Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAndrii Symkin <pembem22>2022-07-29 14:41:37 +0300
committerBrecht Van Lommel <brecht@blender.org>2022-08-09 17:49:34 +0300
commitd832d993c5b47b0de7ca24914ad9c064607830c7 (patch)
tree889b7cd9f135a40cbaccdb4537c8de1faa1c562f /intern/cycles/kernel/integrator
parent7921faa6519b9eb9062269b5d9c003c64ead2b8b (diff)
Cycles: add new Spectrum and PackedSpectrum types
These replace float3 and packed_float3 in various places in the kernel where a spectral color representation will be used in the future. That representation will require more than 3 channels and conversion to from/RGB. The kernel code was refactored to remove the assumption that Spectrum and RGB colors are the same thing. There are no functional changes, Spectrum is still a float3 and the conversion functions are no-ops. Differential Revision: https://developer.blender.org/D15535
Diffstat (limited to 'intern/cycles/kernel/integrator')
-rw-r--r--intern/cycles/kernel/integrator/mnee.h10
-rw-r--r--intern/cycles/kernel/integrator/path_state.h4
-rw-r--r--intern/cycles/kernel/integrator/shade_background.h20
-rw-r--r--intern/cycles/kernel/integrator/shade_light.h4
-rw-r--r--intern/cycles/kernel/integrator/shade_shadow.h14
-rw-r--r--intern/cycles/kernel/integrator/shade_surface.h30
-rw-r--r--intern/cycles/kernel/integrator/shade_volume.h125
-rw-r--r--intern/cycles/kernel/integrator/shader_eval.h87
-rw-r--r--intern/cycles/kernel/integrator/shadow_catcher.h2
-rw-r--r--intern/cycles/kernel/integrator/shadow_state_template.h8
-rw-r--r--intern/cycles/kernel/integrator/state_template.h12
-rw-r--r--intern/cycles/kernel/integrator/subsurface.h8
-rw-r--r--intern/cycles/kernel/integrator/subsurface_disk.h14
-rw-r--r--intern/cycles/kernel/integrator/subsurface_random_walk.h87
14 files changed, 211 insertions, 214 deletions
diff --git a/intern/cycles/kernel/integrator/mnee.h b/intern/cycles/kernel/integrator/mnee.h
index aa72b93c9d2..98968400d0a 100644
--- a/intern/cycles/kernel/integrator/mnee.h
+++ b/intern/cycles/kernel/integrator/mnee.h
@@ -634,9 +634,9 @@ mnee_sample_bsdf_dh(ClosureType type, float alpha_x, float alpha_y, float sample
* We assume here that the pdf (in half-vector measure) is the same as
* the one calculation when sampling the microfacet normals from the
* specular chain above: this allows us to simplify the bsdf weight */
-ccl_device_forceinline float3 mnee_eval_bsdf_contribution(ccl_private ShaderClosure *closure,
- float3 wi,
- float3 wo)
+ccl_device_forceinline Spectrum mnee_eval_bsdf_contribution(ccl_private ShaderClosure *closure,
+ float3 wi,
+ float3 wo)
{
ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)closure;
@@ -835,7 +835,7 @@ ccl_device_forceinline bool mnee_path_contribution(KernelGlobals kg,
1;
INTEGRATOR_STATE_WRITE(state, path, bounce) = bounce + vertex_count;
- float3 light_eval = light_sample_shader_eval(kg, state, sd_mnee, ls, sd->time);
+ Spectrum light_eval = light_sample_shader_eval(kg, state, sd_mnee, ls, sd->time);
bsdf_eval_mul(throughput, light_eval / ls->pdf);
/* Generalized geometry term. */
@@ -924,7 +924,7 @@ ccl_device_forceinline bool mnee_path_contribution(KernelGlobals kg,
/* Evaluate product term inside eq.6 at solution interface. vi
* divided by corresponding sampled pdf:
* fr(vi)_do / pdf_dh(vi) x |do/dh| x |n.wo / n.h| */
- float3 bsdf_contribution = mnee_eval_bsdf_contribution(v.bsdf, wi, wo);
+ Spectrum bsdf_contribution = mnee_eval_bsdf_contribution(v.bsdf, wi, wo);
bsdf_eval_mul(throughput, bsdf_contribution);
}
diff --git a/intern/cycles/kernel/integrator/path_state.h b/intern/cycles/kernel/integrator/path_state.h
index b09bc117d78..5ec94b934ca 100644
--- a/intern/cycles/kernel/integrator/path_state.h
+++ b/intern/cycles/kernel/integrator/path_state.h
@@ -54,7 +54,7 @@ ccl_device_inline void path_state_init_integrator(KernelGlobals kg,
INTEGRATOR_STATE_WRITE(state, path, mis_ray_pdf) = 0.0f;
INTEGRATOR_STATE_WRITE(state, path, min_ray_pdf) = FLT_MAX;
INTEGRATOR_STATE_WRITE(state, path, continuation_probability) = 1.0f;
- INTEGRATOR_STATE_WRITE(state, path, throughput) = make_float3(1.0f, 1.0f, 1.0f);
+ INTEGRATOR_STATE_WRITE(state, path, throughput) = one_spectrum();
#ifdef __MNEE__
INTEGRATOR_STATE_WRITE(state, path, mnee) = 0;
@@ -74,7 +74,7 @@ ccl_device_inline void path_state_init_integrator(KernelGlobals kg,
#ifdef __DENOISING_FEATURES__
if (kernel_data.kernel_features & KERNEL_FEATURE_DENOISING) {
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_DENOISING_FEATURES;
- INTEGRATOR_STATE_WRITE(state, path, denoising_feature_throughput) = one_float3();
+ INTEGRATOR_STATE_WRITE(state, path, denoising_feature_throughput) = one_spectrum();
}
#endif
}
diff --git a/intern/cycles/kernel/integrator/shade_background.h b/intern/cycles/kernel/integrator/shade_background.h
index a7edfffd175..57d060d58df 100644
--- a/intern/cycles/kernel/integrator/shade_background.h
+++ b/intern/cycles/kernel/integrator/shade_background.h
@@ -10,9 +10,9 @@
CCL_NAMESPACE_BEGIN
-ccl_device float3 integrator_eval_background_shader(KernelGlobals kg,
- IntegratorState state,
- ccl_global float *ccl_restrict render_buffer)
+ccl_device Spectrum integrator_eval_background_shader(KernelGlobals kg,
+ IntegratorState state,
+ ccl_global float *ccl_restrict render_buffer)
{
#ifdef __BACKGROUND__
const int shader = kernel_data.background.surface_shader;
@@ -26,11 +26,11 @@ ccl_device float3 integrator_eval_background_shader(KernelGlobals kg,
((shader & SHADER_EXCLUDE_TRANSMIT) && (path_flag & PATH_RAY_TRANSMIT)) ||
((shader & SHADER_EXCLUDE_CAMERA) && (path_flag & PATH_RAY_CAMERA)) ||
((shader & SHADER_EXCLUDE_SCATTER) && (path_flag & PATH_RAY_VOLUME_SCATTER)))
- return zero_float3();
+ return zero_spectrum();
}
/* Use fast constant background color if available. */
- float3 L = zero_float3();
+ Spectrum L = zero_spectrum();
if (!shader_constant_emission_eval(kg, shader, &L)) {
/* Evaluate background shader. */
@@ -73,7 +73,7 @@ ccl_device float3 integrator_eval_background_shader(KernelGlobals kg,
return L;
#else
- return make_float3(0.8f, 0.8f, 0.8f);
+ return make_spectrum(0.8f);
#endif
}
@@ -117,8 +117,8 @@ ccl_device_inline void integrate_background(KernelGlobals kg,
#endif /* __MNEE__ */
/* Evaluate background shader. */
- float3 L = (eval_background) ? integrator_eval_background_shader(kg, state, render_buffer) :
- zero_float3();
+ Spectrum L = (eval_background) ? integrator_eval_background_shader(kg, state, render_buffer) :
+ zero_spectrum();
/* When using the ao bounces approximation, adjust background
* shader intensity with ao factor. */
@@ -169,7 +169,7 @@ ccl_device_inline void integrate_distant_lights(KernelGlobals kg,
/* TODO: does aliasing like this break automatic SoA in CUDA? */
ShaderDataTinyStorage emission_sd_storage;
ccl_private ShaderData *emission_sd = AS_SHADER_DATA(&emission_sd_storage);
- float3 light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, ray_time);
+ Spectrum light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, ray_time);
if (is_zero(light_eval)) {
return;
}
@@ -184,7 +184,7 @@ ccl_device_inline void integrate_distant_lights(KernelGlobals kg,
}
/* Write to render buffer. */
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
kernel_accum_emission(
kg, state, throughput * light_eval, render_buffer, kernel_data.background.lightgroup);
