Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrian Savery <bsavery>2021-09-28 17:51:14 +0300
committerBrecht Van Lommel <brecht@blender.org>2021-09-28 20:18:55 +0300
commit044a77352f8a8a0e1f60190369d69ef26587b65f (patch)
tree22096da4d5214cbd7419d1a5e0dadc70e6cacea3 /intern/cycles/device/hip/device_impl.cpp
parent262b2118565826177133013c324212c66d882456 (diff)
Cycles: add HIP device support for AMD GPUs
NOTE: this feature is not ready for user testing, and not yet enabled in daily builds. It is being merged now for easier collaboration on development. HIP is a heterogenous compute interface allowing C++ code to be executed on GPUs similar to CUDA. It is intended to bring back AMD GPU rendering support on Windows and Linux. https://github.com/ROCm-Developer-Tools/HIP. As of the time of writing, it should compile and run on Linux with existing HIP compilers and driver runtimes. Publicly available compilers and drivers for Windows will come later. See task T91571 for more details on the current status and work remaining to be done. Credits: Sayak Biswas (AMD) Arya Rafii (AMD) Brian Savery (AMD) Differential Revision: https://developer.blender.org/D12578
Diffstat (limited to 'intern/cycles/device/hip/device_impl.cpp')
-rw-r--r--intern/cycles/device/hip/device_impl.cpp1343
1 files changed, 1343 insertions, 0 deletions
diff --git a/intern/cycles/device/hip/device_impl.cpp b/intern/cycles/device/hip/device_impl.cpp
new file mode 100644
index 00000000000..0e5ac6ce401
--- /dev/null
+++ b/intern/cycles/device/hip/device_impl.cpp
@@ -0,0 +1,1343 @@
+/*
+ * Copyright 2011-2021 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifdef WITH_HIP
+
+# include <climits>
+# include <limits.h>
+# include <stdio.h>
+# include <stdlib.h>
+# include <string.h>
+
+# include "device/hip/device_impl.h"
+
+# include "render/buffers.h"
+
+# include "util/util_debug.h"
+# include "util/util_foreach.h"
+# include "util/util_logging.h"
+# include "util/util_map.h"
+# include "util/util_md5.h"
+# include "util/util_opengl.h"
+# include "util/util_path.h"
+# include "util/util_string.h"
+# include "util/util_system.h"
+# include "util/util_time.h"
+# include "util/util_types.h"
+# include "util/util_windows.h"
+
+CCL_NAMESPACE_BEGIN
+
+class HIPDevice;
+
+bool HIPDevice::have_precompiled_kernels()
+{
+ string fatbins_path = path_get("lib");
+ return path_exists(fatbins_path);
+}
+
+bool HIPDevice::show_samples() const
+{
+ /* The HIPDevice only processes one tile at a time, so showing samples is fine. */
+ return true;
+}
+
+BVHLayoutMask HIPDevice::get_bvh_layout_mask() const
+{
+ return BVH_LAYOUT_BVH2;
+}
+
+void HIPDevice::set_error(const string &error)
+{
+ Device::set_error(error);
+
+ if (first_error) {
+ fprintf(stderr, "\nRefer to the Cycles GPU rendering documentation for possible solutions:\n");
+ fprintf(stderr,
+ "https://docs.blender.org/manual/en/latest/render/cycles/gpu_rendering.html\n\n");
+ first_error = false;
+ }
+}
+
+HIPDevice::HIPDevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
+ : Device(info, stats, profiler), texture_info(this, "__texture_info", MEM_GLOBAL)
+{
+ first_error = true;
+
+ hipDevId = info.num;
+ hipDevice = 0;
+ hipContext = 0;
+
+ hipModule = 0;
+
+ need_texture_info = false;
+
+ device_texture_headroom = 0;
+ device_working_headroom = 0;
+ move_texture_to_host = false;
+ map_host_limit = 0;
+ map_host_used = 0;
+ can_map_host = 0;
+ pitch_alignment = 0;
+
+ /* Initialize HIP. */
+ hipError_t result = hipInit(0);
+ if (result != hipSuccess) {
+ set_error(string_printf("Failed to initialize HIP runtime (%s)", hipewErrorString(result)));
+ return;
+ }
+
+ /* Setup device and context. */
+ result = hipGetDevice(&hipDevice, hipDevId);
+ if (result != hipSuccess) {
+ set_error(string_printf("Failed to get HIP device handle from ordinal (%s)",
+ hipewErrorString(result)));
+ return;
+ }
+
+ hip_assert(hipDeviceGetAttribute(&can_map_host, hipDeviceAttributeCanMapHostMemory, hipDevice));
+
+ hip_assert(
+ hipDeviceGetAttribute(&pitch_alignment, hipDeviceAttributeTexturePitchAlignment, hipDevice));
+
+ unsigned int ctx_flags = hipDeviceLmemResizeToMax;
+ if (can_map_host) {
+ ctx_flags |= hipDeviceMapHost;
+ init_host_memory();
+ }
+
+ /* Create context. */
+ result = hipCtxCreate(&hipContext, ctx_flags, hipDevice);
+
+ if (result != hipSuccess) {
+ set_error(string_printf("Failed to create HIP context (%s)", hipewErrorString(result)));
+ return;
+ }
+
+ int major, minor;
+ hipDeviceGetAttribute(&major, hipDeviceAttributeComputeCapabilityMajor, hipDevId);
+ hipDeviceGetAttribute(&minor, hipDeviceAttributeComputeCapabilityMinor, hipDevId);
+ hipDevArchitecture = major * 100 + minor * 10;
+
+ /* Pop context set by hipCtxCreate. */
+ hipCtxPopCurrent(NULL);
+}
+
+HIPDevice::~HIPDevice()
+{
+ texture_info.free();
+
+ hip_assert(hipCtxDestroy(hipContext));
+}
+
+bool HIPDevice::support_device(const uint /*kernel_features*/)
+{
+ int major, minor;
+ hipDeviceGetAttribute(&major, hipDeviceAttributeComputeCapabilityMajor, hipDevId);
+ hipDeviceGetAttribute(&minor, hipDeviceAttributeComputeCapabilityMinor, hipDevId);
+
+ // TODO : (Arya) What versions do we plan to support?
