Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2011-10-23 21:52:20 +0400
committerCampbell Barton <ideasman42@gmail.com>2011-10-23 21:52:20 +0400
commit4a04f7206914a49f5f95adc5eb786237f1a9f547 (patch)
tree78aed2fa481f972fac0965f814bebebe9d71ae65 /intern/opennl
parentf1cea89d99f0c80bdccd2ba1359142b5ff14cdb9 (diff)
remove $Id: tags after discussion on the mailign list: http://markmail.org/message/fp7ozcywxum3ar7n
Diffstat (limited to 'intern/opennl')
-rw-r--r--intern/opennl/CMakeLists.txt4
-rw-r--r--intern/opennl/SConscript2
-rw-r--r--intern/opennl/extern/ONL_opennl.h2
-rw-r--r--intern/opennl/intern/opennl.c1
-rw-r--r--intern/opennl/superlu/colamd.c2586
-rw-r--r--intern/opennl/superlu/colamd.h70
-rw-r--r--intern/opennl/superlu/get_perm_c.c3
-rw-r--r--intern/opennl/superlu/superlu_sys_types.h2
8 files changed, 4 insertions, 2666 deletions
diff --git a/intern/opennl/CMakeLists.txt b/intern/opennl/CMakeLists.txt
index 7d6a579819e..f146a96928e 100644
--- a/intern/opennl/CMakeLists.txt
+++ b/intern/opennl/CMakeLists.txt
@@ -1,4 +1,3 @@
-# $Id$
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
@@ -41,6 +40,7 @@ add_definitions(
set(INC
extern
superlu
+ ../../extern/colamd/Include
)
set(INC_SYS
@@ -49,7 +49,6 @@ set(INC_SYS
set(SRC
intern/opennl.c
- superlu/colamd.c
superlu/get_perm_c.c
superlu/heap_relax_snode.c
superlu/lsame.c
@@ -84,7 +83,6 @@ set(SRC
extern/ONL_opennl.h
superlu/superlu_sys_types.h
superlu/Cnames.h
- superlu/colamd.h
superlu/ssp_defs.h
superlu/supermatrix.h
superlu/util.h
diff --git a/intern/opennl/SConscript b/intern/opennl/SConscript
index ff66b4ad6e1..502df1891d5 100644
--- a/intern/opennl/SConscript
+++ b/intern/opennl/SConscript
@@ -3,7 +3,7 @@ Import ('env')
sources = env.Glob('intern/*.c') + env.Glob('superlu/*.c')
-incs = 'extern superlu'
+incs = 'extern superlu ../../extern/colamd/Include'
if (env['OURPLATFORM'] == 'win32-mingw'):
env.BlenderLib ('bf_intern_opennl', sources, Split(incs), [], libtype=['core','intern'], priority=[1,80] )
diff --git a/intern/opennl/extern/ONL_opennl.h b/intern/opennl/extern/ONL_opennl.h
index 7f25a7c4237..721da202c13 100644
--- a/intern/opennl/extern/ONL_opennl.h
+++ b/intern/opennl/extern/ONL_opennl.h
@@ -2,8 +2,6 @@
* \ingroup opennlextern
*/
/*
- * $Id$
- *
* OpenNL: Numerical Library
* Copyright (C) 2004 Bruno Levy
*
diff --git a/intern/opennl/intern/opennl.c b/intern/opennl/intern/opennl.c
index a9172fb1d2c..c3fb7135fcb 100644
--- a/intern/opennl/intern/opennl.c
+++ b/intern/opennl/intern/opennl.c
@@ -2,7 +2,6 @@
* \ingroup opennlintern
*/
/*
- * $Id$
*
* OpenNL: Numerical Library
* Copyright (C) 2004 Bruno Levy
diff --git a/intern/opennl/superlu/colamd.c b/intern/opennl/superlu/colamd.c
deleted file mode 100644
index 51f5ed4c659..00000000000
--- a/intern/opennl/superlu/colamd.c
+++ /dev/null
@@ -1,2586 +0,0 @@
-/** \file opennl/superlu/colamd.c
- * \ingroup opennl
- */
-/* ========================================================================== */
-/* === colamd - a sparse matrix column ordering algorithm =================== */
-/* ========================================================================== */
-
-/*
- colamd: An approximate minimum degree column ordering algorithm.
