Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrecht Van Lommel <brecht@blender.org>2021-10-07 18:27:22 +0300
committerBrecht Van Lommel <brecht@blender.org>2021-10-11 19:22:54 +0300
commit73a05ff9e83a31be34d32a92cd5fb4d17994e342 (patch)
tree06f0312affd92e58393216186f1519125a7c302c /intern/cycles/kernel
parent40360253aefd1f3451d5b413595bcbb143425b84 (diff)
Cycles: restore Christensen-Burley SSS
There is not enough time before the release to improve Random Walk to handle all cases this was used for, so restore it for now. Since there is no more path splitting in cycles-x, this can increase noise in non-flat areas for the sample number of samples, though fewer rays will be traced also. This is fundamentally a trade-off we made in the new design and why Random Walk is a better fit. However the importance resampling we do now does help to reduce noise. Differential Revision: https://developer.blender.org/D12800
Diffstat (limited to 'intern/cycles/kernel')
-rw-r--r--intern/cycles/kernel/CMakeLists.txt2
-rw-r--r--intern/cycles/kernel/bvh/bvh_util.h24
-rw-r--r--intern/cycles/kernel/closure/bssrdf.h174
-rw-r--r--intern/cycles/kernel/integrator/integrator_subsurface.h460
-rw-r--r--intern/cycles/kernel/integrator/integrator_subsurface_disk.h195
-rw-r--r--intern/cycles/kernel/integrator/integrator_subsurface_random_walk.h465
-rw-r--r--intern/cycles/kernel/kernel_types.h20
-rw-r--r--intern/cycles/kernel/osl/osl_bssrdf.cpp6
-rw-r--r--intern/cycles/kernel/svm/svm_closure.h1
-rw-r--r--intern/cycles/kernel/svm/svm_types.h3
10 files changed, 893 insertions, 457 deletions
diff --git a/intern/cycles/kernel/CMakeLists.txt b/intern/cycles/kernel/CMakeLists.txt
index c53d3d4b962..e0d48361650 100644
--- a/intern/cycles/kernel/CMakeLists.txt
+++ b/intern/cycles/kernel/CMakeLists.txt
@@ -241,6 +241,8 @@ set(SRC_INTEGRATOR_HEADERS
integrator/integrator_state_template.h
integrator/integrator_state_util.h
integrator/integrator_subsurface.h
+ integrator/integrator_subsurface_disk.h
+ integrator/integrator_subsurface_random_walk.h
integrator/integrator_volume_stack.h
)
diff --git a/intern/cycles/kernel/bvh/bvh_util.h b/intern/cycles/kernel/bvh/bvh_util.h
index 9f188a93e2c..e16da9755f2 100644
--- a/intern/cycles/kernel/bvh/bvh_util.h
+++ b/intern/cycles/kernel/bvh/bvh_util.h
@@ -113,6 +113,30 @@ ccl_device_inline void sort_intersections(Intersection *hits, uint num_hits)
}
#endif /* __SHADOW_RECORD_ALL__ | __VOLUME_RECORD_ALL__ */
+/* For subsurface scattering, only sorting a small amount of intersections
+ * so bubble sort is fine for CPU and GPU. */
+ccl_device_inline void sort_intersections_and_normals(Intersection *hits,
+ float3 *Ng,
+ uint num_hits)
+{
+ bool swapped;
+ do {
+ swapped = false;
+ for (int j = 0; j < num_hits - 1; ++j) {
+ if (hits[j].t > hits[j + 1].t) {
+ struct Intersection tmp_hit = hits[j];
+ struct float3 tmp_Ng = Ng[j];
+ hits[j] = hits[j + 1];
+ Ng[j] = Ng[j + 1];
+ hits[j + 1] = tmp_hit;
+ Ng[j + 1] = tmp_Ng;
+ swapped = true;
+ }
+ }
+ --num_hits;
+ } while (swapped);
+}
+
/* Utility to quickly get flags from an intersection. */
ccl_device_forceinline int intersection_get_shader_flags(const KernelGlobals *ccl_restrict kg,
diff --git a/intern/cycles/kernel/closure/bssrdf.h b/intern/cycles/kernel/closure/bssrdf.h
index e095314678a..db183887018 100644
--- a/intern/cycles/kernel/closure/bssrdf.h
+++ b/intern/cycles/kernel/closure/bssrdf.h
@@ -29,6 +29,8 @@ typedef ccl_addr_space struct Bssrdf {
static_assert(sizeof(ShaderClosure) >= sizeof(Bssrdf), "Bssrdf is too large!");
+/* Random Walk BSSRDF */
+
ccl_device float bssrdf_dipole_compute_Rd(float alpha_prime, float fourthirdA)
{
float s = sqrtf(3.0f * (1.0f - alpha_prime));
@@ -66,7 +68,7 @@ ccl_device float bssrdf_dipole_compute_alpha_prime(float rd, float fourthirdA)
ccl_device void bssrdf_setup_radius(Bssrdf *bssrdf, const ClosureType type, const float eta)
{
- if (type == CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID) {
+ if (type == CLOSURE_BSSRDF_BURLEY_ID || type == CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID) {
/* Scale mean free path length so it gives similar looking result to older
* Cubic, Gaussian and Burley models. */
bssrdf->radius *= 0.25f * M_1_PI_F;
@@ -87,6 +89,176 @@ ccl_device void bssrdf_setup_radius(Bssrdf *bssrdf, const ClosureType type, cons
}
}
+/* Christensen-Burley BSSRDF.
+ *
+ * Approximate Reflectance Profiles from
+ * http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
+ */
+
+/* This is a bit arbitrary, just need big enough radius so it matches
+ * the mean free length, but still not too big so sampling is still
+ * effective. */
+#define BURLEY_TRUNCATE 16.0f
+#define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
+
+ccl_device_inline float bssrdf_burley_fitting(float A)
+{
+ /* Diffuse surface transmission, equation (6). */
+ return 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
+}
+
+/* Scale mean free path length so it gives similar looking result
+ * to Cubic and Gaussian models. */
+ccl_device_inline float3 bssrdf_burley_compatible_mfp(float3 r)
+{
+ return 0.25f * M_1_PI_F * r;
+}
+
+ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
+{
+ /* Mean free path length. */
+ const float3 l = bssrdf_burley_compatible_mfp(bssrdf->radius);
+ /* Surface albedo. */
+ const float3 A = bssrdf->albedo;
+ const float3 s = make_float3(
+ bssrdf_burley_fitting(A.x), bssrdf_burley_fitting(A.y), bssrdf_burley_fitting(A.z));
+
+ bssrdf->radius = l / s;
+}
+
+ccl_device float bssrdf_burley_eval(const float d, float r)
+{
+ const float Rm = BURLEY_TRUNCATE * d;
+
+ if (r >= Rm)
+ return 0.0f;
+
+ /* Burley reflectance profile, equation (3).
+ *
+ * NOTES:
+ * - Surface albedo is already included into sc->weight, no need to
+ * multiply by this term here.
+ * - This is normalized diffuse model, so the equation is multiplied
+ * by 2*pi, which also matches cdf().
+ */
+ float exp_r_3_d = expf(-r / (3.0f * d));
+ float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
+ return (exp_r_d + exp_r_3_d) / (4.0f * d);
+}
+
+ccl_device float bssrdf_burley_pdf(const float d, float r)
+{
+ if (r == 0.0f) {
+ return 0.0f;
+ }
+
+ return bssrdf_burley_eval(d, r) * (1.0f / BURLEY_TRUNCATE_CDF);
+}
+
+/* Find the radius for desired CDF value.
+ * Returns scaled radius, meaning the result is to be scaled up by d.
+ * Since there's no closed form solution we do Newton-Raphson method to find it.
+ */
+ccl_device_forceinline float bssrdf_burley_root_find(float xi)
+{
+ const float tolerance = 1e-6f;
+ const int max_iteration_count = 10;
+ /* Do initial guess based on manual curve fitting, this allows us to reduce
+ * number of iterations to maximum 4 across the [0..1] range. We keep maximum
+ * number of iteration higher just to be sure we didn't miss root in some
+ * corner case.