+ return true;
+}
+
+bool HIPDevice::check_peer_access(Device *peer_device)
+{
+ if (peer_device == this) {
+ return false;
+ }
+ if (peer_device->info.type != DEVICE_HIP && peer_device->info.type != DEVICE_OPTIX) {
+ return false;
+ }
+
+ HIPDevice *const peer_device_hip = static_cast<HIPDevice *>(peer_device);
+
+ int can_access = 0;
+ hip_assert(hipDeviceCanAccessPeer(&can_access, hipDevice, peer_device_hip->hipDevice));
+ if (can_access == 0) {
+ return false;
+ }
+
+ // Ensure array access over the link is possible as well (for 3D textures)
+ hip_assert(hipDeviceGetP2PAttribute(
+ &can_access, hipDevP2PAttrHipArrayAccessSupported, hipDevice, peer_device_hip->hipDevice));
+ if (can_access == 0) {
+ return false;
+ }
+
+ // Enable peer access in both directions
+ {
+ const HIPContextScope scope(this);
+ hipError_t result = hipCtxEnablePeerAccess(peer_device_hip->hipContext, 0);
+ if (result != hipSuccess) {
+ set_error(string_printf("Failed to enable peer access on HIP context (%s)",
+ hipewErrorString(result)));
+ return false;
+ }
+ }
+ {
+ const HIPContextScope scope(peer_device_hip);
+ hipError_t result = hipCtxEnablePeerAccess(hipContext, 0);
+ if (result != hipSuccess) {
+ set_error(string_printf("Failed to enable peer access on HIP context (%s)",
+ hipewErrorString(result)));
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool HIPDevice::use_adaptive_compilation()
+{
+ return DebugFlags().hip.adaptive_compile;
+}
+
+/* Common NVCC flags which stays the same regardless of shading model,
+ * kernel sources md5 and only depends on compiler or compilation settings.
+ */
+string HIPDevice::compile_kernel_get_common_cflags(const uint kernel_features)
+{
+ const int machine = system_cpu_bits();
+ const string source_path = path_get("source");
+ const string include_path = source_path;
+ string cflags = string_printf(
+ "-m%d "
+ "--ptxas-options=\"-v\" "
+ "--use_fast_math "
+ "-DHIPCC "
+ "-I\"%s\"",
+ machine,
+ include_path.c_str());
+ if (use_adaptive_compilation()) {
+ cflags += " -D__KERNEL_FEATURES__=" + to_string(kernel_features);
+ }
+ return cflags;
+}
+
+string HIPDevice::compile_kernel(const uint kernel_features,
+ const char *name,
+ const char *base,
+ bool force_ptx)
+{
+ /* Compute kernel name. */
+ int major, minor;
+ hipDeviceGetAttribute(&major, hipDeviceAttributeComputeCapabilityMajor, hipDevId);
+ hipDeviceGetAttribute(&minor, hipDeviceAttributeComputeCapabilityMinor, hipDevId);
+
+ /* Attempt to use kernel provided with Blender. */
+ if (!use_adaptive_compilation()) {
+ if (!force_ptx) {
+ const string fatbin = path_get(string_printf("lib/%s_sm_%d%d.cubin", name, major, minor));
+ VLOG(1) << "Testing for pre-compiled kernel " << fatbin << ".";
+ if (path_exists(fatbin)) {
+ VLOG(1) << "Using precompiled kernel.";
+ return fatbin;
+ }
+ }
+
+ /* The driver can JIT-compile PTX generated for older generations, so find the closest one. */
+ int ptx_major = major, ptx_minor = minor;
+ while (ptx_major >= 3) {
+ const string ptx = path_get(
+ string_printf("lib/%s_compute_%d%d.ptx", name, ptx_major, ptx_minor));
+ VLOG(1) << "Testing for pre-compiled kernel " << ptx << ".";
+ if (path_exists(ptx)) {
+ VLOG(1) << "Using precompiled kernel.";
+ return ptx;
+ }
+
+ if (ptx_minor > 0) {
+ ptx_minor--;
+ }
+ else {
+ ptx_major--;
+ ptx_minor = 9;
+ }
+ }
+ }
+
+ /* Try to use locally compiled kernel. */
+ string source_path = path_get("source");
+ const string source_md5 = path_files_md5_hash(source_path);
+
+ /* We include cflags into md5 so changing hip toolkit or changing other
+ * compiler command line arguments makes sure fatbin gets re-built.
