Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrecht Van Lommel <brecht@blender.org>2022-09-02 16:32:46 +0300
committerBrecht Van Lommel <brecht@blender.org>2022-09-02 18:13:28 +0300
commitaa174f632e32695128e149e0559ac10e7f1d3f57 (patch)
tree00fc18f301ee5e6bfbc6dcd8b2573f125c87d126 /intern/cycles
parentb8653398332f00754217421fa8f4f289c0ed147a (diff)
Cleanup: split surface/displacement/volume shader eval into separate files
Diffstat (limited to 'intern/cycles')
-rw-r--r--intern/cycles/kernel/CMakeLists.txt4
-rw-r--r--intern/cycles/kernel/bake/bake.h13
-rw-r--r--intern/cycles/kernel/film/data_passes.h18
-rw-r--r--intern/cycles/kernel/integrator/displacement_shader.h38
-rw-r--r--intern/cycles/kernel/integrator/intersect_volume_stack.h1
-rw-r--r--intern/cycles/kernel/integrator/mnee.h6
-rw-r--r--intern/cycles/kernel/integrator/shade_background.h8
-rw-r--r--intern/cycles/kernel/integrator/shade_light.h2
-rw-r--r--intern/cycles/kernel/integrator/shade_shadow.h6
-rw-r--r--intern/cycles/kernel/integrator/shade_surface.h24
-rw-r--r--intern/cycles/kernel/integrator/shade_volume.h16
-rw-r--r--intern/cycles/kernel/integrator/shader_eval.h947
-rw-r--r--intern/cycles/kernel/integrator/subsurface.h6
-rw-r--r--intern/cycles/kernel/integrator/surface_shader.h587
-rw-r--r--intern/cycles/kernel/integrator/volume_shader.h353
-rw-r--r--intern/cycles/kernel/light/sample.h12
-rw-r--r--intern/cycles/kernel/osl/services.cpp5
-rw-r--r--intern/cycles/kernel/svm/closure.h5
18 files changed, 1045 insertions, 1006 deletions
diff --git a/intern/cycles/kernel/CMakeLists.txt b/intern/cycles/kernel/CMakeLists.txt
index c5527ba7716..6d84357b699 100644
--- a/intern/cycles/kernel/CMakeLists.txt
+++ b/intern/cycles/kernel/CMakeLists.txt
@@ -236,6 +236,7 @@ set(SRC_KERNEL_FILM_HEADERS
)
set(SRC_KERNEL_INTEGRATOR_HEADERS
+ integrator/displacement_shader.h
integrator/init_from_bake.h
integrator/init_from_camera.h
integrator/intersect_closest.h
@@ -247,7 +248,6 @@ set(SRC_KERNEL_INTEGRATOR_HEADERS
integrator/path_state.h
integrator/shade_background.h
integrator/shade_light.h
- integrator/shader_eval.h
integrator/shade_shadow.h
integrator/shade_surface.h
integrator/shade_volume.h
@@ -260,6 +260,8 @@ set(SRC_KERNEL_INTEGRATOR_HEADERS
integrator/subsurface_disk.h
integrator/subsurface.h
integrator/subsurface_random_walk.h
+ integrator/surface_shader.h
+ integrator/volume_shader.h
integrator/volume_stack.h
)
diff --git a/intern/cycles/kernel/bake/bake.h b/intern/cycles/kernel/bake/bake.h
index 9d53d71b431..384ca9168f0 100644
--- a/intern/cycles/kernel/bake/bake.h
+++ b/intern/cycles/kernel/bake/bake.h
@@ -4,7 +4,8 @@
#pragma once
#include "kernel/camera/projection.h"
-#include "kernel/integrator/shader_eval.h"
+#include "kernel/integrator/displacement_shader.h"
+#include "kernel/integrator/surface_shader.h"
#include "kernel/geom/geom.h"
@@ -25,7 +26,7 @@ ccl_device void kernel_displace_evaluate(KernelGlobals kg,
/* Evaluate displacement shader. */
const float3 P = sd.P;
- shader_eval_displacement(kg, INTEGRATOR_STATE_NULL, &sd);
+ displacement_shader_eval(kg, INTEGRATOR_STATE_NULL, &sd);
float3 D = sd.P - P;
object_inverse_dir_transform(kg, &sd, &D);
@@ -64,10 +65,10 @@ ccl_device void kernel_background_evaluate(KernelGlobals kg,
/* Evaluate shader.
* This is being evaluated for all BSDFs, so path flag does not contain a specific type. */
const uint32_t path_flag = PATH_RAY_EMISSION;
- shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_LIGHT &
+ surface_shader_eval<KERNEL_FEATURE_NODE_MASK_SURFACE_LIGHT &
~(KERNEL_FEATURE_NODE_RAYTRACE | KERNEL_FEATURE_NODE_LIGHT_PATH)>(
kg, INTEGRATOR_STATE_NULL, &sd, NULL, path_flag);
- Spectrum color = shader_background_eval(&sd);
+ Spectrum color = surface_shader_background(&sd);
#ifdef __KERNEL_DEBUG_NAN__
if (!isfinite_safe(color)) {
@@ -99,12 +100,12 @@ ccl_device void kernel_curve_shadow_transparency_evaluate(
shader_setup_from_curve(kg, &sd, in.object, in.prim, __float_as_int(in.v), in.u);
/* Evaluate transparency. */
- shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW &
+ surface_shader_eval<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW &
~(KERNEL_FEATURE_NODE_RAYTRACE | KERNEL_FEATURE_NODE_LIGHT_PATH)>(
kg, INTEGRATOR_STATE_NULL, &sd, NULL, PATH_RAY_SHADOW);
/* Write output. */
- output[offset] = clamp(average(shader_bsdf_transparency(kg, &sd)), 0.0f, 1.0f);
+ output[offset] = clamp(average(surface_shader_transparency(kg, &sd)), 0.0f, 1.0f);
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/film/data_passes.h b/intern/cycles/kernel/film/data_passes.h
index 27721c93c1d..d14b3cea989 100644
--- a/intern/cycles/kernel/film/data_passes.h
+++ b/intern/cycles/kernel/film/data_passes.h
@@ -41,7 +41,7 @@ ccl_device_inline void film_write_data_passes(KernelGlobals kg,
if (!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
if (!(sd->flag & SD_TRANSPARENT) || kernel_data.film.pass_alpha_threshold == 0.0f ||
- average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold) {
+ average(surface_shader_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold) {
if (INTEGRATOR_STATE(state, path, sample) == 0) {
if (flag & PASSMASK(DEPTH)) {
const float depth = camera_z_depth(kg, sd->P);
@@ -62,11 +62,11 @@ ccl_device_inline void film_write_data_passes(KernelGlobals kg,
}
if (flag & PASSMASK(NORMAL)) {
- const float3 normal = shader_bsdf_average_normal(kg, sd);
+ const float3 normal = surface_shader_average_normal(kg, sd);
film_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
}
if (flag & PASSMASK(ROUGHNESS)) {
- const float roughness = shader_bsdf_average_roughness(sd);
+ const float roughness = surface_shader_average_roughness(sd);
film_write_pass_float(buffer + kernel_data.film.pass_roughness, roughness);
}
if (flag & PASSMASK(UV)) {
@@ -86,7 +86,7 @@ ccl_device_inline void film_write_data_passes(KernelGlobals kg,
if (kernel_data.film.cryptomatte_passes) {
const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
const float matte_weight = average(throughput) *
- (1.0f - average(shader_bsdf_transparency(kg, sd)));
+ (1.0f - average(surface_shader_transparency(kg, sd)));
if (matte_weight > 0.0f) {
ccl_global float *cryptomatte_buffer = buffer + kernel_data.film.pass_cryptomatte;
if (kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
@@ -95,7 +95,7 @@ ccl_device_inline void film_write_data_passes(KernelGlobals kg,
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight);
}
if (kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
- const float id = shader_cryptomatte_id(kg, sd->shader);
+ const float id = kernel_data_fetch(shaders, (sd->shader & SHADER_MASK)).cryptomatte_id;
cryptomatte_buffer += film_write_cryptomatte_pass(
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight);
}
@@ -110,17 +110,17 @@ ccl_device_inline void film_write_data_passes(KernelGlobals kg,
if (flag & PASSMASK(DIFFUSE_COLOR)) {
const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
film_write_pass_spectrum(buffer + kernel_data.film.pass_diffuse_color,
- shader_bsdf_diffuse(kg, sd) * throughput);
+ surface_shader_diffuse(kg, sd) * throughput);
}
if (flag & PASSMASK(GLOSSY_COLOR)) {
const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
film_write_pass_spectrum(buffer + kernel_data.film.pass_glossy_color,
- shader_bsdf_glossy(kg, sd) * throughput);
+ surface_shader_glossy(kg, sd) * throughput);
}
if (flag & PASSMASK(TRANSMISSION_COLOR)) {
const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
film_write_pass_spectrum(buffer + kernel_data.film.pass_transmission_color,
- shader_bsdf_transmission(kg, sd) * throughput);
+ surface_shader_transmission(kg, sd) * throughput);
}
if (flag & PASSMASK(MIST)) {
/* Bring depth into 0..1 range. */
@@ -144,7 +144,7 @@ ccl_device_inline void film_write_data_passes(KernelGlobals kg,
/* Modulate by transparency */
const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
- const Spectrum alpha = shader_bsdf_alpha(kg, sd);
+ const Spectrum alpha = surface_shader_alpha(kg, sd);
const float mist_output = (1.0f - mist) * average(throughput * alpha);
/* Note that the final value in the render buffer we want is 1 - mist_output,
diff --git a/intern/cycles/kernel/integrator/displacement_shader.h b/intern/cycles/kernel/integrator/displacement_shader.h
new file mode 100644
index 00000000000..71a0f56fb3e
--- /dev/null
+++ b/intern/cycles/kernel/integrator/displacement_shader.h
@@ -0,0 +1,38 @@
+/* SPDX-License-Identifier: Apache-2.0
+ * Copyright 2011-2022 Blender Foundation */
+
+/* Functions to evaluate displacement shader. */
+
+#pragma once
+
+#include "kernel/svm/svm.h"
+
+#ifdef __OSL__
+# include "kernel/osl/shader.h"
+#endif
+
+CCL_NAMESPACE_BEGIN
+
+template<typename ConstIntegratorGenericState>
+ccl_device void displacement_shader_eval(KernelGlobals kg,
+ ConstIntegratorGenericState state,
+ ccl_private ShaderData *sd)
+{
+ sd->num_closure = 0;
+ sd->num_closure_left = 0;
