Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrecht Van Lommel <brecht@blender.org>2020-06-10 19:55:33 +0300
committerBrecht Van Lommel <brecht@blender.org>2020-06-22 14:28:01 +0300
commitd1ef5146d72d40f97fdcbf28e96da49193c21dea (patch)
tree7a19a24bd6b809c7de72b4e2499d62b8740e639a /intern/cycles/kernel/geom
parent1de0e13af619e405f351bf42924f819dc3a9bc44 (diff)
Cycles: remove SIMD BVH optimizations, to be replaced by Embree
Ref T73778 Depends on D8011 Maniphest Tasks: T73778 Differential Revision: https://developer.blender.org/D8012
Diffstat (limited to 'intern/cycles/kernel/geom')
-rw-r--r--intern/cycles/kernel/geom/geom_curve_intersect.h138
-rw-r--r--intern/cycles/kernel/geom/geom_motion_curve.h84
-rw-r--r--intern/cycles/kernel/geom/geom_object.h80
-rw-r--r--intern/cycles/kernel/geom/geom_triangle_intersect.h427
4 files changed, 18 insertions, 711 deletions
diff --git a/intern/cycles/kernel/geom/geom_curve_intersect.h b/intern/cycles/kernel/geom/geom_curve_intersect.h
index 88963bea6ef..87ed0bf201f 100644
--- a/intern/cycles/kernel/geom/geom_curve_intersect.h
+++ b/intern/cycles/kernel/geom/geom_curve_intersect.h
@@ -18,13 +18,6 @@ CCL_NAMESPACE_BEGIN
#ifdef __HAIR__
-# ifdef __KERNEL_SSE2__
-ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a)
-{
- return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2]));
-}
-# endif
-
/* On CPU pass P and dir by reference to aligned vector. */
ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
Intersection *isect,
@@ -55,108 +48,6 @@ ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
int flags = kernel_data.curve.curveflags;
int prim = kernel_tex_fetch(__prim_index, curveAddr);
-# ifdef __KERNEL_SSE2__
- ssef vdir = load4f(dir);
- ssef vcurve_coef[4];
- const float3 *curve_coef = (float3 *)vcurve_coef;
-
- {
- ssef dtmp = vdir * vdir;
- ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp));
- ssef rd_ss = load1f_first(1.0f) / d_ss;
-
- ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]);
- int2 &v00 = (int2 &)v00vec;
-
- int k0 = v00.x + segment;
- int k1 = k0 + 1;
- int ka = max(k0 - 1, v00.x);
- int kb = min(k1 + 1, v00.x + v00.y - 1);
-
-# if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && \
- (!defined(_MSC_VER) || _MSC_VER > 1800)
- avxf P_curve_0_1, P_curve_2_3;
- if (is_curve_primitive) {
- P_curve_0_1 = _mm256_loadu2_m128(&kg->__curve_keys.data[k0].x, &kg->__curve_keys.data[ka].x);
- P_curve_2_3 = _mm256_loadu2_m128(&kg->__curve_keys.data[kb].x, &kg->__curve_keys.data[k1].x);
- }
- else {
- int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
- motion_curve_keys_avx(kg, fobject, prim, time, ka, k0, k1, kb, &P_curve_0_1, &P_curve_2_3);
- }
-# else /* __KERNEL_AVX2__ */
- ssef P_curve[4];
-
- if (is_curve_primitive) {
- P_curve[0] = load4f(&kg->__curve_keys.data[ka].x);
- P_curve[1] = load4f(&kg->__curve_keys.data[k0].x);
- P_curve[2] = load4f(&kg->__curve_keys.data[k1].x);
- P_curve[3] = load4f(&kg->__curve_keys.data[kb].x);
- }
- else {
- int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
- motion_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4 *)&P_curve);
- }
-# endif /* __KERNEL_AVX2__ */
-
- ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss));
- ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn;
- ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy;
- ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
- ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0));
-
- ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
- ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0);
- ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);
-
-# if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && \
- (!defined(_MSC_VER) || _MSC_VER > 1800)
- const avxf vPP = _mm256_broadcast_ps(&P.m128);
- const avxf htfm00 = avxf(htfm0.m128, htfm0.m128);
- const avxf htfm11 = avxf(htfm1.m128, htfm1.m128);
- const avxf htfm22 = avxf(htfm2.m128, htfm2.m128);
-
- const avxf p01 = madd(
- shuffle<0>(P_curve_0_1 - vPP),
- htfm00,
- madd(shuffle<1>(P_curve_0_1 - vPP), htfm11, shuffle<2>(P_curve_0_1 - vPP) * htfm22));
- const avxf p23 = madd(
- shuffle<0>(P_curve_2_3 - vPP),
- htfm00,
- madd(shuffle<1>(P_curve_2_3 - vPP), htfm11, shuffle<2>(P_curve_2_3 - vPP) * htfm22));
-
- const ssef p0 = _mm256_castps256_ps128(p01);
- const ssef p1 = _mm256_extractf128_ps(p01, 1);
- const ssef p2 = _mm256_castps256_ps128(p23);
- const ssef p3 = _mm256_extractf128_ps(p23, 1);
-
- const ssef P_curve_1 = _mm256_extractf128_ps(P_curve_0_1, 1);
- r_st = ((float4 &)P_curve_1).w;