+ */
+ string common_cflags = compile_kernel_get_common_cflags(kernel_features);
+ const string kernel_md5 = util_md5_string(source_md5 + common_cflags);
+
+ const char *const kernel_ext = "genco";
+# ifdef _WIN32
+ const char *const options =
+ "save-temps -Wno-parentheses-equality -Wno-unused-value --hipcc-func-supp";
+# else
+ const char *const options =
+ "save-temps -Wno-parentheses-equality -Wno-unused-value --hipcc-func-supp -O3 -ggdb";
+# endif
+ const string include_path = source_path;
+ const char *const kernel_arch = force_ptx ? "compute" : "sm";
+ const string fatbin_file = string_printf(
+ "cycles_%s_%s_%d%d_%s", name, kernel_arch, major, minor, kernel_md5.c_str());
+ const string fatbin = path_cache_get(path_join("kernels", fatbin_file));
+ VLOG(1) << "Testing for locally compiled kernel " << fatbin << ".";
+ if (path_exists(fatbin)) {
+ VLOG(1) << "Using locally compiled kernel.";
+ return fatbin;
+ }
+
+# ifdef _WIN32
+ if (!use_adaptive_compilation() && have_precompiled_kernels()) {
+ if (major < 3) {
+ set_error(
+ string_printf("HIP backend requires compute capability 3.0 or up, but found %d.%d. "
+ "Your GPU is not supported.",
+ major,
+ minor));
+ }
+ else {
+ set_error(
+ string_printf("HIP binary kernel for this graphics card compute "
+ "capability (%d.%d) not found.",
+ major,
+ minor));
+ }
+ return string();
+ }
+# endif
+
+ /* Compile. */
+ const char *const hipcc = hipewCompilerPath();
+ if (hipcc == NULL) {
+ set_error(
+ "HIP hipcc compiler not found. "
+ "Install HIP toolkit in default location.");
+ return string();
+ }
+
+ const int hipcc_hip_version = hipewCompilerVersion();
+ VLOG(1) << "Found hipcc " << hipcc << ", HIP version " << hipcc_hip_version << ".";
+ if (hipcc_hip_version < 40) {
+ printf(
+ "Unsupported HIP version %d.%d detected, "
+ "you need HIP 4.0 or newer.\n",
+ hipcc_hip_version / 10,
+ hipcc_hip_version % 10);
+ return string();
+ }
+
+ double starttime = time_dt();
+
+ path_create_directories(fatbin);
+
+ source_path = path_join(path_join(source_path, "kernel"),
+ path_join("device", path_join(base, string_printf("%s.cpp", name))));
+
+ string command = string_printf("%s -%s -I %s --%s %s -o \"%s\"",
+ hipcc,
+ options,
+ include_path.c_str(),
+ kernel_ext,
+ source_path.c_str(),
+ fatbin.c_str());
+
+ printf("Compiling HIP kernel ...\n%s\n", command.c_str());
+
+# ifdef _WIN32
+ command = "call " + command;
+# endif
+ if (system(command.c_str()) != 0) {
+ set_error(
+ "Failed to execute compilation command, "
+ "see console for details.");
+ return string();
+ }
+
+ /* Verify if compilation succeeded */
+ if (!path_exists(fatbin)) {
+ set_error(
+ "HIP kernel compilation failed, "
+ "see console for details.");
+ return string();
+ }
+
+ printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);
+
+ return fatbin;
+}
+
+bool HIPDevice::load_kernels(const uint kernel_features)
+{
+ /* TODO(sergey): Support kernels re-load for HIP devices.
+ *
+ * Currently re-loading kernel will invalidate memory pointers,
+ * causing problems in hipCtxSynchronize.
+ */
+ if (hipModule) {
+ VLOG(1) << "Skipping kernel reload, not currently supported.";
+ return true;
+ }
+
+ /* check if hip init succeeded */
+ if (hipContext == 0)
+ return false;
+
+ /* check if GPU is supported */
+ if (!support_device(kernel_features))
+ return false;
+
+ /* get kernel */
+ const char *kernel_name = "kernel";
+ string fatbin = compile_kernel(kernel_features, kernel_name);
+ if (fatbin.empty())
+ return false;
+
+ /* open module */
+ HIPContextScope scope(this);
+
+ string fatbin_data;
+ hipError_t result;
+
+ if (path_read_text(fatbin, fatbin_data))
+ result = hipModuleLoadData(&hipModule, fatbin_data.c_str());
+ else
+ result = hipErrorFileNotFound;
+
+ if (result != hipSuccess)
+ set_error(string_printf(
+ "Failed to load HIP kernel from '%s' (%s)", fatbin.c_str(), hipewErrorString(result)));
+
+ if (result == hipSuccess) {
+ kernels.load(this);
+ reserve_local_memory(kernel_features);
+ }
+
+ return (result == hipSuccess);
+}
+
+void HIPDevice::reserve_local_memory(const uint)
+{
+ /* Together with hipDeviceLmemResizeToMax, this reserves local memory
+ * needed for kernel launches, so that we can reliably figure out when
+ * to allocate scene data in mapped host memory. */
+ size_t total = 0, free_before = 0, free_after = 0;
+
+ {
+ HIPContextScope scope(this);
+ hipMemGetInfo(&free_before, &total);
+ }
+
+ {
+ /* Use the biggest kernel for estimation. */
+ const DeviceKernel test_kernel = DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE;
+
+ /* Launch kernel, using just 1 block appears sufficient to reserve memory for all
+ * multiprocessors. It would be good to do this in parallel for the multi GPU case
+ * still to make it faster. */
+ HIPDeviceQueue queue(this);
+
+ void *d_path_index = nullptr;
+ void *d_render_buffer = nullptr;
+ int d_work_size = 0;
+ void *args[] = {&d_path_index, &d_render_buffer, &d_work_size};
+
+ queue.init_execution();
+ queue.enqueue(test_kernel, 1, args);
+ queue.synchronize();
+ }
+
+ {
+ HIPContextScope scope(this);
+ hipMemGetInfo(&free_after, &total);
+ }
+