+ */
+ float r;
+ if (xi <= 0.9f) {
+ r = expf(xi * xi * 2.4f) - 1.0f;
+ }
+ else {
+ /* TODO(sergey): Some nicer curve fit is possible here. */
+ r = 15.0f;
+ }
+ /* Solve against scaled radius. */
+ for (int i = 0; i < max_iteration_count; i++) {
+ float exp_r_3 = expf(-r / 3.0f);
+ float exp_r = exp_r_3 * exp_r_3 * exp_r_3;
+ float f = 1.0f - 0.25f * exp_r - 0.75f * exp_r_3 - xi;
+ float f_ = 0.25f * exp_r + 0.25f * exp_r_3;
+
+ if (fabsf(f) < tolerance || f_ == 0.0f) {
+ break;
+ }
+
+ r = r - f / f_;
+ if (r < 0.0f) {
+ r = 0.0f;
+ }
+ }
+ return r;
+}
+
+ccl_device void bssrdf_burley_sample(const float d, float xi, float *r, float *h)
+{
+ const float Rm = BURLEY_TRUNCATE * d;
+ const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;
+
+ *r = r_;
+
+ /* h^2 + r^2 = Rm^2 */
+ *h = safe_sqrtf(Rm * Rm - r_ * r_);
+}
+
+ccl_device float bssrdf_num_channels(const float3 radius)
+{
+ float channels = 0;
+ if (radius.x > 0.0f) {
+ channels += 1.0f;
+ }
+ if (radius.y > 0.0f) {
+ channels += 1.0f;
+ }
+ if (radius.z > 0.0f) {
+ channels += 1.0f;
+ }
+ return channels;
+}
+
+ccl_device void bssrdf_sample(const float3 radius, float xi, float *r, float *h)
+{
+ const float num_channels = bssrdf_num_channels(radius);
+ float sampled_radius;
+
+ /* Sample color channel and reuse random number. Only a subset of channels
+ * may be used if their radius was too small to handle as BSSRDF. */
+ xi *= num_channels;
+
+ if (xi < 1.0f) {
+ sampled_radius = (radius.x > 0.0f) ? radius.x : (radius.y > 0.0f) ? radius.y : radius.z;
+ }
+ else if (xi < 2.0f) {
+ xi -= 1.0f;
+ sampled_radius = (radius.x > 0.0f && radius.y > 0.0f) ? radius.y : radius.z;
+ }
+ else {
+ xi -= 2.0f;
+ sampled_radius = radius.z;
+ }
+
+ /* Sample BSSRDF. */
+ bssrdf_burley_sample(sampled_radius, xi, r, h);
+}
+
+ccl_device_forceinline float3 bssrdf_eval(const float3 radius, float r)
+{
+ return make_float3(bssrdf_burley_pdf(radius.x, r),
+ bssrdf_burley_pdf(radius.y, r),
+ bssrdf_burley_pdf(radius.z, r));
+}
+
+ccl_device_forceinline float bssrdf_pdf(const float3 radius, float r)
+{
+ float3 pdf = bssrdf_eval(radius, r);
+ return (pdf.x + pdf.y + pdf.z) / bssrdf_num_channels(radius);
+}
+
/* Setup */
ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
diff --git a/intern/cycles/kernel/integrator/integrator_subsurface.h b/intern/cycles/kernel/integrator/integrator_subsurface.h
index 9026de1c064..7ca676351db 100644
--- a/intern/cycles/kernel/integrator/integrator_subsurface.h
+++ b/intern/cycles/kernel/integrator/integrator_subsurface.h
@@ -29,6 +29,8 @@
#include "kernel/closure/volume.h"
#include "kernel/integrator/integrator_intersect_volume_stack.h"
+#include "kernel/integrator/integrator_subsurface_disk.h"
+#include "kernel/integrator/integrator_subsurface_random_walk.h"
CCL_NAMESPACE_BEGIN
@@ -56,7 +58,10 @@ ccl_device int subsurface_bounce(INTEGRATOR_STATE_ARGS, ShaderData *sd, const Sh
/* Pass BSSRDF parameters. */
const uint32_t path_flag = INTEGRATOR_STATE_WRITE(path, flag);
- INTEGRATOR_STATE_WRITE(path, flag) = (path_flag & ~PATH_RAY_CAMERA) | PATH_RAY_SUBSURFACE;
+ INTEGRATOR_STATE_WRITE(path, flag) = (path_flag & ~PATH_RAY_CAMERA) |
+ ((sc->type == CLOSURE_BSSRDF_BURLEY_ID) ?
+ PATH_RAY_SUBSURFACE_DISK :
+ PATH_RAY_SUBSURFACE_RANDOM_WALK);
INTEGRATOR_STATE_WRITE(path, throughput) *= shader_bssrdf_sample_weight(sd, sc);
/* Advance random number offset for bounce. */
@@ -123,448 +128,6 @@ ccl_device void subsurface_shader_data_setup(INTEGRATOR_STATE_ARGS, ShaderData *
}
}
-/* Random walk subsurface scattering.
- *
- * "Practical and Controllable Subsurface Scattering for Production Path
- * Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */
-
-/* Support for anisotropy from:
- * "Path Traced Subsurface Scattering using Anisotropic Phase Functions
- * and Non-Exponential Free Flights".
- * Magnus Wrenninge, Ryusuke Villemin, Christophe Hery.
- * https://graphics.pixar.com/library/PathTracedSubsurface/ */
-
-ccl_device void subsurface_random_walk_remap(
- const float albedo, const float d, float g, float *sigma_t, float *alpha)
-{
- /* Compute attenuation and scattering coefficients from albedo. */
- const float g2 = g * g;
- const float g3 = g2 * g;
- const float g4 = g3 * g;
- const float g5 = g4 * g;
- const float g6 = g5 * g;
- const float g7 = g6 * g;
-
- const float A = 1.8260523782f + -1.28451056436f * g + -1.79904629312f * g2 +
- 9.19393289202f * g3 + -22.8215585862f * g4 + 32.0234874259f * g5 +
- -23.6264803333f * g6 + 7.21067002658f * g7;
- const float B = 4.98511194385f +
- 0.127355959438f *
- expf(31.1491581433f * g + -201.847017512f * g2 + 841.576016723f * g3 +
- -2018.09288505f * g4 + 2731.71560286f * g5 + -1935.41424244f * g6 +
- 559.009054474f * g7);
- const float C = 1.09686102424f + -0.394704063468f * g + 1.05258115941f * g2 +
- -8.83963712726f * g3 + 28.8643230661f * g4 + -46.8802913581f * g5 +
- 38.5402837518f * g6 + -12.7181042538f * g7;
- const float D = 0.496310210422f + 0.360146581622f * g + -2.15139309747f * g2 +
- 17.8896899217f * g3 + -55.2984010333f * g4 + 82.065982243f * g5 +
- -58.5106008578f * g6 + 15.8478295021f * g7;
- const float E = 4.23190299701f +
- 0.00310603949088f *
- expf(76.7316253952f * g + -594.356773233f * g2 + 2448.8834203f * g3 +
- -5576.68528998f * g4 + 7116.60171912f * g5 + -4763.54467887f * g6 +
- 1303.5318055f * g7);
- const float F = 2.40602999408f + -2.51814844609f * g + 9.18494908356f * g2 +
- -79.2191708682f * g3 + 259.082868209f * g4 + -403.613804597f * g5 +
- 302.85712436f * g6 + -87.4370473567f * g7;
-
- const float blend = powf(albedo, 0.25f);
-
- *alpha = (1.0f - blend) * A * powf(atanf(B * albedo), C) +
- blend * D * powf(atanf(E * albedo), F);
- *alpha = clamp(*alpha, 0.0f, 0.999999f); // because of numerical precision
-
- float sigma_t_prime = 1.0f / fmaxf(d, 1e-16f);
- *sigma_t = sigma_t_prime / (1.0f - g);
-}
-
-ccl_device void subsurface_random_walk_coefficients(const float3 albedo,
- const float3 radius,
- const float anisotropy,
- float3 *sigma_t,
- float3 *alpha,
- float3 *throughput)
-{
- float sigma_t_x, sigma_t_y, sigma_t_z;
- float alpha_x, alpha_y, alpha_z;
-
- subsurface_random_walk_remap(albedo.x, radius.x, anisotropy, &sigma_t_x, &alpha_x);
- subsurface_random_walk_remap(albedo.y, radius.y, anisotropy, &sigma_t_y, &alpha_y);
- subsurface_random_walk_remap(albedo.z, radius.z, anisotropy, &sigma_t_z, &alpha_z);
-
- /* Throughput already contains closure weight at this point, which includes the
- * albedo, as well as closure mixing and Fresnel weights. Divide out the albedo
- * which will be added through scattering. */
- *throughput = safe_divide_color(*throughput, albedo);
-
- /* With low albedo values (like 0.025) we get diffusion_length 1.0 and
- * infinite phase functions. To avoid a sharp discontinuity as we go from
- * such values to 0.0, increase alpha and reduce the throughput to compensate. */
- const float min_alpha = 0.2f;
- if (alpha_x < min_alpha) {
- (*throughput).x *= alpha_x / min_alpha;
- alpha_x = min_alpha;
- }
- if (alpha_y < min_alpha) {
- (*throughput).y *= alpha_y / min_alpha;
- alpha_y = min_alpha;
- }
- if (alpha_z < min_alpha) {
- (*throughput).z *= alpha_z / min_alpha;
- alpha_z = min_alpha;
- }
-
- *sigma_t = make_float3(sigma_t_x, sigma_t_y, sigma_t_z);
- *alpha = make_float3(alpha_x, alpha_y, alpha_z);
-}
-
-/* References for Dwivedi sampling:
- *
- * [1] "A Zero-variance-based Sampling Scheme for Monte Carlo Subsurface Scattering"
