Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrecht Van Lommel <brecht@blender.org>2021-09-20 18:59:20 +0300
committerBrecht Van Lommel <brecht@blender.org>2021-09-21 15:55:54 +0300
commit08031197250aeecbaca3803254e6f25b8c7b7b37 (patch)
tree6fe7ab045f0dc0a423d6557c4073f34309ef4740 /intern/cycles/kernel/closure/bssrdf.h
parentfa6b1007bad065440950cd67deb16a04f368856f (diff)
Cycles: merge of cycles-x branch, a major update to the renderer
This includes much improved GPU rendering performance, viewport interactivity, new shadow catcher, revamped sampling settings, subsurface scattering anisotropy, new GPU volume sampling, improved PMJ sampling pattern, and more. Some features have also been removed or changed, breaking backwards compatibility. Including the removal of the OpenCL backend, for which alternatives are under development. Release notes and code docs: https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles https://wiki.blender.org/wiki/Source/Render/Cycles Credits: * Sergey Sharybin * Brecht Van Lommel * Patrick Mours (OptiX backend) * Christophe Hery (subsurface scattering anisotropy) * William Leeson (PMJ sampling pattern) * Alaska (various fixes and tweaks) * Thomas Dinges (various fixes) For the full commit history, see the cycles-x branch. This squashes together all the changes since intermediate changes would often fail building or tests. Ref T87839, T87837, T87836 Fixes T90734, T89353, T80267, T80267, T77185, T69800
Diffstat (limited to 'intern/cycles/kernel/closure/bssrdf.h')
-rw-r--r--intern/cycles/kernel/closure/bssrdf.h406
1 files changed, 43 insertions, 363 deletions
diff --git a/intern/cycles/kernel/closure/bssrdf.h b/intern/cycles/kernel/closure/bssrdf.h
index 562daf1286d..0f9278bba89 100644
--- a/intern/cycles/kernel/closure/bssrdf.h
+++ b/intern/cycles/kernel/closure/bssrdf.h
@@ -14,8 +14,7 @@
* limitations under the License.
*/
-#ifndef __KERNEL_BSSRDF_H__
-#define __KERNEL_BSSRDF_H__
+#pragma once
CCL_NAMESPACE_BEGIN
@@ -24,310 +23,71 @@ typedef ccl_addr_space struct Bssrdf {
float3 radius;
float3 albedo;
- float sharpness;
- float texture_blur;
float roughness;
- float channels;
+ float anisotropy;
} Bssrdf;
static_assert(sizeof(ShaderClosure) >= sizeof(Bssrdf), "Bssrdf is too large!");
-/* Planar Truncated Gaussian
- *
- * Note how this is different from the typical gaussian, this one integrates
- * to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
- * that integrating x*exp(-x) gives a nice closed form solution. */
-
-/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
-#define GAUSS_TRUNCATE 12.46f
-
-ccl_device float bssrdf_gaussian_eval(const float radius, float r)
-{
- /* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
- * = 1 - exp(-Rm*Rm/(2*v)) */
- const float v = radius * radius * (0.25f * 0.25f);
- const float Rm = sqrtf(v * GAUSS_TRUNCATE);
-
- if (r >= Rm)
- return 0.0f;
-
- return expf(-r * r / (2.0f * v)) / (2.0f * M_PI_F * v);
-}
-
-ccl_device float bssrdf_gaussian_pdf(const float radius, float r)
+ccl_device float bssrdf_dipole_compute_Rd(float alpha_prime, float fourthirdA)
{
- /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
- const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);
-
- return bssrdf_gaussian_eval(radius, r) * (1.0f / (area_truncated));
+ float s = sqrtf(3.0f * (1.0f - alpha_prime));
+ return 0.5f * alpha_prime * (1.0f + expf(-fourthirdA * s)) * expf(-s);
}
-ccl_device void bssrdf_gaussian_sample(const float radius, float xi, float *r, float *h)
+ccl_device float bssrdf_dipole_compute_alpha_prime(float rd, float fourthirdA)
{
- /* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
- * r = sqrt(-2*v*logf(xi)) */
- const float v = radius * radius * (0.25f * 0.25f);
- const float Rm = sqrtf(v * GAUSS_TRUNCATE);
-
- /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
- const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);
-
