Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSergey Sharybin <sergey.vfx@gmail.com>2015-05-21 15:40:04 +0300
committerSergey Sharybin <sergey.vfx@gmail.com>2015-05-22 14:31:34 +0300
commit2c503d8303299c27b874e11e89a1229c00dfa55d (patch)
treead9840adab05d881191fabc39b402dc66b83b36d /intern/cycles/kernel/split/kernel_queue_enqueue.h
parent7f4d5850fec772522729aff61d3695095fff0831 (diff)
Cycles: Restructure kernel files organization
Since the kernel split work we're now having quite a few of new files, majority of which are related on the kernel entry points. Keeping those files in the root kernel folder will eventually make it really hard to follow which files are actual implementation of Cycles kernel. Those files are now moved to kernel/kernels/<device_type>. This way adding extra entry points will be less noisy. It is also nice to have all device-specific files grouped together. Another change is in the way how split kernel invokes logic. Previously all the logic was implemented directly in the .cl files, which makes it a bit tricky to re-use the logic across other devices. Since we'll likely be looking into doing same split work for CUDA devices eventually it makes sense to move logic from .cl files to header files. Those files are stored in kernel/split. This does not mean the header files will not give error messages when tried to be included from other devices and their arguments will likely be changed, but having such separation is a good start anyway. There should be no functional changes. Reviewers: juicyfruit, dingto Differential Revision: https://developer.blender.org/D1314
Diffstat (limited to 'intern/cycles/kernel/split/kernel_queue_enqueue.h')
-rw-r--r--intern/cycles/kernel/split/kernel_queue_enqueue.h98
1 files changed, 98 insertions, 0 deletions
diff --git a/intern/cycles/kernel/split/kernel_queue_enqueue.h b/intern/cycles/kernel/split/kernel_queue_enqueue.h
new file mode 100644
index 00000000000..9bcf8f540b4
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_queue_enqueue.h
@@ -0,0 +1,98 @@
+/*
+ * Copyright 2011-2015 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "../kernel_compat_opencl.h"
+#include "../kernel_math.h"
+#include "../kernel_types.h"
+#include "../kernel_globals.h"
+#include "../kernel_queues.h"
+
+/*
+ * The kernel "kernel_queue_enqueue" enqueues rays of
+ * different ray state into their appropriate Queues;
+ * 1. Rays that have been determined to hit the background from the
+ * "kernel_scene_intersect" kernel
+ * are enqueued in QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
+ * 2. Rays that have been determined to be actively participating in path-iteration will be enqueued into QUEUE_ACTIVE_AND_REGENERATED_RAYS.
+ *
+ * The input and output of the kernel is as follows,
+ *
+ * ray_state -------------------------------------------|--- kernel_queue_enqueue --|--- Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS & QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS)
+ * Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS) ------| |--- Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS & QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS)
+ * Queue_index(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS) ---| |
+ * queuesize -------------------------------------------| |
+ *
+ * Note on Queues :
+ * State of queues during the first time this kernel is called :
+ * At entry,
+ * Both QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty.
+ * At exit,
+ * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays
+ * QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_HIT_BACKGROUND rays.
+ *
+ * State of queue during other times this kernel is called :
+ * At entry,
+ * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be empty.
+ * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will contain RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays.
+ * At exit,
+ * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays.
+ * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE, RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND rays.
+ */
+
+ccl_device void kernel_queue_enqueue(
+ ccl_global int *Queue_data, /* Queue memory */
+ ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
+ ccl_global char *ray_state, /* Denotes the state of each ray */
+ int queuesize /* Size (capacity) of each queue */
+ )
+{
+ /* We have only 2 cases (Hit/Not-Hit) */
+ ccl_local unsigned int local_queue_atomics[2];
+
+ int lidx = get_local_id(1) * get_local_size(0) + get_local_id(0);
+ int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
+
+ if(lidx < 2 ) {
+ local_queue_atomics[lidx] = 0;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ int queue_number = -1;
+
+ if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
+ queue_number = QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
+ } else if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
+ queue_number = QUEUE_ACTIVE_AND_REGENERATED_RAYS;
+ }
+
+ unsigned int my_lqidx;
+ if(queue_number != -1) {
+ my_lqidx = get_local_queue_index(queue_number, local_queue_atomics);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if(lidx == 0) {
+ local_queue_atomics[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = get_global_per_queue_offset(QUEUE_ACTIVE_AND_REGENERATED_RAYS, local_queue_atomics, Queue_index);
+ local_queue_atomics[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = get_global_per_queue_offset(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS, local_queue_atomics, Queue_index);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ unsigned int my_gqidx;
+ if(queue_number != -1) {
+ my_gqidx = get_global_queue_index(queue_number, queuesize, my_lqidx, local_queue_atomics);
+ Queue_data[my_gqidx] = ray_index;
+ }
+}