}
diff --git a/intern/cycles/kernel/integrator/shade_light.h b/intern/cycles/kernel/integrator/shade_light.h
index 910e3383f51..ac9d1415abb 100644
--- a/intern/cycles/kernel/integrator/shade_light.h
+++ b/intern/cycles/kernel/integrator/shade_light.h
@@ -51,7 +51,7 @@ ccl_device_inline void integrate_light(KernelGlobals kg,
/* TODO: does aliasing like this break automatic SoA in CUDA? */
ShaderDataTinyStorage emission_sd_storage;
ccl_private ShaderData *emission_sd = AS_SHADER_DATA(&emission_sd_storage);
- float3 light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, ray_time);
+ Spectrum light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, ray_time);
if (is_zero(light_eval)) {
return;
}
@@ -66,7 +66,7 @@ ccl_device_inline void integrate_light(KernelGlobals kg,
}
/* Write to render buffer. */
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
kernel_accum_emission(kg, state, throughput * light_eval, render_buffer, ls.group);
}
diff --git a/intern/cycles/kernel/integrator/shade_shadow.h b/intern/cycles/kernel/integrator/shade_shadow.h
index 4b002a47bee..a52706a77f1 100644
--- a/intern/cycles/kernel/integrator/shade_shadow.h
+++ b/intern/cycles/kernel/integrator/shade_shadow.h
@@ -15,9 +15,9 @@ ccl_device_inline bool shadow_intersections_has_remaining(const uint num_hits)
}
#ifdef __TRANSPARENT_SHADOWS__
-ccl_device_inline float3 integrate_transparent_surface_shadow(KernelGlobals kg,
- IntegratorShadowState state,
- const int hit)
+ccl_device_inline Spectrum integrate_transparent_surface_shadow(KernelGlobals kg,
+ IntegratorShadowState state,
+ const int hit)
{
PROFILING_INIT(kg, PROFILING_SHADE_SHADOW_SURFACE);
@@ -58,7 +58,7 @@ ccl_device_inline void integrate_transparent_volume_shadow(KernelGlobals kg,
IntegratorShadowState state,
const int hit,
const int num_recorded_hits,
- ccl_private float3 *ccl_restrict
+ ccl_private Spectrum *ccl_restrict
throughput)
{
PROFILING_INIT(kg, PROFILING_SHADE_SHADOW_VOLUME);
@@ -100,7 +100,7 @@ ccl_device_inline bool integrate_transparent_shadow(KernelGlobals kg,
if (hit < num_recorded_hits || !shadow_intersections_has_remaining(num_hits)) {
# ifdef __VOLUME__
if (!integrator_state_shadow_volume_stack_is_empty(kg, state)) {
- float3 throughput = INTEGRATOR_STATE(state, shadow_path, throughput);
+ Spectrum throughput = INTEGRATOR_STATE(state, shadow_path, throughput);
integrate_transparent_volume_shadow(kg, state, hit, num_recorded_hits, &throughput);
if (is_zero(throughput)) {
return true;
@@ -113,8 +113,8 @@ ccl_device_inline bool integrate_transparent_shadow(KernelGlobals kg,
/* Surface shaders. */
if (hit < num_recorded_hits) {
- const float3 shadow = integrate_transparent_surface_shadow(kg, state, hit);
- const float3 throughput = INTEGRATOR_STATE(state, shadow_path, throughput) * shadow;
+ const Spectrum shadow = integrate_transparent_surface_shadow(kg, state, hit);
+ const Spectrum throughput = INTEGRATOR_STATE(state, shadow_path, throughput) * shadow;
if (is_zero(throughput)) {
return true;
}
diff --git a/intern/cycles/kernel/integrator/shade_surface.h b/intern/cycles/kernel/integrator/shade_surface.h
index 70b20a93b6a..986f7f622fb 100644
--- a/intern/cycles/kernel/integrator/shade_surface.h
+++ b/intern/cycles/kernel/integrator/shade_surface.h
@@ -42,11 +42,11 @@ ccl_device_forceinline bool integrate_surface_holdout(KernelGlobals kg,
if (((sd->flag & SD_HOLDOUT) || (sd->object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
(path_flag & PATH_RAY_TRANSPARENT_BACKGROUND)) {
- const float3 holdout_weight = shader_holdout_apply(kg, sd);
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
+ const Spectrum holdout_weight = shader_holdout_apply(kg, sd);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
const float transparent = average(holdout_weight * throughput);
kernel_accum_holdout(kg, state, path_flag, transparent, render_buffer);
- if (isequal(holdout_weight, one_float3())) {
+ if (isequal(holdout_weight, one_spectrum())) {
return false;
}
}
@@ -65,7 +65,7 @@ ccl_device_forceinline void integrate_surface_emission(KernelGlobals kg,
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
/* Evaluate emissive closure. */
- float3 L = shader_emissive_eval(sd);
+ Spectrum L = shader_emissive_eval(sd);
# ifdef __HAIR__
if (!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS) &&
@@ -84,7 +84,7 @@ ccl_device_forceinline void integrate_surface_emission(KernelGlobals kg,
L *= mis_weight;
}
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
kernel_accum_emission(
kg, state, throughput * L, render_buffer, object_lightgroup(kg, sd->object));
}
@@ -161,7 +161,7 @@ ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
else
# endif /* __MNEE__ */
{
- const float3 light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, sd->time);
+ const Spectrum light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, sd->time);
if (is_zero(light_eval)) {
return;
}
@@ -211,11 +211,12 @@ ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
/* Copy state from main path to shadow path. */
uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag);
shadow_flag |= (is_light) ? PATH_RAY_SHADOW_FOR_LIGHT : 0;
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput) * bsdf_eval_sum(&bsdf_eval);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput) *
+ bsdf_eval_sum(&bsdf_eval);
if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
- packed_float3 pass_diffuse_weight;
- packed_float3 pass_glossy_weight;
+ PackedSpectrum pass_diffuse_weight;
+ PackedSpectrum pass_glossy_weight;
if (shadow_flag & PATH_RAY_ANY_PASS) {
/* Indirect bounce, use weights from earlier surface or volume bounce. */
@@ -225,8 +226,8 @@ ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
else {
/* Direct light, use BSDFs at this bounce. */
shadow_flag |= PATH_RAY_SURFACE_PASS;
- pass_diffuse_weight = packed_float3(bsdf_eval_pass_diffuse_weight(&bsdf_eval));
- pass_glossy_weight = packed_float3(bsdf_eval_pass_glossy_weight(&bsdf_eval));
+ pass_diffuse_weight = PackedSpectrum(bsdf_eval_pass_diffuse_weight(&bsdf_eval));
+ pass_glossy_weight = PackedSpectrum(bsdf_eval_pass_glossy_weight(&bsdf_eval));
}
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, pass_diffuse_weight) = pass_diffuse_weight;
@@ -338,7 +339,7 @@ ccl_device_forceinline int integrate_surface_bsdf_bssrdf_bounce(
}
/* Update throughput. */
- float3 throughput = INTEGRATOR_STATE(state, path, throughput);
+ Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
throughput *= bsdf_eval_sum(&bsdf_eval) / bsdf_pdf;
INTEGRATOR_STATE_WRITE(state, path, throughput) = throughput;
@@ -410,7 +411,7 @@ ccl_device_forceinline void integrate_surface_ao(KernelGlobals kg,
path_state_rng_2D(kg, rng_state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float3 ao_N;
- const float3 ao_weight = shader_bsdf_ao(
+ const Spectrum ao_weight = shader_bsdf_ao(
kg, sd, kernel_data.integrator.ao_additive_factor, &ao_N);
float3 ao_D;
@@ -450,7 +451,8 @@ ccl_device_forceinline void integrate_surface_ao(KernelGlobals kg,
const uint16_t bounce = INTEGRATOR_STATE(state, path, bounce);
const uint16_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag) | PATH_RAY_SHADOW_FOR_AO;
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput) * shader_bsdf_alpha(kg, sd);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput) *