- const ssef P_curve_2 = _mm256_castps256_ps128(P_curve_2_3);
- r_en = ((float4 &)P_curve_2).w;
-# else /* __KERNEL_AVX2__ */
- ssef htfm[] = {htfm0, htfm1, htfm2};
- ssef vP = load4f(P);
- ssef p0 = transform_point_T3(htfm, P_curve[0] - vP);
- ssef p1 = transform_point_T3(htfm, P_curve[1] - vP);
- ssef p2 = transform_point_T3(htfm, P_curve[2] - vP);
- ssef p3 = transform_point_T3(htfm, P_curve[3] - vP);
-
- r_st = ((float4 &)P_curve[1]).w;
- r_en = ((float4 &)P_curve[2]).w;
-# endif /* __KERNEL_AVX2__ */
-
- float fc = 0.71f;
- ssef vfc = ssef(fc);
- ssef vfcxp3 = vfc * p3;
-
- vcurve_coef[0] = p1;
- vcurve_coef[1] = vfc * (p2 - p0);
- vcurve_coef[2] = madd(
- ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3)));
- vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3));
- }
-# else
float3 curve_coef[4];
/* curve Intersection check */
@@ -212,7 +103,6 @@ ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
r_st = P_curve[1].w;
r_en = P_curve[2].w;
}
-# endif
float r_curr = max(r_st, r_en);
@@ -275,23 +165,6 @@ ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
const float i_st = tree * resol;
const float i_en = i_st + (level * resol);
-# ifdef __KERNEL_SSE2__
- ssef vi_st = ssef(i_st), vi_en = ssef(i_en);
- ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]),
- vi_st,
- vcurve_coef[0]);
- ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]),
- vi_en,
- vcurve_coef[0]);
-
- ssef vbmin = min(vp_st, vp_en);
- ssef vbmax = max(vp_st, vp_en);
-
- float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
- float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
- float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
- float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
-# else
float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st +
curve_coef[0];
float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en +
@@ -303,7 +176,6 @@ ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
float bmaxy = max(p_st.y, p_en.y);
float bminz = min(p_st.z, p_en.z);
float bmaxz = max(p_st.z, p_en.z);
-# endif
if (xextrem[0] >= i_st && xextrem[0] <= i_en) {
bminx = min(bminx, xextrem[1]);
@@ -351,23 +223,13 @@ ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
if (flags & CURVE_KN_RIBBONS) {
float3 tg = (p_en - p_st);
-# ifdef __KERNEL_SSE__
- const float3 tg_sq = tg * tg;
- float w = tg_sq.x + tg_sq.y;
-# else
float w = tg.x * tg.x + tg.y * tg.y;
-# endif
if (w == 0) {
tree++;
level = tree & -tree;
continue;
}
-# ifdef __KERNEL_SSE__
- const float3 p_sttg = p_st * tg;
- w = -(p_sttg.x + p_sttg.y) / w;
-# else
w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
-# endif
w = saturate(w);
/* compute u on the curve segment */
diff --git a/intern/cycles/kernel/geom/geom_motion_curve.h b/intern/cycles/kernel/geom/geom_motion_curve.h
index dd7429c02bd..0e7a05eaac2 100644
--- a/intern/cycles/kernel/geom/geom_motion_curve.h
+++ b/intern/cycles/kernel/geom/geom_motion_curve.h
@@ -106,15 +106,15 @@ ccl_device_inline void motion_curve_keys(
}
ccl_device_inline void motion_curve_keys_for_step(KernelGlobals *kg,
- int offset,
- int numkeys,
- int numsteps,
- int step,
- int k0,
- int k1,
- int k2,
- int k3,
- float4 keys[4])
+ int offset,
+ int numkeys,
+ int numsteps,
+ int step,
+ int k0,
+ int k1,
+ int k2,
+ int k3,
+ float4 keys[4])
{
if (step == numsteps) {
/* center step: regular key location */
@@ -139,14 +139,14 @@ ccl_device_inline void motion_curve_keys_for_step(KernelGlobals *kg,
/* return 2 curve key locations */
ccl_device_inline void motion_curve_keys(KernelGlobals *kg,
- int object,
- int prim,
- float time,
- int k0,
- int k1,
- int k2,
- int k3,
- float4 keys[4])
+ int object,
+ int prim,
+ float time,
+ int k0,
+ int k1,
+ int k2,
+ int k3,
+ float4 keys[4])
{
/* get motion info */
int numsteps, numkeys;
@@ -166,8 +166,7 @@ ccl_device_inline void motion_curve_keys(KernelGlobals *kg,
float4 next_keys[4];
motion_curve_keys_for_step(kg, offset, numkeys, numsteps, step, k0, k1, k2, k3, keys);
- motion_curve_keys_for_step(
- kg, offset, numkeys, numsteps, step + 1, k0, k1, k2, k3, next_keys);
+ motion_curve_keys_for_step(kg, offset, numkeys, numsteps, step + 1, k0, k1, k2, k3, next_keys);
/* interpolate between steps */
keys[0] = (1.0f - t) * keys[0] + t * next_keys[0];
@@ -176,53 +175,6 @@ ccl_device_inline void motion_curve_keys(KernelGlobals *kg,
keys[3] = (1.0f - t) * keys[3] + t * next_keys[3];
}
-# if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
-/* Similar to above, but returns keys as pair of two AVX registers with each
- * holding two float4.