+
+ /* this will modify sd->P */
+#ifdef __SVM__
+# ifdef __OSL__
+ if (kg->osl)
+ OSLShader::eval_displacement(kg, state, sd);
+ else
+# endif
+ {
+ svm_eval_nodes<KERNEL_FEATURE_NODE_MASK_DISPLACEMENT, SHADER_TYPE_DISPLACEMENT>(
+ kg, state, sd, NULL, 0);
+ }
+#endif
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/integrator/intersect_volume_stack.h b/intern/cycles/kernel/integrator/intersect_volume_stack.h
index b53bee11312..c2490581e4d 100644
--- a/intern/cycles/kernel/integrator/intersect_volume_stack.h
+++ b/intern/cycles/kernel/integrator/intersect_volume_stack.h
@@ -5,7 +5,6 @@
#include "kernel/bvh/bvh.h"
#include "kernel/geom/geom.h"
-#include "kernel/integrator/shader_eval.h"
#include "kernel/integrator/volume_stack.h"
CCL_NAMESPACE_BEGIN
diff --git a/intern/cycles/kernel/integrator/mnee.h b/intern/cycles/kernel/integrator/mnee.h
index 84d527bc8b1..a0ad7afe591 100644
--- a/intern/cycles/kernel/integrator/mnee.h
+++ b/intern/cycles/kernel/integrator/mnee.h
@@ -807,7 +807,7 @@ ccl_device_forceinline bool mnee_path_contribution(KernelGlobals kg,
float3 wo = normalize_len(vertices[0].p - sd->P, &wo_len);
/* Initialize throughput and evaluate receiver bsdf * |n.wo|. */
- shader_bsdf_eval(kg, sd, wo, false, throughput, ls->shader);
+ surface_shader_bsdf_eval(kg, sd, wo, false, throughput, ls->shader);
/* Update light sample with new position / direct.ion
* and keep pdf in vertex area measure */
@@ -913,7 +913,7 @@ ccl_device_forceinline bool mnee_path_contribution(KernelGlobals kg,
INTEGRATOR_STATE_WRITE(state, path, bounce) = bounce + 1 + vi;
/* Evaluate shader nodes at solution vi. */
- shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
+ surface_shader_eval<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
kg, state, sd_mnee, NULL, PATH_RAY_DIFFUSE, true);
/* Set light looking dir. */
@@ -1006,7 +1006,7 @@ ccl_device_forceinline int kernel_path_mnee_sample(KernelGlobals kg,
return 0;
/* Last bool argument is the MNEE flag (for TINY_MAX_CLOSURE cap in kernel_shader.h). */
- shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
+ surface_shader_eval<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
kg, state, sd_mnee, NULL, PATH_RAY_DIFFUSE, true);
/* Get and sample refraction bsdf */
diff --git a/intern/cycles/kernel/integrator/shade_background.h b/intern/cycles/kernel/integrator/shade_background.h
index a06791e6059..30ce0999258 100644
--- a/intern/cycles/kernel/integrator/shade_background.h
+++ b/intern/cycles/kernel/integrator/shade_background.h
@@ -5,7 +5,7 @@
#include "kernel/film/light_passes.h"
-#include "kernel/integrator/shader_eval.h"
+#include "kernel/integrator/surface_shader.h"
#include "kernel/light/light.h"
#include "kernel/light/sample.h"
@@ -32,7 +32,7 @@ ccl_device Spectrum integrator_eval_background_shader(KernelGlobals kg,
/* Use fast constant background color if available. */
Spectrum L = zero_spectrum();
- if (shader_constant_emission_eval(kg, shader, &L)) {
+ if (surface_shader_constant_emission(kg, shader, &L)) {
return L;
}
@@ -52,10 +52,10 @@ ccl_device Spectrum integrator_eval_background_shader(KernelGlobals kg,
PROFILING_SHADER(emission_sd->object, emission_sd->shader);
PROFILING_EVENT(PROFILING_SHADE_LIGHT_EVAL);
- shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_BACKGROUND>(
+ surface_shader_eval<KERNEL_FEATURE_NODE_MASK_SURFACE_BACKGROUND>(
kg, state, emission_sd, render_buffer, path_flag | PATH_RAY_EMISSION);
- return shader_background_eval(emission_sd);
+ return surface_shader_background(emission_sd);
}
ccl_device_inline void integrate_background(KernelGlobals kg,
diff --git a/intern/cycles/kernel/integrator/shade_light.h b/intern/cycles/kernel/integrator/shade_light.h
index d91fa2a2663..a4246f99bbf 100644
--- a/intern/cycles/kernel/integrator/shade_light.h
+++ b/intern/cycles/kernel/integrator/shade_light.h
@@ -4,7 +4,7 @@
#pragma once
#include "kernel/film/light_passes.h"
-#include "kernel/integrator/shader_eval.h"
+#include "kernel/integrator/surface_shader.h"
#include "kernel/light/light.h"
#include "kernel/light/sample.h"
diff --git a/intern/cycles/kernel/integrator/shade_shadow.h b/intern/cycles/kernel/integrator/shade_shadow.h
index 074125bd200..ba18aed6ff0 100644
--- a/intern/cycles/kernel/integrator/shade_shadow.h
+++ b/intern/cycles/kernel/integrator/shade_shadow.h
@@ -4,7 +4,7 @@
#pragma once
#include "kernel/integrator/shade_volume.h"
-#include "kernel/integrator/shader_eval.h"
+#include "kernel/integrator/surface_shader.h"
#include "kernel/integrator/volume_stack.h"
CCL_NAMESPACE_BEGIN
@@ -40,7 +40,7 @@ ccl_device_inline Spectrum integrate_transparent_surface_shadow(KernelGlobals kg
/* Evaluate shader. */
if (!(shadow_sd->flag & SD_HAS_ONLY_VOLUME)) {
- shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
+ surface_shader_eval<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
kg, state, shadow_sd, NULL, PATH_RAY_SHADOW);
}
@@ -50,7 +50,7 @@ ccl_device_inline Spectrum integrate_transparent_surface_shadow(KernelGlobals kg
# endif
/* Compute transparency from closures. */
- return shader_bsdf_transparency(kg, shadow_sd);
+ return surface_shader_transparency(kg, shadow_sd);
}
# ifdef __VOLUME__
diff --git a/intern/cycles/kernel/integrator/shade_surface.h b/intern/cycles/kernel/integrator/shade_surface.h
index 013618ce0c1..c19f56a9b70 100644
--- a/intern/cycles/kernel/integrator/shade_surface.h
+++ b/intern/cycles/kernel/integrator/shade_surface.h
@@ -10,8 +10,8 @@
#include "kernel/integrator/mnee.h"
#include "kernel/integrator/path_state.h"
-#include "kernel/integrator/shader_eval.h"
#include "kernel/integrator/subsurface.h"
+#include "kernel/integrator/surface_shader.h"
#include "kernel/integrator/volume_stack.h"
#include "kernel/light/light.h"
@@ -88,7 +88,7 @@ ccl_device_forceinline bool integrate_surface_holdout(KernelGlobals kg,
if (((sd->flag & SD_HOLDOUT) || (sd->object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
(path_flag & PATH_RAY_TRANSPARENT_BACKGROUND)) {
- const Spectrum holdout_weight = shader_holdout_apply(kg, sd);
+ const Spectrum holdout_weight = surface_shader_apply_holdout(kg, sd);
const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
const float transparent = average(holdout_weight * throughput);
film_write_holdout(kg, state, path_flag, transparent, render_buffer);
@@ -109,7 +109,7 @@ ccl_device_forceinline void integrate_surface_emission(KernelGlobals kg,
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
/* Evaluate emissive closure. */
- Spectrum L = shader_emissive_eval(sd);
+ Spectrum L = surface_shader_emission(sd);
float mis_weight = 1.0f;
#ifdef __HAIR__
@@ -171,7 +171,7 @@ ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
Ray ray ccl_optional_struct_init;
BsdfEval bsdf_eval ccl_optional_struct_init;
- const bool is_transmission = shader_bsdf_is_transmission(sd, ls.D);
+ const bool is_transmission = surface_shader_is_transmission(sd, ls.D);
#ifdef __MNEE__
int mnee_vertex_count = 0;
@@ -207,7 +207,8 @@ ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
}
/* Evaluate BSDF. */
- const float bsdf_pdf = shader_bsdf_eval(kg, sd, ls.D, is_transmission, &bsdf_eval, ls.shader);
+ const float bsdf_pdf = surface_shader_bsdf_eval(
+ kg, sd, ls.D, is_transmission, &bsdf_eval, ls.shader);
bsdf_eval_mul(&bsdf_eval, light_eval / ls.pdf);
if (ls.shader & SHADER_USE_MIS) {
@@ -341,7 +342,7 @@ ccl_device_forceinline int integrate_surface_bsdf_bssrdf_bounce(
}
float2 rand_bsdf = path_state_rng_2D(kg, rng_state, PRNG_SURFACE_BSDF);
- ccl_private const ShaderClosure *sc = shader_bsdf_bssrdf_pick(sd, &rand_bsdf);
+ ccl_private const ShaderClosure *sc = surface_shader_bsdf_bssrdf_pick(sd, &rand_bsdf);
#ifdef __SUBSURFACE__
/* BSSRDF closure, we schedule subsurface intersection kernel. */
@@ -356,7 +357,8 @@ ccl_device_forceinline int integrate_surface_bsdf_bssrdf_bounce(
float3 bsdf_omega_in ccl_optional_struct_init;
int label;
- label = shader_bsdf_sample_closure(kg, sd, sc, rand_bsdf, &bsdf_eval, &bsdf_omega_in, &bsdf_pdf);
+ label = surface_shader_bsdf_sample_closure(
+ kg, sd, sc, rand_bsdf, &bsdf_eval, &bsdf_omega_in, &bsdf_pdf);
if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) {
return LABEL_NONE;
@@ -450,7 +452,7 @@ ccl_device_forceinline void integrate_surface_ao(KernelGlobals kg,
const float2 rand_bsdf = path_state_rng_2D(kg, rng_state, PRNG_SURFACE_BSDF);
float3 ao_N;
- const Spectrum ao_weight = shader_bsdf_ao(
+ const Spectrum ao_weight = surface_shader_ao(
kg, sd, kernel_data.integrator.ao_additive_factor, &ao_N);
float3 ao_D;
@@ -494,7 +496,7 @@ ccl_device_forceinline void integrate_surface_ao(KernelGlobals kg,
const uint16_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag) | PATH_RAY_SHADOW_FOR_AO;
const Spectrum throughput = INTEGRATOR_STATE(state, path, throughput) *
- shader_bsdf_alpha(kg, sd);
+ surface_shader_alpha(kg, sd);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, render_pixel_index) = INTEGRATOR_STATE(