+ shader_bsdf_alpha(kg, sd);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, render_pixel_index) = INTEGRATOR_STATE(
state, path, render_pixel_index);
diff --git a/intern/cycles/kernel/integrator/shade_volume.h b/intern/cycles/kernel/integrator/shade_volume.h
index 4aab097a7d8..0d35011c359 100644
--- a/intern/cycles/kernel/integrator/shade_volume.h
+++ b/intern/cycles/kernel/integrator/shade_volume.h
@@ -29,13 +29,13 @@ typedef enum VolumeIntegrateEvent {
typedef struct VolumeIntegrateResult {
/* Throughput and offset for direct light scattering. */
bool direct_scatter;
- float3 direct_throughput;
+ Spectrum direct_throughput;
float direct_t;
ShaderVolumePhases direct_phases;
/* Throughput and offset for indirect light scattering. */
bool indirect_scatter;
- float3 indirect_throughput;
+ Spectrum indirect_throughput;
float indirect_t;
ShaderVolumePhases indirect_phases;
} VolumeIntegrateResult;
@@ -52,16 +52,16 @@ typedef struct VolumeIntegrateResult {
* sigma_t = sigma_a + sigma_s */
typedef struct VolumeShaderCoefficients {
- float3 sigma_t;
- float3 sigma_s;
- float3 emission;
+ Spectrum sigma_t;
+ Spectrum sigma_s;
+ Spectrum emission;
} VolumeShaderCoefficients;
/* Evaluate shader to get extinction coefficient at P. */
ccl_device_inline bool shadow_volume_shader_sample(KernelGlobals kg,
IntegratorShadowState state,
ccl_private ShaderData *ccl_restrict sd,
- ccl_private float3 *ccl_restrict extinction)
+ ccl_private Spectrum *ccl_restrict extinction)
{
VOLUME_READ_LAMBDA(integrator_state_read_shadow_volume_stack(state, i))
shader_eval_volume<true>(kg, state, sd, PATH_RAY_SHADOW, volume_read_lambda_pass);
@@ -89,9 +89,10 @@ ccl_device_inline bool volume_shader_sample(KernelGlobals kg,
return false;
}
- coeff->sigma_s = zero_float3();
- coeff->sigma_t = (sd->flag & SD_EXTINCTION) ? sd->closure_transparent_extinction : zero_float3();
- coeff->emission = (sd->flag & SD_EMISSION) ? sd->closure_emission_background : zero_float3();
+ coeff->sigma_s = zero_spectrum();
+ coeff->sigma_t = (sd->flag & SD_EXTINCTION) ? sd->closure_transparent_extinction :
+ zero_spectrum();
+ coeff->emission = (sd->flag & SD_EMISSION) ? sd->closure_emission_background : zero_spectrum();
if (sd->flag & SD_SCATTER) {
for (int i = 0; i < sd->num_closure; i++) {
@@ -162,9 +163,9 @@ ccl_device_forceinline void volume_step_init(KernelGlobals kg,
ccl_device void volume_shadow_homogeneous(KernelGlobals kg, IntegratorState state,
ccl_private Ray *ccl_restrict ray,
ccl_private ShaderData *ccl_restrict sd,
- ccl_global float3 *ccl_restrict throughput)
+ ccl_global Spectrum *ccl_restrict throughput)
{
- float3 sigma_t = zero_float3();
+ Spectrum sigma_t = zero_spectrum();
if (shadow_volume_shader_sample(kg, state, sd, &sigma_t)) {
*throughput *= volume_color_transmittance(sigma_t, ray->tmax - ray->tmin);
@@ -178,14 +179,14 @@ ccl_device void volume_shadow_heterogeneous(KernelGlobals kg,
IntegratorShadowState state,
ccl_private Ray *ccl_restrict ray,
ccl_private ShaderData *ccl_restrict sd,
- ccl_private float3 *ccl_restrict throughput,
+ ccl_private Spectrum *ccl_restrict throughput,
const float object_step_size)
{
/* Load random number state. */
RNGState rng_state;
shadow_path_state_rng_load(state, &rng_state);
- float3 tp = *throughput;
+ Spectrum tp = *throughput;
/* Prepare for stepping.
* For shadows we do not offset all segments, since the starting point is
@@ -207,7 +208,7 @@ ccl_device void volume_shadow_heterogeneous(KernelGlobals kg,
/* compute extinction at the start */
float t = ray->tmin;
- float3 sum = zero_float3();
+ Spectrum sum = zero_spectrum();
for (int i = 0; i < max_steps; i++) {
/* advance to new position */
@@ -215,7 +216,7 @@ ccl_device void volume_shadow_heterogeneous(KernelGlobals kg,
float dt = new_t - t;
float3 new_P = ray->P + ray->D * (t + dt * step_shade_offset);
- float3 sigma_t = zero_float3();
+ Spectrum sigma_t = zero_spectrum();
/* compute attenuation over segment */
sd->P = new_P;
@@ -228,8 +229,7 @@ ccl_device void volume_shadow_heterogeneous(KernelGlobals kg,
tp = *throughput * exp(sum);
/* stop if nearly all light is blocked */
- if (tp.x < VOLUME_THROUGHPUT_EPSILON && tp.y < VOLUME_THROUGHPUT_EPSILON &&
- tp.z < VOLUME_THROUGHPUT_EPSILON)
+ if (reduce_max(tp) < VOLUME_THROUGHPUT_EPSILON)
break;
}
}
@@ -334,22 +334,22 @@ ccl_device float volume_equiangular_cdf(ccl_private const Ray *ccl_restrict ray,
/* Distance sampling */
ccl_device float volume_distance_sample(float max_t,
- float3 sigma_t,
+ Spectrum sigma_t,
int channel,
float xi,
- ccl_private float3 *transmittance,
- ccl_private float3 *pdf)
+ ccl_private Spectrum *transmittance,
+ ccl_private Spectrum *pdf)
{
/* xi is [0, 1[ so log(0) should never happen, division by zero is
* avoided because sample_sigma_t > 0 when SD_SCATTER is set */
float sample_sigma_t = volume_channel_get(sigma_t, channel);
- float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
+ Spectrum full_transmittance = volume_color_transmittance(sigma_t, max_t);
float sample_transmittance = volume_channel_get(full_transmittance, channel);
float sample_t = min(max_t, -logf(1.0f - xi * (1.0f - sample_transmittance)) / sample_sigma_t);
*transmittance = volume_color_transmittance(sigma_t, sample_t);
- *pdf = safe_divide_color(sigma_t * *transmittance, one_float3() - full_transmittance);
+ *pdf = safe_divide_color(sigma_t * *transmittance, one_spectrum() - full_transmittance);
/* todo: optimization: when taken together with hit/miss decision,
* the full_transmittance cancels out drops out and xi does not
@@ -358,33 +358,36 @@ ccl_device float volume_distance_sample(float max_t,
return sample_t;
}
-ccl_device float3 volume_distance_pdf(float max_t, float3 sigma_t, float sample_t)
+ccl_device Spectrum volume_distance_pdf(float max_t, Spectrum sigma_t, float sample_t)
{
- float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
- float3 transmittance = volume_color_transmittance(sigma_t, sample_t);
+ Spectrum full_transmittance = volume_color_transmittance(sigma_t, max_t);
+ Spectrum transmittance = volume_color_transmittance(sigma_t, sample_t);
- return safe_divide_color(sigma_t * transmittance, one_float3() - full_transmittance);
+ return safe_divide_color(sigma_t * transmittance, one_spectrum() - full_transmittance);
}
/* Emission */
-ccl_device float3 volume_emission_integrate(ccl_private VolumeShaderCoefficients *coeff,
- int closure_flag,
- float3 transmittance,
- float t)
+ccl_device Spectrum volume_emission_integrate(ccl_private VolumeShaderCoefficients *coeff,
+ int closure_flag,
+ Spectrum transmittance,
+ float t)
{
/* integral E * exp(-sigma_t * t) from 0 to t = E * (1 - exp(-sigma_t * t))/sigma_t
* this goes to E * t as sigma_t goes to zero
*
* todo: we should use an epsilon to avoid precision issues near zero sigma_t */
- float3 emission = coeff->emission;
+ Spectrum emission = coeff->emission;
if (closure_flag & SD_EXTINCTION) {
- float3 sigma_t = coeff->sigma_t;
+ Spectrum sigma_t = coeff->sigma_t;
- emission.x *= (sigma_t.x > 0.0f) ? (1.0f - transmittance.x) / sigma_t.x : t;
- emission.y *= (sigma_t.y > 0.0f) ? (1.0f - transmittance.y) / sigma_t.y : t;
- emission.z *= (sigma_t.z > 0.0f) ? (1.0f - transmittance.z) / sigma_t.z : t;
+ FOREACH_SPECTRUM_CHANNEL (i) {
+ GET_SPECTRUM_CHANNEL(emission, i) *= (GET_SPECTRUM_CHANNEL(sigma_t, i) > 0.0f) ?