+ VLOG(1) << "Local memory reserved " << string_human_readable_number(free_before - free_after)
+ << " bytes. (" << string_human_readable_size(free_before - free_after) << ")";
+
+# if 0
+ /* For testing mapped host memory, fill up device memory. */
+ const size_t keep_mb = 1024;
+
+ while (free_after > keep_mb * 1024 * 1024LL) {
+ hipDeviceptr_t tmp;
+ hip_assert(hipMalloc(&tmp, 10 * 1024 * 1024LL));
+ hipMemGetInfo(&free_after, &total);
+ }
+# endif
+}
+
+void HIPDevice::init_host_memory()
+{
+ /* Limit amount of host mapped memory, because allocating too much can
+ * cause system instability. Leave at least half or 4 GB of system
+ * memory free, whichever is smaller. */
+ size_t default_limit = 4 * 1024 * 1024 * 1024LL;
+ size_t system_ram = system_physical_ram();
+
+ if (system_ram > 0) {
+ if (system_ram / 2 > default_limit) {
+ map_host_limit = system_ram - default_limit;
+ }
+ else {
+ map_host_limit = system_ram / 2;
+ }
+ }
+ else {
+ VLOG(1) << "Mapped host memory disabled, failed to get system RAM";
+ map_host_limit = 0;
+ }
+
+ /* Amount of device memory to keep is free after texture memory
+ * and working memory allocations respectively. We set the working
+ * memory limit headroom lower so that some space is left after all
+ * texture memory allocations. */
+ device_working_headroom = 32 * 1024 * 1024LL; // 32MB
+ device_texture_headroom = 128 * 1024 * 1024LL; // 128MB
+
+ VLOG(1) << "Mapped host memory limit set to " << string_human_readable_number(map_host_limit)
+ << " bytes. (" << string_human_readable_size(map_host_limit) << ")";
+}
+
+void HIPDevice::load_texture_info()
+{
+ if (need_texture_info) {
+ /* Unset flag before copying, so this does not loop indefinitely if the copy below calls
+ * into 'move_textures_to_host' (which calls 'load_texture_info' again). */
+ need_texture_info = false;
+ texture_info.copy_to_device();
+ }
+}
+
+void HIPDevice::move_textures_to_host(size_t size, bool for_texture)
+{
+ /* Break out of recursive call, which can happen when moving memory on a multi device. */
+ static bool any_device_moving_textures_to_host = false;
+ if (any_device_moving_textures_to_host) {
+ return;
+ }
+
+ /* Signal to reallocate textures in host memory only. */
+ move_texture_to_host = true;
+
+ while (size > 0) {
+ /* Find suitable memory allocation to move. */
+ device_memory *max_mem = NULL;
+ size_t max_size = 0;
+ bool max_is_image = false;
+
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ foreach (HIPMemMap::value_type &pair, hip_mem_map) {
+ device_memory &mem = *pair.first;
+ HIPMem *cmem = &pair.second;
+
+ /* Can only move textures allocated on this device (and not those from peer devices).
+ * And need to ignore memory that is already on the host. */
+ if (!mem.is_resident(this) || cmem->use_mapped_host) {
+ continue;
+ }
+
+ bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) &&
+ (&mem != &texture_info);
+ bool is_image = is_texture && (mem.data_height > 1);
+
+ /* Can't move this type of memory. */
+ if (!is_texture || cmem->array) {
+ continue;
+ }
+
+ /* For other textures, only move image textures. */
+ if (for_texture && !is_image) {
+ continue;
+ }
+
+ /* Try to move largest allocation, prefer moving images. */
+ if (is_image > max_is_image || (is_image == max_is_image && mem.device_size > max_size)) {
+ max_is_image = is_image;
+ max_size = mem.device_size;
+ max_mem = &mem;
+ }
+ }
+ lock.unlock();
+
+ /* Move to host memory. This part is mutex protected since
+ * multiple HIP devices could be moving the memory. The
+ * first one will do it, and the rest will adopt the pointer. */
+ if (max_mem) {
+ VLOG(1) << "Move memory from device to host: " << max_mem->name;
+
+ static thread_mutex move_mutex;
+ thread_scoped_lock lock(move_mutex);
+
+ any_device_moving_textures_to_host = true;
+
+ /* Potentially need to call back into multi device, so pointer mapping
+ * and peer devices are updated. This is also necessary since the device
+ * pointer may just be a key here, so cannot be accessed and freed directly.
+ * Unfortunately it does mean that memory is reallocated on all other
+ * devices as well, which is potentially dangerous when still in use (since
+ * a thread rendering on another devices would only be caught in this mutex
+ * if it so happens to do an allocation at the same time as well. */
+ max_mem->device_copy_to();
+ size = (max_size >= size) ? 0 : size - max_size;
+
+ any_device_moving_textures_to_host = false;
+ }
+ else {
+ break;
+ }
+ }
+
+ /* Unset flag before texture info is reloaded, since it should stay in device memory. */
+ move_texture_to_host = false;
+
+ /* Update texture info array with new pointers. */
+ load_texture_info();
+}
+
+HIPDevice::HIPMem *HIPDevice::generic_alloc(device_memory &mem, size_t pitch_padding)
+{
+ HIPContextScope scope(this);
+
+ hipDeviceptr_t device_pointer = 0;
+ size_t size = mem.memory_size() + pitch_padding;
+
+ hipError_t mem_alloc_result = hipErrorOutOfMemory;
+ const char *status = "";
+
+ /* First try allocating in device memory, respecting headroom. We make
+ * an exception for texture info. It is small and frequently accessed,
+ * so treat it as working memory.