state, path, render_pixel_index);
@@ -543,7 +545,7 @@ ccl_device bool integrate_surface(KernelGlobals kg,
{
/* Evaluate shader. */
PROFILING_EVENT(PROFILING_SHADE_SURFACE_EVAL);
- shader_eval_surface<node_feature_mask>(kg, state, &sd, render_buffer, path_flag);
+ surface_shader_eval<node_feature_mask>(kg, state, &sd, render_buffer, path_flag);
/* Initialize additional RNG for BSDFs. */
if (sd.flag & SD_BSDF_NEEDS_LCG) {
@@ -565,7 +567,7 @@ ccl_device bool integrate_surface(KernelGlobals kg,
#endif
{
/* Filter closures. */
- shader_prepare_surface_closures(kg, state, &sd, path_flag);
+ surface_shader_prepare_closures(kg, state, &sd, path_flag);
/* Evaluate holdout. */
if (!integrate_surface_holdout(kg, state, &sd, render_buffer)) {
diff --git a/intern/cycles/kernel/integrator/shade_volume.h b/intern/cycles/kernel/integrator/shade_volume.h
index e2ccafbb384..aaef92729d6 100644
--- a/intern/cycles/kernel/integrator/shade_volume.h
+++ b/intern/cycles/kernel/integrator/shade_volume.h
@@ -9,7 +9,7 @@
#include "kernel/integrator/intersect_closest.h"
#include "kernel/integrator/path_state.h"
-#include "kernel/integrator/shader_eval.h"
+#include "kernel/integrator/volume_shader.h"
#include "kernel/integrator/volume_stack.h"
#include "kernel/light/light.h"
@@ -65,7 +65,7 @@ ccl_device_inline bool shadow_volume_shader_sample(KernelGlobals kg,
ccl_private Spectrum *ccl_restrict extinction)
{
VOLUME_READ_LAMBDA(integrator_state_read_shadow_volume_stack(state, i))
- shader_eval_volume<true>(kg, state, sd, PATH_RAY_SHADOW, volume_read_lambda_pass);
+ volume_shader_eval<true>(kg, state, sd, PATH_RAY_SHADOW, volume_read_lambda_pass);
if (!(sd->flag & SD_EXTINCTION)) {
return false;
@@ -84,7 +84,7 @@ ccl_device_inline bool volume_shader_sample(KernelGlobals kg,
{
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
VOLUME_READ_LAMBDA(integrator_state_read_volume_stack(state, i))
- shader_eval_volume<false>(kg, state, sd, path_flag, volume_read_lambda_pass);
+ volume_shader_eval<false>(kg, state, sd, path_flag, volume_read_lambda_pass);
if (!(sd->flag & (SD_EXTINCTION | SD_SCATTER | SD_EMISSION))) {
return false;
@@ -443,7 +443,7 @@ ccl_device_forceinline void volume_integrate_step_scattering(
result.direct_scatter = true;
result.direct_throughput *= coeff.sigma_s * new_transmittance / vstate.equiangular_pdf;
- shader_copy_volume_phases(&result.direct_phases, sd);
+ volume_shader_copy_phases(&result.direct_phases, sd);
/* Multiple importance sampling. */
if (vstate.use_mis) {
@@ -479,7 +479,7 @@ ccl_device_forceinline void volume_integrate_step_scattering(
result.indirect_scatter = true;
result.indirect_t = new_t;
result.indirect_throughput *= coeff.sigma_s * new_transmittance / distance_pdf;
- shader_copy_volume_phases(&result.indirect_phases, sd);
+ volume_shader_copy_phases(&result.indirect_phases, sd);
if (vstate.direct_sample_method != VOLUME_SAMPLE_EQUIANGULAR) {
/* If using distance sampling for direct light, just copy parameters
@@ -487,7 +487,7 @@ ccl_device_forceinline void volume_integrate_step_scattering(
result.direct_scatter = true;
result.direct_t = result.indirect_t;
result.direct_throughput = result.indirect_throughput;
- shader_copy_volume_phases(&result.direct_phases, sd);
+ volume_shader_copy_phases(&result.direct_phases, sd);
/* Multiple importance sampling. */
if (vstate.use_mis) {
@@ -761,7 +761,7 @@ ccl_device_forceinline void integrate_volume_direct_light(
/* Evaluate BSDF. */
BsdfEval phase_eval ccl_optional_struct_init;
- const float phase_pdf = shader_volume_phase_eval(kg, sd, phases, ls->D, &phase_eval);
+ const float phase_pdf = volume_shader_phase_eval(kg, sd, phases, ls->D, &phase_eval);
if (ls->shader & SHADER_USE_MIS) {
float mis_weight = light_sample_mis_weight_nee(kg, ls->pdf, phase_pdf);
@@ -868,7 +868,7 @@ ccl_device_forceinline bool integrate_volume_phase_scatter(
BsdfEval phase_eval ccl_optional_struct_init;
float3 phase_omega_in ccl_optional_struct_init;
- const int label = shader_volume_phase_sample(
+ const int label = volume_shader_phase_sample(
kg, sd, phases, rand_phase, &phase_eval, &phase_omega_in, &phase_pdf);
if (phase_pdf == 0.0f || bsdf_eval_is_zero(&phase_eval)) {
diff --git a/intern/cycles/kernel/integrator/shader_eval.h b/intern/cycles/kernel/integrator/shader_eval.h
deleted file mode 100644
index 11ecf60d00d..00000000000
--- a/intern/cycles/kernel/integrator/shader_eval.h
+++ /dev/null
@@ -1,947 +0,0 @@
-/* SPDX-License-Identifier: Apache-2.0
- * Copyright 2011-2022 Blender Foundation */
-
-/* Functions to evaluate shaders and use the resulting shader closures. */
-
-#pragma once
-
-#include "kernel/closure/alloc.h"
-#include "kernel/closure/bsdf.h"
-#include "kernel/closure/bsdf_util.h"
-#include "kernel/closure/emissive.h"
-
-#include "kernel/film/light_passes.h"
-
-#include "kernel/svm/svm.h"
-
-#ifdef __OSL__
-# include "kernel/osl/shader.h"
-#endif
-
-CCL_NAMESPACE_BEGIN
-
-/* Merging */
-
-#if defined(__VOLUME__)
-ccl_device_inline void shader_merge_volume_closures(ccl_private ShaderData *sd)
-{
- /* Merge identical closures to save closure space with stacked volumes. */
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private ShaderClosure *sci = &sd->closure[i];
-
- if (sci->type != CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
- continue;
- }
-
- for (int j = i + 1; j < sd->num_closure; j++) {
- ccl_private ShaderClosure *scj = &sd->closure[j];
- if (sci->type != scj->type) {
- continue;
- }
-
- ccl_private const HenyeyGreensteinVolume *hgi = (ccl_private const HenyeyGreensteinVolume *)
- sci;
- ccl_private const HenyeyGreensteinVolume *hgj = (ccl_private const HenyeyGreensteinVolume *)
- scj;
- if (!(hgi->g == hgj->g)) {
- continue;
- }
-
- sci->weight += scj->weight;
- sci->sample_weight += scj->sample_weight;
-
- int size = sd->num_closure - (j + 1);
- if (size > 0) {
- for (int k = 0; k < size; k++) {
- scj[k] = scj[k + 1];
- }
- }
-
- sd->num_closure--;
- kernel_assert(sd->num_closure >= 0);
- j--;
- }
- }
-}
-
-ccl_device_inline void shader_copy_volume_phases(ccl_private ShaderVolumePhases *ccl_restrict
- phases,
- ccl_private const ShaderData *ccl_restrict sd)
-{
- phases->num_closure = 0;
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *from_sc = &sd->closure[i];
- ccl_private const HenyeyGreensteinVolume *from_hg =
- (ccl_private const HenyeyGreensteinVolume *)from_sc;
-
- if (from_sc->type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
- ccl_private ShaderVolumeClosure *to_sc = &phases->closure[phases->num_closure];
-
- to_sc->weight = from_sc->weight;
- to_sc->sample_weight = from_sc->sample_weight;
- to_sc->g = from_hg->g;
- phases->num_closure++;
- if (phases->num_closure >= MAX_VOLUME_CLOSURE) {
- break;
- }
- }
- }
-}
-#endif /* __VOLUME__ */
-
-ccl_device_inline void shader_prepare_surface_closures(KernelGlobals kg,
- ConstIntegratorState state,
- ccl_private ShaderData *sd,
- const uint32_t path_flag)
-{
- /* Filter out closures. */
- if (kernel_data.integrator.filter_closures) {
- if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_EMISSION) {
- sd->closure_emission_background = zero_spectrum();
- }
-
- if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_DIRECT_LIGHT) {
- sd->flag &= ~SD_BSDF_HAS_EVAL;
- }
-
- if (path_flag & PATH_RAY_CAMERA) {
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private ShaderClosure *sc = &sd->closure[i];
-
- if ((CLOSURE_IS_BSDF_DIFFUSE(sc->type) &&
- (kernel_data.integrator.filter_closures & FILTER_CLOSURE_DIFFUSE)) ||
- (CLOSURE_IS_BSDF_GLOSSY(sc->type) &&
- (kernel_data.integrator.filter_closures & FILTER_CLOSURE_GLOSSY)) ||
- (CLOSURE_IS_BSDF_TRANSMISSION(sc->type) &&
- (kernel_data.integrator.filter_closures & FILTER_CLOSURE_TRANSMISSION))) {
- sc->type = CLOSURE_NONE_ID;
- sc->sample_weight = 0.0f;
- }
- else if ((CLOSURE_IS_BSDF_TRANSPARENT(sc->type) &&
- (kernel_data.integrator.filter_closures & FILTER_CLOSURE_TRANSPARENT))) {
- sc->type = CLOSURE_HOLDOUT_ID;
- sc->sample_weight = 0.0f;
- sd->flag |= SD_HOLDOUT;
- }
- }
- }
- }
-
- /* Defensive sampling.
- *
- * We can likely also do defensive sampling at deeper bounces, particularly
- * for cases like a perfect mirror but possibly also others. This will need
- * a good heuristic. */
- if (INTEGRATOR_STATE(state, path, bounce) + INTEGRATOR_STATE(state, path, transparent_bounce) ==
- 0 &&
- sd->num_closure > 1) {
- float sum = 0.0f;
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private ShaderClosure *sc = &sd->closure[i];
- if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
- sum += sc->sample_weight;
- }
- }
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private ShaderClosure *sc = &sd->closure[i];
- if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
- sc->sample_weight = max(sc->sample_weight, 0.125f * sum);
- }
- }
- }
-
- /* Filter glossy.