+ (1.0f - GET_SPECTRUM_CHANNEL(transmittance, i)) /
+ GET_SPECTRUM_CHANNEL(sigma_t, i) :
+ t;
+ }
}
else
emission *= t;
@@ -419,14 +422,14 @@ ccl_device_forceinline void volume_integrate_step_scattering(
ccl_private const Ray *ray,
const float3 equiangular_light_P,
ccl_private const VolumeShaderCoefficients &ccl_restrict coeff,
- const float3 transmittance,
+ const Spectrum transmittance,
ccl_private VolumeIntegrateState &ccl_restrict vstate,
ccl_private VolumeIntegrateResult &ccl_restrict result)
{
/* Pick random color channel, we use the Veach one-sample
* model with balance heuristic for the channels. */
- const float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
- float3 channel_pdf;
+ const Spectrum albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
+ Spectrum channel_pdf;
const int channel = volume_sample_channel(
albedo, result.indirect_throughput, vstate.rphase, &channel_pdf);
@@ -435,7 +438,7 @@ ccl_device_forceinline void volume_integrate_step_scattering(
if (result.direct_t >= vstate.tmin && result.direct_t <= vstate.tmax &&
vstate.equiangular_pdf > VOLUME_SAMPLE_PDF_CUTOFF) {
const float new_dt = result.direct_t - vstate.tmin;
- const float3 new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
+ const Spectrum new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
result.direct_scatter = true;
result.direct_throughput *= coeff.sigma_s * new_transmittance / vstate.equiangular_pdf;
@@ -467,7 +470,7 @@ ccl_device_forceinline void volume_integrate_step_scattering(
const float new_t = vstate.tmin + new_dt;
/* transmittance and pdf */
- const float3 new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
+ const Spectrum new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
const float distance_pdf = dot(channel_pdf, coeff.sigma_t * new_transmittance);
if (vstate.distance_pdf * distance_pdf > VOLUME_SAMPLE_PDF_CUTOFF) {
@@ -566,7 +569,7 @@ ccl_device_forceinline void volume_integrate_heterogeneous(
vstate.distance_pdf = 1.0f;
/* Initialize volume integration result. */
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
result.direct_throughput = throughput;
result.indirect_throughput = throughput;
@@ -579,9 +582,9 @@ ccl_device_forceinline void volume_integrate_heterogeneous(
# ifdef __DENOISING_FEATURES__
const bool write_denoising_features = (INTEGRATOR_STATE(state, path, flag) &
PATH_RAY_DENOISING_FEATURES);
- float3 accum_albedo = zero_float3();
+ Spectrum accum_albedo = zero_spectrum();
# endif
- float3 accum_emission = zero_float3();
+ Spectrum accum_emission = zero_spectrum();
for (int i = 0; i < max_steps; i++) {
/* Advance to new position */
@@ -596,16 +599,16 @@ ccl_device_forceinline void volume_integrate_heterogeneous(
/* Evaluate transmittance over segment. */
const float dt = (vstate.tmax - vstate.tmin);
- const float3 transmittance = (closure_flag & SD_EXTINCTION) ?
- volume_color_transmittance(coeff.sigma_t, dt) :
- one_float3();
+ const Spectrum transmittance = (closure_flag & SD_EXTINCTION) ?
+ volume_color_transmittance(coeff.sigma_t, dt) :
+ one_spectrum();
/* Emission. */
if (closure_flag & SD_EMISSION) {
/* Only write emission before indirect light scatter position, since we terminate
* stepping at that point if we have already found a direct light scatter position. */
if (!result.indirect_scatter) {
- const float3 emission = volume_emission_integrate(
+ const Spectrum emission = volume_emission_integrate(
&coeff, closure_flag, transmittance, dt);
accum_emission += result.indirect_throughput * emission;
}
@@ -616,8 +619,8 @@ ccl_device_forceinline void volume_integrate_heterogeneous(
# ifdef __DENOISING_FEATURES__
/* Accumulate albedo for denoising features. */
if (write_denoising_features && (closure_flag & SD_SCATTER)) {
- const float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
- accum_albedo += result.indirect_throughput * albedo * (one_float3() - transmittance);
+ const Spectrum albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
+ accum_albedo += result.indirect_throughput * albedo * (one_spectrum() - transmittance);
}
# endif
@@ -634,7 +637,7 @@ ccl_device_forceinline void volume_integrate_heterogeneous(
/* Stop if nearly all light blocked. */
if (!result.indirect_scatter) {
if (reduce_max(result.indirect_throughput) < VOLUME_THROUGHPUT_EPSILON) {
- result.indirect_throughput = zero_float3();
+ result.indirect_throughput = zero_spectrum();
break;
}
}
@@ -715,7 +718,7 @@ ccl_device_forceinline void integrate_volume_direct_light(
ccl_private const RNGState *ccl_restrict rng_state,
const float3 P,
ccl_private const ShaderVolumePhases *ccl_restrict phases,
- ccl_private const float3 throughput,
+ ccl_private const Spectrum throughput,
ccl_private LightSample *ccl_restrict ls)
{
PROFILING_INIT(kg, PROFILING_SHADE_VOLUME_DIRECT_LIGHT);
@@ -753,7 +756,7 @@ ccl_device_forceinline void integrate_volume_direct_light(
* non-constant light sources. */
ShaderDataTinyStorage emission_sd_storage;
ccl_private ShaderData *emission_sd = AS_SHADER_DATA(&emission_sd_storage);
- const float3 light_eval = light_sample_shader_eval(kg, state, emission_sd, ls, sd->time);
+ const Spectrum light_eval = light_sample_shader_eval(kg, state, emission_sd, ls, sd->time);
if (is_zero(light_eval)) {
return;
}
@@ -796,11 +799,11 @@ ccl_device_forceinline void integrate_volume_direct_light(
const uint16_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag);
shadow_flag |= (is_light) ? PATH_RAY_SHADOW_FOR_LIGHT : 0;
- const float3 throughput_phase = throughput * bsdf_eval_sum(&phase_eval);
+ const Spectrum throughput_phase = throughput * bsdf_eval_sum(&phase_eval);
if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
- packed_float3 pass_diffuse_weight;
- packed_float3 pass_glossy_weight;
+ PackedSpectrum pass_diffuse_weight;
+ PackedSpectrum pass_glossy_weight;
if (shadow_flag & PATH_RAY_ANY_PASS) {
/* Indirect bounce, use weights from earlier surface or volume bounce. */
@@ -810,8 +813,8 @@ ccl_device_forceinline void integrate_volume_direct_light(
else {
/* Direct light, no diffuse/glossy distinction needed for volumes. */
shadow_flag |= PATH_RAY_VOLUME_PASS;
- pass_diffuse_weight = packed_float3(one_float3());
- pass_glossy_weight = packed_float3(zero_float3());
+ pass_diffuse_weight = one_spectrum();
+ pass_glossy_weight = zero_spectrum();
}
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, pass_diffuse_weight) = pass_diffuse_weight;
@@ -898,13 +901,13 @@ ccl_device_forceinline bool integrate_volume_phase_scatter(
INTEGRATOR_STATE_WRITE(state, isect, object) = sd->object;
/* Update throughput. */