- * by Jaroslav Křivánek and Eugene d'Eon (SIGGRAPH 2014)
- * https://cgg.mff.cuni.cz/~jaroslav/papers/2014-zerovar/
- *
- * [2] "Improving the Dwivedi Sampling Scheme"
- * by Johannes Meng, Johannes Hanika, and Carsten Dachsbacher (EGSR 2016)
- * https://cg.ivd.kit.edu/1951.php
- *
- * [3] "Zero-Variance Theory for Efficient Subsurface Scattering"
- * by Eugene d'Eon and Jaroslav Křivánek (SIGGRAPH 2020)
- * https://iliyan.com/publications/RenderingCourse2020
- */
-
-ccl_device_forceinline float eval_phase_dwivedi(float v, float phase_log, float cos_theta)
-{
- /* Eq. 9 from [2] using precomputed log((v + 1) / (v - 1)) */
- return 1.0f / ((v - cos_theta) * phase_log);
-}
-
-ccl_device_forceinline float sample_phase_dwivedi(float v, float phase_log, float rand)
-{
- /* Based on Eq. 10 from [2]: `v - (v + 1) * pow((v - 1) / (v + 1), rand)`
- * Since we're already pre-computing `phase_log = log((v + 1) / (v - 1))` for the evaluation,
- * we can implement the power function like this. */
- return v - (v + 1.0f) * expf(-rand * phase_log);
-}
-
-ccl_device_forceinline float diffusion_length_dwivedi(float alpha)
-{
- /* Eq. 67 from [3] */
- return 1.0f / sqrtf(1.0f - powf(alpha, 2.44294f - 0.0215813f * alpha + 0.578637f / alpha));
-}
-
-ccl_device_forceinline float3 direction_from_cosine(float3 D, float cos_theta, float randv)
-{
- float sin_theta = safe_sqrtf(1.0f - cos_theta * cos_theta);
- float phi = M_2PI_F * randv;
- float3 dir = make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cos_theta);
-
- float3 T, B;
- make_orthonormals(D, &T, &B);
- return dir.x * T + dir.y * B + dir.z * D;
-}
-
-ccl_device_forceinline float3 subsurface_random_walk_pdf(float3 sigma_t,
- float t,
- bool hit,
- float3 *transmittance)
-{
- float3 T = volume_color_transmittance(sigma_t, t);
- if (transmittance) {
- *transmittance = T;
- }
- return hit ? T : sigma_t * T;
-}
-
-/* Define the below variable to get the similarity code active,
- * and the value represents the cutoff level */
-# define SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL 9
-
-ccl_device_inline bool subsurface_random_walk(INTEGRATOR_STATE_ARGS,
- RNGState rng_state,
- Ray &ray,
- LocalIntersection &ss_isect)
-{
- float bssrdf_u, bssrdf_v;
- path_state_rng_2D(kg, &rng_state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
-
- const float3 P = INTEGRATOR_STATE(ray, P);
- const float3 N = INTEGRATOR_STATE(ray, D);
- const float ray_dP = INTEGRATOR_STATE(ray, dP);
- const float time = INTEGRATOR_STATE(ray, time);
- const float3 Ng = INTEGRATOR_STATE(isect, Ng);
- const int object = INTEGRATOR_STATE(isect, object);
-
- /* Sample diffuse surface scatter into the object. */
- float3 D;
- float pdf;
- sample_cos_hemisphere(-N, bssrdf_u, bssrdf_v, &D, &pdf);
- if (dot(-Ng, D) <= 0.0f) {
- return false;
- }
-
- /* Setup ray. */
- ray.P = ray_offset(P, -Ng);
- ray.D = D;
- ray.t = FLT_MAX;
- ray.time = time;
- ray.dP = ray_dP;
- ray.dD = differential_zero_compact();
-
-# ifndef __KERNEL_OPTIX__
- /* Compute or fetch object transforms. */
- Transform ob_itfm ccl_optional_struct_init;
- Transform ob_tfm = object_fetch_transform_motion_test(kg, object, time, &ob_itfm);
-# endif
-
- /* Convert subsurface to volume coefficients.
- * The single-scattering albedo is named alpha to avoid confusion with the surface albedo. */
- const float3 albedo = INTEGRATOR_STATE(subsurface, albedo);
- const float3 radius = INTEGRATOR_STATE(subsurface, radius);
- const float anisotropy = INTEGRATOR_STATE(subsurface, anisotropy);
-
- float3 sigma_t, alpha;
- float3 throughput = INTEGRATOR_STATE_WRITE(path, throughput);
- subsurface_random_walk_coefficients(albedo, radius, anisotropy, &sigma_t, &alpha, &throughput);
- float3 sigma_s = sigma_t * alpha;
-
- /* Theoretically it should be better to use the exact alpha for the channel we're sampling at
- * each bounce, but in practice there doesn't seem to be a noticeable difference in exchange
- * for making the code significantly more complex and slower (if direction sampling depends on
- * the sampled channel, we need to compute its PDF per-channel and consider it for MIS later on).
- *
- * Since the strength of the guided sampling increases as alpha gets lower, using a value that
- * is too low results in fireflies while one that's too high just gives a bit more noise.
- * Therefore, the code here uses the highest of the three albedos to be safe. */
- const float diffusion_length = diffusion_length_dwivedi(max3(alpha));
-
- if (diffusion_length == 1.0f) {
- /* With specific values of alpha the length might become 1, which in asymptotic makes phase to
- * be infinite. After first bounce it will cause throughput to be 0. Do early output, avoiding
- * numerical issues and extra unneeded work. */
- return false;
- }
-
- /* Precompute term for phase sampling. */
- const float phase_log = logf((diffusion_length + 1.0f) / (diffusion_length - 1.0f));
-
- /* Modify state for RNGs, decorrelated from other paths. */
- rng_state.rng_hash = cmj_hash(rng_state.rng_hash + rng_state.rng_offset, 0xdeadbeef);
-
- /* Random walk until we hit the surface again. */
- bool hit = false;
- bool have_opposite_interface = false;
- float opposite_distance = 0.0f;
-
- /* Todo: Disable for alpha>0.999 or so? */
- /* Our heuristic, a compromise between guiding and classic. */
- const float guided_fraction = 1.0f - fmaxf(0.5f, powf(fabsf(anisotropy), 0.125f));
-
-# ifdef SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL
- float3 sigma_s_star = sigma_s * (1.0f - anisotropy);
- float3 sigma_t_star = sigma_t - sigma_s + sigma_s_star;
- float3 sigma_t_org = sigma_t;
- float3 sigma_s_org = sigma_s;
- const float anisotropy_org = anisotropy;
- const float guided_fraction_org = guided_fraction;
-# endif
-
- for (int bounce = 0; bounce < BSSRDF_MAX_BOUNCES; bounce++) {
- /* Advance random number offset. */
- rng_state.rng_offset += PRNG_BOUNCE_NUM;
-
-# ifdef SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL
- // shadow with local variables according to depth
- float anisotropy, guided_fraction;
- float3 sigma_s, sigma_t;
- if (bounce <= SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL) {
- anisotropy = anisotropy_org;
- guided_fraction = guided_fraction_org;
- sigma_t = sigma_t_org;
- sigma_s = sigma_s_org;
- }
- else {
- anisotropy = 0.0f;
- guided_fraction = 0.75f; // back to isotropic heuristic from Blender
- sigma_t = sigma_t_star;
- sigma_s = sigma_s_star;
- }
-# endif
-
- /* Sample color channel, use MIS with balance heuristic. */
- float rphase = path_state_rng_1D(kg, &rng_state, PRNG_PHASE_CHANNEL);
- float3 channel_pdf;
- int channel = volume_sample_channel(alpha, throughput, rphase, &channel_pdf);
- float sample_sigma_t = volume_channel_get(sigma_t, channel);
- float randt = path_state_rng_1D(kg, &rng_state, PRNG_SCATTER_DISTANCE);
-
- /* We need the result of the raycast to compute the full guided PDF, so just remember the
- * relevant terms to avoid recomputing them later. */
- float backward_fraction = 0.0f;
- float forward_pdf_factor = 0.0f;
- float forward_stretching = 1.0f;
- float backward_pdf_factor = 0.0f;
- float backward_stretching = 1.0f;
-
- /* For the initial ray, we already know the direction, so just do classic distance sampling. */
- if (bounce > 0) {
- /* Decide whether we should use guided or classic sampling. */
- bool guided = (path_state_rng_1D(kg, &rng_state, PRNG_LIGHT_TERMINATE) < guided_fraction);
-
- /* Determine if we want to sample away from the incoming interface.