- *
- * Blurring of bsdf after bounces, for rays that have a small likelihood
- * of following this particular path (diffuse, rough glossy) */
- if (kernel_data.integrator.filter_glossy != FLT_MAX
-#ifdef __MNEE__
- && !(INTEGRATOR_STATE(state, path, mnee) & PATH_MNEE_VALID)
-#endif
- ) {
- float blur_pdf = kernel_data.integrator.filter_glossy *
- INTEGRATOR_STATE(state, path, min_ray_pdf);
-
- if (blur_pdf < 1.0f) {
- float blur_roughness = sqrtf(1.0f - blur_pdf) * 0.5f;
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private ShaderClosure *sc = &sd->closure[i];
- if (CLOSURE_IS_BSDF(sc->type)) {
- bsdf_blur(kg, sc, blur_roughness);
- }
- }
- }
- }
-}
-
-/* BSDF */
-
-ccl_device_inline bool shader_bsdf_is_transmission(ccl_private const ShaderData *sd,
- const float3 omega_in)
-{
- return dot(sd->N, omega_in) < 0.0f;
-}
-
-ccl_device_forceinline bool _shader_bsdf_exclude(ClosureType type, uint light_shader_flags)
-{
- if (!(light_shader_flags & SHADER_EXCLUDE_ANY)) {
- return false;
- }
- if (light_shader_flags & SHADER_EXCLUDE_DIFFUSE) {
- if (CLOSURE_IS_BSDF_DIFFUSE(type)) {
- return true;
- }
- }
- if (light_shader_flags & SHADER_EXCLUDE_GLOSSY) {
- if (CLOSURE_IS_BSDF_GLOSSY(type)) {
- return true;
- }
- }
- if (light_shader_flags & SHADER_EXCLUDE_TRANSMIT) {
- if (CLOSURE_IS_BSDF_TRANSMISSION(type)) {
- return true;
- }
- }
- return false;
-}
-
-ccl_device_inline float _shader_bsdf_multi_eval(KernelGlobals kg,
- ccl_private ShaderData *sd,
- const float3 omega_in,
- const bool is_transmission,
- ccl_private const ShaderClosure *skip_sc,
- ccl_private BsdfEval *result_eval,
- float sum_pdf,
- float sum_sample_weight,
- const uint light_shader_flags)
-{
- /* This is the veach one-sample model with balance heuristic,
- * some PDF factors drop out when using balance heuristic weighting. */
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (sc == skip_sc) {
- continue;
- }
-
- if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
- if (CLOSURE_IS_BSDF(sc->type) && !_shader_bsdf_exclude(sc->type, light_shader_flags)) {
- float bsdf_pdf = 0.0f;
- Spectrum eval = bsdf_eval(kg, sd, sc, omega_in, is_transmission, &bsdf_pdf);
-
- if (bsdf_pdf != 0.0f) {
- bsdf_eval_accum(result_eval, sc->type, eval * sc->weight);
- sum_pdf += bsdf_pdf * sc->sample_weight;
- }
- }
-
- sum_sample_weight += sc->sample_weight;
- }
- }
-
- return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
-}
-
-#ifndef __KERNEL_CUDA__
-ccl_device
-#else
-ccl_device_inline
-#endif
- float
- shader_bsdf_eval(KernelGlobals kg,
- ccl_private ShaderData *sd,
- const float3 omega_in,
- const bool is_transmission,
- ccl_private BsdfEval *bsdf_eval,
- const uint light_shader_flags)
-{
- bsdf_eval_init(bsdf_eval, CLOSURE_NONE_ID, zero_spectrum());
-
- return _shader_bsdf_multi_eval(
- kg, sd, omega_in, is_transmission, NULL, bsdf_eval, 0.0f, 0.0f, light_shader_flags);
-}
-
-/* Randomly sample a BSSRDF or BSDF proportional to ShaderClosure.sample_weight. */
-ccl_device_inline ccl_private const ShaderClosure *shader_bsdf_bssrdf_pick(
- ccl_private const ShaderData *ccl_restrict sd, ccl_private float2 *rand_bsdf)
-{
- int sampled = 0;
-
- if (sd->num_closure > 1) {
- /* Pick a BSDF or based on sample weights. */
- float sum = 0.0f;
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
- sum += sc->sample_weight;
- }
- }
-
- float r = (*rand_bsdf).x * sum;
- float partial_sum = 0.0f;
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
- float next_sum = partial_sum + sc->sample_weight;
-
- if (r < next_sum) {
- sampled = i;
-
- /* Rescale to reuse for direction sample, to better preserve stratification. */
- (*rand_bsdf).x = (r - partial_sum) / sc->sample_weight;
- break;
- }
-
- partial_sum = next_sum;
- }
- }
- }
-
- return &sd->closure[sampled];
-}
-
-/* Return weight for picked BSSRDF. */
-ccl_device_inline Spectrum
-shader_bssrdf_sample_weight(ccl_private const ShaderData *ccl_restrict sd,
- ccl_private const ShaderClosure *ccl_restrict bssrdf_sc)
-{
- Spectrum weight = bssrdf_sc->weight;
-
- if (sd->num_closure > 1) {
- float sum = 0.0f;
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
- sum += sc->sample_weight;
- }
- }
- weight *= sum / bssrdf_sc->sample_weight;
- }
-
- return weight;
-}
-
-/* Sample direction for picked BSDF, and return evaluation and pdf for all
- * BSDFs combined using MIS. */
-ccl_device int shader_bsdf_sample_closure(KernelGlobals kg,
- ccl_private ShaderData *sd,
- ccl_private const ShaderClosure *sc,
- const float2 rand_bsdf,
- ccl_private BsdfEval *bsdf_eval,
- ccl_private float3 *omega_in,
- ccl_private float *pdf)
-{
- /* BSSRDF should already have been handled elsewhere. */
- kernel_assert(CLOSURE_IS_BSDF(sc->type));
-
- int label;
- Spectrum eval = zero_spectrum();
-
- *pdf = 0.0f;
- label = bsdf_sample(kg, sd, sc, rand_bsdf.x, rand_bsdf.y, &eval, omega_in, pdf);
-
- if (*pdf != 0.0f) {
- bsdf_eval_init(bsdf_eval, sc->type, eval * sc->weight);
-
- if (sd->num_closure > 1) {
- const bool is_transmission = shader_bsdf_is_transmission(sd, *omega_in);
- float sweight = sc->sample_weight;
- *pdf = _shader_bsdf_multi_eval(
- kg, sd, *omega_in, is_transmission, sc, bsdf_eval, *pdf * sweight, sweight, 0);
- }
- }
-
- return label;
-}
-
-ccl_device float shader_bsdf_average_roughness(ccl_private const ShaderData *sd)
-{
- float roughness = 0.0f;
- float sum_weight = 0.0f;
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF(sc->type)) {
- /* sqrt once to undo the squaring from multiplying roughness on the
- * two axes, and once for the squared roughness convention. */
- float weight = fabsf(average(sc->weight));
- roughness += weight * sqrtf(safe_sqrtf(bsdf_get_roughness_squared(sc)));
- sum_weight += weight;
- }
- }
-
- return (sum_weight > 0.0f) ? roughness / sum_weight : 0.0f;
-}
-
-ccl_device Spectrum shader_bsdf_transparency(KernelGlobals kg, ccl_private const ShaderData *sd)
-{
- if (sd->flag & SD_HAS_ONLY_VOLUME) {
- return one_spectrum();
- }
- else if (sd->flag & SD_TRANSPARENT) {
- return sd->closure_transparent_extinction;
- }
- else {
- return zero_spectrum();
- }
-}
-
-ccl_device void shader_bsdf_disable_transparency(KernelGlobals kg, ccl_private ShaderData *sd)
-{
- if (sd->flag & SD_TRANSPARENT) {
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private ShaderClosure *sc = &sd->closure[i];
-
- if (sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
- sc->sample_weight = 0.0f;
- sc->weight = zero_spectrum();
- }
- }
-
- sd->flag &= ~SD_TRANSPARENT;
- }
-}
-
-ccl_device Spectrum shader_bsdf_alpha(KernelGlobals kg, ccl_private const ShaderData *sd)
-{
- Spectrum alpha = one_spectrum() - shader_bsdf_transparency(kg, sd);
-
- alpha = saturate(alpha);
-
- return alpha;
-}
-
-ccl_device Spectrum shader_bsdf_diffuse(KernelGlobals kg, ccl_private const ShaderData *sd)
-{
- Spectrum eval = zero_spectrum();
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF_DIFFUSE(sc->type) || CLOSURE_IS_BSSRDF(sc->type))
- eval += sc->weight;
- }
-
- return eval;
-}
-
-ccl_device Spectrum shader_bsdf_glossy(KernelGlobals kg, ccl_private const ShaderData *sd)
-{
- Spectrum eval = zero_spectrum();
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF_GLOSSY(sc->type))
- eval += sc->weight;
- }
-
- return eval;
-}
-
-ccl_device Spectrum shader_bsdf_transmission(KernelGlobals kg, ccl_private const ShaderData *sd)
-{
- Spectrum eval = zero_spectrum();
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
- eval += sc->weight;
- }
-
- return eval;
-}
-
-ccl_device float3 shader_bsdf_average_normal(KernelGlobals kg, ccl_private const ShaderData *sd)
-{
- float3 N = zero_float3();
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
- if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
- N += sc->N * fabsf(average(sc->weight));
- }
-
- return (is_zero(N)) ? sd->N : normalize(N);
-}
-
-ccl_device Spectrum shader_bsdf_ao(KernelGlobals kg,
- ccl_private const ShaderData *sd,
- const float ao_factor,
- ccl_private float3 *N_)
-{
- Spectrum eval = zero_spectrum();
- float3 N = zero_float3();
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
- ccl_private const DiffuseBsdf *bsdf = (ccl_private const DiffuseBsdf *)sc;
- eval += sc->weight * ao_factor;
- N += bsdf->N * fabsf(average(sc->weight));
- }
- }
-
- *N_ = (is_zero(N)) ? sd->N : normalize(N);
- return eval;
-}
-
-#ifdef __SUBSURFACE__
-ccl_device float3 shader_bssrdf_normal(ccl_private const ShaderData *sd)
-{
- float3 N = zero_float3();
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_BSSRDF(sc->type)) {
- ccl_private const Bssrdf *bssrdf = (ccl_private const Bssrdf *)sc;
- float avg_weight = fabsf(average(sc->weight));
-
- N += bssrdf->N * avg_weight;
- }
- }
-
- return (is_zero(N)) ? sd->N : normalize(N);
-}
-#endif /* __SUBSURFACE__ */
-
-/* Constant emission optimization */
-
-ccl_device bool shader_constant_emission_eval(KernelGlobals kg,
- int shader,
- ccl_private Spectrum *eval)
-{
- int shader_index = shader & SHADER_MASK;
- int shader_flag = kernel_data_fetch(shaders, shader_index).flags;
-
- if (shader_flag & SD_HAS_CONSTANT_EMISSION) {
- const float3 emission_rgb = make_float3(
- kernel_data_fetch(shaders, shader_index).constant_emission[0],
- kernel_data_fetch(shaders, shader_index).constant_emission[1],
- kernel_data_fetch(shaders, shader_index).constant_emission[2]);
- *eval = rgb_to_spectrum(emission_rgb);
-
- return true;
- }
-
- return false;
-}
-
-/* Background */
-
-ccl_device Spectrum shader_background_eval(ccl_private const ShaderData *sd)
-{
- if (sd->flag & SD_EMISSION) {
- return sd->closure_emission_background;