-
- Purpose:
-
- Colamd computes a permutation Q such that the Cholesky factorization of
- (AQ)'(AQ) has less fill-in and requires fewer floating point operations
- than A'A. This also provides a good ordering for sparse partial
- pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
- factorization, and P is computed during numerical factorization via
- conventional partial pivoting with row interchanges. Colamd is the
- column ordering method used in SuperLU, part of the ScaLAPACK library.
- It is also available as user-contributed software for Matlab 5.2,
- available from MathWorks, Inc. (http://www.mathworks.com). This
- routine can be used in place of COLMMD in Matlab. By default, the \
- and / operators in Matlab perform a column ordering (using COLMMD)
- prior to LU factorization using sparse partial pivoting, in the
- built-in Matlab LU(A) routine.
-
- Authors:
-
- The authors of the code itself are Stefan I. Larimore and Timothy A.
- Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
- developed in collaboration with John Gilbert, Xerox PARC, and Esmond
- Ng, Oak Ridge National Laboratory.
-
- Date:
-
- August 3, 1998. Version 1.0.
-
- Acknowledgements:
-
- This work was supported by the National Science Foundation, under
- grants DMS-9504974 and DMS-9803599.
-
- Notice:
-
- Copyright (c) 1998 by the University of Florida. All Rights Reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- User documentation of any code that uses this code must cite the
- Authors, the Copyright, and "Used by permission." If this code is
- accessible from within Matlab, then typing "help colamd" or "colamd"
- (with no arguments) must cite the Authors. Permission to modify the
- code and to distribute modified code is granted, provided the above
- notices are retained, and a notice that the code was modified is
- included with the above copyright notice. You must also retain the
- Availability information below, of the original version.
-
- This software is provided free of charge.
-
- Availability:
-
- This file is located at
-
- http://www.cise.ufl.edu/~davis/colamd/colamd.c
-
- The colamd.h file is required, located in the same directory.
- The colamdmex.c file provides a Matlab interface for colamd.
- The symamdmex.c file provides a Matlab interface for symamd, which is
- a symmetric ordering based on this code, colamd.c. All codes are
- purely ANSI C compliant (they use no Unix-specific routines, include
- files, etc.).
-*/
-
-/* ========================================================================== */
-/* === Description of user-callable routines ================================ */
-/* ========================================================================== */
-
-/*
- Each user-callable routine (declared as PUBLIC) is briefly described below.
- Refer to the comments preceding each routine for more details.
-
- ----------------------------------------------------------------------------
- colamd_recommended:
- ----------------------------------------------------------------------------
-
- Usage:
-
- Alen = colamd_recommended (nnz, n_row, n_col) ;
-
- Purpose:
-
- Returns recommended value of Alen for use by colamd. Returns -1
- if any input argument is negative.
-
- Arguments:
-
- int nnz ; Number of nonzeros in the matrix A. This must
- be the same value as p [n_col] in the call to
- colamd - otherwise you will get a wrong value
- of the recommended memory to use.
- int n_row ; Number of rows in the matrix A.
- int n_col ; Number of columns in the matrix A.
-
- ----------------------------------------------------------------------------
- colamd_set_defaults:
- ----------------------------------------------------------------------------
-
- Usage:
-
- colamd_set_defaults (knobs) ;
-
- Purpose:
-
- Sets the default parameters.
-
- Arguments:
-
- double knobs [COLAMD_KNOBS] ; Output only.
-
- Rows with more than (knobs [COLAMD_DENSE_ROW] * n_col) entries
- are removed prior to ordering. Columns with more than
- (knobs [COLAMD_DENSE_COL] * n_row) entries are removed
- prior to ordering, and placed last in the output column
- ordering. Default values of these two knobs are both 0.5.
- Currently, only knobs [0] and knobs [1] are used, but future
- versions may use more knobs. If so, they will be properly set
- to their defaults by the future version of colamd_set_defaults,
- so that the code that calls colamd will not need to change,
- assuming that you either use colamd_set_defaults, or pass a
- (double *) NULL pointer as the knobs array to colamd.