+ *
+ * If there is not enough room for working memory, we will try to move
+ * textures to host memory, assuming the performance impact would have
+ * been worse for working memory. */
+ bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) && (&mem != &texture_info);
+ bool is_image = is_texture && (mem.data_height > 1);
+
+ size_t headroom = (is_texture) ? device_texture_headroom : device_working_headroom;
+
+ size_t total = 0, free = 0;
+ hipMemGetInfo(&free, &total);
+
+ /* Move textures to host memory if needed. */
+ if (!move_texture_to_host && !is_image && (size + headroom) >= free && can_map_host) {
+ move_textures_to_host(size + headroom - free, is_texture);
+ hipMemGetInfo(&free, &total);
+ }
+
+ /* Allocate in device memory. */
+ if (!move_texture_to_host && (size + headroom) < free) {
+ mem_alloc_result = hipMalloc(&device_pointer, size);
+ if (mem_alloc_result == hipSuccess) {
+ status = " in device memory";
+ }
+ }
+
+ /* Fall back to mapped host memory if needed and possible. */
+
+ void *shared_pointer = 0;
+
+ if (mem_alloc_result != hipSuccess && can_map_host) {
+ if (mem.shared_pointer) {
+ /* Another device already allocated host memory. */
+ mem_alloc_result = hipSuccess;
+ shared_pointer = mem.shared_pointer;
+ }
+ else if (map_host_used + size < map_host_limit) {
+ /* Allocate host memory ourselves. */
+ mem_alloc_result = hipHostMalloc(&shared_pointer, size);
+
+ assert((mem_alloc_result == hipSuccess && shared_pointer != 0) ||
+ (mem_alloc_result != hipSuccess && shared_pointer == 0));
+ }
+
+ if (mem_alloc_result == hipSuccess) {
+ hip_assert(hipHostGetDevicePointer(&device_pointer, shared_pointer, 0));
+ map_host_used += size;
+ status = " in host memory";
+ }
+ }
+
+ if (mem_alloc_result != hipSuccess) {
+ status = " failed, out of device and host memory";
+ set_error("System is out of GPU and shared host memory");
+ }
+
+ if (mem.name) {
+ VLOG(1) << "Buffer allocate: " << mem.name << ", "
+ << string_human_readable_number(mem.memory_size()) << " bytes. ("
+ << string_human_readable_size(mem.memory_size()) << ")" << status;
+ }
+
+ mem.device_pointer = (device_ptr)device_pointer;
+ mem.device_size = size;
+ stats.mem_alloc(size);
+
+ if (!mem.device_pointer) {
+ return NULL;
+ }
+
+ /* Insert into map of allocations. */
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ HIPMem *cmem = &hip_mem_map[&mem];
+ if (shared_pointer != 0) {
+ /* Replace host pointer with our host allocation. Only works if
+ * HIP memory layout is the same and has no pitch padding. Also
+ * does not work if we move textures to host during a render,
+ * since other devices might be using the memory. */
+
+ if (!move_texture_to_host && pitch_padding == 0 && mem.host_pointer &&
+ mem.host_pointer != shared_pointer) {
+ memcpy(shared_pointer, mem.host_pointer, size);
+
+ /* A Call to device_memory::host_free() should be preceded by
+ * a call to device_memory::device_free() for host memory
+ * allocated by a device to be handled properly. Two exceptions
+ * are here and a call in OptiXDevice::generic_alloc(), where
+ * the current host memory can be assumed to be allocated by
+ * device_memory::host_alloc(), not by a device */
+
+ mem.host_free();
+ mem.host_pointer = shared_pointer;
+ }
+ mem.shared_pointer = shared_pointer;
+ mem.shared_counter++;
+ cmem->use_mapped_host = true;
+ }
+ else {
+ cmem->use_mapped_host = false;
+ }
+
+ return cmem;
+}
+
+void HIPDevice::generic_copy_to(device_memory &mem)
+{
+ if (!mem.host_pointer || !mem.device_pointer) {
+ return;
+ }
+
+ /* If use_mapped_host of mem is false, the current device only uses device memory allocated by
+ * hipMalloc regardless of mem.host_pointer and mem.shared_pointer, and should copy data from
+ * mem.host_pointer. */
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ if (!hip_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
+ const HIPContextScope scope(this);
+ hip_assert(
+ hipMemcpyHtoD((hipDeviceptr_t)mem.device_pointer, mem.host_pointer, mem.memory_size()));
+ }
+}
+
+void HIPDevice::generic_free(device_memory &mem)
+{
+ if (mem.device_pointer) {
+ HIPContextScope scope(this);
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ const HIPMem &cmem = hip_mem_map[&mem];
+
+ /* If cmem.use_mapped_host is true, reference counting is used
+ * to safely free a mapped host memory. */
+
+ if (cmem.use_mapped_host) {
+ assert(mem.shared_pointer);
+ if (mem.shared_pointer) {
+ assert(mem.shared_counter > 0);
+ if (--mem.shared_counter == 0) {
+ if (mem.host_pointer == mem.shared_pointer) {
+ mem.host_pointer = 0;
+ }
+ hipHostFree(mem.shared_pointer);
+ mem.shared_pointer = 0;
+ }
+ }
+ map_host_used -= mem.device_size;
+ }
+ else {
+ /* Free device memory. */
+ hip_assert(hipFree(mem.device_pointer));
+ }
+
+ stats.mem_free(mem.device_size);
+ mem.device_pointer = 0;
+ mem.device_size = 0;
+
+ hip_mem_map.erase(hip_mem_map.find(&mem));
+ }
+}
+
+void HIPDevice::mem_alloc(device_memory &mem)
+{