- }
- else {
- return zero_spectrum();
- }
-}
-
-/* Emission */
-
-ccl_device Spectrum shader_emissive_eval(ccl_private const ShaderData *sd)
-{
- if (sd->flag & SD_EMISSION) {
- return emissive_simple_eval(sd->Ng, sd->I) * sd->closure_emission_background;
- }
- else {
- return zero_spectrum();
- }
-}
-
-/* Holdout */
-
-ccl_device Spectrum shader_holdout_apply(KernelGlobals kg, ccl_private ShaderData *sd)
-{
- Spectrum weight = zero_spectrum();
-
- /* For objects marked as holdout, preserve transparency and remove all other
- * closures, replacing them with a holdout weight. */
- if (sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
- if ((sd->flag & SD_TRANSPARENT) && !(sd->flag & SD_HAS_ONLY_VOLUME)) {
- weight = one_spectrum() - sd->closure_transparent_extinction;
-
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private ShaderClosure *sc = &sd->closure[i];
- if (!CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
- sc->type = NBUILTIN_CLOSURES;
- }
- }
-
- sd->flag &= ~(SD_CLOSURE_FLAGS - (SD_TRANSPARENT | SD_BSDF));
- }
- else {
- weight = one_spectrum();
- }
- }
- else {
- for (int i = 0; i < sd->num_closure; i++) {
- ccl_private const ShaderClosure *sc = &sd->closure[i];
- if (CLOSURE_IS_HOLDOUT(sc->type)) {
- weight += sc->weight;
- }
- }
- }
-
- return weight;
-}
-
-/* Surface Evaluation */
-
-template<uint node_feature_mask, typename ConstIntegratorGenericState>
-ccl_device void shader_eval_surface(KernelGlobals kg,
- ConstIntegratorGenericState state,
- ccl_private ShaderData *ccl_restrict sd,
- ccl_global float *ccl_restrict buffer,
- uint32_t path_flag,
- bool use_caustics_storage = false)
-{
- /* If path is being terminated, we are tracing a shadow ray or evaluating
- * emission, then we don't need to store closures. The emission and shadow
- * shader data also do not have a closure array to save GPU memory. */
- int max_closures;
- if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
- max_closures = 0;
- }
- else {
- max_closures = use_caustics_storage ? CAUSTICS_MAX_CLOSURE : kernel_data.max_closures;
- }
-
- sd->num_closure = 0;
- sd->num_closure_left = max_closures;
-
-#ifdef __OSL__
- if (kg->osl) {
- if (sd->object == OBJECT_NONE && sd->lamp == LAMP_NONE) {
- OSLShader::eval_background(kg, state, sd, path_flag);
- }
- else {
- OSLShader::eval_surface(kg, state, sd, path_flag);
- }
- }
- else
-#endif
- {
-#ifdef __SVM__
- svm_eval_nodes<node_feature_mask, SHADER_TYPE_SURFACE>(kg, state, sd, buffer, path_flag);
-#else
- if (sd->object == OBJECT_NONE) {
- sd->closure_emission_background = make_spectrum(0.8f);
- sd->flag |= SD_EMISSION;
- }
- else {
- ccl_private DiffuseBsdf *bsdf = (ccl_private DiffuseBsdf *)bsdf_alloc(
- sd, sizeof(DiffuseBsdf), make_spectrum(0.8f));
- if (bsdf != NULL) {
- bsdf->N = sd->N;
- sd->flag |= bsdf_diffuse_setup(bsdf);
- }
- }
-#endif
- }
-}
-
-/* Volume */
-
-#ifdef __VOLUME__
-
-ccl_device_inline float _shader_volume_phase_multi_eval(
- ccl_private const ShaderData *sd,
- ccl_private const ShaderVolumePhases *phases,
- const float3 omega_in,
- int skip_phase,
- ccl_private BsdfEval *result_eval,
- float sum_pdf,
- float sum_sample_weight)
-{
- for (int i = 0; i < phases->num_closure; i++) {
- if (i == skip_phase)
- continue;
-
- ccl_private const ShaderVolumeClosure *svc = &phases->closure[i];
- float phase_pdf = 0.0f;
- Spectrum eval = volume_phase_eval(sd, svc, omega_in, &phase_pdf);
-
- if (phase_pdf != 0.0f) {
- bsdf_eval_accum(result_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
- sum_pdf += phase_pdf * svc->sample_weight;
- }
-
- sum_sample_weight += svc->sample_weight;
- }
-
- return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
-}
-
-ccl_device float shader_volume_phase_eval(KernelGlobals kg,
- ccl_private const ShaderData *sd,
- ccl_private const ShaderVolumePhases *phases,
- const float3 omega_in,
- ccl_private BsdfEval *phase_eval)
-{
- bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, zero_spectrum());
-
- return _shader_volume_phase_multi_eval(sd, phases, omega_in, -1, phase_eval, 0.0f, 0.0f);
-}
-
-ccl_device int shader_volume_phase_sample(KernelGlobals kg,
- ccl_private const ShaderData *sd,
- ccl_private const ShaderVolumePhases *phases,
- float2 rand_phase,
- ccl_private BsdfEval *phase_eval,
- ccl_private float3 *omega_in,
- ccl_private float *pdf)
-{
- int sampled = 0;
-
- if (phases->num_closure > 1) {
- /* pick a phase closure based on sample weights */
- float sum = 0.0f;
-
- for (sampled = 0; sampled < phases->num_closure; sampled++) {
- ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
- sum += svc->sample_weight;
- }
-
- float r = rand_phase.x * sum;
- float partial_sum = 0.0f;
-
- for (sampled = 0; sampled < phases->num_closure; sampled++) {
- ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
- float next_sum = partial_sum + svc->sample_weight;
-
- if (r <= next_sum) {
- /* Rescale to reuse for BSDF direction sample. */
- rand_phase.x = (r - partial_sum) / svc->sample_weight;
- break;
- }
-
- partial_sum = next_sum;
- }
-
- if (sampled == phases->num_closure) {
- *pdf = 0.0f;
- return LABEL_NONE;
- }
- }
-
- /* todo: this isn't quite correct, we don't weight anisotropy properly
- * depending on color channels, even if this is perhaps not a common case */
- ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
- int label;
- Spectrum eval = zero_spectrum();
-
- *pdf = 0.0f;
- label = volume_phase_sample(sd, svc, rand_phase.x, rand_phase.y, &eval, omega_in, pdf);
-
- if (*pdf != 0.0f) {
- bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
- }
-
- return label;
-}
-
-ccl_device int shader_phase_sample_closure(KernelGlobals kg,
- ccl_private const ShaderData *sd,
- ccl_private const ShaderVolumeClosure *sc,
- const float2 rand_phase,
- ccl_private BsdfEval *phase_eval,
- ccl_private float3 *omega_in,
- ccl_private float *pdf)
-{
- int label;
- Spectrum eval = zero_spectrum();
-
- *pdf = 0.0f;
- label = volume_phase_sample(sd, sc, rand_phase.x, rand_phase.y, &eval, omega_in, pdf);
-
- if (*pdf != 0.0f)
- bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
-
- return label;
-}
-
-/* Volume Evaluation */
-
-template<const bool shadow, typename StackReadOp, typename ConstIntegratorGenericState>
-ccl_device_inline void shader_eval_volume(KernelGlobals kg,
- ConstIntegratorGenericState state,
- ccl_private ShaderData *ccl_restrict sd,
- const uint32_t path_flag,
- StackReadOp stack_read)
-{
- /* If path is being terminated, we are tracing a shadow ray or evaluating
- * emission, then we don't need to store closures. The emission and shadow
- * shader data also do not have a closure array to save GPU memory. */
- int max_closures;
- if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
- max_closures = 0;
- }
- else {
- max_closures = kernel_data.max_closures;
- }
-
- /* reset closures once at the start, we will be accumulating the closures
- * for all volumes in the stack into a single array of closures */
- sd->num_closure = 0;
- sd->num_closure_left = max_closures;
- sd->flag = 0;
- sd->object_flag = 0;
-
- for (int i = 0;; i++) {
- const VolumeStack entry = stack_read(i);
- if (entry.shader == SHADER_NONE) {
- break;
- }
-
- /* Setup shader-data from stack. it's mostly setup already in
- * shader_setup_from_volume, this switching should be quick. */
- sd->object = entry.object;
- sd->lamp = LAMP_NONE;
- sd->shader = entry.shader;
-
- sd->flag &= ~SD_SHADER_FLAGS;
- sd->flag |= kernel_data_fetch(shaders, (sd->shader & SHADER_MASK)).flags;
- sd->object_flag &= ~SD_OBJECT_FLAGS;
-
- if (sd->object != OBJECT_NONE) {
- sd->object_flag |= kernel_data_fetch(object_flag, sd->object);
-
-# ifdef __OBJECT_MOTION__
- /* todo: this is inefficient for motion blur, we should be
- * caching matrices instead of recomputing them each step */
- shader_setup_object_transforms(kg, sd, sd->time);
-
- if ((sd->object_flag & SD_OBJECT_HAS_VOLUME_MOTION) != 0) {
- AttributeDescriptor v_desc = find_attribute(kg, sd, ATTR_STD_VOLUME_VELOCITY);
- kernel_assert(v_desc.offset != ATTR_STD_NOT_FOUND);
-
- const float3 P = sd->P;
- const float velocity_scale = kernel_data_fetch(objects, sd->object).velocity_scale;
- const float time_offset = kernel_data.cam.motion_position == MOTION_POSITION_CENTER ?
- 0.5f :
- 0.0f;
- const float time = kernel_data.cam.motion_position == MOTION_POSITION_END ?
- (1.0f - kernel_data.cam.shuttertime) + sd->time :
- sd->time;
-
- /* Use a 1st order semi-lagrangian advection scheme to estimate what volume quantity
- * existed, or will exist, at the given time:
- *
- * `phi(x, T) = phi(x - (T - t) * u(x, T), t)`
- *
- * where
- *
- * x : position
- * T : super-sampled time (or ray time)
- * t : current time of the simulation (in rendering we assume this is center frame with
- * relative time = 0)
- * phi : the volume quantity
- * u : the velocity field
- *
- * But first we need to determine the velocity field `u(x, T)`, which we can estimate also
- * using semi-lagrangian advection.
- *
- * `u(x, T) = u(x - (T - t) * u(x, T), t)`
- *
- * This is the typical way to model self-advection in fluid dynamics, however, we do not
- * account for other forces affecting the velocity during simulation (pressure, buoyancy,
- * etc.): this gives a linear interpolation when fluid are mostly "curvy". For better
- * results, a higher order interpolation scheme can be used (at the cost of more lookups),
- * or an interpolation of the velocity fields for the previous and next frames could also
- * be used to estimate `u(x, T)` (which will cost more memory and lookups).