- */
-ccl_device_inline void motion_curve_keys_avx(KernelGlobals *kg,
- int object,
- int prim,
- float time,
- int k0,
- int k1,
- int k2,
- int k3,
- avxf *out_keys_0_1,
- avxf *out_keys_2_3)
-{
- /* Get motion info. */
- int numsteps, numkeys;
- object_motion_info(kg, object, &numsteps, NULL, &numkeys);
-
- /* Figure out which steps we need to fetch and their interpolation factor. */
- int maxstep = numsteps * 2;
- int step = min((int)(time * maxstep), maxstep - 1);
- float t = time * maxstep - step;
-
- /* Find attribute. */
- AttributeElement elem;
- int offset = find_attribute_curve_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
- kernel_assert(offset != ATTR_STD_NOT_FOUND);
-
- /* Fetch key coordinates. */
- float4 next_keys[4];
- float4 keys[4];
- motion_curve_keys_for_step(kg, offset, numkeys, numsteps, step, k0, k1, k2, k3, keys);
- motion_curve_keys_for_step(
- kg, offset, numkeys, numsteps, step + 1, k0, k1, k2, k3, next_keys);
-
- const avxf keys_0_1 = avxf(keys[0].m128, keys[1].m128);
- const avxf keys_2_3 = avxf(keys[2].m128, keys[3].m128);
- const avxf next_keys_0_1 = avxf(next_keys[0].m128, next_keys[1].m128);
- const avxf next_keys_2_3 = avxf(next_keys[2].m128, next_keys[3].m128);
-
- /* Interpolate between steps. */
- *out_keys_0_1 = (1.0f - t) * keys_0_1 + t * next_keys_0_1;
- *out_keys_2_3 = (1.0f - t) * keys_2_3 + t * next_keys_2_3;
-}
-# endif
-
#endif
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/geom/geom_object.h b/intern/cycles/kernel/geom/geom_object.h
index 3aa68e1f84e..614e2e3b92b 100644
--- a/intern/cycles/kernel/geom/geom_object.h
+++ b/intern/cycles/kernel/geom/geom_object.h
@@ -411,25 +411,10 @@ ccl_device float3 particle_angular_velocity(KernelGlobals *kg, int particle)
ccl_device_inline float3 bvh_clamp_direction(float3 dir)
{
- /* clamp absolute values by exp2f(-80.0f) to avoid division by zero when calculating inverse
- * direction */
-#if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
- const ssef oopes(8.271806E-25f, 8.271806E-25f, 8.271806E-25f, 0.0f);
- const ssef mask = _mm_cmpgt_ps(fabs(dir), oopes);
- const ssef signdir = signmsk(dir.m128) | oopes;
-# ifndef __KERNEL_AVX__
- ssef res = mask & ssef(dir);
- res = _mm_or_ps(res, _mm_andnot_ps(mask, signdir));
-# else
- ssef res = _mm_blendv_ps(signdir, dir, mask);
-# endif
- return float3(res);
-#else /* __KERNEL_SSE__ && __KERNEL_SSE2__ */
const float ooeps = 8.271806E-25f;
return make_float3((fabsf(dir.x) > ooeps) ? dir.x : copysignf(ooeps, dir.x),
(fabsf(dir.y) > ooeps) ? dir.y : copysignf(ooeps, dir.y),
(fabsf(dir.z) > ooeps) ? dir.z : copysignf(ooeps, dir.z));
-#endif /* __KERNEL_SSE__ && __KERNEL_SSE2__ */
}
ccl_device_inline float3 bvh_inverse_direction(float3 dir)
@@ -457,38 +442,6 @@ ccl_device_inline float bvh_instance_push(
return t;
}
-#ifdef __QBVH__
-/* Same as above, but optimized for QBVH scene intersection,
- * which needs to modify two max distances.
- *
- * TODO(sergey): Investigate if passing NULL instead of t1 gets optimized
- * so we can avoid having this duplication.
- */
-ccl_device_inline void qbvh_instance_push(KernelGlobals *kg,
- int object,
- const Ray *ray,
- float3 *P,
- float3 *dir,
- float3 *idir,
- float *t,
- float *t1)
-{
- Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
-
- *P = transform_point(&tfm, ray->P);
-
- float len;
- *dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len));
- *idir = bvh_inverse_direction(*dir);
-
- if (*t != FLT_MAX)
- *t *= len;
-
- if (*t1 != -FLT_MAX)
- *t1 *= len;
-}
-#endif
-
/* Transorm ray to exit static object in BVH */
ccl_device_inline float bvh_instance_pop(
@@ -551,39 +504,6 @@ ccl_device_inline float bvh_instance_motion_push(KernelGlobals *kg,
return t;
}
-# ifdef __QBVH__
-/* Same as above, but optimized for QBVH scene intersection,
- * which needs to modify two max distances.
