Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAndrii Symkin <pembem22>2022-07-29 14:41:37 +0300
committerBrecht Van Lommel <brecht@blender.org>2022-08-09 17:49:34 +0300
commitd832d993c5b47b0de7ca24914ad9c064607830c7 (patch)
tree889b7cd9f135a40cbaccdb4537c8de1faa1c562f /intern/cycles/kernel/closure/bsdf_hair_principled.h
parent7921faa6519b9eb9062269b5d9c003c64ead2b8b (diff)
Cycles: add new Spectrum and PackedSpectrum types
These replace float3 and packed_float3 in various places in the kernel where a spectral color representation will be used in the future. That representation will require more than 3 channels and conversion to from/RGB. The kernel code was refactored to remove the assumption that Spectrum and RGB colors are the same thing. There are no functional changes, Spectrum is still a float3 and the conversion functions are no-ops. Differential Revision: https://developer.blender.org/D15535
Diffstat (limited to 'intern/cycles/kernel/closure/bsdf_hair_principled.h')
-rw-r--r--intern/cycles/kernel/closure/bsdf_hair_principled.h131
1 files changed, 72 insertions, 59 deletions
diff --git a/intern/cycles/kernel/closure/bsdf_hair_principled.h b/intern/cycles/kernel/closure/bsdf_hair_principled.h
index e7f24b89458..f78a05ea212 100644
--- a/intern/cycles/kernel/closure/bsdf_hair_principled.h
+++ b/intern/cycles/kernel/closure/bsdf_hair_principled.h
@@ -20,7 +20,7 @@ typedef struct PrincipledHairBSDF {
SHADER_CLOSURE_BASE;
/* Absorption coefficient. */
- float3 sigma;
+ Spectrum sigma;
/* Variance of the underlying logistic distribution. */
float v;
/* Scale factor of the underlying logistic distribution. */
@@ -166,12 +166,6 @@ ccl_device_inline float longitudinal_scattering(
}
}
-/* Combine the three values using their luminances. */
-ccl_device_inline float4 combine_with_energy(KernelGlobals kg, float3 c)
-{
- return make_float4(c.x, c.y, c.z, linear_rgb_to_gray(kg, c));
-}
-
#ifdef __HAIR__
/* Set up the hair closure. */
ccl_device int bsdf_principled_hair_setup(ccl_private ShaderData *sd,
@@ -214,34 +208,36 @@ ccl_device int bsdf_principled_hair_setup(ccl_private ShaderData *sd,
#endif /* __HAIR__ */
/* Given the Fresnel term and transmittance, generate the attenuation terms for each bounce. */
-ccl_device_inline void hair_attenuation(KernelGlobals kg,
- float f,
- float3 T,
- ccl_private float4 *Ap)
+ccl_device_inline void hair_attenuation(
+ KernelGlobals kg, float f, Spectrum T, ccl_private Spectrum *Ap, ccl_private float *Ap_energy)
{
/* Primary specular (R). */
- Ap[0] = make_float4(f, f, f, f);
+ Ap[0] = make_spectrum(f);
+ Ap_energy[0] = f;
/* Transmission (TT). */
- float3 col = sqr(1.0f - f) * T;
- Ap[1] = combine_with_energy(kg, col);
+ Spectrum col = sqr(1.0f - f) * T;
+ Ap[1] = col;
+ Ap_energy[1] = spectrum_to_gray(kg, col);
/* Secondary specular (TRT). */
col *= T * f;
- Ap[2] = combine_with_energy(kg, col);
+ Ap[2] = col;
+ Ap_energy[2] = spectrum_to_gray(kg, col);
/* Residual component (TRRT+). */
- col *= safe_divide_color(T * f, make_float3(1.0f, 1.0f, 1.0f) - T * f);
- Ap[3] = combine_with_energy(kg, col);
+ col *= safe_divide(T * f, one_spectrum() - T * f);
+ Ap[3] = col;
+ Ap_energy[3] = spectrum_to_gray(kg, col);
/* Normalize sampling weights. */
- float totweight = Ap[0].w + Ap[1].w + Ap[2].w + Ap[3].w;
+ float totweight = Ap_energy[0] + Ap_energy[1] + Ap_energy[2] + Ap_energy[3];
float fac = safe_divide(1.0f, totweight);
- Ap[0].w *= fac;
- Ap[1].w *= fac;
- Ap[2].w *= fac;
- Ap[3].w *= fac;
+ Ap_energy[0] *= fac;
+ Ap_energy[1] *= fac;
+ Ap_energy[2] *= fac;
+ Ap_energy[3] *= fac;
}