- /* r(xi) */
- const float r_squared = -2.0f * v * logf(1.0f - xi * area_truncated);
- *r = sqrtf(r_squared);
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_squared);
-}
-
-/* Planar Cubic BSSRDF falloff
- *
- * This is basically (Rm - x)^3, with some factors to normalize it. For sampling
- * we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
- * far as I can tell has no closed form solution. So we get an iterative solution
- * instead with newton-raphson. */
-
-ccl_device float bssrdf_cubic_eval(const float radius, const float sharpness, float r)
-{
- if (sharpness == 0.0f) {
- const float Rm = radius;
-
- if (r >= Rm)
- return 0.0f;
-
- /* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
- const float Rm5 = (Rm * Rm) * (Rm * Rm) * Rm;
- const float f = Rm - r;
- const float num = f * f * f;
-
- return (10.0f * num) / (Rm5 * M_PI_F);
+ /* Little Newton solver. */
+ if (rd < 1e-4f) {
+ return 0.0f;
+ }
+ if (rd >= 0.995f) {
+ return 0.999999f;
}
- else {
- float Rm = radius * (1.0f + sharpness);
-
- if (r >= Rm)
- return 0.0f;
- /* custom variation with extra sharpness, to match the previous code */
- const float y = 1.0f / (1.0f + sharpness);
- float Rmy, ry, ryinv;
+ float x0 = 0.0f;
+ float x1 = 1.0f;
+ float xmid, fmid;
- if (sharpness == 1.0f) {
- Rmy = sqrtf(Rm);
- ry = sqrtf(r);
- ryinv = (ry > 0.0f) ? 1.0f / ry : 0.0f;
+ constexpr const int max_num_iterations = 12;
+ for (int i = 0; i < max_num_iterations; ++i) {
+ xmid = 0.5f * (x0 + x1);
+ fmid = bssrdf_dipole_compute_Rd(xmid, fourthirdA);
+ if (fmid < rd) {
+ x0 = xmid;
}
else {
- Rmy = powf(Rm, y);
- ry = powf(r, y);
- ryinv = (r > 0.0f) ? powf(r, y - 1.0f) : 0.0f;
+ x1 = xmid;
}
-
- const float Rmy5 = (Rmy * Rmy) * (Rmy * Rmy) * Rmy;
- const float f = Rmy - ry;
- const float num = f * (f * f) * (y * ryinv);
-
- return (10.0f * num) / (Rmy5 * M_PI_F);
- }
-}
-
-ccl_device float bssrdf_cubic_pdf(const float radius, const float sharpness, float r)
-{
- return bssrdf_cubic_eval(radius, sharpness, r);
-}
-
-/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
-ccl_device_forceinline float bssrdf_cubic_quintic_root_find(float xi)
-{
- /* newton-raphson iteration, usually succeeds in 2-4 iterations, except
- * outside 0.02 ... 0.98 where it can go up to 10, so overall performance
- * should not be too bad */
- const float tolerance = 1e-6f;
- const int max_iteration_count = 10;
- float x = 0.25f;
- int i;
-
- for (i = 0; i < max_iteration_count; i++) {
- float x2 = x * x;
- float x3 = x2 * x;
- float nx = (1.0f - x);
-
- float f = 10.0f * x2 - 20.0f * x3 + 15.0f * x2 * x2 - 4.0f * x2 * x3 - xi;
- float f_ = 20.0f * (x * nx) * (nx * nx);
-
- if (fabsf(f) < tolerance || f_ == 0.0f)
- break;
-
- x = saturate(x - f / f_);
}
- return x;
+ return xmid;
}
-ccl_device void bssrdf_cubic_sample(
- const float radius, const float sharpness, float xi, float *r, float *h)
+ccl_device void bssrdf_setup_radius(Bssrdf *bssrdf, const ClosureType type, const float eta)
{
- float Rm = radius;
- float r_ = bssrdf_cubic_quintic_root_find(xi);
-
- if (sharpness != 0.0f) {
- r_ = powf(r_, 1.0f + sharpness);
- Rm *= (1.0f + sharpness);
- }
-
- r_ *= Rm;
- *r = r_;
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
-}
-
-/* Approximate Reflectance Profiles
- * http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
- */
-
-/* This is a bit arbitrary, just need big enough radius so it matches
- * the mean free length, but still not too big so sampling is still
- * effective. Might need some further tweaks.
- */
-#define BURLEY_TRUNCATE 16.0f
-#define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
-
-ccl_device_inline float bssrdf_burley_fitting(float A)
-{
- /* Diffuse surface transmission, equation (6). */
- return 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
-}
-
-/* Scale mean free path length so it gives similar looking result
- * to Cubic and Gaussian models.