+ if (mem.type == MEM_TEXTURE) {
+ assert(!"mem_alloc not supported for textures.");
+ }
+ else if (mem.type == MEM_GLOBAL) {
+ assert(!"mem_alloc not supported for global memory.");
+ }
+ else {
+ generic_alloc(mem);
+ }
+}
+
+void HIPDevice::mem_copy_to(device_memory &mem)
+{
+ if (mem.type == MEM_GLOBAL) {
+ global_free(mem);
+ global_alloc(mem);
+ }
+ else if (mem.type == MEM_TEXTURE) {
+ tex_free((device_texture &)mem);
+ tex_alloc((device_texture &)mem);
+ }
+ else {
+ if (!mem.device_pointer) {
+ generic_alloc(mem);
+ }
+ generic_copy_to(mem);
+ }
+}
+
+void HIPDevice::mem_copy_from(device_memory &mem, size_t y, size_t w, size_t h, size_t elem)
+{
+ if (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) {
+ assert(!"mem_copy_from not supported for textures.");
+ }
+ else if (mem.host_pointer) {
+ const size_t size = elem * w * h;
+ const size_t offset = elem * y * w;
+
+ if (mem.device_pointer) {
+ const HIPContextScope scope(this);
+ hip_assert(hipMemcpyDtoH(
+ (char *)mem.host_pointer + offset, (hipDeviceptr_t)mem.device_pointer + offset, size));
+ }
+ else {
+ memset((char *)mem.host_pointer + offset, 0, size);
+ }
+ }
+}
+
+void HIPDevice::mem_zero(device_memory &mem)
+{
+ if (!mem.device_pointer) {
+ mem_alloc(mem);
+ }
+ if (!mem.device_pointer) {
+ return;
+ }
+
+ /* If use_mapped_host of mem is false, mem.device_pointer currently refers to device memory
+ * regardless of mem.host_pointer and mem.shared_pointer. */
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ if (!hip_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
+ const HIPContextScope scope(this);
+ hip_assert(hipMemsetD8((hipDeviceptr_t)mem.device_pointer, 0, mem.memory_size()));
+ }
+ else if (mem.host_pointer) {
+ memset(mem.host_pointer, 0, mem.memory_size());
+ }
+}
+
+void HIPDevice::mem_free(device_memory &mem)
+{
+ if (mem.type == MEM_GLOBAL) {
+ global_free(mem);
+ }
+ else if (mem.type == MEM_TEXTURE) {
+ tex_free((device_texture &)mem);
+ }
+ else {
+ generic_free(mem);
+ }
+}
+
+device_ptr HIPDevice::mem_alloc_sub_ptr(device_memory &mem, size_t offset, size_t /*size*/)
+{
+ return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
+}
+
+void HIPDevice::const_copy_to(const char *name, void *host, size_t size)
+{
+ HIPContextScope scope(this);
+ hipDeviceptr_t mem;
+ size_t bytes;
+
+ hip_assert(hipModuleGetGlobal(&mem, &bytes, hipModule, name));
+ assert(bytes == size);
+ hip_assert(hipMemcpyHtoD(mem, host, size));
+}
+
+void HIPDevice::global_alloc(device_memory &mem)
+{
+ if (mem.is_resident(this)) {
+ generic_alloc(mem);
+ generic_copy_to(mem);
+ }
+
+ const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer));
+}
+
+void HIPDevice::global_free(device_memory &mem)
+{
+ if (mem.is_resident(this) && mem.device_pointer) {
+ generic_free(mem);
+ }
+}
+
+void HIPDevice::tex_alloc(device_texture &mem)
+{
+ HIPContextScope scope(this);
+
+ /* General variables for both architectures */
+ string bind_name = mem.name;
+ size_t dsize = datatype_size(mem.data_type);
+ size_t size = mem.memory_size();
+
+ hipTextureAddressMode address_mode = hipAddressModeWrap;
+ switch (mem.info.extension) {
+ case EXTENSION_REPEAT:
+ address_mode = hipAddressModeWrap;
+ break;
+ case EXTENSION_EXTEND:
+ address_mode = hipAddressModeClamp;
+ break;
+ case EXTENSION_CLIP:
+ // TODO : (Arya) setting this to Mode Clamp instead of Mode Border because it's unsupported
+ // in hip
+ address_mode = hipAddressModeClamp;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ hipTextureFilterMode filter_mode;
+ if (mem.info.interpolation == INTERPOLATION_CLOSEST) {
+ filter_mode = hipFilterModePoint;
+ }
+ else {
+ filter_mode = hipFilterModeLinear;
+ }
+
+ /* Image Texture Storage */
+ hipArray_Format format;
+ switch (mem.data_type) {
+ case TYPE_UCHAR:
+ format = HIP_AD_FORMAT_UNSIGNED_INT8;
+ break;
+ case TYPE_UINT16:
+ format = HIP_AD_FORMAT_UNSIGNED_INT16;
+ break;
+ case TYPE_UINT:
+ format = HIP_AD_FORMAT_UNSIGNED_INT32;
+ break;
+ case TYPE_INT:
+ format = HIP_AD_FORMAT_SIGNED_INT32;
+ break;
+ case TYPE_FLOAT:
+ format = HIP_AD_FORMAT_FLOAT;
+ break;
+ case TYPE_HALF:
+ format = HIP_AD_FORMAT_HALF;
+ break;
+ default:
+ assert(0);
+ return;
+ }
+
+ HIPMem *cmem = NULL;
+ hArray array_3d = NULL;
+ size_t src_pitch = mem.data_width * dsize * mem.data_elements;
+ size_t dst_pitch = src_pitch;
+
+ if (!mem.is_resident(this)) {
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ cmem = &hip_mem_map[&mem];
+ cmem->texobject = 0;
+
+ if (mem.data_depth > 1) {
+ array_3d = (hArray)mem.device_pointer;
+ cmem->array = array_3d;
+ }
+ else if (mem.data_height > 0) {
+ dst_pitch = align_up(src_pitch, pitch_alignment);
+ }
+ }
+ else if (mem.data_depth > 1) {
+ /* 3D texture using array, there is no API for linear memory. */
+ HIP_ARRAY3D_DESCRIPTOR desc;
+
+ desc.Width = mem.data_width;
+ desc.Height = mem.data_height;
+ desc.Depth = mem.data_depth;
+ desc.Format = format;
+ desc.NumChannels = mem.data_elements;
+ desc.Flags = 0;