/* Given the tilt angle, generate the rotated theta_i for the different bounces. */
@@ -266,11 +262,11 @@ ccl_device_inline void hair_alpha_angles(float sin_theta_i,
}
/* Evaluation function for our shader. */
-ccl_device float3 bsdf_principled_hair_eval(KernelGlobals kg,
- ccl_private const ShaderData *sd,
- ccl_private const ShaderClosure *sc,
- const float3 omega_in,
- ccl_private float *pdf)
+ccl_device Spectrum bsdf_principled_hair_eval(KernelGlobals kg,
+ ccl_private const ShaderData *sd,
+ ccl_private const ShaderClosure *sc,
+ const float3 omega_in,
+ ccl_private float *pdf)
{
kernel_assert(isfinite_safe(sd->P) && isfinite_safe(sd->ray_length));
@@ -299,9 +295,11 @@ ccl_device float3 bsdf_principled_hair_eval(KernelGlobals kg,
float cos_gamma_t = cos_from_sin(sin_gamma_t);
float gamma_t = safe_asinf(sin_gamma_t);
- float3 T = exp(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
- float4 Ap[4];
- hair_attenuation(kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap);
+ Spectrum T = exp(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
+ Spectrum Ap[4];
+ float Ap_energy[4];
+ hair_attenuation(
+ kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap, Ap_energy);
float sin_theta_i = wi.x;
float cos_theta_i = cos_from_sin(sin_theta_i);
@@ -312,35 +310,40 @@ ccl_device float3 bsdf_principled_hair_eval(KernelGlobals kg,
float angles[6];
hair_alpha_angles(sin_theta_i, cos_theta_i, bsdf->alpha, angles);
- float4 F;
+ Spectrum F;
+ float F_energy;
float Mp, Np;
/* Primary specular (R). */
Mp = longitudinal_scattering(angles[0], angles[1], sin_theta_o, cos_theta_o, bsdf->m0_roughness);
Np = azimuthal_scattering(phi, 0, bsdf->s, gamma_o, gamma_t);
F = Ap[0] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy = Ap_energy[0] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
/* Transmission (TT). */
Mp = longitudinal_scattering(angles[2], angles[3], sin_theta_o, cos_theta_o, 0.25f * bsdf->v);
Np = azimuthal_scattering(phi, 1, bsdf->s, gamma_o, gamma_t);
F += Ap[1] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy += Ap_energy[1] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
/* Secondary specular (TRT). */
Mp = longitudinal_scattering(angles[4], angles[5], sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = azimuthal_scattering(phi, 2, bsdf->s, gamma_o, gamma_t);
F += Ap[2] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy += Ap_energy[2] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
/* Residual component (TRRT+). */
Mp = longitudinal_scattering(sin_theta_i, cos_theta_i, sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = M_1_2PI_F;
F += Ap[3] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy += Ap_energy[3] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
- *pdf = F.w;
- return float4_to_float3(F);
+ *pdf = F_energy;
+ return F;
}
/* Sampling function for the hair shader. */
@@ -349,7 +352,7 @@ ccl_device int bsdf_principled_hair_sample(KernelGlobals kg,
ccl_private ShaderData *sd,
float randu,
float randv,
- ccl_private float3 *eval,
+ ccl_private Spectrum *eval,
ccl_private float3 *omega_in,
ccl_private float3 *domega_in_dx,
ccl_private float3 *domega_in_dy,
@@ -385,16 +388,18 @@ ccl_device int bsdf_principled_hair_sample(KernelGlobals kg,
float cos_gamma_t = cos_from_sin(sin_gamma_t);
float gamma_t = safe_asinf(sin_gamma_t);
- float3 T = exp(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
- float4 Ap[4];
- hair_attenuation(kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap);
+ Spectrum T = exp(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
+ Spectrum Ap[4];