- * This only happens if we found a nearby opposite interface, and the probability for it
- * depends on how close we are to it already.
- * This probability term comes from the recorded presentation of [3]. */
- bool guide_backward = false;
- if (have_opposite_interface) {
- /* Compute distance of the random walk between the tangent plane at the starting point
- * and the assumed opposite interface (the parallel plane that contains the point we
- * found in our ray query for the opposite side). */
- float x = clamp(dot(ray.P - P, -N), 0.0f, opposite_distance);
- backward_fraction = 1.0f /
- (1.0f + expf((opposite_distance - 2.0f * x) / diffusion_length));
- guide_backward = path_state_rng_1D(kg, &rng_state, PRNG_TERMINATE) < backward_fraction;
- }
-
- /* Sample scattering direction. */
- float scatter_u, scatter_v;
- path_state_rng_2D(kg, &rng_state, PRNG_BSDF_U, &scatter_u, &scatter_v);
- float cos_theta;
- float hg_pdf;
- if (guided) {
- cos_theta = sample_phase_dwivedi(diffusion_length, phase_log, scatter_u);
- /* The backwards guiding distribution is just mirrored along sd->N, so swapping the
- * sign here is enough to sample from that instead. */
- if (guide_backward) {
- cos_theta = -cos_theta;
- }
- float3 newD = direction_from_cosine(N, cos_theta, scatter_v);
- hg_pdf = single_peaked_henyey_greenstein(dot(ray.D, newD), anisotropy);
- ray.D = newD;
- }
- else {
- float3 newD = henyey_greenstrein_sample(ray.D, anisotropy, scatter_u, scatter_v, &hg_pdf);
- cos_theta = dot(newD, N);
- ray.D = newD;
- }
-
- /* Compute PDF factor caused by phase sampling (as the ratio of guided / classic).
- * Since phase sampling is channel-independent, we can get away with applying a factor
- * to the guided PDF, which implicitly means pulling out the classic PDF term and letting
- * it cancel with an equivalent term in the numerator of the full estimator.
- * For the backward PDF, we again reuse the same probability distribution with a sign swap.
- */
- forward_pdf_factor = M_1_2PI_F * eval_phase_dwivedi(diffusion_length, phase_log, cos_theta) /
- hg_pdf;
- backward_pdf_factor = M_1_2PI_F *
- eval_phase_dwivedi(diffusion_length, phase_log, -cos_theta) / hg_pdf;
-
- /* Prepare distance sampling.
- * For the backwards case, this also needs the sign swapped since now directions against
- * sd->N (and therefore with negative cos_theta) are preferred. */
- forward_stretching = (1.0f - cos_theta / diffusion_length);
- backward_stretching = (1.0f + cos_theta / diffusion_length);
- if (guided) {
- sample_sigma_t *= guide_backward ? backward_stretching : forward_stretching;
- }
- }
-
- /* Sample direction along ray. */
- float t = -logf(1.0f - randt) / sample_sigma_t;
-
- /* On the first bounce, we use the raycast to check if the opposite side is nearby.
- * If yes, we will later use backwards guided sampling in order to have a decent
- * chance of connecting to it.
- * Todo: Maybe use less than 10 times the mean free path? */
- ray.t = (bounce == 0) ? max(t, 10.0f / (min3(sigma_t))) : t;
- scene_intersect_local(kg, &ray, &ss_isect, object, NULL, 1);
- hit = (ss_isect.num_hits > 0);
-
- if (hit) {
-# ifdef __KERNEL_OPTIX__
- /* t is always in world space with OptiX. */
- ray.t = ss_isect.hits[0].t;
-# else
- /* Compute world space distance to surface hit. */
- float3 D = transform_direction(&ob_itfm, ray.D);
- D = normalize(D) * ss_isect.hits[0].t;
- ray.t = len(transform_direction(&ob_tfm, D));
-# endif
- }
-
- if (bounce == 0) {
- /* Check if we hit the opposite side. */
- if (hit) {
- have_opposite_interface = true;
- opposite_distance = dot(ray.P + ray.t * ray.D - P, -N);
- }
- /* Apart from the opposite side check, we were supposed to only trace up to distance t,
- * so check if there would have been a hit in that case. */
- hit = ray.t < t;
- }
-
- /* Use the distance to the exit point for the throughput update if we found one. */
- if (hit) {
- t = ray.t;
- }
- else if (bounce == 0) {
- /* Restore original position if nothing was hit after the first bounce,
- * without the ray_offset() that was added to avoid self-intersection.
- * Otherwise if that offset is relatively large compared to the scattering
- * radius, we never go back up high enough to exit the surface. */
- ray.P = P;
- }
-
- /* Advance to new scatter location. */
- ray.P += t * ray.D;
-
- float3 transmittance;
- float3 pdf = subsurface_random_walk_pdf(sigma_t, t, hit, &transmittance);
- if (bounce > 0) {
- /* Compute PDF just like we do for classic sampling, but with the stretched sigma_t. */
- float3 guided_pdf = subsurface_random_walk_pdf(forward_stretching * sigma_t, t, hit, NULL);
-
- if (have_opposite_interface) {
- /* First step of MIS: Depending on geometry we might have two methods for guided
- * sampling, so perform MIS between them. */
- float3 back_pdf = subsurface_random_walk_pdf(backward_stretching * sigma_t, t, hit, NULL);
- guided_pdf = mix(
- guided_pdf * forward_pdf_factor, back_pdf * backward_pdf_factor, backward_fraction);
- }
- else {
- /* Just include phase sampling factor otherwise. */
- guided_pdf *= forward_pdf_factor;
- }
-
- /* Now we apply the MIS balance heuristic between the classic and guided sampling. */
- pdf = mix(pdf, guided_pdf, guided_fraction);
- }
-
- /* Finally, we're applying MIS again to combine the three color channels.
- * Altogether, the MIS computation combines up to nine different estimators:
- * {classic, guided, backward_guided} x {r, g, b} */
- throughput *= (hit ? transmittance : sigma_s * transmittance) / dot(channel_pdf, pdf);
-
- if (hit) {
- /* If we hit the surface, we are done. */
- break;
- }
- else if (throughput.x < VOLUME_THROUGHPUT_EPSILON &&
- throughput.y < VOLUME_THROUGHPUT_EPSILON &&
- throughput.z < VOLUME_THROUGHPUT_EPSILON) {
- /* Avoid unnecessary work and precision issue when throughput gets really small. */
- break;
- }
- }
-
- if (hit) {
- kernel_assert(isfinite3_safe(throughput));
- INTEGRATOR_STATE_WRITE(path, throughput) = throughput;
- }
-
- return hit;
-}
-
ccl_device_inline bool subsurface_scatter(INTEGRATOR_STATE_ARGS)
{
RNGState rng_state;
@@ -573,8 +136,15 @@ ccl_device_inline bool subsurface_scatter(INTEGRATOR_STATE_ARGS)
Ray ray ccl_optional_struct_init;
LocalIntersection ss_isect ccl_optional_struct_init;
- if (!subsurface_random_walk(INTEGRATOR_STATE_PASS, rng_state, ray, ss_isect)) {
- return false;
+ if (INTEGRATOR_STATE(path, flag) & PATH_RAY_SUBSURFACE_RANDOM_WALK) {
+ if (!subsurface_random_walk(INTEGRATOR_STATE_PASS, rng_state, ray, ss_isect)) {
+ return false;
+ }
+ }
+ else {
+ if (!subsurface_disk(INTEGRATOR_STATE_PASS, rng_state, ray, ss_isect)) {
+ return false;
+ }
}
# ifdef __VOLUME__
diff --git a/intern/cycles/kernel/integrator/integrator_subsurface_disk.h b/intern/cycles/kernel/integrator/integrator_subsurface_disk.h
new file mode 100644
index 00000000000..3f685e3a2e9
--- /dev/null
+++ b/intern/cycles/kernel/integrator/integrator_subsurface_disk.h
@@ -0,0 +1,195 @@
+/*
+ * Copyright 2011-2021 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* BSSRDF using disk based importance sampling.