- *
- * TODO(sergey): Investigate if passing NULL instead of t1 gets optimized
- * so we can avoid having this duplication.
- */
-ccl_device_inline void qbvh_instance_motion_push(KernelGlobals *kg,
- int object,
- const Ray *ray,
- float3 *P,
- float3 *dir,
- float3 *idir,
- float *t,
- float *t1,
- Transform *itfm)
-{
- object_fetch_transform_motion_test(kg, object, ray->time, itfm);
-
- *P = transform_point(itfm, ray->P);
-
- float len;
- *dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len));
- *idir = bvh_inverse_direction(*dir);
-
- if (*t != FLT_MAX)
- *t *= len;
-
- if (*t1 != -FLT_MAX)
- *t1 *= len;
-}
-# endif
-
/* Transorm ray to exit motion blurred object in BVH */
ccl_device_inline float bvh_instance_motion_pop(KernelGlobals *kg,
diff --git a/intern/cycles/kernel/geom/geom_triangle_intersect.h b/intern/cycles/kernel/geom/geom_triangle_intersect.h
index 6604806f73b..b0cce274b94 100644
--- a/intern/cycles/kernel/geom/geom_triangle_intersect.h
+++ b/intern/cycles/kernel/geom/geom_triangle_intersect.h
@@ -71,433 +71,6 @@ ccl_device_inline bool triangle_intersect(KernelGlobals *kg,
return false;
}
-#ifdef __KERNEL_AVX2__
-# define cross256(A, B, C, D) _mm256_fmsub_ps(A, B, _mm256_mul_ps(C, D))
-ccl_device_inline int ray_triangle_intersect8(KernelGlobals *kg,
- float3 ray_P,
- float3 ray_dir,
- Intersection **isect,
- uint visibility,
- int object,
- __m256 *triA,
- __m256 *triB,
- __m256 *triC,
- int prim_addr,
- int prim_num,
- uint *num_hits,
- uint max_hits,
- int *num_hits_in_instance,
- float isect_t)
-{
-
- const unsigned char prim_num_mask = (1 << prim_num) - 1;
-
- const __m256i zero256 = _mm256_setzero_si256();
-
- const __m256 Px256 = _mm256_set1_ps(ray_P.x);
- const __m256 Py256 = _mm256_set1_ps(ray_P.y);
- const __m256 Pz256 = _mm256_set1_ps(ray_P.z);
-
- const __m256 dirx256 = _mm256_set1_ps(ray_dir.x);
- const __m256 diry256 = _mm256_set1_ps(ray_dir.y);
- const __m256 dirz256 = _mm256_set1_ps(ray_dir.z);
-
- /* Calculate vertices relative to ray origin. */
- __m256 v0_x_256 = _mm256_sub_ps(triC[0], Px256);
- __m256 v0_y_256 = _mm256_sub_ps(triC[1], Py256);
- __m256 v0_z_256 = _mm256_sub_ps(triC[2], Pz256);
-
- __m256 v1_x_256 = _mm256_sub_ps(triA[0], Px256);
- __m256 v1_y_256 = _mm256_sub_ps(triA[1], Py256);
- __m256 v1_z_256 = _mm256_sub_ps(triA[2], Pz256);
-
- __m256 v2_x_256 = _mm256_sub_ps(triB[0], Px256);
- __m256 v2_y_256 = _mm256_sub_ps(triB[1], Py256);
- __m256 v2_z_256 = _mm256_sub_ps(triB[2], Pz256);
-
- __m256 v0_v1_x_256 = _mm256_add_ps(v0_x_256, v1_x_256);
- __m256 v0_v1_y_256 = _mm256_add_ps(v0_y_256, v1_y_256);
- __m256 v0_v1_z_256 = _mm256_add_ps(v0_z_256, v1_z_256);
-
- __m256 v0_v2_x_256 = _mm256_add_ps(v0_x_256, v2_x_256);
- __m256 v0_v2_y_256 = _mm256_add_ps(v0_y_256, v2_y_256);
- __m256 v0_v2_z_256 = _mm256_add_ps(v0_z_256, v2_z_256);
-
- __m256 v1_v2_x_256 = _mm256_add_ps(v1_x_256, v2_x_256);
- __m256 v1_v2_y_256 = _mm256_add_ps(v1_y_256, v2_y_256);
- __m256 v1_v2_z_256 = _mm256_add_ps(v1_z_256, v2_z_256);
-
- /* Calculate triangle edges. */
- __m256 e0_x_256 = _mm256_sub_ps(v2_x_256, v0_x_256);
- __m256 e0_y_256 = _mm256_sub_ps(v2_y_256, v0_y_256);
- __m256 e0_z_256 = _mm256_sub_ps(v2_z_256, v0_z_256);
-
- __m256 e1_x_256 = _mm256_sub_ps(v0_x_256, v1_x_256);
- __m256 e1_y_256 = _mm256_sub_ps(v0_y_256, v1_y_256);