- */
-ccl_device_inline float3 bssrdf_burley_compatible_mfp(float3 r)
-{
- return 0.25f * M_1_PI_F * r;
-}
-
-ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
-{
- /* Mean free path length. */
- const float3 l = bssrdf_burley_compatible_mfp(bssrdf->radius);
- /* Surface albedo. */
- const float3 A = bssrdf->albedo;
- const float3 s = make_float3(
- bssrdf_burley_fitting(A.x), bssrdf_burley_fitting(A.y), bssrdf_burley_fitting(A.z));
-
- bssrdf->radius = l / s;
-}
-
-ccl_device float bssrdf_burley_eval(const float d, float r)
-{
- const float Rm = BURLEY_TRUNCATE * d;
-
- if (r >= Rm)
- return 0.0f;
-
- /* Burley reflectance profile, equation (3).
- *
- * NOTES:
- * - Surface albedo is already included into sc->weight, no need to
- * multiply by this term here.
- * - This is normalized diffuse model, so the equation is multiplied
- * by 2*pi, which also matches cdf().
- */
- float exp_r_3_d = expf(-r / (3.0f * d));
- float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
- return (exp_r_d + exp_r_3_d) / (4.0f * d);
-}
-
-ccl_device float bssrdf_burley_pdf(const float d, float r)
-{
- return bssrdf_burley_eval(d, r) * (1.0f / BURLEY_TRUNCATE_CDF);
-}
-
-/* Find the radius for desired CDF value.
- * Returns scaled radius, meaning the result is to be scaled up by d.
- * Since there's no closed form solution we do Newton-Raphson method to find it.
- */
-ccl_device_forceinline float bssrdf_burley_root_find(float xi)
-{
- const float tolerance = 1e-6f;
- const int max_iteration_count = 10;
- /* Do initial guess based on manual curve fitting, this allows us to reduce
- * number of iterations to maximum 4 across the [0..1] range. We keep maximum
- * number of iteration higher just to be sure we didn't miss root in some
- * corner case.
- */
- float r;
- if (xi <= 0.9f) {
- r = expf(xi * xi * 2.4f) - 1.0f;
+ if (type == CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID) {
+ /* Scale mean free path length so it gives similar looking result to older
+ * Cubic, Gaussian and Burley models. */
+ bssrdf->radius *= 0.25f * M_1_PI_F;
}
else {
- /* TODO(sergey): Some nicer curve fit is possible here. */
- r = 15.0f;
- }
- /* Solve against scaled radius. */
- for (int i = 0; i < max_iteration_count; i++) {
- float exp_r_3 = expf(-r / 3.0f);
- float exp_r = exp_r_3 * exp_r_3 * exp_r_3;
- float f = 1.0f - 0.25f * exp_r - 0.75f * exp_r_3 - xi;
- float f_ = 0.25f * exp_r + 0.25f * exp_r_3;
+ /* Adjust radius based on IOR and albedo. */
+ const float inv_eta = 1.0f / eta;
+ const float F_dr = inv_eta * (-1.440f * inv_eta + 0.710f) + 0.668f + 0.0636f * eta;
+ const float fourthirdA = (4.0f / 3.0f) * (1.0f + F_dr) /
+ (1.0f - F_dr); /* From Jensen's Fdr ratio formula. */
- if (fabsf(f) < tolerance || f_ == 0.0f) {
- break;
- }
+ const float3 alpha_prime = make_float3(
+ bssrdf_dipole_compute_alpha_prime(bssrdf->albedo.x, fourthirdA),
+ bssrdf_dipole_compute_alpha_prime(bssrdf->albedo.y, fourthirdA),
+ bssrdf_dipole_compute_alpha_prime(bssrdf->albedo.z, fourthirdA));
- r = r - f / f_;
- if (r < 0.0f) {
- r = 0.0f;
- }
+ bssrdf->radius *= sqrt(3.0f * (one_float3() - alpha_prime));
}
- return r;
}
-ccl_device void bssrdf_burley_sample(const float d, float xi, float *r, float *h)
-{
- const float Rm = BURLEY_TRUNCATE * d;
- const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;
-
- *r = r_;
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
-}
-
-/* None BSSRDF falloff
- *
- * Samples distributed over disk with no falloff, for reference. */
-
-ccl_device float bssrdf_none_eval(const float radius, float r)
-{
- const float Rm = radius;
- return (r < Rm) ? 1.0f : 0.0f;
-}
-
-ccl_device float bssrdf_none_pdf(const float radius, float r)
-{
- /* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
- const float Rm = radius;
- const float area = (M_PI_F * Rm * Rm);
-
- return bssrdf_none_eval(radius, r) / area;
-}
-
-ccl_device void bssrdf_none_sample(const float radius, float xi, float *r, float *h)