+ *
+ * BSSRDF Importance Sampling, SIGGRAPH 2013
+ * http://library.imageworks.com/pdfs/imageworks-library-BSSRDF-sampling.pdf
+ */
+
+ccl_device_inline float3 subsurface_disk_eval(const float3 radius, float disk_r, float r)
+{
+ const float3 eval = bssrdf_eval(radius, r);
+ const float pdf = bssrdf_pdf(radius, disk_r);
+ return (pdf > 0.0f) ? eval / pdf : zero_float3();
+}
+
+/* Subsurface scattering step, from a point on the surface to other
+ * nearby points on the same object. */
+ccl_device_inline bool subsurface_disk(INTEGRATOR_STATE_ARGS,
+ RNGState rng_state,
+ Ray &ray,
+ LocalIntersection &ss_isect)
+
+{
+ float disk_u, disk_v;
+ path_state_rng_2D(kg, &rng_state, PRNG_BSDF_U, &disk_u, &disk_v);
+
+ /* Read shading point info from integrator state. */
+ const float3 P = INTEGRATOR_STATE(ray, P);
+ const float ray_dP = INTEGRATOR_STATE(ray, dP);
+ const float time = INTEGRATOR_STATE(ray, time);
+ const float3 Ng = INTEGRATOR_STATE(isect, Ng);
+ const int object = INTEGRATOR_STATE(isect, object);
+
+ /* Read subsurface scattering parameters. */
+ const float3 radius = INTEGRATOR_STATE(subsurface, radius);
+
+ /* Pick random axis in local frame and point on disk. */
+ float3 disk_N, disk_T, disk_B;
+ float pick_pdf_N, pick_pdf_T, pick_pdf_B;
+
+ disk_N = Ng;
+ make_orthonormals(disk_N, &disk_T, &disk_B);
+
+ if (disk_v < 0.5f) {
+ pick_pdf_N = 0.5f;
+ pick_pdf_T = 0.25f;
+ pick_pdf_B = 0.25f;
+ disk_v *= 2.0f;
+ }
+ else if (disk_v < 0.75f) {
+ float3 tmp = disk_N;
+ disk_N = disk_T;
+ disk_T = tmp;
+ pick_pdf_N = 0.25f;
+ pick_pdf_T = 0.5f;
+ pick_pdf_B = 0.25f;
+ disk_v = (disk_v - 0.5f) * 4.0f;
+ }
+ else {
+ float3 tmp = disk_N;
+ disk_N = disk_B;
+ disk_B = tmp;
+ pick_pdf_N = 0.25f;
+ pick_pdf_T = 0.25f;
+ pick_pdf_B = 0.5f;
+ disk_v = (disk_v - 0.75f) * 4.0f;
+ }
+
+ /* Sample point on disk. */
+ float phi = M_2PI_F * disk_v;
+ float disk_height, disk_r;
+
+ bssrdf_sample(radius, disk_u, &disk_r, &disk_height);
+
+ float3 disk_P = (disk_r * cosf(phi)) * disk_T + (disk_r * sinf(phi)) * disk_B;
+
+ /* Create ray. */
+ ray.P = P + disk_N * disk_height + disk_P;
+ ray.D = -disk_N;
+ ray.t = 2.0f * disk_height;
+ ray.dP = ray_dP;
+ ray.dD = differential_zero_compact();
+ ray.time = time;
+
+ /* Intersect with the same object. if multiple intersections are found it
+ * will use at most BSSRDF_MAX_HITS hits, a random subset of all hits. */
+ uint lcg_state = lcg_state_init(
+ rng_state.rng_hash, rng_state.rng_offset, rng_state.sample, 0x68bc21eb);
+ const int max_hits = BSSRDF_MAX_HITS;
+
+ scene_intersect_local(kg, &ray, &ss_isect, object, &lcg_state, max_hits);
+ const int num_eval_hits = min(ss_isect.num_hits, max_hits);
+ if (num_eval_hits == 0) {
+ return false;
+ }
+
+ /* Sort for consistent renders between CPU and GPU, independent of the BVH
+ * traversal algorithm. */
+ sort_intersections_and_normals(ss_isect.hits, ss_isect.Ng, num_eval_hits);
+
+ float3 weights[BSSRDF_MAX_HITS]; /* TODO: zero? */
+ float sum_weights = 0.0f;
+
+ for (int hit = 0; hit < num_eval_hits; hit++) {
+ /* Quickly retrieve P and Ng without setting up ShaderData. */
+ const float3 hit_P = ray.P + ray.D * ss_isect.hits[hit].t;
+
+ /* Get geometric normal. */
+ const int object = ss_isect.hits[hit].object;
+ const int object_flag = kernel_tex_fetch(__object_flag, object);
+ float3 hit_Ng = ss_isect.Ng[hit];
+ if (object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
+ hit_Ng = -hit_Ng;
+ }
+
+ if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
+ Transform itfm;
+ object_fetch_transform_motion_test(kg, object, time, &itfm);
+ hit_Ng = normalize(transform_direction_transposed(&itfm, hit_Ng));
+ }
+
+ /* Probability densities for local frame axes. */
+ const float pdf_N = pick_pdf_N * fabsf(dot(disk_N, hit_Ng));
+ const float pdf_T = pick_pdf_T * fabsf(dot(disk_T, hit_Ng));
+ const float pdf_B = pick_pdf_B * fabsf(dot(disk_B, hit_Ng));
+
+ /* Multiple importance sample between 3 axes, power heuristic
+ * found to be slightly better than balance heuristic. pdf_N
+ * in the MIS weight and denominator cancelled out. */
+ float w = pdf_N / (sqr(pdf_N) + sqr(pdf_T) + sqr(pdf_B));
+ if (ss_isect.num_hits > max_hits) {
+ w *= ss_isect.num_hits / (float)max_hits;
+ }
+
+ /* Real distance to sampled point. */
+ const float r = len(hit_P - P);
+
+ /* Evaluate profiles. */
+ const float3 weight = subsurface_disk_eval(radius, disk_r, r) * w;
+
+ /* Store result. */
+ ss_isect.Ng[hit] = hit_Ng;
+ weights[hit] = weight;
+ sum_weights += average(fabs(weight));
+ }
+
+ if (sum_weights == 0.0f) {
+ return false;
+ }
+
+ /* Use importance resampling, sampling one of the hits proportional to weight. */
+ const float r = lcg_step_float(&lcg_state) * sum_weights;
+ float partial_sum = 0.0f;
+
+ for (int hit = 0; hit < num_eval_hits; hit++) {
+ const float3 weight = weights[hit];
+ const float sample_weight = average(fabs(weight));
+ float next_sum = partial_sum + sample_weight;
+
+ if (r < next_sum) {
+ /* Return exit point. */
+ INTEGRATOR_STATE_WRITE(path, throughput) *= weight * sum_weights / sample_weight;
+
+ ss_isect.hits[0] = ss_isect.hits[hit];
+ ss_isect.Ng[0] = ss_isect.Ng[hit];
+
+ ray.P = ray.P + ray.D * ss_isect.hits[hit].t;
+ ray.D = ss_isect.Ng[hit];
+ ray.t = 1.0f;
+ return true;
+ }
+
+ partial_sum = next_sum;
+ }
+
+ return false;
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/integrator/integrator_subsurface_random_walk.h b/intern/cycles/kernel/integrator/integrator_subsurface_random_walk.h
new file mode 100644
index 00000000000..cffc53bf270
--- /dev/null
+++ b/intern/cycles/kernel/integrator/integrator_subsurface_random_walk.h
@@ -0,0 +1,465 @@
+/*
+ * Copyright 2011-2021 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_projection.h"
+
+#include "kernel/bvh/bvh.h"
+
+CCL_NAMESPACE_BEGIN
+
+/* Random walk subsurface scattering.
+ *
+ * "Practical and Controllable Subsurface Scattering for Production Path
+ * Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */
+
+/* Support for anisotropy from:
+ * "Path Traced Subsurface Scattering using Anisotropic Phase Functions
+ * and Non-Exponential Free Flights".
+ * Magnus Wrenninge, Ryusuke Villemin, Christophe Hery.