- __m256 e1_z_256 = _mm256_sub_ps(v0_z_256, v1_z_256);
-
- __m256 e2_x_256 = _mm256_sub_ps(v1_x_256, v2_x_256);
- __m256 e2_y_256 = _mm256_sub_ps(v1_y_256, v2_y_256);
- __m256 e2_z_256 = _mm256_sub_ps(v1_z_256, v2_z_256);
-
- /* Perform edge tests. */
- /* cross (AyBz - AzBy, AzBx -AxBz, AxBy - AyBx) */
- __m256 U_x_256 = cross256(v0_v2_y_256, e0_z_256, v0_v2_z_256, e0_y_256);
- __m256 U_y_256 = cross256(v0_v2_z_256, e0_x_256, v0_v2_x_256, e0_z_256);
- __m256 U_z_256 = cross256(v0_v2_x_256, e0_y_256, v0_v2_y_256, e0_x_256);
- /* vertical dot */
- __m256 U_256 = _mm256_mul_ps(U_x_256, dirx256);
- U_256 = _mm256_fmadd_ps(U_y_256, diry256, U_256);
- U_256 = _mm256_fmadd_ps(U_z_256, dirz256, U_256);
-
- __m256 V_x_256 = cross256(v0_v1_y_256, e1_z_256, v0_v1_z_256, e1_y_256);
- __m256 V_y_256 = cross256(v0_v1_z_256, e1_x_256, v0_v1_x_256, e1_z_256);
- __m256 V_z_256 = cross256(v0_v1_x_256, e1_y_256, v0_v1_y_256, e1_x_256);
- /* vertical dot */
- __m256 V_256 = _mm256_mul_ps(V_x_256, dirx256);
- V_256 = _mm256_fmadd_ps(V_y_256, diry256, V_256);
- V_256 = _mm256_fmadd_ps(V_z_256, dirz256, V_256);
-
- __m256 W_x_256 = cross256(v1_v2_y_256, e2_z_256, v1_v2_z_256, e2_y_256);
- __m256 W_y_256 = cross256(v1_v2_z_256, e2_x_256, v1_v2_x_256, e2_z_256);
- __m256 W_z_256 = cross256(v1_v2_x_256, e2_y_256, v1_v2_y_256, e2_x_256);
- /* vertical dot */
- __m256 W_256 = _mm256_mul_ps(W_x_256, dirx256);
- W_256 = _mm256_fmadd_ps(W_y_256, diry256, W_256);
- W_256 = _mm256_fmadd_ps(W_z_256, dirz256, W_256);
-
- __m256i U_256_1 = _mm256_srli_epi32(_mm256_castps_si256(U_256), 31);
- __m256i V_256_1 = _mm256_srli_epi32(_mm256_castps_si256(V_256), 31);
- __m256i W_256_1 = _mm256_srli_epi32(_mm256_castps_si256(W_256), 31);
- __m256i UVW_256_1 = _mm256_add_epi32(_mm256_add_epi32(U_256_1, V_256_1), W_256_1);
-
- const __m256i one256 = _mm256_set1_epi32(1);
- const __m256i two256 = _mm256_set1_epi32(2);
-
- __m256i mask_minmaxUVW_256 = _mm256_or_si256(_mm256_cmpeq_epi32(one256, UVW_256_1),
- _mm256_cmpeq_epi32(two256, UVW_256_1));
-
- unsigned char mask_minmaxUVW_pos = _mm256_movemask_ps(_mm256_castsi256_ps(mask_minmaxUVW_256));
- if ((mask_minmaxUVW_pos & prim_num_mask) == prim_num_mask) { // all bits set
- return false;
- }
-
- /* Calculate geometry normal and denominator. */
- __m256 Ng1_x_256 = cross256(e1_y_256, e0_z_256, e1_z_256, e0_y_256);
- __m256 Ng1_y_256 = cross256(e1_z_256, e0_x_256, e1_x_256, e0_z_256);
- __m256 Ng1_z_256 = cross256(e1_x_256, e0_y_256, e1_y_256, e0_x_256);
-
- Ng1_x_256 = _mm256_add_ps(Ng1_x_256, Ng1_x_256);
- Ng1_y_256 = _mm256_add_ps(Ng1_y_256, Ng1_y_256);
- Ng1_z_256 = _mm256_add_ps(Ng1_z_256, Ng1_z_256);
-
- /* vertical dot */
- __m256 den_256 = _mm256_mul_ps(Ng1_x_256, dirx256);
- den_256 = _mm256_fmadd_ps(Ng1_y_256, diry256, den_256);
- den_256 = _mm256_fmadd_ps(Ng1_z_256, dirz256, den_256);
-
- /* Perform depth test. */
- __m256 T_256 = _mm256_mul_ps(Ng1_x_256, v0_x_256);
- T_256 = _mm256_fmadd_ps(Ng1_y_256, v0_y_256, T_256);
- T_256 = _mm256_fmadd_ps(Ng1_z_256, v0_z_256, T_256);
-
- const __m256i c0x80000000 = _mm256_set1_epi32(0x80000000);
- __m256i sign_den_256 = _mm256_and_si256(_mm256_castps_si256(den_256), c0x80000000);
-
- __m256 sign_T_256 = _mm256_castsi256_ps(
- _mm256_xor_si256(_mm256_castps_si256(T_256), sign_den_256));