-
- ----------------------------------------------------------------------------
- colamd:
- ----------------------------------------------------------------------------
-
- Usage:
-
- colamd (n_row, n_col, Alen, A, p, knobs) ;
-
- Purpose:
-
- Computes a column ordering (Q) of A such that P(AQ)=LU or
- (AQ)'AQ=LL' have less fill-in and require fewer floating point
- operations than factorizing the unpermuted matrix A or A'A,
- respectively.
-
- Arguments:
-
- int n_row ;
-
- Number of rows in the matrix A.
- Restriction: n_row >= 0.
- Colamd returns FALSE if n_row is negative.
-
- int n_col ;
-
- Number of columns in the matrix A.
- Restriction: n_col >= 0.
- Colamd returns FALSE if n_col is negative.
-
- int Alen ;
-
- Restriction (see note):
- Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col + COLAMD_STATS
- Colamd returns FALSE if these conditions are not met.
-
- Note: this restriction makes an modest assumption regarding
- the size of the two typedef'd structures, below. We do,
- however, guarantee that
- Alen >= colamd_recommended (nnz, n_row, n_col)
- will be sufficient.
-
- int A [Alen] ; Input argument, stats on output.
-
- A is an integer array of size Alen. Alen must be at least as
- large as the bare minimum value given above, but this is very
- low, and can result in excessive run time. For best
- performance, we recommend that Alen be greater than or equal to
- colamd_recommended (nnz, n_row, n_col), which adds
- nnz/5 to the bare minimum value given above.
-
- On input, the row indices of the entries in column c of the
- matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
- in a given column c need not be in ascending order, and
- duplicate row indices may be be present. However, colamd will
- work a little faster if both of these conditions are met
- (Colamd puts the matrix into this format, if it finds that the
- the conditions are not met).
-
- The matrix is 0-based. That is, rows are in the range 0 to
- n_row-1, and columns are in the range 0 to n_col-1. Colamd
- returns FALSE if any row index is out of range.
-
- The contents of A are modified during ordering, and are thus
- undefined on output with the exception of a few statistics
- about the ordering (A [0..COLAMD_STATS-1]):
- A [0]: number of dense or empty rows ignored.
- A [1]: number of dense or empty columns ignored (and ordered
- last in the output permutation p)
- A [2]: number of garbage collections performed.
- A [3]: 0, if all row indices in each column were in sorted
- order, and no duplicates were present.
- 1, otherwise (in which case colamd had to do more work)
- Note that a row can become "empty" if it contains only
- "dense" and/or "empty" columns, and similarly a column can
- become "empty" if it only contains "dense" and/or "empty" rows.
- Future versions may return more statistics in A, but the usage
- of these 4 entries in A will remain unchanged.
-
- int p [n_col+1] ; Both input and output argument.
-
- p is an integer array of size n_col+1. On input, it holds the
- "pointers" for the column form of the matrix A. Column c of
- the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
- entry, p [0], must be zero, and p [c] <= p [c+1] must hold
- for all c in the range 0 to n_col-1. The value p [n_col] is
- thus the total number of entries in the pattern of the matrix A.
- Colamd returns FALSE if these conditions are not met.
-
- On output, if colamd returns TRUE, the array p holds the column
- permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
- the first column index in the new ordering, and p [n_col-1] is
- the last. That is, p [k] = j means that column j of A is the
- kth pivot column, in AQ, where k is in the range 0 to n_col-1
- (p [0] = j means that column j of A is the first column in AQ).
-
- If colamd returns FALSE, then no permutation is returned, and
- p is undefined on output.
-
- double knobs [COLAMD_KNOBS] ; Input only.
-
- See colamd_set_defaults for a description. If the knobs array
- is not present (that is, if a (double *) NULL pointer is passed
- in its place), then the default values of the parameters are
- used instead.