+ * https://graphics.pixar.com/library/PathTracedSubsurface/ */
+
+ccl_device void subsurface_random_walk_remap(
+ const float albedo, const float d, float g, float *sigma_t, float *alpha)
+{
+ /* Compute attenuation and scattering coefficients from albedo. */
+ const float g2 = g * g;
+ const float g3 = g2 * g;
+ const float g4 = g3 * g;
+ const float g5 = g4 * g;
+ const float g6 = g5 * g;
+ const float g7 = g6 * g;
+
+ const float A = 1.8260523782f + -1.28451056436f * g + -1.79904629312f * g2 +
+ 9.19393289202f * g3 + -22.8215585862f * g4 + 32.0234874259f * g5 +
+ -23.6264803333f * g6 + 7.21067002658f * g7;
+ const float B = 4.98511194385f +
+ 0.127355959438f *
+ expf(31.1491581433f * g + -201.847017512f * g2 + 841.576016723f * g3 +
+ -2018.09288505f * g4 + 2731.71560286f * g5 + -1935.41424244f * g6 +
+ 559.009054474f * g7);
+ const float C = 1.09686102424f + -0.394704063468f * g + 1.05258115941f * g2 +
+ -8.83963712726f * g3 + 28.8643230661f * g4 + -46.8802913581f * g5 +
+ 38.5402837518f * g6 + -12.7181042538f * g7;
+ const float D = 0.496310210422f + 0.360146581622f * g + -2.15139309747f * g2 +
+ 17.8896899217f * g3 + -55.2984010333f * g4 + 82.065982243f * g5 +
+ -58.5106008578f * g6 + 15.8478295021f * g7;
+ const float E = 4.23190299701f +
+ 0.00310603949088f *
+ expf(76.7316253952f * g + -594.356773233f * g2 + 2448.8834203f * g3 +
+ -5576.68528998f * g4 + 7116.60171912f * g5 + -4763.54467887f * g6 +
+ 1303.5318055f * g7);
+ const float F = 2.40602999408f + -2.51814844609f * g + 9.18494908356f * g2 +
+ -79.2191708682f * g3 + 259.082868209f * g4 + -403.613804597f * g5 +
+ 302.85712436f * g6 + -87.4370473567f * g7;
+
+ const float blend = powf(albedo, 0.25f);
+
+ *alpha = (1.0f - blend) * A * powf(atanf(B * albedo), C) +
+ blend * D * powf(atanf(E * albedo), F);
+ *alpha = clamp(*alpha, 0.0f, 0.999999f); // because of numerical precision
+
+ float sigma_t_prime = 1.0f / fmaxf(d, 1e-16f);
+ *sigma_t = sigma_t_prime / (1.0f - g);
+}
+
+ccl_device void subsurface_random_walk_coefficients(const float3 albedo,
+ const float3 radius,
+ const float anisotropy,
+ float3 *sigma_t,
+ float3 *alpha,
+ float3 *throughput)
+{
+ float sigma_t_x, sigma_t_y, sigma_t_z;
+ float alpha_x, alpha_y, alpha_z;
+
+ subsurface_random_walk_remap(albedo.x, radius.x, anisotropy, &sigma_t_x, &alpha_x);
+ subsurface_random_walk_remap(albedo.y, radius.y, anisotropy, &sigma_t_y, &alpha_y);
+ subsurface_random_walk_remap(albedo.z, radius.z, anisotropy, &sigma_t_z, &alpha_z);
+
+ /* Throughput already contains closure weight at this point, which includes the
+ * albedo, as well as closure mixing and Fresnel weights. Divide out the albedo
+ * which will be added through scattering. */
+ *throughput = safe_divide_color(*throughput, albedo);
+
+ /* With low albedo values (like 0.025) we get diffusion_length 1.0 and
+ * infinite phase functions. To avoid a sharp discontinuity as we go from
+ * such values to 0.0, increase alpha and reduce the throughput to compensate. */
+ const float min_alpha = 0.2f;
+ if (alpha_x < min_alpha) {
+ (*throughput).x *= alpha_x / min_alpha;
+ alpha_x = min_alpha;
+ }
+ if (alpha_y < min_alpha) {
+ (*throughput).y *= alpha_y / min_alpha;
+ alpha_y = min_alpha;
+ }
+ if (alpha_z < min_alpha) {
+ (*throughput).z *= alpha_z / min_alpha;
+ alpha_z = min_alpha;
+ }
+
+ *sigma_t = make_float3(sigma_t_x, sigma_t_y, sigma_t_z);
+ *alpha = make_float3(alpha_x, alpha_y, alpha_z);
+}
+
+/* References for Dwivedi sampling:
+ *
+ * [1] "A Zero-variance-based Sampling Scheme for Monte Carlo Subsurface Scattering"
+ * by Jaroslav Křivánek and Eugene d'Eon (SIGGRAPH 2014)
+ * https://cgg.mff.cuni.cz/~jaroslav/papers/2014-zerovar/
+ *
+ * [2] "Improving the Dwivedi Sampling Scheme"
+ * by Johannes Meng, Johannes Hanika, and Carsten Dachsbacher (EGSR 2016)
+ * https://cg.ivd.kit.edu/1951.php
+ *
+ * [3] "Zero-Variance Theory for Efficient Subsurface Scattering"
+ * by Eugene d'Eon and Jaroslav Křivánek (SIGGRAPH 2020)
+ * https://iliyan.com/publications/RenderingCourse2020
+ */
+
+ccl_device_forceinline float eval_phase_dwivedi(float v, float phase_log, float cos_theta)
+{
+ /* Eq. 9 from [2] using precomputed log((v + 1) / (v - 1)) */
+ return 1.0f / ((v - cos_theta) * phase_log);
+}
+
+ccl_device_forceinline float sample_phase_dwivedi(float v, float phase_log, float rand)
+{
+ /* Based on Eq. 10 from [2]: `v - (v + 1) * pow((v - 1) / (v + 1), rand)`
+ * Since we're already pre-computing `phase_log = log((v + 1) / (v - 1))` for the evaluation,
+ * we can implement the power function like this. */
+ return v - (v + 1.0f) * expf(-rand * phase_log);
+}
+
+ccl_device_forceinline float diffusion_length_dwivedi(float alpha)
+{
+ /* Eq. 67 from [3] */
+ return 1.0f / sqrtf(1.0f - powf(alpha, 2.44294f - 0.0215813f * alpha + 0.578637f / alpha));
+}
+
+ccl_device_forceinline float3 direction_from_cosine(float3 D, float cos_theta, float randv)
+{
+ float sin_theta = safe_sqrtf(1.0f - cos_theta * cos_theta);
+ float phi = M_2PI_F * randv;
+ float3 dir = make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cos_theta);
+
+ float3 T, B;
+ make_orthonormals(D, &T, &B);
+ return dir.x * T + dir.y * B + dir.z * D;
+}
+
+ccl_device_forceinline float3 subsurface_random_walk_pdf(float3 sigma_t,
+ float t,
+ bool hit,
+ float3 *transmittance)
+{
+ float3 T = volume_color_transmittance(sigma_t, t);
+ if (transmittance) {
+ *transmittance = T;
+ }
+ return hit ? T : sigma_t * T;
+}
+
+/* Define the below variable to get the similarity code active,
+ * and the value represents the cutoff level */
+#define SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL 9
+
+ccl_device_inline bool subsurface_random_walk(INTEGRATOR_STATE_ARGS,
+ RNGState rng_state,
+ Ray &ray,
+ LocalIntersection &ss_isect)
+{
+ float bssrdf_u, bssrdf_v;
+ path_state_rng_2D(kg, &rng_state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
+
+ const float3 P = INTEGRATOR_STATE(ray, P);
+ const float3 N = INTEGRATOR_STATE(ray, D);
+ const float ray_dP = INTEGRATOR_STATE(ray, dP);
+ const float time = INTEGRATOR_STATE(ray, time);
+ const float3 Ng = INTEGRATOR_STATE(isect, Ng);
+ const int object = INTEGRATOR_STATE(isect, object);
+
+ /* Sample diffuse surface scatter into the object. */
+ float3 D;
+ float pdf;
+ sample_cos_hemisphere(-N, bssrdf_u, bssrdf_v, &D, &pdf);
+ if (dot(-Ng, D) <= 0.0f) {
+ return false;
+ }
+
+ /* Setup ray. */
+ ray.P = ray_offset(P, -Ng);
+ ray.D = D;
+ ray.t = FLT_MAX;
+ ray.time = time;
+ ray.dP = ray_dP;
+ ray.dD = differential_zero_compact();
+
+#ifndef __KERNEL_OPTIX__
+ /* Compute or fetch object transforms. */
+ Transform ob_itfm ccl_optional_struct_init;
+ Transform ob_tfm = object_fetch_transform_motion_test(kg, object, time, &ob_itfm);
+#endif
+
+ /* Convert subsurface to volume coefficients.
