Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrecht Van Lommel <brecht@blender.org>2021-10-07 18:27:22 +0300
committerBrecht Van Lommel <brecht@blender.org>2021-10-11 19:22:54 +0300
commit73a05ff9e83a31be34d32a92cd5fb4d17994e342 (patch)
tree06f0312affd92e58393216186f1519125a7c302c /intern/cycles/kernel/closure
parent40360253aefd1f3451d5b413595bcbb143425b84 (diff)
Cycles: restore Christensen-Burley SSS
There is not enough time before the release to improve Random Walk to handle all cases this was used for, so restore it for now. Since there is no more path splitting in cycles-x, this can increase noise in non-flat areas for the sample number of samples, though fewer rays will be traced also. This is fundamentally a trade-off we made in the new design and why Random Walk is a better fit. However the importance resampling we do now does help to reduce noise. Differential Revision: https://developer.blender.org/D12800
Diffstat (limited to 'intern/cycles/kernel/closure')
-rw-r--r--intern/cycles/kernel/closure/bssrdf.h174
1 files changed, 173 insertions, 1 deletions
diff --git a/intern/cycles/kernel/closure/bssrdf.h b/intern/cycles/kernel/closure/bssrdf.h
index e095314678a..db183887018 100644
--- a/intern/cycles/kernel/closure/bssrdf.h
+++ b/intern/cycles/kernel/closure/bssrdf.h
@@ -29,6 +29,8 @@ typedef ccl_addr_space struct Bssrdf {
static_assert(sizeof(ShaderClosure) >= sizeof(Bssrdf), "Bssrdf is too large!");
+/* Random Walk BSSRDF */
+
ccl_device float bssrdf_dipole_compute_Rd(float alpha_prime, float fourthirdA)
{
float s = sqrtf(3.0f * (1.0f - alpha_prime));
@@ -66,7 +68,7 @@ ccl_device float bssrdf_dipole_compute_alpha_prime(float rd, float fourthirdA)
ccl_device void bssrdf_setup_radius(Bssrdf *bssrdf, const ClosureType type, const float eta)
{
- if (type == CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID) {
+ if (type == CLOSURE_BSSRDF_BURLEY_ID || type == CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID) {
/* Scale mean free path length so it gives similar looking result to older
* Cubic, Gaussian and Burley models. */
bssrdf->radius *= 0.25f * M_1_PI_F;
@@ -87,6 +89,176 @@ ccl_device void bssrdf_setup_radius(Bssrdf *bssrdf, const ClosureType type, cons
}
}
+/* Christensen-Burley BSSRDF.
+ *
+ * Approximate Reflectance Profiles from
+ * http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
+ */
+
+/* This is a bit arbitrary, just need big enough radius so it matches
+ * the mean free length, but still not too big so sampling is still
+ * effective. */
+#define BURLEY_TRUNCATE 16.0f
+#define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
+
+ccl_device_inline float bssrdf_burley_fitting(float A)
+{
+ /* Diffuse surface transmission, equation (6). */
+ return 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
+}
+
+/* Scale mean free path length so it gives similar looking result
+ * to Cubic and Gaussian models. */
+ccl_device_inline float3 bssrdf_burley_compatible_mfp(float3 r)
+{
+ return 0.25f * M_1_PI_F * r;
+}
+
+ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
+{
+ /* Mean free path length. */
+ const float3 l = bssrdf_burley_compatible_mfp(bssrdf->radius);
+ /* Surface albedo. */
+ const float3 A = bssrdf->albedo;
+ const float3 s = make_float3(
+ bssrdf_burley_fitting(A.x), bssrdf_burley_fitting(A.y), bssrdf_burley_fitting(A.z));
+
+ bssrdf->radius = l / s;
+}
+
+ccl_device float bssrdf_burley_eval(const float d, float r)
+{
+ const float Rm = BURLEY_TRUNCATE * d;
+
+ if (r >= Rm)
+ return 0.0f;
+
+ /* Burley reflectance profile, equation (3).
+ *
+ * NOTES:
+ * - Surface albedo is already included into sc->weight, no need to
+ * multiply by this term here.
+ * - This is normalized diffuse model, so the equation is multiplied
+ * by 2*pi, which also matches cdf().