- *
- * References:
- * "Eulerian Motion Blur", Kim and Ko, 2007
- * "Production Volume Rendering", Wreninge et al., 2012
- */
-
- /* Find velocity. */
- float3 velocity = primitive_volume_attribute_float3(kg, sd, v_desc);
- object_dir_transform(kg, sd, &velocity);
-
- /* Find advected P. */
- sd->P = P - (time - time_offset) * velocity_scale * velocity;
-
- /* Find advected velocity. */
- velocity = primitive_volume_attribute_float3(kg, sd, v_desc);
- object_dir_transform(kg, sd, &velocity);
-
- /* Find advected P. */
- sd->P = P - (time - time_offset) * velocity_scale * velocity;
- }
-# endif
- }
-
- /* evaluate shader */
-# ifdef __SVM__
-# ifdef __OSL__
- if (kg->osl) {
- OSLShader::eval_volume(kg, state, sd, path_flag);
- }
- else
-# endif
- {
- svm_eval_nodes<KERNEL_FEATURE_NODE_MASK_VOLUME, SHADER_TYPE_VOLUME>(
- kg, state, sd, NULL, path_flag);
- }
-# endif
-
- /* Merge closures to avoid exceeding number of closures limit. */
- if (!shadow) {
- if (i > 0) {
- shader_merge_volume_closures(sd);
- }
- }
- }
-}
-
-#endif /* __VOLUME__ */
-
-/* Displacement Evaluation */
-
-template<typename ConstIntegratorGenericState>
-ccl_device void shader_eval_displacement(KernelGlobals kg,
- ConstIntegratorGenericState state,
- ccl_private ShaderData *sd)
-{
- sd->num_closure = 0;
- sd->num_closure_left = 0;
-
- /* this will modify sd->P */
-#ifdef __SVM__
-# ifdef __OSL__
- if (kg->osl)
- OSLShader::eval_displacement(kg, state, sd);
- else
-# endif
- {
- svm_eval_nodes<KERNEL_FEATURE_NODE_MASK_DISPLACEMENT, SHADER_TYPE_DISPLACEMENT>(
- kg, state, sd, NULL, 0);
- }
-#endif
-}
-
-/* Cryptomatte */
-
-ccl_device float shader_cryptomatte_id(KernelGlobals kg, int shader)
-{
- return kernel_data_fetch(shaders, (shader & SHADER_MASK)).cryptomatte_id;
-}
-
-CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/integrator/subsurface.h b/intern/cycles/kernel/integrator/subsurface.h
index d26890a113c..15c2cb1c708 100644
--- a/intern/cycles/kernel/integrator/subsurface.h
+++ b/intern/cycles/kernel/integrator/subsurface.h
@@ -15,9 +15,9 @@
#include "kernel/integrator/intersect_volume_stack.h"
#include "kernel/integrator/path_state.h"
-#include "kernel/integrator/shader_eval.h"
#include "kernel/integrator/subsurface_disk.h"
#include "kernel/integrator/subsurface_random_walk.h"
+#include "kernel/integrator/surface_shader.h"
CCL_NAMESPACE_BEGIN
@@ -51,7 +51,7 @@ ccl_device int subsurface_bounce(KernelGlobals kg,
PATH_RAY_SUBSURFACE_RANDOM_WALK);
/* Compute weight, optionally including Fresnel from entry point. */
- Spectrum weight = shader_bssrdf_sample_weight(sd, sc);
+ Spectrum weight = surface_shader_bssrdf_sample_weight(sd, sc);
if (bssrdf->roughness != FLT_MAX) {
path_flag |= PATH_RAY_SUBSURFACE_USE_FRESNEL;
}
@@ -89,7 +89,7 @@ ccl_device void subsurface_shader_data_setup(KernelGlobals kg,
/* Get bump mapped normal from shader evaluation at exit point. */
float3 N = sd->N;
if (sd->flag & SD_HAS_BSSRDF_BUMP) {
- N = shader_bssrdf_normal(sd);
+ N = surface_shader_bssrdf_normal(sd);
}
/* Setup diffuse BSDF at the exit point. This replaces shader_eval_surface. */
diff --git a/intern/cycles/kernel/integrator/surface_shader.h b/intern/cycles/kernel/integrator/surface_shader.h
new file mode 100644
index 00000000000..f40ff3c33ee
--- /dev/null
+++ b/intern/cycles/kernel/integrator/surface_shader.h
@@ -0,0 +1,587 @@
+/* SPDX-License-Identifier: Apache-2.0
+ * Copyright 2011-2022 Blender Foundation */
+
+/* Functions to evaluate shaders. */
+
+#pragma once
+
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf.h"
+#include "kernel/closure/bsdf_util.h"
+#include "kernel/closure/emissive.h"
+
+#include "kernel/svm/svm.h"
+
+#ifdef __OSL__
+# include "kernel/osl/shader.h"
+#endif
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device_inline void surface_shader_prepare_closures(KernelGlobals kg,
+ ConstIntegratorState state,
+ ccl_private ShaderData *sd,
+ const uint32_t path_flag)
+{
+ /* Filter out closures. */
+ if (kernel_data.integrator.filter_closures) {
+ if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_EMISSION) {
+ sd->closure_emission_background = zero_spectrum();
+ }
+
+ if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_DIRECT_LIGHT) {
+ sd->flag &= ~SD_BSDF_HAS_EVAL;
+ }
+
+ if (path_flag & PATH_RAY_CAMERA) {
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+
+ if ((CLOSURE_IS_BSDF_DIFFUSE(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_DIFFUSE)) ||
+ (CLOSURE_IS_BSDF_GLOSSY(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_GLOSSY)) ||
+ (CLOSURE_IS_BSDF_TRANSMISSION(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_TRANSMISSION))) {
+ sc->type = CLOSURE_NONE_ID;
+ sc->sample_weight = 0.0f;
+ }
+ else if ((CLOSURE_IS_BSDF_TRANSPARENT(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_TRANSPARENT))) {
+ sc->type = CLOSURE_HOLDOUT_ID;
+ sc->sample_weight = 0.0f;
+ sd->flag |= SD_HOLDOUT;
+ }
+ }
+ }
+ }
+
+ /* Defensive sampling.
+ *
+ * We can likely also do defensive sampling at deeper bounces, particularly
+ * for cases like a perfect mirror but possibly also others. This will need
+ * a good heuristic. */
+ if (INTEGRATOR_STATE(state, path, bounce) + INTEGRATOR_STATE(state, path, transparent_bounce) ==
+ 0 &&
+ sd->num_closure > 1) {
+ float sum = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sum += sc->sample_weight;
+ }
+ }
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sc->sample_weight = max(sc->sample_weight, 0.125f * sum);
+ }
+ }
+ }
+
+ /* Filter glossy.
+ *
+ * Blurring of bsdf after bounces, for rays that have a small likelihood
+ * of following this particular path (diffuse, rough glossy) */
+ if (kernel_data.integrator.filter_glossy != FLT_MAX
+#ifdef __MNEE__
+ && !(INTEGRATOR_STATE(state, path, mnee) & PATH_MNEE_VALID)
+#endif
+ ) {
+ float blur_pdf = kernel_data.integrator.filter_glossy *
+ INTEGRATOR_STATE(state, path, min_ray_pdf);
+
+ if (blur_pdf < 1.0f) {
+ float blur_roughness = sqrtf(1.0f - blur_pdf) * 0.5f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF(sc->type)) {
+ bsdf_blur(kg, sc, blur_roughness);
+ }
+ }
+ }
+ }
+}
+
+/* BSDF */
+
+ccl_device_inline bool surface_shader_is_transmission(ccl_private const ShaderData *sd,
+ const float3 omega_in)
+{
+ return dot(sd->N, omega_in) < 0.0f;
+}
+
+ccl_device_forceinline bool _surface_shader_exclude(ClosureType type, uint light_shader_flags)
+{
+ if (!(light_shader_flags & SHADER_EXCLUDE_ANY)) {
+ return false;
+ }
+ if (light_shader_flags & SHADER_EXCLUDE_DIFFUSE) {
+ if (CLOSURE_IS_BSDF_DIFFUSE(type)) {
+ return true;
+ }
+ }
+ if (light_shader_flags & SHADER_EXCLUDE_GLOSSY) {
+ if (CLOSURE_IS_BSDF_GLOSSY(type)) {
+ return true;
+ }
+ }
+ if (light_shader_flags & SHADER_EXCLUDE_TRANSMIT) {
+ if (CLOSURE_IS_BSDF_TRANSMISSION(type)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+ccl_device_inline float _surface_shader_bsdf_eval_mis(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ const float3 omega_in,
+ const bool is_transmission,
+ ccl_private const ShaderClosure *skip_sc,
+ ccl_private BsdfEval *result_eval,
+ float sum_pdf,
+ float sum_sample_weight,
+ const uint light_shader_flags)
+{
+ /* This is the veach one-sample model with balance heuristic,
+ * some PDF factors drop out when using balance heuristic weighting. */
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (sc == skip_sc) {
+ continue;
+ }
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ if (CLOSURE_IS_BSDF(sc->type) && !_surface_shader_exclude(sc->type, light_shader_flags)) {
+ float bsdf_pdf = 0.0f;
+ Spectrum eval = bsdf_eval(kg, sd, sc, omega_in, is_transmission, &bsdf_pdf);
+
+ if (bsdf_pdf != 0.0f) {
+ bsdf_eval_accum(result_eval, sc->type, eval * sc->weight);
+ sum_pdf += bsdf_pdf * sc->sample_weight;
+ }
+ }
+
+ sum_sample_weight += sc->sample_weight;
+ }
+ }
+
+ return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
+}
+
+#ifndef __KERNEL_CUDA__
+ccl_device
+#else
+ccl_device_inline
+#endif
+ float
+ surface_shader_bsdf_eval(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ const float3 omega_in,
+ const bool is_transmission,
+ ccl_private BsdfEval *bsdf_eval,
+ const uint light_shader_flags)
+{
+ bsdf_eval_init(bsdf_eval, CLOSURE_NONE_ID, zero_spectrum());
+
+ return _surface_shader_bsdf_eval_mis(
+ kg, sd, omega_in, is_transmission, NULL, bsdf_eval, 0.0f, 0.0f, light_shader_flags);
+}
+
+/* Randomly sample a BSSRDF or BSDF proportional to ShaderClosure.sample_weight. */
+ccl_device_inline ccl_private const ShaderClosure *surface_shader_bsdf_bssrdf_pick(
+ ccl_private const ShaderData *ccl_restrict sd, ccl_private float2 *rand_bsdf)
+{
+ int sampled = 0;
+
+ if (sd->num_closure > 1) {
+ /* Pick a BSDF or based on sample weights. */
+ float sum = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sum += sc->sample_weight;
+ }
+ }
+
+ float r = (*rand_bsdf).x * sum;
+ float partial_sum = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ float next_sum = partial_sum + sc->sample_weight;
+
+ if (r < next_sum) {
+ sampled = i;
+
+ /* Rescale to reuse for direction sample, to better preserve stratification. */
+ (*rand_bsdf).x = (r - partial_sum) / sc->sample_weight;
+ break;
+ }
+
+ partial_sum = next_sum;
+ }
+ }
+ }
+
+ return &sd->closure[sampled];
+}
+
+/* Return weight for picked BSSRDF. */
+ccl_device_inline Spectrum
+surface_shader_bssrdf_sample_weight(ccl_private const ShaderData *ccl_restrict sd,
+ ccl_private const ShaderClosure *ccl_restrict bssrdf_sc)
+{
+ Spectrum weight = bssrdf_sc->weight;
+
+ if (sd->num_closure > 1) {
+ float sum = 0.0f;
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sum += sc->sample_weight;
+ }
+ }
+ weight *= sum / bssrdf_sc->sample_weight;
+ }
+
+ return weight;
+}
+
+/* Sample direction for picked BSDF, and return evaluation and pdf for all
+ * BSDFs combined using MIS. */
+ccl_device int surface_shader_bsdf_sample_closure(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ ccl_private const ShaderClosure *sc,
+ const float2 rand_bsdf,
+ ccl_private BsdfEval *bsdf_eval,
+ ccl_private float3 *omega_in,
+ ccl_private float *pdf)
+{
+ /* BSSRDF should already have been handled elsewhere. */
+ kernel_assert(CLOSURE_IS_BSDF(sc->type));
+
+ int label;
+ Spectrum eval = zero_spectrum();
+
+ *pdf = 0.0f;
+ label = bsdf_sample(kg, sd, sc, rand_bsdf.x, rand_bsdf.y, &eval, omega_in, pdf);
+
+ if (*pdf != 0.0f) {
+ bsdf_eval_init(bsdf_eval, sc->type, eval * sc->weight);
+
+ if (sd->num_closure > 1) {
+ const bool is_transmission = surface_shader_is_transmission(sd, *omega_in);
+ float sweight = sc->sample_weight;
+ *pdf = _surface_shader_bsdf_eval_mis(
+ kg, sd, *omega_in, is_transmission, sc, bsdf_eval, *pdf * sweight, sweight, 0);
+ }
+ }
+
+ return label;
+}
+
+ccl_device float surface_shader_average_roughness(ccl_private const ShaderData *sd)
+{
+ float roughness = 0.0f;
+ float sum_weight = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF(sc->type)) {
+ /* sqrt once to undo the squaring from multiplying roughness on the
+ * two axes, and once for the squared roughness convention. */
+ float weight = fabsf(average(sc->weight));
+ roughness += weight * sqrtf(safe_sqrtf(bsdf_get_roughness_squared(sc)));
+ sum_weight += weight;
+ }
+ }
+
+ return (sum_weight > 0.0f) ? roughness / sum_weight : 0.0f;
+}
+
+ccl_device Spectrum surface_shader_transparency(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ if (sd->flag & SD_HAS_ONLY_VOLUME) {
+ return one_spectrum();
+ }
+ else if (sd->flag & SD_TRANSPARENT) {
+ return sd->closure_transparent_extinction;
+ }
+ else {
+ return zero_spectrum();
+ }
+}
+
+ccl_device void surface_shader_disable_transparency(KernelGlobals kg, ccl_private ShaderData *sd)
+{
+ if (sd->flag & SD_TRANSPARENT) {
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+
+ if (sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
+ sc->sample_weight = 0.0f;
+ sc->weight = zero_spectrum();
+ }
+ }
+
+ sd->flag &= ~SD_TRANSPARENT;
+ }
+}
+
+ccl_device Spectrum surface_shader_alpha(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum alpha = one_spectrum() - surface_shader_transparency(kg, sd);