+
+ VLOG(1) << "Array 3D allocate: " << mem.name << ", "
+ << string_human_readable_number(mem.memory_size()) << " bytes. ("
+ << string_human_readable_size(mem.memory_size()) << ")";
+
+ hip_assert(hipArray3DCreate(&array_3d, &desc));
+
+ if (!array_3d) {
+ return;
+ }
+
+ HIP_MEMCPY3D param;
+ memset(&param, 0, sizeof(param));
+ param.dstMemoryType = hipMemoryTypeArray;
+ param.dstArray = &array_3d;
+ param.srcMemoryType = hipMemoryTypeHost;
+ param.srcHost = mem.host_pointer;
+ param.srcPitch = src_pitch;
+ param.WidthInBytes = param.srcPitch;
+ param.Height = mem.data_height;
+ param.Depth = mem.data_depth;
+
+ hip_assert(hipDrvMemcpy3D(&param));
+
+ mem.device_pointer = (device_ptr)array_3d;
+ mem.device_size = size;
+ stats.mem_alloc(size);
+
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ cmem = &hip_mem_map[&mem];
+ cmem->texobject = 0;
+ cmem->array = array_3d;
+ }
+ else if (mem.data_height > 0) {
+ /* 2D texture, using pitch aligned linear memory. */
+ dst_pitch = align_up(src_pitch, pitch_alignment);
+ size_t dst_size = dst_pitch * mem.data_height;
+
+ cmem = generic_alloc(mem, dst_size - mem.memory_size());
+ if (!cmem) {
+ return;
+ }
+
+ hip_Memcpy2D param;
+ memset(&param, 0, sizeof(param));
+ param.dstMemoryType = hipMemoryTypeDevice;
+ param.dstDevice = mem.device_pointer;
+ param.dstPitch = dst_pitch;
+ param.srcMemoryType = hipMemoryTypeHost;
+ param.srcHost = mem.host_pointer;
+ param.srcPitch = src_pitch;
+ param.WidthInBytes = param.srcPitch;
+ param.Height = mem.data_height;
+
+ hip_assert(hipDrvMemcpy2DUnaligned(&param));
+ }
+ else {
+ /* 1D texture, using linear memory. */
+ cmem = generic_alloc(mem);
+ if (!cmem) {
+ return;
+ }
+
+ hip_assert(hipMemcpyHtoD(mem.device_pointer, mem.host_pointer, size));
+ }
+
+ /* Resize once */
+ const uint slot = mem.slot;
+ if (slot >= texture_info.size()) {
+ /* Allocate some slots in advance, to reduce amount
+ * of re-allocations. */
+ texture_info.resize(slot + 128);
+ }
+
+ /* Set Mapping and tag that we need to (re-)upload to device */
+ texture_info[slot] = mem.info;
+ need_texture_info = true;
+
+ if (mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT &&
+ mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
+ /* Kepler+, bindless textures. */
+ hipResourceDesc resDesc;
+ memset(&resDesc, 0, sizeof(resDesc));
+
+ if (array_3d) {
+ resDesc.resType = hipResourceTypeArray;
+ resDesc.res.array.h_Array = &array_3d;
+ resDesc.flags = 0;
+ }
+ else if (mem.data_height > 0) {
+ resDesc.resType = hipResourceTypePitch2D;
+ resDesc.res.pitch2D.devPtr = mem.device_pointer;
+ resDesc.res.pitch2D.format = format;
+ resDesc.res.pitch2D.numChannels = mem.data_elements;
+ resDesc.res.pitch2D.height = mem.data_height;
+ resDesc.res.pitch2D.width = mem.data_width;
+ resDesc.res.pitch2D.pitchInBytes = dst_pitch;
+ }
+ else {
+ resDesc.resType = hipResourceTypeLinear;
+ resDesc.res.linear.devPtr = mem.device_pointer;
+ resDesc.res.linear.format = format;
+ resDesc.res.linear.numChannels = mem.data_elements;
+ resDesc.res.linear.sizeInBytes = mem.device_size;
+ }
+
+ hipTextureDesc texDesc;
+ memset(&texDesc, 0, sizeof(texDesc));
+ texDesc.addressMode[0] = address_mode;
+ texDesc.addressMode[1] = address_mode;
+ texDesc.addressMode[2] = address_mode;
+ texDesc.filterMode = filter_mode;
+ texDesc.flags = HIP_TRSF_NORMALIZED_COORDINATES;
+
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ cmem = &hip_mem_map[&mem];
+
+ hip_assert(hipTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, NULL));
+
+ texture_info[slot].data = (uint64_t)cmem->texobject;
+ }
+ else {
+ texture_info[slot].data = (uint64_t)mem.device_pointer;
+ }
+}
+
+void HIPDevice::tex_free(device_texture &mem)
+{
+ if (mem.device_pointer) {
+ HIPContextScope scope(this);
+ thread_scoped_lock lock(hip_mem_map_mutex);
+ const HIPMem &cmem = hip_mem_map[&mem];
+
+ if (cmem.texobject) {
+ /* Free bindless texture. */
+ hipTexObjectDestroy(cmem.texobject);
+ }
+
+ if (!mem.is_resident(this)) {
+ /* Do not free memory here, since it was allocated on a different device. */
+ hip_mem_map.erase(hip_mem_map.find(&mem));
+ }
+ else if (cmem.array) {
+ /* Free array. */
+ hipArrayDestroy(cmem.array);
+ stats.mem_free(mem.device_size);
+ mem.device_pointer = 0;
+ mem.device_size = 0;
+
+ hip_mem_map.erase(hip_mem_map.find(&mem));
+ }
+ else {
+ lock.unlock();
+ generic_free(mem);
+ }
+ }
+}
+
+# if 0
+void HIPDevice::render(DeviceTask &task,
+ RenderTile &rtile,
+ device_vector<KernelWorkTile> &work_tiles)
+{
+ scoped_timer timer(&rtile.buffers->render_time);
+
+ if (have_error())
+ return;
+
+ HIPContextScope scope(this);
+ hipFunction_t hipRender;
+
+ /* Get kernel function. */
+ if (rtile.task == RenderTile::BAKE) {
+ hip_assert(hipModuleGetFunction(&hipRender, hipModule, "kernel_hip_bake"));
+ }
+ else {
+ hip_assert(hipModuleGetFunction(&hipRender, hipModule, "kernel_hip_path_trace"));
+ }
+
+ if (have_error()) {
+ return;
+ }
+