+ */
+ float exp_r_3_d = expf(-r / (3.0f * d));
+ float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
+ return (exp_r_d + exp_r_3_d) / (4.0f * d);
+}
+
+ccl_device float bssrdf_burley_pdf(const float d, float r)
+{
+ if (r == 0.0f) {
+ return 0.0f;
+ }
+
+ return bssrdf_burley_eval(d, r) * (1.0f / BURLEY_TRUNCATE_CDF);
+}
+
+/* Find the radius for desired CDF value.
+ * Returns scaled radius, meaning the result is to be scaled up by d.
+ * Since there's no closed form solution we do Newton-Raphson method to find it.
+ */
+ccl_device_forceinline float bssrdf_burley_root_find(float xi)
+{
+ const float tolerance = 1e-6f;
+ const int max_iteration_count = 10;
+ /* Do initial guess based on manual curve fitting, this allows us to reduce
+ * number of iterations to maximum 4 across the [0..1] range. We keep maximum
+ * number of iteration higher just to be sure we didn't miss root in some
+ * corner case.
+ */
+ float r;
+ if (xi <= 0.9f) {
+ r = expf(xi * xi * 2.4f) - 1.0f;
+ }
+ else {
+ /* TODO(sergey): Some nicer curve fit is possible here. */
+ r = 15.0f;
+ }
+ /* Solve against scaled radius. */
+ for (int i = 0; i < max_iteration_count; i++) {
+ float exp_r_3 = expf(-r / 3.0f);
+ float exp_r = exp_r_3 * exp_r_3 * exp_r_3;
+ float f = 1.0f - 0.25f * exp_r - 0.75f * exp_r_3 - xi;
+ float f_ = 0.25f * exp_r + 0.25f * exp_r_3;
+
+ if (fabsf(f) < tolerance || f_ == 0.0f) {
+ break;
+ }
+
+ r = r - f / f_;
+ if (r < 0.0f) {
+ r = 0.0f;
+ }
+ }
+ return r;
+}
+
+ccl_device void bssrdf_burley_sample(const float d, float xi, float *r, float *h)
+{
+ const float Rm = BURLEY_TRUNCATE * d;
+ const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;
+
+ *r = r_;
+
+ /* h^2 + r^2 = Rm^2 */
+ *h = safe_sqrtf(Rm * Rm - r_ * r_);
+}
+
+ccl_device float bssrdf_num_channels(const float3 radius)
+{
+ float channels = 0;
+ if (radius.x > 0.0f) {
+ channels += 1.0f;
+ }
+ if (radius.y > 0.0f) {
+ channels += 1.0f;
+ }
+ if (radius.z > 0.0f) {
+ channels += 1.0f;
+ }
+ return channels;
+}
+
+ccl_device void bssrdf_sample(const float3 radius, float xi, float *r, float *h)
+{
+ const float num_channels = bssrdf_num_channels(radius);
+ float sampled_radius;
+
+ /* Sample color channel and reuse random number. Only a subset of channels
+ * may be used if their radius was too small to handle as BSSRDF. */
+ xi *= num_channels;
+
+ if (xi < 1.0f) {
+ sampled_radius = (radius.x > 0.0f) ? radius.x : (radius.y > 0.0f) ? radius.y : radius.z;
+ }
+ else if (xi < 2.0f) {
+ xi -= 1.0f;
+ sampled_radius = (radius.x > 0.0f && radius.y > 0.0f) ? radius.y : radius.z;
+ }
+ else {
+ xi -= 2.0f;
+ sampled_radius = radius.z;
+ }
+
+ /* Sample BSSRDF. */
+ bssrdf_burley_sample(sampled_radius, xi, r, h);
+}
+
+ccl_device_forceinline float3 bssrdf_eval(const float3 radius, float r)
+{
+ return make_float3(bssrdf_burley_pdf(radius.x, r),
+ bssrdf_burley_pdf(radius.y, r),
+ bssrdf_burley_pdf(radius.z, r));
+}
+
+ccl_device_forceinline float bssrdf_pdf(const float3 radius, float r)
+{
+ float3 pdf = bssrdf_eval(radius, r);
+ return (pdf.x + pdf.y + pdf.z) / bssrdf_num_channels(radius);
+}
+
/* Setup */
ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)