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
- const float3 throughput_phase = throughput * bsdf_eval_sum(&phase_eval) / phase_pdf;
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
+ const Spectrum throughput_phase = throughput * bsdf_eval_sum(&phase_eval) / phase_pdf;
INTEGRATOR_STATE_WRITE(state, path, throughput) = throughput_phase;
if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
- INTEGRATOR_STATE_WRITE(state, path, pass_diffuse_weight) = one_float3();
- INTEGRATOR_STATE_WRITE(state, path, pass_glossy_weight) = zero_float3();
+ INTEGRATOR_STATE_WRITE(state, path, pass_diffuse_weight) = one_spectrum();
+ INTEGRATOR_STATE_WRITE(state, path, pass_glossy_weight) = zero_spectrum();
}
/* Update path state */
diff --git a/intern/cycles/kernel/integrator/shader_eval.h b/intern/cycles/kernel/integrator/shader_eval.h
index ed4d973e864..d9c14b25a4b 100644
--- a/intern/cycles/kernel/integrator/shader_eval.h
+++ b/intern/cycles/kernel/integrator/shader_eval.h
@@ -98,7 +98,7 @@ ccl_device_inline void shader_prepare_surface_closures(KernelGlobals kg,
/* Filter out closures. */
if (kernel_data.integrator.filter_closures) {
if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_EMISSION) {
- sd->closure_emission_background = zero_float3();
+ sd->closure_emission_background = zero_spectrum();
}
if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_DIRECT_LIGHT) {
@@ -231,7 +231,7 @@ ccl_device_inline float _shader_bsdf_multi_eval(KernelGlobals kg,
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
if (CLOSURE_IS_BSDF(sc->type) && !_shader_bsdf_exclude(sc->type, light_shader_flags)) {
float bsdf_pdf = 0.0f;
- float3 eval = bsdf_eval(kg, sd, sc, omega_in, is_transmission, &bsdf_pdf);
+ Spectrum eval = bsdf_eval(kg, sd, sc, omega_in, is_transmission, &bsdf_pdf);
if (bsdf_pdf != 0.0f) {
bsdf_eval_accum(result_eval, sc->type, eval * sc->weight);
@@ -259,7 +259,7 @@ ccl_device_inline
ccl_private BsdfEval *bsdf_eval,
const uint light_shader_flags)
{
- bsdf_eval_init(bsdf_eval, CLOSURE_NONE_ID, zero_float3());
+ bsdf_eval_init(bsdf_eval, CLOSURE_NONE_ID, zero_spectrum());
return _shader_bsdf_multi_eval(
kg, sd, omega_in, is_transmission, NULL, bsdf_eval, 0.0f, 0.0f, light_shader_flags);
@@ -309,11 +309,11 @@ ccl_device_inline ccl_private const ShaderClosure *shader_bsdf_bssrdf_pick(
}
/* Return weight for picked BSSRDF. */
-ccl_device_inline float3
+ccl_device_inline Spectrum
shader_bssrdf_sample_weight(ccl_private const ShaderData *ccl_restrict sd,
ccl_private const ShaderClosure *ccl_restrict bssrdf_sc)
{
- float3 weight = bssrdf_sc->weight;
+ Spectrum weight = bssrdf_sc->weight;
if (sd->num_closure > 1) {
float sum = 0.0f;
@@ -346,7 +346,7 @@ ccl_device int shader_bsdf_sample_closure(KernelGlobals kg,
kernel_assert(CLOSURE_IS_BSDF(sc->type));
int label;
- float3 eval = zero_float3();
+ Spectrum eval = zero_spectrum();
*pdf = 0.0f;
label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
@@ -385,16 +385,16 @@ ccl_device float shader_bsdf_average_roughness(ccl_private const ShaderData *sd)
return (sum_weight > 0.0f) ? roughness / sum_weight : 0.0f;
}
-ccl_device float3 shader_bsdf_transparency(KernelGlobals kg, ccl_private const ShaderData *sd)
+ccl_device Spectrum shader_bsdf_transparency(KernelGlobals kg, ccl_private const ShaderData *sd)
{
if (sd->flag & SD_HAS_ONLY_VOLUME) {
- return one_float3();
+ return one_spectrum();
}
else if (sd->flag & SD_TRANSPARENT) {
return sd->closure_transparent_extinction;
}
else {
- return zero_float3();
+ return zero_spectrum();
}
}
@@ -406,7 +406,7 @@ ccl_device void shader_bsdf_disable_transparency(KernelGlobals kg, ccl_private S
if (sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
sc->sample_weight = 0.0f;
- sc->weight = zero_float3();
+ sc->weight = zero_spectrum();
}
}
@@ -414,19 +414,18 @@ ccl_device void shader_bsdf_disable_transparency(KernelGlobals kg, ccl_private S
}
}
-ccl_device float3 shader_bsdf_alpha(KernelGlobals kg, ccl_private const ShaderData *sd)
+ccl_device Spectrum shader_bsdf_alpha(KernelGlobals kg, ccl_private const ShaderData *sd)
{
- float3 alpha = one_float3() - shader_bsdf_transparency(kg, sd);
+ Spectrum alpha = one_spectrum() - shader_bsdf_transparency(kg, sd);
- alpha = max(alpha, zero_float3());
- alpha = min(alpha, one_float3());
+ alpha = saturate(alpha);
return alpha;
}
-ccl_device float3 shader_bsdf_diffuse(KernelGlobals kg, ccl_private const ShaderData *sd)
+ccl_device Spectrum shader_bsdf_diffuse(KernelGlobals kg, ccl_private const ShaderData *sd)
{
- float3 eval = zero_float3();
+ Spectrum eval = zero_spectrum();
for (int i = 0; i < sd->num_closure; i++) {
ccl_private const ShaderClosure *sc = &sd->closure[i];
@@ -438,9 +437,9 @@ ccl_device float3 shader_bsdf_diffuse(KernelGlobals kg, ccl_private const Shader
return eval;
}
-ccl_device float3 shader_bsdf_glossy(KernelGlobals kg, ccl_private const ShaderData *sd)
+ccl_device Spectrum shader_bsdf_glossy(KernelGlobals kg, ccl_private const ShaderData *sd)
{
- float3 eval = zero_float3();
+ Spectrum eval = zero_spectrum();
for (int i = 0; i < sd->num_closure; i++) {
ccl_private const ShaderClosure *sc = &sd->closure[i];
@@ -452,9 +451,9 @@ ccl_device float3 shader_bsdf_glossy(KernelGlobals kg, ccl_private const ShaderD
return eval;
}
-ccl_device float3 shader_bsdf_transmission(KernelGlobals kg, ccl_private const ShaderData *sd)
+ccl_device Spectrum shader_bsdf_transmission(KernelGlobals kg, ccl_private const ShaderData *sd)
{
- float3 eval = zero_float3();
+ Spectrum eval = zero_spectrum();
for (int i = 0; i < sd->num_closure; i++) {
ccl_private const ShaderClosure *sc = &sd->closure[i];
@@ -479,12 +478,12 @@ ccl_device float3 shader_bsdf_average_normal(KernelGlobals kg, ccl_private const
return (is_zero(N)) ? sd->N : normalize(N);
}
-ccl_device float3 shader_bsdf_ao(KernelGlobals kg,
- ccl_private const ShaderData *sd,
- const float ao_factor,
- ccl_private float3 *N_)
+ccl_device Spectrum shader_bsdf_ao(KernelGlobals kg,
+ ccl_private const ShaderData *sd,
+ const float ao_factor,
+ ccl_private float3 *N_)
{
- float3 eval = zero_float3();
+ Spectrum eval = zero_spectrum();
float3 N = zero_float3();
for (int i = 0; i < sd->num_closure; i++) {
@@ -525,15 +524,17 @@ ccl_device float3 shader_bssrdf_normal(ccl_private const ShaderData *sd)
ccl_device bool shader_constant_emission_eval(KernelGlobals kg,
int shader,
- ccl_private float3 *eval)
+ ccl_private Spectrum *eval)
{
int shader_index = shader & SHADER_MASK;
int shader_flag = kernel_data_fetch(shaders, shader_index).flags;
if (shader_flag & SD_HAS_CONSTANT_EMISSION) {