+ * The single-scattering albedo is named alpha to avoid confusion with the surface albedo. */
+ const float3 albedo = INTEGRATOR_STATE(subsurface, albedo);
+ const float3 radius = INTEGRATOR_STATE(subsurface, radius);
+ const float anisotropy = INTEGRATOR_STATE(subsurface, anisotropy);
+
+ float3 sigma_t, alpha;
+ float3 throughput = INTEGRATOR_STATE_WRITE(path, throughput);
+ subsurface_random_walk_coefficients(albedo, radius, anisotropy, &sigma_t, &alpha, &throughput);
+ float3 sigma_s = sigma_t * alpha;
+
+ /* Theoretically it should be better to use the exact alpha for the channel we're sampling at
+ * each bounce, but in practice there doesn't seem to be a noticeable difference in exchange
+ * for making the code significantly more complex and slower (if direction sampling depends on
+ * the sampled channel, we need to compute its PDF per-channel and consider it for MIS later on).
+ *
+ * Since the strength of the guided sampling increases as alpha gets lower, using a value that
+ * is too low results in fireflies while one that's too high just gives a bit more noise.
+ * Therefore, the code here uses the highest of the three albedos to be safe. */
+ const float diffusion_length = diffusion_length_dwivedi(max3(alpha));
+
+ if (diffusion_length == 1.0f) {
+ /* With specific values of alpha the length might become 1, which in asymptotic makes phase to
+ * be infinite. After first bounce it will cause throughput to be 0. Do early output, avoiding
+ * numerical issues and extra unneeded work. */
+ return false;
+ }
+
+ /* Precompute term for phase sampling. */
+ const float phase_log = logf((diffusion_length + 1.0f) / (diffusion_length - 1.0f));
+
+ /* Modify state for RNGs, decorrelated from other paths. */
+ rng_state.rng_hash = cmj_hash(rng_state.rng_hash + rng_state.rng_offset, 0xdeadbeef);
+
+ /* Random walk until we hit the surface again. */
+ bool hit = false;
+ bool have_opposite_interface = false;
+ float opposite_distance = 0.0f;
+
+ /* Todo: Disable for alpha>0.999 or so? */
+ /* Our heuristic, a compromise between guiding and classic. */
+ const float guided_fraction = 1.0f - fmaxf(0.5f, powf(fabsf(anisotropy), 0.125f));
+
+#ifdef SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL
+ float3 sigma_s_star = sigma_s * (1.0f - anisotropy);
+ float3 sigma_t_star = sigma_t - sigma_s + sigma_s_star;
+ float3 sigma_t_org = sigma_t;
+ float3 sigma_s_org = sigma_s;
+ const float anisotropy_org = anisotropy;
+ const float guided_fraction_org = guided_fraction;
+#endif
+
+ for (int bounce = 0; bounce < BSSRDF_MAX_BOUNCES; bounce++) {
+ /* Advance random number offset. */
+ rng_state.rng_offset += PRNG_BOUNCE_NUM;
+
+#ifdef SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL
+ // shadow with local variables according to depth
+ float anisotropy, guided_fraction;
+ float3 sigma_s, sigma_t;
+ if (bounce <= SUBSURFACE_RANDOM_WALK_SIMILARITY_LEVEL) {
+ anisotropy = anisotropy_org;
+ guided_fraction = guided_fraction_org;
+ sigma_t = sigma_t_org;
+ sigma_s = sigma_s_org;
+ }
+ else {
+ anisotropy = 0.0f;
+ guided_fraction = 0.75f; // back to isotropic heuristic from Blender
+ sigma_t = sigma_t_star;
+ sigma_s = sigma_s_star;
+ }
+#endif
+
+ /* Sample color channel, use MIS with balance heuristic. */
+ float rphase = path_state_rng_1D(kg, &rng_state, PRNG_PHASE_CHANNEL);
+ float3 channel_pdf;
+ int channel = volume_sample_channel(alpha, throughput, rphase, &channel_pdf);
+ float sample_sigma_t = volume_channel_get(sigma_t, channel);
+ float randt = path_state_rng_1D(kg, &rng_state, PRNG_SCATTER_DISTANCE);
+
+ /* We need the result of the raycast to compute the full guided PDF, so just remember the
+ * relevant terms to avoid recomputing them later. */
+ float backward_fraction = 0.0f;
+ float forward_pdf_factor = 0.0f;
+ float forward_stretching = 1.0f;
+ float backward_pdf_factor = 0.0f;
+ float backward_stretching = 1.0f;
+
+ /* For the initial ray, we already know the direction, so just do classic distance sampling. */
+ if (bounce > 0) {
+ /* Decide whether we should use guided or classic sampling. */
+ bool guided = (path_state_rng_1D(kg, &rng_state, PRNG_LIGHT_TERMINATE) < guided_fraction);
+
+ /* Determine if we want to sample away from the incoming interface.
+ * This only happens if we found a nearby opposite interface, and the probability for it
+ * depends on how close we are to it already.
+ * This probability term comes from the recorded presentation of [3]. */
+ bool guide_backward = false;
+ if (have_opposite_interface) {
+ /* Compute distance of the random walk between the tangent plane at the starting point
+ * and the assumed opposite interface (the parallel plane that contains the point we
+ * found in our ray query for the opposite side). */
+ float x = clamp(dot(ray.P - P, -N), 0.0f, opposite_distance);
+ backward_fraction = 1.0f /
+ (1.0f + expf((opposite_distance - 2.0f * x) / diffusion_length));
+ guide_backward = path_state_rng_1D(kg, &rng_state, PRNG_TERMINATE) < backward_fraction;
+ }
+
+ /* Sample scattering direction. */
+ float scatter_u, scatter_v;
+ path_state_rng_2D(kg, &rng_state, PRNG_BSDF_U, &scatter_u, &scatter_v);
+ float cos_theta;
+ float hg_pdf;
+ if (guided) {
+ cos_theta = sample_phase_dwivedi(diffusion_length, phase_log, scatter_u);
+ /* The backwards guiding distribution is just mirrored along sd->N, so swapping the
+ * sign here is enough to sample from that instead. */
+ if (guide_backward) {
+ cos_theta = -cos_theta;
+ }
+ float3 newD = direction_from_cosine(N, cos_theta, scatter_v);
+ hg_pdf = single_peaked_henyey_greenstein(dot(ray.D, newD), anisotropy);
+ ray.D = newD;
+ }
+ else {
+ float3 newD = henyey_greenstrein_sample(ray.D, anisotropy, scatter_u, scatter_v, &hg_pdf);
+ cos_theta = dot(newD, N);
+ ray.D = newD;
+ }
+
+ /* Compute PDF factor caused by phase sampling (as the ratio of guided / classic).
+ * Since phase sampling is channel-independent, we can get away with applying a factor
+ * to the guided PDF, which implicitly means pulling out the classic PDF term and letting
+ * it cancel with an equivalent term in the numerator of the full estimator.
+ * For the backward PDF, we again reuse the same probability distribution with a sign swap.
+ */
+ forward_pdf_factor = M_1_2PI_F * eval_phase_dwivedi(diffusion_length, phase_log, cos_theta) /
+ hg_pdf;
+ backward_pdf_factor = M_1_2PI_F *
+ eval_phase_dwivedi(diffusion_length, phase_log, -cos_theta) / hg_pdf;
+
+ /* Prepare distance sampling.
+ * For the backwards case, this also needs the sign swapped since now directions against
+ * sd->N (and therefore with negative cos_theta) are preferred. */
+ forward_stretching = (1.0f - cos_theta / diffusion_length);
+ backward_stretching = (1.0f + cos_theta / diffusion_length);
+ if (guided) {
+ sample_sigma_t *= guide_backward ? backward_stretching : forward_stretching;
+ }
+ }
+
+ /* Sample direction along ray. */
+ float t = -logf(1.0f - randt) / sample_sigma_t;
+
+ /* On the first bounce, we use the raycast to check if the opposite side is nearby.
+ * If yes, we will later use backwards guided sampling in order to have a decent
+ * chance of connecting to it.
+ * Todo: Maybe use less than 10 times the mean free path? */
+ ray.t = (bounce == 0) ? max(t, 10.0f / (min3(sigma_t))) : t;
+ scene_intersect_local(kg, &ray, &ss_isect, object, NULL, 1);
+ hit = (ss_isect.num_hits > 0);
+
+ if (hit) {
+#ifdef __KERNEL_OPTIX__
+ /* t is always in world space with OptiX. */
+ ray.t = ss_isect.hits[0].t;
+#else
+ /* Compute world space distance to surface hit. */
+ float3 D = transform_direction(&ob_itfm, ray.D);
+ D = normalize(D) * ss_isect.hits[0].t;
+ ray.t = len(transform_direction(&ob_tfm, D));
+#endif
+ }
+
+ if (bounce == 0) {
+ /* Check if we hit the opposite side. */
+ if (hit) {
+ have_opposite_interface = true;
+ opposite_distance = dot(ray.P + ray.t * ray.D - P, -N);
+ }
+ /* Apart from the opposite side check, we were supposed to only trace up to distance t,
+ * so check if there would have been a hit in that case. */
+ hit = ray.t < t;
+ }
+
+ /* Use the distance to the exit point for the throughput update if we found one. */
+ if (hit) {
+ t = ray.t;
+ }
+ else if (bounce == 0) {
+ /* Restore original position if nothing was hit after the first bounce,
+ * without the ray_offset() that was added to avoid self-intersection.