+ hip_assert(hipFuncSetCacheConfig(hipRender, hipFuncCachePreferL1));
+
+ /* Allocate work tile. */
+ work_tiles.alloc(1);
+
+ KernelWorkTile *wtile = work_tiles.data();
+ wtile->x = rtile.x;
+ wtile->y = rtile.y;
+ wtile->w = rtile.w;
+ wtile->h = rtile.h;
+ wtile->offset = rtile.offset;
+ wtile->stride = rtile.stride;
+ wtile->buffer = (float *)(hipDeviceptr_t)rtile.buffer;
+
+ /* Prepare work size. More step samples render faster, but for now we
+ * remain conservative for GPUs connected to a display to avoid driver
+ * timeouts and display freezing. */
+ int min_blocks, num_threads_per_block;
+ hip_assert(
+ hipModuleOccupancyMaxPotentialBlockSize(&min_blocks, &num_threads_per_block, hipRender, NULL, 0, 0));
+ if (!info.display_device) {
+ min_blocks *= 8;
+ }
+
+ uint step_samples = divide_up(min_blocks * num_threads_per_block, wtile->w * wtile->h);
+
+ /* Render all samples. */
+ uint start_sample = rtile.start_sample;
+ uint end_sample = rtile.start_sample + rtile.num_samples;
+
+ for (int sample = start_sample; sample < end_sample;) {
+ /* Setup and copy work tile to device. */
+ wtile->start_sample = sample;
+ wtile->num_samples = step_samples;
+ if (task.adaptive_sampling.use) {
+ wtile->num_samples = task.adaptive_sampling.align_samples(sample, step_samples);
+ }
+ wtile->num_samples = min(wtile->num_samples, end_sample - sample);
+ work_tiles.copy_to_device();
+
+ hipDeviceptr_t d_work_tiles = (hipDeviceptr_t)work_tiles.device_pointer;
+ uint total_work_size = wtile->w * wtile->h * wtile->num_samples;
+ uint num_blocks = divide_up(total_work_size, num_threads_per_block);
+
+ /* Launch kernel. */
+ void *args[] = {&d_work_tiles, &total_work_size};
+
+ hip_assert(
+ hipModuleLaunchKernel(hipRender, num_blocks, 1, 1, num_threads_per_block, 1, 1, 0, 0, args, 0));
+
+ /* Run the adaptive sampling kernels at selected samples aligned to step samples. */
+ uint filter_sample = sample + wtile->num_samples - 1;
+ if (task.adaptive_sampling.use && task.adaptive_sampling.need_filter(filter_sample)) {
+ adaptive_sampling_filter(filter_sample, wtile, d_work_tiles);
+ }
+
+ hip_assert(hipDeviceSynchronize());
+
+ /* Update progress. */
+ sample += wtile->num_samples;
+ rtile.sample = sample;
+ task.update_progress(&rtile, rtile.w * rtile.h * wtile->num_samples);
+
+ if (task.get_cancel()) {
+ if (task.need_finish_queue == false)
+ break;
+ }
+ }
+
+ /* Finalize adaptive sampling. */
+ if (task.adaptive_sampling.use) {
+ hipDeviceptr_t d_work_tiles = (hipDeviceptr_t)work_tiles.device_pointer;
+ adaptive_sampling_post(rtile, wtile, d_work_tiles);
+ hip_assert(hipDeviceSynchronize());
+ task.update_progress(&rtile, rtile.w * rtile.h * wtile->num_samples);
+ }
+}
+
+void HIPDevice::thread_run(DeviceTask &task)
+{
+ HIPContextScope scope(this);
+
+ if (task.type == DeviceTask::RENDER) {
+ device_vector<KernelWorkTile> work_tiles(this, "work_tiles", MEM_READ_ONLY);
+
+ /* keep rendering tiles until done */
+ RenderTile tile;
+ DenoisingTask denoising(this, task);
+
+ while (task.acquire_tile(this, tile, task.tile_types)) {
+ if (tile.task == RenderTile::PATH_TRACE) {
+ render(task, tile, work_tiles);
+ }
+ else if (tile.task == RenderTile::BAKE) {
+ render(task, tile, work_tiles);
+ }
+
+ task.release_tile(tile);
+
+ if (task.get_cancel()) {
+ if (task.need_finish_queue == false)
+ break;
+ }
+ }
+
+ work_tiles.free();
+ }
+}
+# endif
+
+unique_ptr<DeviceQueue> HIPDevice::gpu_queue_create()
+{
+ return make_unique<HIPDeviceQueue>(this);
+}
+
+bool HIPDevice::should_use_graphics_interop()
+{
+ /* Check whether this device is part of OpenGL context.
+ *
+ * Using HIP device for graphics interoperability which is not part of the OpenGL context is
+ * possible, but from the empiric measurements it can be considerably slower than using naive
+ * pixels copy. */
+
+ HIPContextScope scope(this);
+
+ int num_all_devices = 0;
+ hip_assert(hipGetDeviceCount(&num_all_devices));
+
+ if (num_all_devices == 0) {
+ return false;
+ }
+
+ vector<hipDevice_t> gl_devices(num_all_devices);
+ uint num_gl_devices = 0;
+ hipGLGetDevices(&num_gl_devices, gl_devices.data(), num_all_devices, hipGLDeviceListAll);
+
+ for (hipDevice_t gl_device : gl_devices) {
+ if (gl_device == hipDevice) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+int HIPDevice::get_num_multiprocessors()
+{
+ return get_device_default_attribute(hipDeviceAttributeMultiprocessorCount, 0);
+}
+
+int HIPDevice::get_max_num_threads_per_multiprocessor()
+{
+ return get_device_default_attribute(hipDeviceAttributeMaxThreadsPerMultiProcessor, 0);
+}
+
+bool HIPDevice::get_device_attribute(hipDeviceAttribute_t attribute, int *value)
+{
+ HIPContextScope scope(this);
+
+ return hipDeviceGetAttribute(value, attribute, hipDevice) == hipSuccess;
+}
+
+int HIPDevice::get_device_default_attribute(hipDeviceAttribute_t attribute, int default_value)
+{
+ int value = 0;
+ if (!get_device_attribute(attribute, &value)) {
+ return default_value;
+ }
+ return value;
+}
+
+CCL_NAMESPACE_END
+
+#endif