- *eval = make_float3(kernel_data_fetch(shaders, shader_index).constant_emission[0],
- kernel_data_fetch(shaders, shader_index).constant_emission[1],
- kernel_data_fetch(shaders, shader_index).constant_emission[2]);
+ const float3 emission_rgb = make_float3(
+ kernel_data_fetch(shaders, shader_index).constant_emission[0],
+ kernel_data_fetch(shaders, shader_index).constant_emission[1],
+ kernel_data_fetch(shaders, shader_index).constant_emission[2]);
+ *eval = rgb_to_spectrum(emission_rgb);
return true;
}
@@ -543,39 +544,39 @@ ccl_device bool shader_constant_emission_eval(KernelGlobals kg,
/* Background */
-ccl_device float3 shader_background_eval(ccl_private const ShaderData *sd)
+ccl_device Spectrum shader_background_eval(ccl_private const ShaderData *sd)
{
if (sd->flag & SD_EMISSION) {
return sd->closure_emission_background;
}
else {
- return zero_float3();
+ return zero_spectrum();
}
}
/* Emission */
-ccl_device float3 shader_emissive_eval(ccl_private const ShaderData *sd)
+ccl_device Spectrum shader_emissive_eval(ccl_private const ShaderData *sd)
{
if (sd->flag & SD_EMISSION) {
return emissive_simple_eval(sd->Ng, sd->I) * sd->closure_emission_background;
}
else {
- return zero_float3();
+ return zero_spectrum();
}
}
/* Holdout */
-ccl_device float3 shader_holdout_apply(KernelGlobals kg, ccl_private ShaderData *sd)
+ccl_device Spectrum shader_holdout_apply(KernelGlobals kg, ccl_private ShaderData *sd)
{
- float3 weight = zero_float3();
+ Spectrum weight = zero_spectrum();
/* For objects marked as holdout, preserve transparency and remove all other
* closures, replacing them with a holdout weight. */
if (sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
if ((sd->flag & SD_TRANSPARENT) && !(sd->flag & SD_HAS_ONLY_VOLUME)) {
- weight = one_float3() - sd->closure_transparent_extinction;
+ weight = one_spectrum() - sd->closure_transparent_extinction;
for (int i = 0; i < sd->num_closure; i++) {
ccl_private ShaderClosure *sc = &sd->closure[i];
@@ -587,7 +588,7 @@ ccl_device float3 shader_holdout_apply(KernelGlobals kg, ccl_private ShaderData
sd->flag &= ~(SD_CLOSURE_FLAGS - (SD_TRANSPARENT | SD_BSDF));
}
else {
- weight = one_float3();
+ weight = one_spectrum();
}
}
else {
@@ -642,12 +643,12 @@ ccl_device void shader_eval_surface(KernelGlobals kg,
svm_eval_nodes<node_feature_mask, SHADER_TYPE_SURFACE>(kg, state, sd, buffer, path_flag);
#else
if (sd->object == OBJECT_NONE) {
- sd->closure_emission_background = make_float3(0.8f, 0.8f, 0.8f);
+ sd->closure_emission_background = make_spectrum(0.8f);
sd->flag |= SD_EMISSION;
}
else {
ccl_private DiffuseBsdf *bsdf = (ccl_private DiffuseBsdf *)bsdf_alloc(
- sd, sizeof(DiffuseBsdf), make_float3(0.8f, 0.8f, 0.8f));
+ sd, sizeof(DiffuseBsdf), make_spectrum(0.8f));
if (bsdf != NULL) {
bsdf->N = sd->N;
sd->flag |= bsdf_diffuse_setup(bsdf);
@@ -676,7 +677,7 @@ ccl_device_inline float _shader_volume_phase_multi_eval(
ccl_private const ShaderVolumeClosure *svc = &phases->closure[i];
float phase_pdf = 0.0f;
- float3 eval = volume_phase_eval(sd, svc, omega_in, &phase_pdf);
+ Spectrum eval = volume_phase_eval(sd, svc, omega_in, &phase_pdf);
if (phase_pdf != 0.0f) {
bsdf_eval_accum(result_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
@@ -695,7 +696,7 @@ ccl_device float shader_volume_phase_eval(KernelGlobals kg,
const float3 omega_in,
ccl_private BsdfEval *phase_eval)
{
- bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, zero_float3());
+ bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, zero_spectrum());
return _shader_volume_phase_multi_eval(sd, phases, omega_in, -1, phase_eval, 0.0f, 0.0f);
}
@@ -747,7 +748,7 @@ ccl_device int shader_volume_phase_sample(KernelGlobals kg,
* depending on color channels, even if this is perhaps not a common case */
ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
int label;
- float3 eval = zero_float3();
+ Spectrum eval = zero_spectrum();
*pdf = 0.0f;
label = volume_phase_sample(sd, svc, randu, randv, &eval, omega_in, domega_in, pdf);
@@ -770,7 +771,7 @@ ccl_device int shader_phase_sample_closure(KernelGlobals kg,
ccl_private float *pdf)
{
int label;
- float3 eval = zero_float3();
+ Spectrum eval = zero_spectrum();
*pdf = 0.0f;
label = volume_phase_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
diff --git a/intern/cycles/kernel/integrator/shadow_catcher.h b/intern/cycles/kernel/integrator/shadow_catcher.h
index ff63625aceb..7103b6032ac 100644
--- a/intern/cycles/kernel/integrator/shadow_catcher.h
+++ b/intern/cycles/kernel/integrator/shadow_catcher.h
@@ -93,7 +93,7 @@ ccl_device_forceinline void kernel_write_shadow_catcher_bounce_data(
/* Since the split is done, the sample does not contribute to the matte, so accumulate it as
* transparency to the matte. */
- const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
+ const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
kernel_write_pass_float(buffer + kernel_data.film.pass_shadow_catcher_matte + 3,
average(throughput));
}
diff --git a/intern/cycles/kernel/integrator/shadow_state_template.h b/intern/cycles/kernel/integrator/shadow_state_template.h
index c340467606d..3b490ecffdd 100644
--- a/intern/cycles/kernel/integrator/shadow_state_template.h
+++ b/intern/cycles/kernel/integrator/shadow_state_template.h
@@ -27,15 +27,15 @@ KERNEL_STRUCT_MEMBER(shadow_path, uint16_t, queued_kernel, KERNEL_FEATURE_PATH_T
/* enum PathRayFlag */
KERNEL_STRUCT_MEMBER(shadow_path, uint32_t, flag, KERNEL_FEATURE_PATH_TRACING)
/* Throughput. */
-KERNEL_STRUCT_MEMBER(shadow_path, packed_float3, throughput, KERNEL_FEATURE_PATH_TRACING)
+KERNEL_STRUCT_MEMBER(shadow_path, PackedSpectrum, throughput, KERNEL_FEATURE_PATH_TRACING)
/* Throughput for shadow pass. */
KERNEL_STRUCT_MEMBER(shadow_path,
- packed_float3,
+ PackedSpectrum,
unshadowed_throughput,
KERNEL_FEATURE_SHADOW_PASS | KERNEL_FEATURE_AO_ADDITIVE)
/* Ratio of throughput to distinguish diffuse / glossy / transmission render passes. */
-KERNEL_STRUCT_MEMBER(shadow_path, packed_float3, pass_diffuse_weight, KERNEL_FEATURE_LIGHT_PASSES)
-KERNEL_STRUCT_MEMBER(shadow_path, packed_float3, pass_glossy_weight, KERNEL_FEATURE_LIGHT_PASSES)
+KERNEL_STRUCT_MEMBER(shadow_path, PackedSpectrum, pass_diffuse_weight, KERNEL_FEATURE_LIGHT_PASSES)
+KERNEL_STRUCT_MEMBER(shadow_path, PackedSpectrum, pass_glossy_weight, KERNEL_FEATURE_LIGHT_PASSES)
/* Number of intersections found by ray-tracing. */
KERNEL_STRUCT_MEMBER(shadow_path, uint16_t, num_hits, KERNEL_FEATURE_PATH_TRACING)
/* Light group. */
diff --git a/intern/cycles/kernel/integrator/state_template.h b/intern/cycles/kernel/integrator/state_template.h