-
- unsigned char mask_sign_T = _mm256_movemask_ps(sign_T_256);
- if (((mask_minmaxUVW_pos | mask_sign_T) & prim_num_mask) == prim_num_mask) {
- return false;
- }
-
- __m256 xor_signmask_256 = _mm256_castsi256_ps(
- _mm256_xor_si256(_mm256_castps_si256(den_256), sign_den_256));
-
- ccl_align(32) float den8[8], U8[8], V8[8], T8[8], sign_T8[8], xor_signmask8[8];
- ccl_align(32) unsigned int mask_minmaxUVW8[8];
-
- if (visibility == PATH_RAY_SHADOW_OPAQUE) {
- __m256i mask_final_256 = _mm256_cmpeq_epi32(mask_minmaxUVW_256, zero256);
- __m256i maskden256 = _mm256_cmpeq_epi32(_mm256_castps_si256(den_256), zero256);
- __m256i mask0 = _mm256_cmpgt_epi32(zero256, _mm256_castps_si256(sign_T_256));
- __m256 rayt_256 = _mm256_set1_ps((*isect)->t);
- __m256i mask1 = _mm256_cmpgt_epi32(
- _mm256_castps_si256(sign_T_256),
- _mm256_castps_si256(_mm256_mul_ps(
- _mm256_castsi256_ps(_mm256_xor_si256(_mm256_castps_si256(den_256), sign_den_256)),
- rayt_256)));
- mask0 = _mm256_or_si256(mask1, mask0);
- mask_final_256 = _mm256_andnot_si256(mask0, mask_final_256); //(~mask_minmaxUVW_pos) &(~mask)
- mask_final_256 = _mm256_andnot_si256(
- maskden256, mask_final_256); //(~mask_minmaxUVW_pos) &(~mask) & (~maskden)
- int mask_final = _mm256_movemask_ps(_mm256_castsi256_ps(mask_final_256));
- if ((mask_final & prim_num_mask) == 0) {
- return false;
- }
- while (mask_final != 0) {
- const int i = __bscf(mask_final);
- if (i >= prim_num) {
- return false;
- }
-# ifdef __VISIBILITY_FLAG__
- if ((kernel_tex_fetch(__prim_visibility, (prim_addr + i)) & visibility) == 0) {
- continue;
- }
-# endif
- __m256 inv_den_256 = _mm256_rcp_ps(den_256);
- U_256 = _mm256_mul_ps(U_256, inv_den_256);
- V_256 = _mm256_mul_ps(V_256, inv_den_256);
- T_256 = _mm256_mul_ps(T_256, inv_den_256);
- _mm256_store_ps(U8, U_256);
- _mm256_store_ps(V8, V_256);
- _mm256_store_ps(T8, T_256);
- (*isect)->u = U8[i];
- (*isect)->v = V8[i];
- (*isect)->t = T8[i];
- (*isect)->prim = (prim_addr + i);
- (*isect)->object = object;
- (*isect)->type = PRIMITIVE_TRIANGLE;
- return true;
- }
- return false;
- }
- else {
- _mm256_store_ps(den8, den_256);
- _mm256_store_ps(U8, U_256);
- _mm256_store_ps(V8, V_256);
- _mm256_store_ps(T8, T_256);
-
- _mm256_store_ps(sign_T8, sign_T_256);
- _mm256_store_ps(xor_signmask8, xor_signmask_256);
- _mm256_store_si256((__m256i *)mask_minmaxUVW8, mask_minmaxUVW_256);
-
- int ret = false;
-
- if (visibility == PATH_RAY_SHADOW) {
- for (int i = 0; i < prim_num; i++) {
- if (mask_minmaxUVW8[i]) {
- continue;
- }
-# ifdef __VISIBILITY_FLAG__
- if ((kernel_tex_fetch(__prim_visibility, (prim_addr + i)) & visibility) == 0) {
- continue;
- }
-# endif
- if ((sign_T8[i] < 0.0f) || (sign_T8[i] > (*isect)->t * xor_signmask8[i])) {
- continue;
- }
- if (!den8[i]) {
- continue;
- }
- const float inv_den = 1.0f / den8[i];
- (*isect)->u = U8[i] * inv_den;
- (*isect)->v = V8[i] * inv_den;
- (*isect)->t = T8[i] * inv_den;
- (*isect)->prim = (prim_addr + i);
- (*isect)->object = object;
- (*isect)->type = PRIMITIVE_TRIANGLE;
- const int prim = kernel_tex_fetch(__prim_index, (*isect)->prim);
- int shader = 0;
-# ifdef __HAIR__
- if (kernel_tex_fetch(__prim_type, (*isect)->prim) & PRIMITIVE_ALL_TRIANGLE)
-# endif
- {
- shader = kernel_tex_fetch(__tri_shader, prim);
- }
-# ifdef __HAIR__
- else {