-{
- /* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
- * r = sqrt(xi)*Rm */
- const float Rm = radius;
- const float r_ = sqrtf(xi) * Rm;
-
- *r = r_;
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
-}
-
-/* Generic */
+/* Setup */
ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
{
@@ -342,7 +102,7 @@ ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? bssrdf : NULL;
}
-ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
+ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type, const float ior)
{
int flag = 0;
int bssrdf_channels = 3;
@@ -371,7 +131,7 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
if (bssrdf_channels < 3) {
/* Add diffuse BSDF if any radius too small. */
#ifdef __PRINCIPLED__
- if (type == CLOSURE_BSSRDF_PRINCIPLED_ID || type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
+ if (bssrdf->roughness != FLT_MAX) {
float roughness = bssrdf->roughness;
float3 N = bssrdf->N;
@@ -401,16 +161,9 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
/* Setup BSSRDF if radius is large enough. */
if (bssrdf_channels > 0) {
bssrdf->type = type;
- bssrdf->channels = bssrdf_channels;
- bssrdf->sample_weight = fabsf(average(bssrdf->weight)) * bssrdf->channels;
- bssrdf->texture_blur = saturate(bssrdf->texture_blur);
- bssrdf->sharpness = saturate(bssrdf->sharpness);
+ bssrdf->sample_weight = fabsf(average(bssrdf->weight)) * bssrdf_channels;
- if (type == CLOSURE_BSSRDF_BURLEY_ID || type == CLOSURE_BSSRDF_PRINCIPLED_ID ||
- type == CLOSURE_BSSRDF_RANDOM_WALK_ID ||
- type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
- bssrdf_burley_setup(bssrdf);
- }
+ bssrdf_setup_radius(bssrdf, type, ior);
flag |= SD_BSSRDF;
}
@@ -422,77 +175,4 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
return flag;
}
-ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h)
-{
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
- float radius;
-
- /* Sample color channel and reuse random number. Only a subset of channels
- * may be used if their radius was too small to handle as BSSRDF. */
- xi *= bssrdf->channels;
-
- if (xi < 1.0f) {
- radius = (bssrdf->radius.x > 0.0f) ? bssrdf->radius.x :
- (bssrdf->radius.y > 0.0f) ? bssrdf->radius.y :
- bssrdf->radius.z;
- }
- else if (xi < 2.0f) {
- xi -= 1.0f;
- radius = (bssrdf->radius.x > 0.0f && bssrdf->radius.y > 0.0f) ? bssrdf->radius.y :
- bssrdf->radius.z;
- }
- else {
- xi -= 2.0f;
- radius = bssrdf->radius.z;
- }
-
- /* Sample BSSRDF. */
- if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
- bssrdf_cubic_sample(radius, bssrdf->sharpness, xi, r, h);
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
- bssrdf_gaussian_sample(radius, xi, r, h);
- }
- else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
- * bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID) */
- bssrdf_burley_sample(radius, xi, r, h);
- }
-}
-
-ccl_device float bssrdf_channel_pdf(const Bssrdf *bssrdf, float radius, float r)
-{
- if (radius == 0.0f) {
- return 0.0f;
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
- return bssrdf_cubic_pdf(radius, bssrdf->sharpness, r);
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
- return bssrdf_gaussian_pdf(radius, r);
- }
- else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
- * bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
- return bssrdf_burley_pdf(radius, r);
- }
-}
-
-ccl_device_forceinline float3 bssrdf_eval(const ShaderClosure *sc, float r)
-{
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
-
- return make_float3(bssrdf_channel_pdf(bssrdf, bssrdf->radius.x, r),
- bssrdf_channel_pdf(bssrdf, bssrdf->radius.y, r),
- bssrdf_channel_pdf(bssrdf, bssrdf->radius.z, r));
-}
-
-ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r)
-{
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
- float3 pdf = bssrdf_eval(sc, r);
-
- return (pdf.x + pdf.y + pdf.z) / bssrdf->channels;
-}
-
CCL_NAMESPACE_END
-
-#endif /* __KERNEL_BSSRDF_H__ */