-
-*/
-
-
-/* ========================================================================== */
-/* === Include files ======================================================== */
-/* ========================================================================== */
-
-/* limits.h: the largest positive integer (INT_MAX) */
-#include <limits.h>
-
-/* colamd.h: knob array size, stats output size, and global prototypes */
-#include "colamd.h"
-
-/* ========================================================================== */
-/* === Scaffolding code definitions ======================================== */
-/* ========================================================================== */
-
-/* Ensure that debugging is turned off: */
-#ifndef NDEBUG
-#define NDEBUG
-#endif
-
-/* assert.h: the assert macro (no debugging if NDEBUG is defined) */
-#include <assert.h>
-
-/*
- Our "scaffolding code" philosophy: In our opinion, well-written library
- code should keep its "debugging" code, and just normally have it turned off
- by the compiler so as not to interfere with performance. This serves
- several purposes:
-
- (1) assertions act as comments to the reader, telling you what the code
- expects at that point. All assertions will always be true (unless
- there really is a bug, of course).
-
- (2) leaving in the scaffolding code assists anyone who would like to modify
- the code, or understand the algorithm (by reading the debugging output,
- one can get a glimpse into what the code is doing).
-
- (3) (gasp!) for actually finding bugs. This code has been heavily tested
- and "should" be fully functional and bug-free ... but you never know...
-
- To enable debugging, comment out the "#define NDEBUG" above. The code will
- become outrageously slow when debugging is enabled. To control the level of
- debugging output, set an environment variable D to 0 (little), 1 (some),
- 2, 3, or 4 (lots).
-*/
-
-/* ========================================================================== */
-/* === Row and Column structures ============================================ */
-/* ========================================================================== */
-
-typedef struct ColInfo_struct
-{
- int start ; /* index for A of first row in this column, or DEAD */
- /* if column is dead */
- int length ; /* number of rows in this column */
- union
- {
- int thickness ; /* number of original columns represented by this */
- /* col, if the column is alive */
- int parent ; /* parent in parent tree super-column structure, if */
- /* the column is dead */
- } shared1 ;
- union
- {
- int score ; /* the score used to maintain heap, if col is alive */
- int order ; /* pivot ordering of this column, if col is dead */
- } shared2 ;
- union
- {
- int headhash ; /* head of a hash bucket, if col is at the head of */
- /* a degree list */
- int hash ; /* hash value, if col is not in a degree list */
- int prev ; /* previous column in degree list, if col is in a */
- /* degree list (but not at the head of a degree list) */
- } shared3 ;
- union
- {
- int degree_next ; /* next column, if col is in a degree list */
- int hash_next ; /* next column, if col is in a hash list */
- } shared4 ;
-
-} ColInfo ;
-
-typedef struct RowInfo_struct
-{
- int start ; /* index for A of first col in this row */
- int length ; /* number of principal columns in this row */
- union
- {
- int degree ; /* number of principal & non-principal columns in row */
- int p ; /* used as a row pointer in init_rows_cols () */
- } shared1 ;
- union
- {
- int mark ; /* for computing set differences and marking dead rows*/
- int first_column ;/* first column in row (used in garbage collection) */
- } shared2 ;
-
-} RowInfo ;
-
-/* ========================================================================== */
-/* === Definitions ========================================================== */
-/* ========================================================================== */
-
-#define MAX(a,b) (((a) > (b)) ? (a) : (b))
-#define MIN(a,b) (((a) < (b)) ? (a) : (b))
-
-#define ONES_COMPLEMENT(r) (-(r)-1)
-
-#define TRUE (1)
-#define FALSE (0)
-#define EMPTY (-1)
-
-/* Row and column status */
-#define ALIVE (0)
-#define DEAD (-1)
-
-/* Column status */
-#define DEAD_PRINCIPAL (-1)
-#define DEAD_NON_PRINCIPAL (-2)
-
-/* Macros for row and column status update and checking. */
-#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
-#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
-#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
-#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
-#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
-#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
-#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
-#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
-#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
-
-/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
-#define PUBLIC
-#define PRIVATE static
-
-/* ========================================================================== */
-/* === Prototypes of PRIVATE routines ======================================= */