index 5c2af131945..f4e280e4cb2 100644
--- a/intern/cycles/kernel/integrator/state_template.h
+++ b/intern/cycles/kernel/integrator/state_template.h
@@ -46,12 +46,12 @@ KERNEL_STRUCT_MEMBER(path, float, min_ray_pdf, KERNEL_FEATURE_PATH_TRACING)
/* Continuation probability for path termination. */
KERNEL_STRUCT_MEMBER(path, float, continuation_probability, KERNEL_FEATURE_PATH_TRACING)
/* Throughput. */
-KERNEL_STRUCT_MEMBER(path, packed_float3, throughput, KERNEL_FEATURE_PATH_TRACING)
+KERNEL_STRUCT_MEMBER(path, PackedSpectrum, throughput, KERNEL_FEATURE_PATH_TRACING)
/* Ratio of throughput to distinguish diffuse / glossy / transmission render passes. */
-KERNEL_STRUCT_MEMBER(path, packed_float3, pass_diffuse_weight, KERNEL_FEATURE_LIGHT_PASSES)
-KERNEL_STRUCT_MEMBER(path, packed_float3, pass_glossy_weight, KERNEL_FEATURE_LIGHT_PASSES)
+KERNEL_STRUCT_MEMBER(path, PackedSpectrum, pass_diffuse_weight, KERNEL_FEATURE_LIGHT_PASSES)
+KERNEL_STRUCT_MEMBER(path, PackedSpectrum, pass_glossy_weight, KERNEL_FEATURE_LIGHT_PASSES)
/* Denoising. */
-KERNEL_STRUCT_MEMBER(path, packed_float3, denoising_feature_throughput, KERNEL_FEATURE_DENOISING)
+KERNEL_STRUCT_MEMBER(path, PackedSpectrum, denoising_feature_throughput, KERNEL_FEATURE_DENOISING)
/* Shader sorting. */
/* TODO: compress as uint16? or leave out entirely and recompute key in sorting code? */
KERNEL_STRUCT_MEMBER(path, uint32_t, shader_sort_key, KERNEL_FEATURE_PATH_TRACING)
@@ -84,8 +84,8 @@ KERNEL_STRUCT_END(isect)
/*************** Subsurface closure state for subsurface kernel ***************/
KERNEL_STRUCT_BEGIN(subsurface)
-KERNEL_STRUCT_MEMBER(subsurface, packed_float3, albedo, KERNEL_FEATURE_SUBSURFACE)
-KERNEL_STRUCT_MEMBER(subsurface, packed_float3, radius, KERNEL_FEATURE_SUBSURFACE)
+KERNEL_STRUCT_MEMBER(subsurface, PackedSpectrum, albedo, KERNEL_FEATURE_SUBSURFACE)
+KERNEL_STRUCT_MEMBER(subsurface, PackedSpectrum, radius, KERNEL_FEATURE_SUBSURFACE)
KERNEL_STRUCT_MEMBER(subsurface, float, anisotropy, KERNEL_FEATURE_SUBSURFACE)
KERNEL_STRUCT_MEMBER(subsurface, packed_float3, Ng, KERNEL_FEATURE_SUBSURFACE)
KERNEL_STRUCT_END(subsurface)
diff --git a/intern/cycles/kernel/integrator/subsurface.h b/intern/cycles/kernel/integrator/subsurface.h
index 2f96f215d8a..ee3a619f968 100644
--- a/intern/cycles/kernel/integrator/subsurface.h
+++ b/intern/cycles/kernel/integrator/subsurface.h
@@ -51,7 +51,7 @@ ccl_device int subsurface_bounce(KernelGlobals kg,
PATH_RAY_SUBSURFACE_RANDOM_WALK);
/* Compute weight, optionally including Fresnel from entry point. */
- float3 weight = shader_bssrdf_sample_weight(sd, sc);
+ Spectrum weight = shader_bssrdf_sample_weight(sd, sc);
# ifdef __PRINCIPLED__
if (bssrdf->roughness != FLT_MAX) {
path_flag |= PATH_RAY_SUBSURFACE_USE_FRESNEL;
@@ -70,8 +70,8 @@ ccl_device int subsurface_bounce(KernelGlobals kg,
if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
if (INTEGRATOR_STATE(state, path, bounce) == 0) {
- INTEGRATOR_STATE_WRITE(state, path, pass_diffuse_weight) = one_float3();
- INTEGRATOR_STATE_WRITE(state, path, pass_glossy_weight) = zero_float3();
+ INTEGRATOR_STATE_WRITE(state, path, pass_diffuse_weight) = one_spectrum();
+ INTEGRATOR_STATE_WRITE(state, path, pass_glossy_weight) = zero_spectrum();
}
}
@@ -99,7 +99,7 @@ ccl_device void subsurface_shader_data_setup(KernelGlobals kg,
sd->num_closure = 0;
sd->num_closure_left = kernel_data.max_closures;
- const float3 weight = one_float3();
+ const Spectrum weight = one_spectrum();
# ifdef __PRINCIPLED__
if (path_flag & PATH_RAY_SUBSURFACE_USE_FRESNEL) {
diff --git a/intern/cycles/kernel/integrator/subsurface_disk.h b/intern/cycles/kernel/integrator/subsurface_disk.h
index 60b63c075a0..77763f702d8 100644
--- a/intern/cycles/kernel/integrator/subsurface_disk.h
+++ b/intern/cycles/kernel/integrator/subsurface_disk.h
@@ -9,11 +9,11 @@ CCL_NAMESPACE_BEGIN
* http://library.imageworks.com/pdfs/imageworks-library-BSSRDF-sampling.pdf
*/
-ccl_device_inline float3 subsurface_disk_eval(const float3 radius, float disk_r, float r)
+ccl_device_inline Spectrum subsurface_disk_eval(const Spectrum radius, float disk_r, float r)
{
- const float3 eval = bssrdf_eval(radius, r);
+ const Spectrum eval = bssrdf_eval(radius, r);
const float pdf = bssrdf_pdf(radius, disk_r);
- return (pdf > 0.0f) ? eval / pdf : zero_float3();
+ return (pdf > 0.0f) ? eval / pdf : zero_spectrum();
}
/* Subsurface scattering step, from a point on the surface to other
@@ -37,7 +37,7 @@ ccl_device_inline bool subsurface_disk(KernelGlobals kg,
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
/* Read subsurface scattering parameters. */
- const float3 radius = INTEGRATOR_STATE(state, subsurface, radius);
+ const Spectrum radius = INTEGRATOR_STATE(state, subsurface, radius);
/* Pick random axis in local frame and point on disk. */
float3 disk_N, disk_T, disk_B;
@@ -108,7 +108,7 @@ ccl_device_inline bool subsurface_disk(KernelGlobals kg,
* traversal algorithm. */
sort_intersections_and_normals(ss_isect.hits, ss_isect.Ng, num_eval_hits);
- float3 weights[BSSRDF_MAX_HITS]; /* TODO: zero? */
+ Spectrum weights[BSSRDF_MAX_HITS]; /* TODO: zero? */
float sum_weights = 0.0f;
for (int hit = 0; hit < num_eval_hits; hit++) {
@@ -150,7 +150,7 @@ ccl_device_inline bool subsurface_disk(KernelGlobals kg,
const float r = len(hit_P - P);
/* Evaluate profiles. */
- const float3 weight = subsurface_disk_eval(radius, disk_r, r) * w;
+ const Spectrum weight = subsurface_disk_eval(radius, disk_r, r) * w;
/* Store result. */
ss_isect.Ng[hit] = hit_Ng;
@@ -167,7 +167,7 @@ ccl_device_inline bool subsurface_disk(KernelGlobals kg,
float partial_sum = 0.0f;
for (int hit = 0; hit < num_eval_hits; hit++) {
- const float3 weight = weights[hit];
+ const Spectrum weight = weights[hit];
const float sample_weight = average(fabs(weight));
float next_sum = partial_sum + sample_weight;
diff --git a/intern/cycles/kernel/integrator/subsurface_random_walk.h b/intern/cycles/kernel/integrator/subsurface_random_walk.h
index e43bbb3c50a..9c67d909bd4 100644
--- a/intern/cycles/kernel/integrator/subsurface_random_walk.h
+++ b/intern/cycles/kernel/integrator/subsurface_random_walk.h
@@ -65,19 +65,20 @@ ccl_device void subsurface_random_walk_remap(const float albedo,
*sigma_t = sigma_t_prime / (1.0f - g);
}
-ccl_device void subsurface_random_walk_coefficients(const float3 albedo,
- const float3 radius,
+ccl_device void subsurface_random_walk_coefficients(const Spectrum albedo,
+ const Spectrum radius,
const float anisotropy,
- ccl_private float3 *sigma_t,
- ccl_private float3 *alpha,
- ccl_private float3 *throughput)