+
+ alpha = saturate(alpha);
+
+ return alpha;
+}
+
+ccl_device Spectrum surface_shader_diffuse(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum eval = zero_spectrum();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_DIFFUSE(sc->type) || CLOSURE_IS_BSSRDF(sc->type))
+ eval += sc->weight;
+ }
+
+ return eval;
+}
+
+ccl_device Spectrum surface_shader_glossy(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum eval = zero_spectrum();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_GLOSSY(sc->type))
+ eval += sc->weight;
+ }
+
+ return eval;
+}
+
+ccl_device Spectrum surface_shader_transmission(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum eval = zero_spectrum();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
+ eval += sc->weight;
+ }
+
+ return eval;
+}
+
+ccl_device float3 surface_shader_average_normal(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ float3 N = zero_float3();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
+ N += sc->N * fabsf(average(sc->weight));
+ }
+
+ return (is_zero(N)) ? sd->N : normalize(N);
+}
+
+ccl_device Spectrum surface_shader_ao(KernelGlobals kg,
+ ccl_private const ShaderData *sd,
+ const float ao_factor,
+ ccl_private float3 *N_)
+{
+ Spectrum eval = zero_spectrum();
+ float3 N = zero_float3();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
+ ccl_private const DiffuseBsdf *bsdf = (ccl_private const DiffuseBsdf *)sc;
+ eval += sc->weight * ao_factor;
+ N += bsdf->N * fabsf(average(sc->weight));
+ }
+ }
+
+ *N_ = (is_zero(N)) ? sd->N : normalize(N);
+ return eval;
+}
+
+#ifdef __SUBSURFACE__
+ccl_device float3 surface_shader_bssrdf_normal(ccl_private const ShaderData *sd)
+{
+ float3 N = zero_float3();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSSRDF(sc->type)) {
+ ccl_private const Bssrdf *bssrdf = (ccl_private const Bssrdf *)sc;
+ float avg_weight = fabsf(average(sc->weight));
+
+ N += bssrdf->N * avg_weight;
+ }
+ }
+
+ return (is_zero(N)) ? sd->N : normalize(N);
+}
+#endif /* __SUBSURFACE__ */
+
+/* Constant emission optimization */
+
+ccl_device bool surface_shader_constant_emission(KernelGlobals kg,
+ int shader,
+ ccl_private Spectrum *eval)
+{
+ int shader_index = shader & SHADER_MASK;
+ int shader_flag = kernel_data_fetch(shaders, shader_index).flags;
+
+ if (shader_flag & SD_HAS_CONSTANT_EMISSION) {
+ const float3 emission_rgb = make_float3(
+ kernel_data_fetch(shaders, shader_index).constant_emission[0],
+ kernel_data_fetch(shaders, shader_index).constant_emission[1],
+ kernel_data_fetch(shaders, shader_index).constant_emission[2]);
+ *eval = rgb_to_spectrum(emission_rgb);
+
+ return true;
+ }
+
+ return false;
+}
+
+/* Background */
+
+ccl_device Spectrum surface_shader_background(ccl_private const ShaderData *sd)
+{
+ if (sd->flag & SD_EMISSION) {
+ return sd->closure_emission_background;
+ }
+ else {
+ return zero_spectrum();
+ }
+}
+
+/* Emission */
+
+ccl_device Spectrum surface_shader_emission(ccl_private const ShaderData *sd)
+{
+ if (sd->flag & SD_EMISSION) {
+ return emissive_simple_eval(sd->Ng, sd->I) * sd->closure_emission_background;
+ }
+ else {
+ return zero_spectrum();
+ }
+}
+
+/* Holdout */
+
+ccl_device Spectrum surface_shader_apply_holdout(KernelGlobals kg, ccl_private ShaderData *sd)
+{
+ Spectrum weight = zero_spectrum();
+
+ /* For objects marked as holdout, preserve transparency and remove all other
+ * closures, replacing them with a holdout weight. */
+ if (sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
+ if ((sd->flag & SD_TRANSPARENT) && !(sd->flag & SD_HAS_ONLY_VOLUME)) {
+ weight = one_spectrum() - sd->closure_transparent_extinction;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (!CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
+ sc->type = NBUILTIN_CLOSURES;
+ }
+ }
+
+ sd->flag &= ~(SD_CLOSURE_FLAGS - (SD_TRANSPARENT | SD_BSDF));
+ }
+ else {
+ weight = one_spectrum();
+ }
+ }
+ else {
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_HOLDOUT(sc->type)) {
+ weight += sc->weight;
+ }
+ }
+ }
+
+ return weight;
+}
+
+/* Surface Evaluation */
+
+template<uint node_feature_mask, typename ConstIntegratorGenericState>
+ccl_device void surface_shader_eval(KernelGlobals kg,
+ ConstIntegratorGenericState state,
+ ccl_private ShaderData *ccl_restrict sd,
+ ccl_global float *ccl_restrict buffer,
+ uint32_t path_flag,
+ bool use_caustics_storage = false)
+{
+ /* If path is being terminated, we are tracing a shadow ray or evaluating
+ * emission, then we don't need to store closures. The emission and shadow
+ * shader data also do not have a closure array to save GPU memory. */
+ int max_closures;
+ if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
+ max_closures = 0;
+ }
+ else {
+ max_closures = use_caustics_storage ? CAUSTICS_MAX_CLOSURE : kernel_data.max_closures;
+ }
+
+ sd->num_closure = 0;
+ sd->num_closure_left = max_closures;
+
+#ifdef __OSL__
+ if (kg->osl) {
+ if (sd->object == OBJECT_NONE && sd->lamp == LAMP_NONE) {
+ OSLShader::eval_background(kg, state, sd, path_flag);
+ }
+ else {
+ OSLShader::eval_surface(kg, state, sd, path_flag);
+ }
+ }
+ else
+#endif
+ {
+#ifdef __SVM__
+ svm_eval_nodes<node_feature_mask, SHADER_TYPE_SURFACE>(kg, state, sd, buffer, path_flag);
+#else
+ if (sd->object == OBJECT_NONE) {
+ sd->closure_emission_background = make_spectrum(0.8f);
+ sd->flag |= SD_EMISSION;
+ }
+ else {
+ ccl_private DiffuseBsdf *bsdf = (ccl_private DiffuseBsdf *)bsdf_alloc(
+ sd, sizeof(DiffuseBsdf), make_spectrum(0.8f));
+ if (bsdf != NULL) {
+ bsdf->N = sd->N;
+ sd->flag |= bsdf_diffuse_setup(bsdf);
+ }
+ }
+#endif
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/integrator/volume_shader.h b/intern/cycles/kernel/integrator/volume_shader.h
new file mode 100644
index 00000000000..a1d191e2d32
--- /dev/null
+++ b/intern/cycles/kernel/integrator/volume_shader.h
@@ -0,0 +1,353 @@
+/* SPDX-License-Identifier: Apache-2.0
+ * Copyright 2011-2022 Blender Foundation */
+
+/* Volume shader evaluation and sampling. */
+
+#pragma once
+
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf.h"
+#include "kernel/closure/bsdf_util.h"
+#include "kernel/closure/emissive.h"
+
+#include "kernel/svm/svm.h"
+
+#ifdef __OSL__
+# include "kernel/osl/shader.h"
+#endif
+
+CCL_NAMESPACE_BEGIN
+
+#ifdef __VOLUME__
+
+/* Merging */
+ccl_device_inline void volume_shader_merge_closures(ccl_private ShaderData *sd)
+{
+ /* Merge identical closures to save closure space with stacked volumes. */
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sci = &sd->closure[i];
+
+ if (sci->type != CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
+ continue;
+ }
+
+ for (int j = i + 1; j < sd->num_closure; j++) {
+ ccl_private ShaderClosure *scj = &sd->closure[j];
+ if (sci->type != scj->type) {
+ continue;
+ }
+
+ ccl_private const HenyeyGreensteinVolume *hgi = (ccl_private const HenyeyGreensteinVolume *)
+ sci;
+ ccl_private const HenyeyGreensteinVolume *hgj = (ccl_private const HenyeyGreensteinVolume *)
+ scj;
+ if (!(hgi->g == hgj->g)) {
+ continue;
+ }
+
+ sci->weight += scj->weight;
+ sci->sample_weight += scj->sample_weight;
+
+ int size = sd->num_closure - (j + 1);
+ if (size > 0) {
+ for (int k = 0; k < size; k++) {
+ scj[k] = scj[k + 1];
+ }
+ }
+
+ sd->num_closure--;
+ kernel_assert(sd->num_closure >= 0);
+ j--;
+ }
+ }
+}
+
+ccl_device_inline void volume_shader_copy_phases(ccl_private ShaderVolumePhases *ccl_restrict
+ phases,
+ ccl_private const ShaderData *ccl_restrict sd)
+{
+ phases->num_closure = 0;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *from_sc = &sd->closure[i];
+ ccl_private const HenyeyGreensteinVolume *from_hg =
+ (ccl_private const HenyeyGreensteinVolume *)from_sc;
+
+ if (from_sc->type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
+ ccl_private ShaderVolumeClosure *to_sc = &phases->closure[phases->num_closure];
+
+ to_sc->weight = from_sc->weight;
+ to_sc->sample_weight = from_sc->sample_weight;
+ to_sc->g = from_hg->g;
+ phases->num_closure++;
+ if (phases->num_closure >= MAX_VOLUME_CLOSURE) {
+ break;
+ }
+ }
+ }
+}
+
+ccl_device_inline float _volume_shader_phase_eval_mis(ccl_private const ShaderData *sd,
+ ccl_private const ShaderVolumePhases *phases,
+ const float3 omega_in,
+ int skip_phase,
+ ccl_private BsdfEval *result_eval,
+ float sum_pdf,
+ float sum_sample_weight)
+{
+ for (int i = 0; i < phases->num_closure; i++) {
+ if (i == skip_phase)
+ continue;
+
+ ccl_private const ShaderVolumeClosure *svc = &phases->closure[i];
+ float phase_pdf = 0.0f;
+ Spectrum eval = volume_phase_eval(sd, svc, omega_in, &phase_pdf);
+
+ if (phase_pdf != 0.0f) {
+ bsdf_eval_accum(result_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
+ sum_pdf += phase_pdf * svc->sample_weight;
+ }
+
+ sum_sample_weight += svc->sample_weight;
+ }
+
+ return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
+}
+
+ccl_device float volume_shader_phase_eval(KernelGlobals kg,
+ ccl_private const ShaderData *sd,
+ ccl_private const ShaderVolumePhases *phases,
+ const float3 omega_in,
+ ccl_private BsdfEval *phase_eval)
+{
+ bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, zero_spectrum());
+
+ return _volume_shader_phase_eval_mis(sd, phases, omega_in, -1, phase_eval, 0.0f, 0.0f);
+}
+
+ccl_device int volume_shader_phase_sample(KernelGlobals kg,
+ ccl_private const ShaderData *sd,
+ ccl_private const ShaderVolumePhases *phases,
+ float2 rand_phase,
+ ccl_private BsdfEval *phase_eval,
+ ccl_private float3 *omega_in,
+ ccl_private float *pdf)
+{
+ int sampled = 0;
+
+ if (phases->num_closure > 1) {
+ /* pick a phase closure based on sample weights */
+ float sum = 0.0f;
+
+ for (sampled = 0; sampled < phases->num_closure; sampled++) {
+ ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
+ sum += svc->sample_weight;
+ }
+
+ float r = rand_phase.x * sum;
+ float partial_sum = 0.0f;
+
+ for (sampled = 0; sampled < phases->num_closure; sampled++) {
+ ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
+ float next_sum = partial_sum + svc->sample_weight;
+
+ if (r <= next_sum) {
+ /* Rescale to reuse for BSDF direction sample. */
+ rand_phase.x = (r - partial_sum) / svc->sample_weight;
+ break;
+ }
+
+ partial_sum = next_sum;
+ }
+
+ if (sampled == phases->num_closure) {
+ *pdf = 0.0f;
+ return LABEL_NONE;
+ }
+ }
+
+ /* todo: this isn't quite correct, we don't weight anisotropy properly
+ * depending on color channels, even if this is perhaps not a common case */
+ ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
+ int label;
+ Spectrum eval = zero_spectrum();
+
+ *pdf = 0.0f;
+ label = volume_phase_sample(sd, svc, rand_phase.x, rand_phase.y, &eval, omega_in, pdf);
+
+ if (*pdf != 0.0f) {
+ bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
+ }
+
+ return label;
+}
+
+ccl_device int volume_shader_phase_sample_closure(KernelGlobals kg,
+ ccl_private const ShaderData *sd,
+ ccl_private const ShaderVolumeClosure *sc,
+ const float2 rand_phase,
+ ccl_private BsdfEval *phase_eval,
+ ccl_private float3 *omega_in,
+ ccl_private float *pdf)
+{
+ int label;
+ Spectrum eval = zero_spectrum();
+
+ *pdf = 0.0f;
+ label = volume_phase_sample(sd, sc, rand_phase.x, rand_phase.y, &eval, omega_in, pdf);
+
+ if (*pdf != 0.0f)
+ bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
+
+ return label;
+}
+
+/* Motion Blur */
+
+# ifdef __OBJECT_MOTION__
+ccl_device_inline void volume_shader_motion_blur(KernelGlobals kg,
+ ccl_private ShaderData *ccl_restrict sd)
+{
+ if ((sd->object_flag & SD_OBJECT_HAS_VOLUME_MOTION) == 0) {
+ return;
+ }
+
+ AttributeDescriptor v_desc = find_attribute(kg, sd, ATTR_STD_VOLUME_VELOCITY);
+ kernel_assert(v_desc.offset != ATTR_STD_NOT_FOUND);
+
+ const float3 P = sd->P;
+ const float velocity_scale = kernel_data_fetch(objects, sd->object).velocity_scale;
+ const float time_offset = kernel_data.cam.motion_position == MOTION_POSITION_CENTER ? 0.5f :
+ 0.0f;
+ const float time = kernel_data.cam.motion_position == MOTION_POSITION_END ?