-/* ========================================================================== */
-
-PRIVATE int init_rows_cols
-(
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int A [],
- int p []
-) ;
-
-PRIVATE void init_scoring
-(
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int A [],
- int head [],
- double knobs [COLAMD_KNOBS],
- int *p_n_row2,
- int *p_n_col2,
- int *p_max_deg
-) ;
-
-PRIVATE int find_ordering
-(
- int n_row,
- int n_col,
- int Alen,
- RowInfo Row [],
- ColInfo Col [],
- int A [],
- int head [],
- int n_col2,
- int max_deg,
- int pfree
-) ;
-
-PRIVATE void order_children
-(
- int n_col,
- ColInfo Col [],
- int p []
-) ;
-
-PRIVATE void detect_super_cols
-(
-#ifndef NDEBUG
- int n_col,
- RowInfo Row [],
-#endif
- ColInfo Col [],
- int A [],
- int head [],
- int row_start,
- int row_length
-) ;
-
-PRIVATE int garbage_collection
-(
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int A [],
- int *pfree
-) ;
-
-PRIVATE int clear_mark
-(
- int n_row,
- RowInfo Row []
-) ;
-
-/* ========================================================================== */
-/* === Debugging definitions ================================================ */
-/* ========================================================================== */
-
-#ifndef NDEBUG
-
-/* === With debugging ======================================================= */
-
-/* stdlib.h: for getenv and atoi, to get debugging level from environment */
-#include <stdlib.h>
-
-/* stdio.h: for printf (no printing if debugging is turned off) */
-#include <stdio.h>
-
-PRIVATE void debug_deg_lists
-(
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int head [],
- int min_score,
- int should,
- int max_deg
-) ;
-
-PRIVATE void debug_mark
-(
- int n_row,
- RowInfo Row [],
- int tag_mark,
- int max_mark
-) ;
-
-PRIVATE void debug_matrix
-(
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int A []
-) ;
-
-PRIVATE void debug_structures
-(
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int A [],
- int n_col2
-) ;
-
-/* the following is the *ONLY* global variable in this file, and is only */
-/* present when debugging */
-
-PRIVATE int debug_colamd ; /* debug print level */
-
-#define DEBUG0(params) { (void) printf params ; }
-#define DEBUG1(params) { if (debug_colamd >= 1) (void) printf params ; }
-#define DEBUG2(params) { if (debug_colamd >= 2) (void) printf params ; }
-#define DEBUG3(params) { if (debug_colamd >= 3) (void) printf params ; }
-#define DEBUG4(params) { if (debug_colamd >= 4) (void) printf params ; }
-
-#else
-
-/* === No debugging ========================================================= */
-
-#define DEBUG0(params) ;
-#define DEBUG1(params) ;
-#define DEBUG2(params) ;
-#define DEBUG3(params) ;
-#define DEBUG4(params) ;
-
-#endif
-
-/* ========================================================================== */
-
-
-/* ========================================================================== */
-/* === USER-CALLABLE ROUTINES: ============================================== */
-/* ========================================================================== */
-
-
-/* ========================================================================== */
-/* === colamd_recommended =================================================== */
-/* ========================================================================== */
-
-/*
- The colamd_recommended routine returns the suggested size for Alen. This
- value has been determined to provide good balance between the number of
- garbage collections and the memory requirements for colamd.
-*/
-
-PUBLIC int colamd_recommended /* returns recommended value of Alen. */
-(
- /* === Parameters ======================================================= */
-
- int nnz, /* number of nonzeros in A */
- int n_row, /* number of rows in A */
- int n_col /* number of columns in A */
-)
-{
- /* === Local variables ================================================== */
-
- int minimum ; /* bare minimum requirements */
- int recommended ; /* recommended value of Alen */
-
- if (nnz < 0 || n_row < 0 || n_col < 0)
- {
- /* return -1 if any input argument is corrupted */
- DEBUG0 (("colamd_recommended error!")) ;
- DEBUG0 ((" nnz: %d, n_row: %d, n_col: %d\n", nnz, n_row, n_col)) ;
- return (-1) ;
- }
-
- minimum =
- 2 * (nnz) /* for A */
- + (((n_col) + 1) * sizeof (ColInfo) / sizeof (int)) /* for Col */
- + (((n_row) + 1) * sizeof (RowInfo) / sizeof (int)) /* for Row */
- + n_col /* minimum elbow room to guarrantee success */
- + COLAMD_STATS ; /* for output statistics */
-
- /* recommended is equal to the minumum plus enough memory to keep the */
- /* number garbage collections low */
- recommended = minimum + nnz/5 ;
-
- return (recommended) ;
-}
-
-
-/* ========================================================================== */
-/* === colamd_set_defaults ================================================== */
-/* ========================================================================== */
-
-/*
- The colamd_set_defaults routine sets the default values of the user-
- controllable parameters for colamd:
-
- knobs [0] rows with knobs[0]*n_col entries or more are removed
- prior to ordering.