- float4 str = kernel_tex_fetch(__curves, prim);
- shader = __float_as_int(str.z);
- }
-# endif
- const int flag = kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).flags;
- /* If no transparent shadows, all light is blocked. */
- if (!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
- return 2;
- }
- /* If maximum number of hits reached, block all light. */
- else if (num_hits == NULL || *num_hits == max_hits) {
- return 2;
- }
- /* Move on to next entry in intersections array. */
- ret = true;
- (*isect)++;
- (*num_hits)++;
- (*num_hits_in_instance)++;
- (*isect)->t = isect_t;
- }
- }
- else {
- for (int i = 0; i < prim_num; i++) {
- if (mask_minmaxUVW8[i]) {
- continue;
- }
-# ifdef __VISIBILITY_FLAG__
- if ((kernel_tex_fetch(__prim_visibility, (prim_addr + i)) & visibility) == 0) {
- continue;
- }
-# endif
- if ((sign_T8[i] < 0.0f) || (sign_T8[i] > (*isect)->t * xor_signmask8[i])) {
- continue;
- }
- if (!den8[i]) {
- continue;
- }
- const float inv_den = 1.0f / den8[i];
- (*isect)->u = U8[i] * inv_den;
- (*isect)->v = V8[i] * inv_den;
- (*isect)->t = T8[i] * inv_den;
- (*isect)->prim = (prim_addr + i);
- (*isect)->object = object;
- (*isect)->type = PRIMITIVE_TRIANGLE;
- ret = true;
- }
- }
- return ret;
- }
-}
-
-ccl_device_inline int triangle_intersect8(KernelGlobals *kg,
- Intersection **isect,
- float3 P,
- float3 dir,
- uint visibility,
- int object,
- int prim_addr,
- int prim_num,
- uint *num_hits,
- uint max_hits,
- int *num_hits_in_instance,
- float isect_t)
-{
- __m128 tri_a[8], tri_b[8], tri_c[8];
- __m256 tritmp[12], tri[12];
- __m256 triA[3], triB[3], triC[3];
-
- int i, r;
-
- uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
- for (i = 0; i < prim_num; i++) {
- tri_a[i] = *(__m128 *)&kg->__prim_tri_verts.data[tri_vindex++];
- tri_b[i] = *(__m128 *)&kg->__prim_tri_verts.data[tri_vindex++];
- tri_c[i] = *(__m128 *)&kg->__prim_tri_verts.data[tri_vindex++];
- }
- // create 9 or 12 placeholders
- tri[0] = _mm256_castps128_ps256(tri_a[0]); //_mm256_zextps128_ps256
- tri[1] = _mm256_castps128_ps256(tri_b[0]); //_mm256_zextps128_ps256
- tri[2] = _mm256_castps128_ps256(tri_c[0]); //_mm256_zextps128_ps256
-
- tri[3] = _mm256_castps128_ps256(tri_a[1]); //_mm256_zextps128_ps256
- tri[4] = _mm256_castps128_ps256(tri_b[1]); //_mm256_zextps128_ps256
- tri[5] = _mm256_castps128_ps256(tri_c[1]); //_mm256_zextps128_ps256
-
- tri[6] = _mm256_castps128_ps256(tri_a[2]); //_mm256_zextps128_ps256
- tri[7] = _mm256_castps128_ps256(tri_b[2]); //_mm256_zextps128_ps256
- tri[8] = _mm256_castps128_ps256(tri_c[2]); //_mm256_zextps128_ps256
-
- if (prim_num > 3) {
- tri[9] = _mm256_castps128_ps256(tri_a[3]); //_mm256_zextps128_ps256
- tri[10] = _mm256_castps128_ps256(tri_b[3]); //_mm256_zextps128_ps256
- tri[11] = _mm256_castps128_ps256(tri_c[3]); //_mm256_zextps128_ps256
- }
-
- for (i = 4, r = 0; i < prim_num; i++, r += 3) {
- tri[r] = _mm256_insertf128_ps(tri[r], tri_a[i], 1);
- tri[r + 1] = _mm256_insertf128_ps(tri[r + 1], tri_b[i], 1);
- tri[r + 2] = _mm256_insertf128_ps(tri[r + 2], tri_c[i], 1);
- }
-
- //------------------------------------------------
- // 0! Xa0 Ya0 Za0 1 Xa4 Ya4 Za4 1
- // 1! Xb0 Yb0 Zb0 1 Xb4 Yb4 Zb4 1
- // 2! Xc0 Yc0 Zc0 1 Xc4 Yc4 Zc4 1
-
- // 3! Xa1 Ya1 Za1 1 Xa5 Ya5 Za5 1
- // 4! Xb1 Yb1 Zb1 1 Xb5 Yb5 Zb5 1