+ (1.0f - kernel_data.cam.shuttertime) + sd->time :
+ sd->time;
+
+ /* Use a 1st order semi-lagrangian advection scheme to estimate what volume quantity
+ * existed, or will exist, at the given time:
+ *
+ * `phi(x, T) = phi(x - (T - t) * u(x, T), t)`
+ *
+ * where
+ *
+ * x : position
+ * T : super-sampled time (or ray time)
+ * t : current time of the simulation (in rendering we assume this is center frame with
+ * relative time = 0)
+ * phi : the volume quantity
+ * u : the velocity field
+ *
+ * But first we need to determine the velocity field `u(x, T)`, which we can estimate also
+ * using semi-lagrangian advection.
+ *
+ * `u(x, T) = u(x - (T - t) * u(x, T), t)`
+ *
+ * This is the typical way to model self-advection in fluid dynamics, however, we do not
+ * account for other forces affecting the velocity during simulation (pressure, buoyancy,
+ * etc.): this gives a linear interpolation when fluid are mostly "curvy". For better
+ * results, a higher order interpolation scheme can be used (at the cost of more lookups),
+ * or an interpolation of the velocity fields for the previous and next frames could also
+ * be used to estimate `u(x, T)` (which will cost more memory and lookups).
+ *
+ * References:
+ * "Eulerian Motion Blur", Kim and Ko, 2007
+ * "Production Volume Rendering", Wreninge et al., 2012
+ */
+
+ /* Find velocity. */
+ float3 velocity = primitive_volume_attribute_float3(kg, sd, v_desc);
+ object_dir_transform(kg, sd, &velocity);
+
+ /* Find advected P. */
+ sd->P = P - (time - time_offset) * velocity_scale * velocity;
+
+ /* Find advected velocity. */
+ velocity = primitive_volume_attribute_float3(kg, sd, v_desc);
+ object_dir_transform(kg, sd, &velocity);
+
+ /* Find advected P. */
+ sd->P = P - (time - time_offset) * velocity_scale * velocity;
+}
+# endif
+
+/* Volume Evaluation */
+
+template<const bool shadow, typename StackReadOp, typename ConstIntegratorGenericState>
+ccl_device_inline void volume_shader_eval(KernelGlobals kg,
+ ConstIntegratorGenericState state,
+ ccl_private ShaderData *ccl_restrict sd,
+ const uint32_t path_flag,
+ StackReadOp stack_read)
+{
+ /* If path is being terminated, we are tracing a shadow ray or evaluating
+ * emission, then we don't need to store closures. The emission and shadow
+ * shader data also do not have a closure array to save GPU memory. */
+ int max_closures;
+ if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
+ max_closures = 0;
+ }
+ else {
+ max_closures = kernel_data.max_closures;
+ }
+
+ /* reset closures once at the start, we will be accumulating the closures
+ * for all volumes in the stack into a single array of closures */
+ sd->num_closure = 0;
+ sd->num_closure_left = max_closures;
+ sd->flag = 0;
+ sd->object_flag = 0;
+
+ for (int i = 0;; i++) {
+ const VolumeStack entry = stack_read(i);
+ if (entry.shader == SHADER_NONE) {
+ break;
+ }
+
+ /* Setup shader-data from stack. it's mostly setup already in
+ * shader_setup_from_volume, this switching should be quick. */
+ sd->object = entry.object;
+ sd->lamp = LAMP_NONE;
+ sd->shader = entry.shader;
+
+ sd->flag &= ~SD_SHADER_FLAGS;
+ sd->flag |= kernel_data_fetch(shaders, (sd->shader & SHADER_MASK)).flags;
+ sd->object_flag &= ~SD_OBJECT_FLAGS;
+
+ if (sd->object != OBJECT_NONE) {
+ sd->object_flag |= kernel_data_fetch(object_flag, sd->object);
+
+# ifdef __OBJECT_MOTION__
+ /* todo: this is inefficient for motion blur, we should be
+ * caching matrices instead of recomputing them each step */
+ shader_setup_object_transforms(kg, sd, sd->time);
+
+ volume_shader_motion_blur(kg, sd);
+# endif
+ }
+
+ /* evaluate shader */
+# ifdef __SVM__
+# ifdef __OSL__
+ if (kg->osl) {
+ OSLShader::eval_volume(kg, state, sd, path_flag);
+ }
+ else
+# endif
+ {
+ svm_eval_nodes<KERNEL_FEATURE_NODE_MASK_VOLUME, SHADER_TYPE_VOLUME>(
+ kg, state, sd, NULL, path_flag);
+ }
+# endif
+
+ /* Merge closures to avoid exceeding number of closures limit. */
+ if (!shadow) {
+ if (i > 0) {
+ volume_shader_merge_closures(sd);
+ }
+ }
+ }
+}
+
+#endif /* __VOLUME__ */
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/light/sample.h b/intern/cycles/kernel/light/sample.h
index 1ae6fecbd28..e0d4f221bef 100644
--- a/intern/cycles/kernel/light/sample.h
+++ b/intern/cycles/kernel/light/sample.h
@@ -4,7 +4,7 @@
#pragma once
#include "kernel/integrator/path_state.h"
-#include "kernel/integrator/shader_eval.h"
+#include "kernel/integrator/surface_shader.h"
#include "kernel/light/light.h"
@@ -24,13 +24,13 @@ light_sample_shader_eval(KernelGlobals kg,
/* setup shading at emitter */
Spectrum eval = zero_spectrum();
- if (shader_constant_emission_eval(kg, ls->shader, &eval)) {
+ if (surface_shader_constant_emission(kg, ls->shader, &eval)) {
if ((ls->prim != PRIM_NONE) && dot(ls->Ng, ls->D) > 0.0f) {
ls->Ng = -ls->Ng;
}
}
else {
- /* Setup shader data and call shader_eval_surface once, better
+ /* Setup shader data and call surface_shader_eval once, better
* for GPU coherence and compile times. */
PROFILING_INIT_FOR_SHADER(kg, PROFILING_SHADE_LIGHT_SETUP);
if (ls->type == LIGHT_BACKGROUND) {
@@ -60,15 +60,15 @@ light_sample_shader_eval(KernelGlobals kg,
/* No proper path flag, we're evaluating this for all closures. that's
* weak but we'd have to do multiple evaluations otherwise. */
- shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_LIGHT>(
+ surface_shader_eval<KERNEL_FEATURE_NODE_MASK_SURFACE_LIGHT>(
kg, state, emission_sd, NULL, PATH_RAY_EMISSION);
/* Evaluate closures. */
if (ls->type == LIGHT_BACKGROUND) {
- eval = shader_background_eval(emission_sd);
+ eval = surface_shader_background(emission_sd);
}
else {
- eval = shader_emissive_eval(emission_sd);
+ eval = surface_shader_emission(emission_sd);
}
}
diff --git a/intern/cycles/kernel/osl/services.cpp b/intern/cycles/kernel/osl/services.cpp
index 6766fe2ce89..faa027f4e1e 100644
--- a/intern/cycles/kernel/osl/services.cpp
+++ b/intern/cycles/kernel/osl/services.cpp
@@ -27,7 +27,6 @@
#include "util/log.h"
#include "util/string.h"
-// clang-format off
#include "kernel/device/cpu/compat.h"
#include "kernel/device/cpu/globals.h"
#include "kernel/device/cpu/image.h"
@@ -45,10 +44,10 @@
#include "kernel/camera/projection.h"
#include "kernel/integrator/path_state.h"
-#include "kernel/integrator/shader_eval.h"
+
+#include "kernel/svm/svm.h"
#include "kernel/util/color.h"
-// clang-format on
CCL_NAMESPACE_BEGIN
diff --git a/intern/cycles/kernel/svm/closure.h b/intern/cycles/kernel/svm/closure.h
index 028714e4b5b..2d91b014f60 100644
--- a/intern/cycles/kernel/svm/closure.h
+++ b/intern/cycles/kernel/svm/closure.h
@@ -3,6 +3,11 @@
#pragma once
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf.h"
+#include "kernel/closure/bsdf_util.h"
+#include "kernel/closure/emissive.h"
+
#include "kernel/util/color.h"
CCL_NAMESPACE_BEGIN