-
- knobs [1] columns with knobs[1]*n_row entries or more are removed
- prior to ordering, and placed last in the column
- permutation.
-
- knobs [2..19] unused, but future versions might use this
-*/
-
-PUBLIC void colamd_set_defaults
-(
- /* === Parameters ======================================================= */
-
- double knobs [COLAMD_KNOBS] /* knob array */
-)
-{
- /* === Local variables ================================================== */
-
- int i ;
-
- if (!knobs)
- {
- return ; /* no knobs to initialize */
- }
- for (i = 0 ; i < COLAMD_KNOBS ; i++)
- {
- knobs [i] = 0 ;
- }
- knobs [COLAMD_DENSE_ROW] = 0.5 ; /* ignore rows over 50% dense */
- knobs [COLAMD_DENSE_COL] = 0.5 ; /* ignore columns over 50% dense */
-}
-
-
-/* ========================================================================== */
-/* === colamd =============================================================== */
-/* ========================================================================== */
-
-/*
- The colamd routine computes a column ordering Q of a sparse matrix
- A such that the LU factorization P(AQ) = LU remains sparse, where P is
- selected via partial pivoting. The routine can also be viewed as
- providing a permutation Q such that the Cholesky factorization
- (AQ)'(AQ) = LL' remains sparse.
-
- On input, the nonzero patterns of the columns of A are stored in the
- array A, in order 0 to n_col-1. A is held in 0-based form (rows in the
- range 0 to n_row-1 and columns in the range 0 to n_col-1). Row indices
- for column c are located in A [(p [c]) ... (p [c+1]-1)], where p [0] = 0,
- and thus p [n_col] is the number of entries in A. The matrix is
- destroyed on output. The row indices within each column do not have to
- be sorted (from small to large row indices), and duplicate row indices
- may be present. However, colamd will work a little faster if columns are
- sorted and no duplicates are present. Matlab 5.2 always passes the matrix
- with sorted columns, and no duplicates.
-
- The integer array A is of size Alen. Alen must be at least of size
- (where nnz is the number of entries in A):
-
- nnz for the input column form of A
- + nnz for a row form of A that colamd generates
- + 6*(n_col+1) for a ColInfo Col [0..n_col] array
- (this assumes sizeof (ColInfo) is 6 int's).
- + 4*(n_row+1) for a RowInfo Row [0..n_row] array
- (this assumes sizeof (RowInfo) is 4 int's).
- + elbow_room must be at least n_col. We recommend at least
- nnz/5 in addition to that. If sufficient,
- changes in the elbow room affect the ordering
- time only, not the ordering itself.
- + COLAMD_STATS for the output statistics
-
- Colamd returns FALSE is memory is insufficient, or TRUE otherwise.
-
- On input, the caller must specify:
-
- n_row the number of rows of A
- n_col the number of columns of A
- Alen the size of the array A
- A [0 ... nnz-1] the row indices, where nnz = p [n_col]
- A [nnz ... Alen-1] (need not be initialized by the user)
- p [0 ... n_col] the column pointers, p [0] = 0, and p [n_col]
- is the number of entries in A. Column c of A
- is stored in A [p [c] ... p [c+1]-1].
- knobs [0 ... 19] a set of parameters that control the behavior
- of colamd. If knobs is a NULL pointer the
- defaults are used. The user-callable
- colamd_set_defaults routine sets the default
- parameters. See that routine for a description
- of the user-controllable parameters.