+ * Otherwise if that offset is relatively large compared to the scattering
+ * radius, we never go back up high enough to exit the surface. */
+ ray.P = P;
+ }
+
+ /* Advance to new scatter location. */
+ ray.P += t * ray.D;
+
+ float3 transmittance;
+ float3 pdf = subsurface_random_walk_pdf(sigma_t, t, hit, &transmittance);
+ if (bounce > 0) {
+ /* Compute PDF just like we do for classic sampling, but with the stretched sigma_t. */
+ float3 guided_pdf = subsurface_random_walk_pdf(forward_stretching * sigma_t, t, hit, NULL);
+
+ if (have_opposite_interface) {
+ /* First step of MIS: Depending on geometry we might have two methods for guided
+ * sampling, so perform MIS between them. */
+ float3 back_pdf = subsurface_random_walk_pdf(backward_stretching * sigma_t, t, hit, NULL);
+ guided_pdf = mix(
+ guided_pdf * forward_pdf_factor, back_pdf * backward_pdf_factor, backward_fraction);
+ }
+ else {
+ /* Just include phase sampling factor otherwise. */
+ guided_pdf *= forward_pdf_factor;
+ }
+
+ /* Now we apply the MIS balance heuristic between the classic and guided sampling. */
+ pdf = mix(pdf, guided_pdf, guided_fraction);
+ }
+
+ /* Finally, we're applying MIS again to combine the three color channels.
+ * Altogether, the MIS computation combines up to nine different estimators:
+ * {classic, guided, backward_guided} x {r, g, b} */
+ throughput *= (hit ? transmittance : sigma_s * transmittance) / dot(channel_pdf, pdf);
+
+ if (hit) {
+ /* If we hit the surface, we are done. */
+ break;
+ }
+ else if (throughput.x < VOLUME_THROUGHPUT_EPSILON &&
+ throughput.y < VOLUME_THROUGHPUT_EPSILON &&
+ throughput.z < VOLUME_THROUGHPUT_EPSILON) {
+ /* Avoid unnecessary work and precision issue when throughput gets really small. */
+ break;
+ }
+ }
+
+ if (hit) {
+ kernel_assert(isfinite3_safe(throughput));
+ INTEGRATOR_STATE_WRITE(path, throughput) = throughput;
+ }
+
+ return hit;
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_types.h b/intern/cycles/kernel/kernel_types.h
index 5000a96c331..eb681683d6a 100644
--- a/intern/cycles/kernel/kernel_types.h
+++ b/intern/cycles/kernel/kernel_types.h
@@ -261,32 +261,34 @@ enum PathRayFlag {
PATH_RAY_EMISSION = (1 << 19),
/* Perform subsurface scattering. */
- PATH_RAY_SUBSURFACE = (1 << 20),
+ PATH_RAY_SUBSURFACE_RANDOM_WALK = (1 << 20),
+ PATH_RAY_SUBSURFACE_DISK = (1 << 21),
+ PATH_RAY_SUBSURFACE = (PATH_RAY_SUBSURFACE_RANDOM_WALK | PATH_RAY_SUBSURFACE_DISK),
/* Contribute to denoising features. */
- PATH_RAY_DENOISING_FEATURES = (1 << 21),
+ PATH_RAY_DENOISING_FEATURES = (1 << 22),
/* Render pass categories. */
- PATH_RAY_REFLECT_PASS = (1 << 22),
- PATH_RAY_TRANSMISSION_PASS = (1 << 23),
- PATH_RAY_VOLUME_PASS = (1 << 24),
+ PATH_RAY_REFLECT_PASS = (1 << 23),
+ PATH_RAY_TRANSMISSION_PASS = (1 << 24),
+ PATH_RAY_VOLUME_PASS = (1 << 25),
PATH_RAY_ANY_PASS = (PATH_RAY_REFLECT_PASS | PATH_RAY_TRANSMISSION_PASS | PATH_RAY_VOLUME_PASS),
/* Shadow ray is for a light or surface. */
- PATH_RAY_SHADOW_FOR_LIGHT = (1 << 25),
+ PATH_RAY_SHADOW_FOR_LIGHT = (1 << 26),
/* A shadow catcher object was hit and the path was split into two. */
- PATH_RAY_SHADOW_CATCHER_HIT = (1 << 26),
+ PATH_RAY_SHADOW_CATCHER_HIT = (1 << 27),
/* A shadow catcher object was hit and this path traces only shadow catchers, writing them into
* their dedicated pass for later division.
*
* NOTE: Is not covered with `PATH_RAY_ANY_PASS` because shadow catcher does special handling
* which is separate from the light passes. */
- PATH_RAY_SHADOW_CATCHER_PASS = (1 << 27),
+ PATH_RAY_SHADOW_CATCHER_PASS = (1 << 28),
/* Path is evaluating background for an approximate shadow catcher with non-transparent film. */
- PATH_RAY_SHADOW_CATCHER_BACKGROUND = (1 << 28),
+ PATH_RAY_SHADOW_CATCHER_BACKGROUND = (1 << 29),
};
/* Configure ray visibility bits for rays and objects respectively,
diff --git a/intern/cycles/kernel/osl/osl_bssrdf.cpp b/intern/cycles/kernel/osl/osl_bssrdf.cpp
index 5d968ed85e0..b6b0d72103a 100644
--- a/intern/cycles/kernel/osl/osl_bssrdf.cpp
+++ b/intern/cycles/kernel/osl/osl_bssrdf.cpp
@@ -50,6 +50,7 @@ CCL_NAMESPACE_BEGIN
using namespace OSL;
+static ustring u_burley("burley");
static ustring u_random_walk_fixed_radius("random_walk_fixed_radius");
static ustring u_random_walk("random_walk");
@@ -68,7 +69,10 @@ class CBSSRDFClosure : public CClosurePrimitive {
void setup(ShaderData *sd, int path_flag, float3 weight)
{
- if (method == u_random_walk_fixed_radius) {
+ if (method == u_burley) {
+ alloc(sd, path_flag, weight, CLOSURE_BSSRDF_BURLEY_ID);
+ }
+ else if (method == u_random_walk_fixed_radius) {
alloc(sd, path_flag, weight, CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID);
}
else if (method == u_random_walk) {
diff --git a/intern/cycles/kernel/svm/svm_closure.h b/intern/cycles/kernel/svm/svm_closure.h
index 3e0cbe3a483..b3f7fee8a63 100644
--- a/intern/cycles/kernel/svm/svm_closure.h
+++ b/intern/cycles/kernel/svm/svm_closure.h
@@ -885,6 +885,7 @@ ccl_device_noinline int svm_node_closure_bsdf(
#endif /* __HAIR__ */
#ifdef __SUBSURFACE__
+ case CLOSURE_BSSRDF_BURLEY_ID:
case CLOSURE_BSSRDF_RANDOM_WALK_ID:
case CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID: {
float3 weight = sd->svm_closure_weight * mix_weight;
diff --git a/intern/cycles/kernel/svm/svm_types.h b/intern/cycles/kernel/svm/svm_types.h
index 59a0e33acbc..e846e4af259 100644
--- a/intern/cycles/kernel/svm/svm_types.h
+++ b/intern/cycles/kernel/svm/svm_types.h
@@ -543,6 +543,7 @@ typedef enum ClosureType {
CLOSURE_BSDF_TRANSPARENT_ID,
/* BSSRDF */
+ CLOSURE_BSSRDF_BURLEY_ID,
CLOSURE_BSSRDF_RANDOM_WALK_ID,
CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID,
@@ -589,7 +590,7 @@ typedef enum ClosureType {
type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID)
#define CLOSURE_IS_BSDF_OR_BSSRDF(type) (type <= CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID)
#define CLOSURE_IS_BSSRDF(type) \
- (type >= CLOSURE_BSSRDF_RANDOM_WALK_ID && type <= CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID)
+ (type >= CLOSURE_BSSRDF_BURLEY_ID && type <= CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID)
#define CLOSURE_IS_VOLUME(type) \
(type >= CLOSURE_VOLUME_ID && type <= CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID)
#define CLOSURE_IS_VOLUME_SCATTER(type) (type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID)