == 1) ;
- cp = &A [Col [c].start] ;
- cp_end = cp + len ;
- while (cp < cp_end)
- {
- r = *cp++ ;
- ASSERT (ROW_IS_ALIVE (r)) ;
- }
- }
- else
- {
- i = Col [c].shared2.order ;
- ASSERT (i >= n_col2 && i < n_col) ;
- }
- }
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- i = 0 ;
- len = Row [r].length ;
- deg = Row [r].shared1.degree ;
- ASSERT (len > 0) ;
- ASSERT (deg > 0) ;
- rp = &A [Row [r].start] ;
- rp_end = rp + len ;
- while (rp < rp_end)
- {
- c = *rp++ ;
- if (COL_IS_ALIVE (c))
- {
- i++ ;
- }
- }
- ASSERT (i > 0) ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_deg_lists ====================================================== */
-/* ========================================================================== */
-
-/*
- Prints the contents of the degree lists. Counts the number of columns
- in the degree list and compares it to the total it should have. Also
- checks the row degrees.
-*/
-
-PRIVATE void debug_deg_lists
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int head [],
- Int min_score,
- Int should,
- Int max_deg
-)
-{
- /* === Local variables ================================================== */
-
- Int deg ;
- Int col ;
- Int have ;
- Int row ;
-
- /* === Check the degree lists =========================================== */
-
- if (n_col > 10000 && colamd_debug <= 0)
- {
- return ;
- }
- have = 0 ;
- DEBUG4 (("Degree lists: %d\n", min_score)) ;
- for (deg = 0 ; deg <= n_col ; deg++)
- {
- col = head [deg] ;
- if (col == EMPTY)
- {
- continue ;
- }
- DEBUG4 (("%d:", deg)) ;
- while (col != EMPTY)
- {
- DEBUG4 ((" %d", col)) ;
- have += Col [col].shared1.thickness ;
- ASSERT (COL_IS_ALIVE (col)) ;
- col = Col [col].shared4.degree_next ;
- }
- DEBUG4 (("\n")) ;
- }
- DEBUG4 (("should %d have %d\n", should, have)) ;
- ASSERT (should == have) ;
-
- /* === Check the row degrees ============================================ */
-
- if (n_row > 10000 && colamd_debug <= 0)
- {
- return ;
- }
- for (row = 0 ; row < n_row ; row++)
- {
- if (ROW_IS_ALIVE (row))
- {
- ASSERT (Row [row].shared1.degree <= max_deg) ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Ensures that the tag_mark is less that the maximum and also ensures that
- each entry in the mark array is less than the tag mark.
-*/
-
-PRIVATE void debug_mark
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Colamd_Row Row [],
- Int tag_mark,
- Int max_mark
-)
-{
- /* === Local variables ================================================== */
-
- Int r ;
-
- /* === Check the Row marks ============================================== */
-
- ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
- if (n_row > 10000 && colamd_debug <= 0)
- {
- return ;
- }
- for (r = 0 ; r < n_row ; r++)
- {
- ASSERT (Row [r].shared2.mark < tag_mark) ;
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_matrix ========================================================= */
-/* ========================================================================== */
-
-/*
- Prints out the contents of the columns and the rows.
-*/
-
-PRIVATE void debug_matrix
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A []
-)
-{
- /* === Local variables ================================================== */
-
- Int r ;
- Int c ;
- Int *rp ;
- Int *rp_end ;
- Int *cp ;
- Int *cp_end ;
-
- /* === Dump the rows and columns of the matrix ========================== */
-
- if (colamd_debug < 3)
- {
- return ;
- }
- DEBUG3 (("DUMP MATRIX:\n")) ;
- for (r = 0 ; r < n_row ; r++)
- {
- DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
- if (ROW_IS_DEAD (r))
- {
- continue ;
- }
- DEBUG3 (("start %d length %d degree %d\n",
- Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
- rp = &A [Row [r].start] ;
- rp_end = rp + Row [r].length ;
- while (rp < rp_end)
- {
- c = *rp++ ;
- DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
- }
- }
-
- for (c = 0 ; c < n_col ; c++)
- {
- DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
- Col [c].start, Col [c].length,
- Col [c].shared1.thickness, Col [c].shared2.score)) ;
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- r = *cp++ ;
- DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
- }
- }
-}
-
-PRIVATE void colamd_get_debug
-(
- char *method
-)
-{
- FILE *f ;
- colamd_debug = 0 ; /* no debug printing */
- f = fopen ("debug", "r") ;
- if (f == (FILE *) NULL)
- {
- colamd_debug = 0 ;
- }
- else
- {
- fscanf (f, "%d", &colamd_debug) ;
- fclose (f) ;
- }
- DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n",
- method, colamd_debug)) ;
-}
-
-#endif /* NDEBUG */
diff --git a/extern/colamd/Source/colamd_global.c b/extern/colamd/Source/colamd_global.c
deleted file mode 100644
index 4d1ae22300c..00000000000
--- a/extern/colamd/Source/colamd_global.c
+++ /dev/null
@@ -1,24 +0,0 @@
-/* ========================================================================== */
-/* === colamd_global.c ====================================================== */
-/* ========================================================================== */
-
-/* ----------------------------------------------------------------------------
- * COLAMD, Copyright (C) 2007, Timothy A. Davis.
- * See License.txt for the Version 2.1 of the GNU Lesser General Public License
- * http://www.cise.ufl.edu/research/sparse
- * -------------------------------------------------------------------------- */
-
-/* Global variables for COLAMD */
-
-#ifndef NPRINT
-#ifdef MATLAB_MEX_FILE
-#include "mex.h"
-int (*colamd_printf) (const char *, ...) = mexPrintf ;
-#else
-#include <stdio.h>
-int (*colamd_printf) (const char *, ...) = printf ;
-#endif
-#else
-int (*colamd_printf) (const char *, ...) = ((void *) 0) ;
-#endif
-