-
- If the return value of Colamd is TRUE, then on output:
-
- p [0 ... n_col-1] the column permutation. p [0] is the first
- column index, and p [n_col-1] is the last.
- That is, p [k] = j means that column j of A
- is the kth column of AQ.
-
- A is undefined on output (the matrix pattern is
- destroyed), except for the following statistics:
-
- A [0] the number of dense (or empty) rows ignored
- A [1] the number of dense (or empty) columms. These
- are ordered last, in their natural order.
- A [2] the number of garbage collections performed.
- If this is excessive, then you would have
- gotten your results faster if Alen was larger.
- A [3] 0, if all row indices in each column were in
- sorted order and no duplicates were present.
- 1, if there were unsorted or duplicate row
- indices in the input. You would have gotten
- your results faster if A [3] was returned as 0.
-
- If the return value of Colamd is FALSE, then A and p are undefined on
- output.
-*/
-
-PUBLIC int colamd /* returns TRUE if successful */
-(
- /* === Parameters ======================================================= */
-
- int n_row, /* number of rows in A */
- int n_col, /* number of columns in A */
- int Alen, /* length of A */
- int A [], /* row indices of A */
- int p [], /* pointers to columns in A */
- double knobs [COLAMD_KNOBS] /* parameters (uses defaults if NULL) */
-)
-{
- /* === Local variables ================================================== */
-
- int i ; /* loop index */
- int nnz ; /* nonzeros in A */
- int Row_size ; /* size of Row [], in integers */
- int Col_size ; /* size of Col [], in integers */
- int elbow_room ; /* remaining free space */
- RowInfo *Row ; /* pointer into A of Row [0..n_row] array */
- ColInfo *Col ; /* pointer into A of Col [0..n_col] array */
- int n_col2 ; /* number of non-dense, non-empty columns */
- int n_row2 ; /* number of non-dense, non-empty rows */
- int ngarbage ; /* number of garbage collections performed */
- int max_deg ; /* maximum row degree */
- double default_knobs [COLAMD_KNOBS] ; /* default knobs knobs array */
- int init_result ; /* return code from initialization */
-
-#ifndef NDEBUG
- debug_colamd = 0 ; /* no debug printing */
- /* get "D" environment variable, which gives the debug printing level */
- if (getenv ("D")) debug_colamd = atoi (getenv ("D")) ;
- DEBUG0 (("debug version, D = %d (THIS WILL BE SLOOOOW!)\n", debug_colamd)) ;
-#endif
-
- /* === Check the input arguments ======================================== */
-
- if (n_row < 0 || n_col < 0 || !A || !p)
- {
- /* n_row and n_col must be non-negative, A and p must be present */
- DEBUG0 (("colamd error! %d %d %d\n", n_row, n_col, Alen)) ;
- return (FALSE) ;
- }
- nnz = p [n_col] ;
- if (nnz < 0 || p [0] != 0)
- {
- /* nnz must be non-negative, and p [0] must be zero */
- DEBUG0 (("colamd error! %d %d\n", nnz, p [0])) ;
- return (FALSE) ;
- }
-
- /* === If no knobs, set default parameters ============================== */
-
- if (!knobs)
- {
- knobs = default_knobs ;
- colamd_set_defaults (knobs) ;
- }
-
- /* === Allocate the Row and Col arrays from array A ===================== */
-
- Col_size = (n_col + 1) * sizeof (ColInfo) / sizeof (int) ;
- Row_size = (n_row + 1) * sizeof (RowInfo) / sizeof (int) ;
- elbow_room = Alen - (2*nnz + Col_size + Row_size) ;
- if (elbow_room < n_col + COLAMD_STATS)
- {
- /* not enough space in array A to perform the ordering */
- DEBUG0 (("colamd error! elbow_room %d, %d\n", elbow_room,n_col)) ;
- return (FALSE) ;
- }
- Alen = 2*nnz + elbow_room ;
- Col = (ColInfo *) &A [Alen] ;
- Row = (RowInfo *) &A [Alen + Col_size] ;
-
- /* === Construct the row and column data structures ===================== */
-
- init_result = init_rows_cols (n_row, n_col, Row, Col, A, p) ;
- if (init_result == -1)
- {
- /* input matrix is invalid */
- DEBUG0 (("colamd error! matrix invalid\n")) ;