+ float Ap_energy[4];
+ hair_attenuation(
+ kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap, Ap_energy);
int p = 0;
for (; p < 3; p++) {
- if (u[0].x < Ap[p].w) {
+ if (u[0].x < Ap_energy[p]) {
break;
}
- u[0].x -= Ap[p].w;
+ u[0].x -= Ap_energy[p];
}
float v = bsdf->v;
@@ -429,35 +434,40 @@ ccl_device int bsdf_principled_hair_sample(KernelGlobals kg,
hair_alpha_angles(sin_theta_i, cos_theta_i, bsdf->alpha, angles);
- float4 F;
+ Spectrum F;
+ float F_energy;
float Mp, Np;
/* Primary specular (R). */
Mp = longitudinal_scattering(angles[0], angles[1], sin_theta_o, cos_theta_o, bsdf->m0_roughness);
Np = azimuthal_scattering(phi, 0, bsdf->s, gamma_o, gamma_t);
F = Ap[0] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy = Ap_energy[0] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
/* Transmission (TT). */
Mp = longitudinal_scattering(angles[2], angles[3], sin_theta_o, cos_theta_o, 0.25f * bsdf->v);
Np = azimuthal_scattering(phi, 1, bsdf->s, gamma_o, gamma_t);
F += Ap[1] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy += Ap_energy[1] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
/* Secondary specular (TRT). */
Mp = longitudinal_scattering(angles[4], angles[5], sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = azimuthal_scattering(phi, 2, bsdf->s, gamma_o, gamma_t);
F += Ap[2] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy += Ap_energy[2] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
/* Residual component (TRRT+). */
Mp = longitudinal_scattering(sin_theta_i, cos_theta_i, sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = M_1_2PI_F;
F += Ap[3] * Mp * Np;
- kernel_assert(isfinite_safe(float4_to_float3(F)));
+ F_energy += Ap_energy[3] * Mp * Np;
+ kernel_assert(isfinite_safe(F) && isfinite_safe(F_energy));
- *eval = float4_to_float3(F);
- *pdf = F.w;
+ *eval = F;
+ *pdf = F_energy;
*omega_in = X * sin_theta_i + Y * cos_theta_i * cosf(phi_i) + Z * cos_theta_i * sinf(phi_i);
@@ -489,25 +499,28 @@ ccl_device_inline float bsdf_principled_hair_albedo_roughness_scale(
return (((((0.245f * x) + 5.574f) * x - 10.73f) * x + 2.532f) * x - 0.215f) * x + 5.969f;
}
-ccl_device float3 bsdf_principled_hair_albedo(ccl_private const ShaderClosure *sc)
+ccl_device Spectrum bsdf_principled_hair_albedo(ccl_private const ShaderClosure *sc)
{
ccl_private PrincipledHairBSDF *bsdf = (ccl_private PrincipledHairBSDF *)sc;
return exp(-sqrt(bsdf->sigma) * bsdf_principled_hair_albedo_roughness_scale(bsdf->v));
}
-ccl_device_inline float3
-bsdf_principled_hair_sigma_from_reflectance(const float3 color, const float azimuthal_roughness)
+ccl_device_inline Spectrum
+bsdf_principled_hair_sigma_from_reflectance(const Spectrum color, const float azimuthal_roughness)
{
- const float3 sigma = log(color) /
- bsdf_principled_hair_albedo_roughness_scale(azimuthal_roughness);
+ const Spectrum sigma = log(color) /
+ bsdf_principled_hair_albedo_roughness_scale(azimuthal_roughness);
return sigma * sigma;
}
-ccl_device_inline float3 bsdf_principled_hair_sigma_from_concentration(const float eumelanin,
- const float pheomelanin)
+ccl_device_inline Spectrum bsdf_principled_hair_sigma_from_concentration(const float eumelanin,
+ const float pheomelanin)
{
- return eumelanin * make_float3(0.506f, 0.841f, 1.653f) +
- pheomelanin * make_float3(0.343f, 0.733f, 1.924f);
+ const float3 eumelanin_color = make_float3(0.506f, 0.841f, 1.653f);
+ const float3 pheomelanin_color = make_float3(0.343f, 0.733f, 1.924f);
+
+ return eumelanin * rgb_to_spectrum(eumelanin_color) +
+ pheomelanin * rgb_to_spectrum(pheomelanin_color);
}
CCL_NAMESPACE_END