- // 5! Xc1 Yc1 Zc1 1 Xc5 Yc5 Zc5 1
-
- // 6! Xa2 Ya2 Za2 1 Xa6 Ya6 Za6 1
- // 7! Xb2 Yb2 Zb2 1 Xb6 Yb6 Zb6 1
- // 8! Xc2 Yc2 Zc2 1 Xc6 Yc6 Zc6 1
-
- // 9! Xa3 Ya3 Za3 1 Xa7 Ya7 Za7 1
- // 10! Xb3 Yb3 Zb3 1 Xb7 Yb7 Zb7 1
- // 11! Xc3 Yc3 Zc3 1 Xc7 Yc7 Zc7 1
-
- //"transpose"
- tritmp[0] = _mm256_unpacklo_ps(tri[0], tri[3]); // 0! Xa0 Xa1 Ya0 Ya1 Xa4 Xa5 Ya4 Ya5
- tritmp[1] = _mm256_unpackhi_ps(tri[0], tri[3]); // 1! Za0 Za1 1 1 Za4 Za5 1 1
-
- tritmp[2] = _mm256_unpacklo_ps(tri[6], tri[9]); // 2! Xa2 Xa3 Ya2 Ya3 Xa6 Xa7 Ya6 Ya7
- tritmp[3] = _mm256_unpackhi_ps(tri[6], tri[9]); // 3! Za2 Za3 1 1 Za6 Za7 1 1
-
- tritmp[4] = _mm256_unpacklo_ps(tri[1], tri[4]); // 4! Xb0 Xb1 Yb0 Yb1 Xb4 Xb5 Yb4 Yb5
- tritmp[5] = _mm256_unpackhi_ps(tri[1], tri[4]); // 5! Zb0 Zb1 1 1 Zb4 Zb5 1 1
-
- tritmp[6] = _mm256_unpacklo_ps(tri[7], tri[10]); // 6! Xb2 Xb3 Yb2 Yb3 Xb6 Xb7 Yb6 Yb7
- tritmp[7] = _mm256_unpackhi_ps(tri[7], tri[10]); // 7! Zb2 Zb3 1 1 Zb6 Zb7 1 1
-
- tritmp[8] = _mm256_unpacklo_ps(tri[2], tri[5]); // 8! Xc0 Xc1 Yc0 Yc1 Xc4 Xc5 Yc4 Yc5
- tritmp[9] = _mm256_unpackhi_ps(tri[2], tri[5]); // 9! Zc0 Zc1 1 1 Zc4 Zc5 1 1
-
- tritmp[10] = _mm256_unpacklo_ps(tri[8], tri[11]); // 10! Xc2 Xc3 Yc2 Yc3 Xc6 Xc7 Yc6 Yc7
- tritmp[11] = _mm256_unpackhi_ps(tri[8], tri[11]); // 11! Zc2 Zc3 1 1 Zc6 Zc7 1 1
-
- /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
- triA[0] = _mm256_castpd_ps(
- _mm256_unpacklo_pd(_mm256_castps_pd(tritmp[0]),
- _mm256_castps_pd(tritmp[2]))); // Xa0 Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7
- triA[1] = _mm256_castpd_ps(
- _mm256_unpackhi_pd(_mm256_castps_pd(tritmp[0]),
- _mm256_castps_pd(tritmp[2]))); // Ya0 Ya1 Ya2 Ya3 Ya4 Ya5 Ya6 Ya7
- triA[2] = _mm256_castpd_ps(
- _mm256_unpacklo_pd(_mm256_castps_pd(tritmp[1]),
- _mm256_castps_pd(tritmp[3]))); // Za0 Za1 Za2 Za3 Za4 Za5 Za6 Za7
-
- triB[0] = _mm256_castpd_ps(
- _mm256_unpacklo_pd(_mm256_castps_pd(tritmp[4]),
- _mm256_castps_pd(tritmp[6]))); // Xb0 Xb1 Xb2 Xb3 Xb4 Xb5 Xb5 Xb7
- triB[1] = _mm256_castpd_ps(
- _mm256_unpackhi_pd(_mm256_castps_pd(tritmp[4]),
- _mm256_castps_pd(tritmp[6]))); // Yb0 Yb1 Yb2 Yb3 Yb4 Yb5 Yb5 Yb7
- triB[2] = _mm256_castpd_ps(
- _mm256_unpacklo_pd(_mm256_castps_pd(tritmp[5]),
- _mm256_castps_pd(tritmp[7]))); // Zb0 Zb1 Zb2 Zb3 Zb4 Zb5 Zb5 Zb7
-
- triC[0] = _mm256_castpd_ps(
- _mm256_unpacklo_pd(_mm256_castps_pd(tritmp[8]),
- _mm256_castps_pd(tritmp[10]))); // Xc0 Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7
- triC[1] = _mm256_castpd_ps(
- _mm256_unpackhi_pd(_mm256_castps_pd(tritmp[8]),
- _mm256_castps_pd(tritmp[10]))); // Yc0 Yc1 Yc2 Yc3 Yc4 Yc5 Yc6 Yc7
- triC[2] = _mm256_castpd_ps(
- _mm256_unpacklo_pd(_mm256_castps_pd(tritmp[9]),
- _mm256_castps_pd(tritmp[11]))); // Zc0 Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7
-
- /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
-
- int result = ray_triangle_intersect8(kg,
- P,
- dir,
- isect,
- visibility,
- object,
- triA,
- triB,
- triC,
- prim_addr,
- prim_num,
- num_hits,
- max_hits,
- num_hits_in_instance,
- isect_t);
- return result;
-}
-
-#endif /* __KERNEL_AVX2__ */
-
/* Special ray intersection routines for subsurface scattering. In that case we
* only want to intersect with primitives in the same object, and if case of
* multiple hits we pick a single random primitive as the intersection point.