+ ccl_private Spectrum *sigma_t,
+ ccl_private Spectrum *alpha,
+ ccl_private Spectrum *throughput)
{
- float sigma_t_x, sigma_t_y, sigma_t_z;
- float alpha_x, alpha_y, alpha_z;
-
- subsurface_random_walk_remap(albedo.x, radius.x, anisotropy, &sigma_t_x, &alpha_x);
- subsurface_random_walk_remap(albedo.y, radius.y, anisotropy, &sigma_t_y, &alpha_y);
- subsurface_random_walk_remap(albedo.z, radius.z, anisotropy, &sigma_t_z, &alpha_z);
+ FOREACH_SPECTRUM_CHANNEL (i) {
+ subsurface_random_walk_remap(GET_SPECTRUM_CHANNEL(albedo, i),
+ GET_SPECTRUM_CHANNEL(radius, i),
+ anisotropy,
+ &GET_SPECTRUM_CHANNEL(*sigma_t, i),
+ &GET_SPECTRUM_CHANNEL(*alpha, i));
+ }
/* Throughput already contains closure weight at this point, which includes the
* albedo, as well as closure mixing and Fresnel weights. Divide out the albedo
@@ -88,21 +89,12 @@ ccl_device void subsurface_random_walk_coefficients(const float3 albedo,
* infinite phase functions. To avoid a sharp discontinuity as we go from
* such values to 0.0, increase alpha and reduce the throughput to compensate. */
const float min_alpha = 0.2f;
- if (alpha_x < min_alpha) {
- (*throughput).x *= alpha_x / min_alpha;
- alpha_x = min_alpha;
- }
- if (alpha_y < min_alpha) {
- (*throughput).y *= alpha_y / min_alpha;
- alpha_y = min_alpha;
- }
- if (alpha_z < min_alpha) {
- (*throughput).z *= alpha_z / min_alpha;
- alpha_z = min_alpha;
+ FOREACH_SPECTRUM_CHANNEL (i) {
+ if (GET_SPECTRUM_CHANNEL(*alpha, i) < min_alpha) {
+ GET_SPECTRUM_CHANNEL(*throughput, i) *= GET_SPECTRUM_CHANNEL(*alpha, i) / min_alpha;
+ GET_SPECTRUM_CHANNEL(*alpha, i) = min_alpha;
+ }
}
-
- *sigma_t = make_float3(sigma_t_x, sigma_t_y, sigma_t_z);
- *alpha = make_float3(alpha_x, alpha_y, alpha_z);
}
/* References for Dwivedi sampling:
@@ -151,12 +143,12 @@ ccl_device_forceinline float3 direction_from_cosine(float3 D, float cos_theta, f
return dir.x * T + dir.y * B + dir.z * D;
}
-ccl_device_forceinline float3 subsurface_random_walk_pdf(float3 sigma_t,
- float t,
- bool hit,
- ccl_private float3 *transmittance)
+ccl_device_forceinline Spectrum subsurface_random_walk_pdf(Spectrum sigma_t,
+ float t,
+ bool hit,
+ ccl_private Spectrum *transmittance)
{
- float3 T = volume_color_transmittance(sigma_t, t);
+ Spectrum T = volume_color_transmittance(sigma_t, t);
if (transmittance) {
*transmittance = T;
}
@@ -207,14 +199,14 @@ ccl_device_inline bool subsurface_random_walk(KernelGlobals kg,
/* Convert subsurface to volume coefficients.
* The single-scattering albedo is named alpha to avoid confusion with the surface albedo. */
- const float3 albedo = INTEGRATOR_STATE(state, subsurface, albedo);
- const float3 radius = INTEGRATOR_STATE(state, subsurface, radius);
+ const Spectrum albedo = INTEGRATOR_STATE(state, subsurface, albedo);
+ const Spectrum radius = INTEGRATOR_STATE(state, subsurface, radius);
const float anisotropy = INTEGRATOR_STATE(state, subsurface, anisotropy);
- float3 sigma_t, alpha;
- float3 throughput = INTEGRATOR_STATE_WRITE(state, path, throughput);
+ Spectrum sigma_t, alpha;
+ Spectrum throughput = INTEGRATOR_STATE_WRITE(state, path, throughput);
subsurface_random_walk_coefficients(albedo, radius, anisotropy, &sigma_t, &alpha, &throughput);
- float3 sigma_s = sigma_t * alpha;
+ Spectrum sigma_s = sigma_t * alpha;
/* Theoretically it should be better to use the exact alpha for the channel we're sampling at
* each bounce, but in practice there doesn't seem to be a noticeable difference in exchange
@@ -249,10 +241,10 @@ ccl_device_inline bool subsurface_random_walk(KernelGlobals kg,
const float guided_fraction = 1.0f - fmaxf(0.5f, powf(fabsf(anisotropy), 0.125f));
#ifdef SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL
- float3 sigma_s_star = sigma_s * (1.0f - anisotropy);
- float3 sigma_t_star = sigma_t - sigma_s + sigma_s_star;
- float3 sigma_t_org = sigma_t;
- float3 sigma_s_org = sigma_s;
+ Spectrum sigma_s_star = sigma_s * (1.0f - anisotropy);
+ Spectrum sigma_t_star = sigma_t - sigma_s + sigma_s_star;
+ Spectrum sigma_t_org = sigma_t;
+ Spectrum sigma_s_org = sigma_s;
const float anisotropy_org = anisotropy;
const float guided_fraction_org = guided_fraction;
#endif
@@ -264,7 +256,7 @@ ccl_device_inline bool subsurface_random_walk(KernelGlobals kg,
#ifdef SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL
// shadow with local variables according to depth
float anisotropy, guided_fraction;
- float3 sigma_s, sigma_t;
+ Spectrum sigma_s, sigma_t;
if (bounce <= SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL) {
anisotropy = anisotropy_org;
guided_fraction = guided_fraction_org;
@@ -281,7 +273,7 @@ ccl_device_inline bool subsurface_random_walk(KernelGlobals kg,
/* Sample color channel, use MIS with balance heuristic. */
float rphase = path_state_rng_1D(kg, &rng_state, PRNG_PHASE_CHANNEL);
- float3 channel_pdf;
+ Spectrum channel_pdf;
int channel = volume_sample_channel(alpha, throughput, rphase, &channel_pdf);
float sample_sigma_t = volume_channel_get(sigma_t, channel);
float randt = path_state_rng_1D(kg, &rng_state, PRNG_SCATTER_DISTANCE);
@@ -399,16 +391,17 @@ ccl_device_inline bool subsurface_random_walk(KernelGlobals kg,
/* Advance to new scatter location. */
ray.P += t * ray.D;
- float3 transmittance;
- float3 pdf = subsurface_random_walk_pdf(sigma_t, t, hit, &transmittance);
+ Spectrum transmittance;
+ Spectrum pdf = subsurface_random_walk_pdf(sigma_t, t, hit, &transmittance);
if (bounce > 0) {
/* Compute PDF just like we do for classic sampling, but with the stretched sigma_t. */
- float3 guided_pdf = subsurface_random_walk_pdf(forward_stretching * sigma_t, t, hit, NULL);
+ Spectrum guided_pdf = subsurface_random_walk_pdf(forward_stretching * sigma_t, t, hit, NULL);
if (have_opposite_interface) {
/* First step of MIS: Depending on geometry we might have two methods for guided
* sampling, so perform MIS between them. */
- float3 back_pdf = subsurface_random_walk_pdf(backward_stretching * sigma_t, t, hit, NULL);
+ Spectrum back_pdf = subsurface_random_walk_pdf(
+ backward_stretching * sigma_t, t, hit, NULL);
guided_pdf = mix(
guided_pdf * forward_pdf_factor, back_pdf * backward_pdf_factor, backward_fraction);
}
@@ -430,9 +423,7 @@ ccl_device_inline bool subsurface_random_walk(KernelGlobals kg,
/* If we hit the surface, we are done. */
break;
}
- else if (throughput.x < VOLUME_THROUGHPUT_EPSILON &&
- throughput.y < VOLUME_THROUGHPUT_EPSILON &&
- throughput.z < VOLUME_THROUGHPUT_EPSILON) {
+ else if (reduce_max(throughput) < VOLUME_THROUGHPUT_EPSILON) {
/* Avoid unnecessary work and precision issue when throughput gets really small. */
break;
}