- return (FALSE) ;
- }
-
- /* === Initialize scores, kill dense rows/columns ======================= */
-
- init_scoring (n_row, n_col, Row, Col, A, p, knobs,
- &n_row2, &n_col2, &max_deg) ;
-
- /* === Order the supercolumns =========================================== */
-
- ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
- n_col2, max_deg, 2*nnz) ;
-
- /* === Order the non-principal columns ================================== */
-
- order_children (n_col, Col, p) ;
-
- /* === Return statistics in A =========================================== */
-
- for (i = 0 ; i < COLAMD_STATS ; i++)
- {
- A [i] = 0 ;
- }
- A [COLAMD_DENSE_ROW] = n_row - n_row2 ;
- A [COLAMD_DENSE_COL] = n_col - n_col2 ;
- A [COLAMD_DEFRAG_COUNT] = ngarbage ;
- A [COLAMD_JUMBLED_COLS] = init_result ;
-
- return (TRUE) ;
-}
-
-
-/* ========================================================================== */
-/* === NON-USER-CALLABLE ROUTINES: ========================================== */
-/* ========================================================================== */
-
-/* There are no user-callable routines beyond this point in the file */
-
-
-/* ========================================================================== */
-/* === init_rows_cols ======================================================= */
-/* ========================================================================== */
-
-/*
- Takes the column form of the matrix in A and creates the row form of the
- matrix. Also, row and column attributes are stored in the Col and Row
- structs. If the columns are un-sorted or contain duplicate row indices,
- this routine will also sort and remove duplicate row indices from the
- column form of the matrix. Returns -1 on error, 1 if columns jumbled,
- or 0 if columns not jumbled. Not user-callable.
-*/
-
-PRIVATE int init_rows_cols /* returns status code */
-(
- /* === Parameters ======================================================= */
-
- int n_row, /* number of rows of A */
- int n_col, /* number of columns of A */
- RowInfo Row [], /* of size n_row+1 */
- ColInfo Col [], /* of size n_col+1 */
- int A [], /* row indices of A, of size Alen */
- int p [] /* pointers to columns in A, of size n_col+1 */
-)
-{
- /* === Local variables ================================================== */
-
- int col ; /* a column index */
- int row ; /* a row index */
- int *cp ; /* a column pointer */
- int *cp_end ; /* a pointer to the end of a column */
- int *rp ; /* a row pointer */
- int *rp_end ; /* a pointer to the end of a row */
- int last_start ; /* start index of previous column in A */
- int start ; /* start index of column in A */
- int last_row ; /* previous row */
- int jumbled_columns ; /* indicates if columns are jumbled */
-
- /* === Initialize columns, and check column pointers ==================== */
-
- last_start = 0 ;
- for (col = 0 ; col < n_col ; col++)
- {
- start = p [col] ;
- if (start < last_start)
- {
- /* column pointers must be non-decreasing */
- DEBUG0 (("colamd error! last p %d p [col] %d\n",last_start,start));
- return (-1) ;
- }
- Col [col].start = start ;
- Col [col].length = p [col+1] - start ;
- Col [col].shared1.thickness = 1 ;
- Col [col].shared2.score = 0 ;
- Col [col].shared3.prev = EMPTY ;
- Col [col].shared4.degree_next = EMPTY ;
- last_start = start ;
- }
- /* must check the end pointer for last column */
- if (p [n_col] < last_start)
- {
- /* column pointers must be non-decreasing */
- DEBUG0 (("colamd error! last p %d p [n_col] %d\n",p[col],last_start)) ;
- return (-1) ;
- }
-
- /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
-
- /* === Scan columns, compute row degrees, and check row indices ========= */
-
- jumbled_columns = FALSE ;
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].length = 0 ;
- Row [row].shared2.mark = -1 ;
- }
-
- for (col = 0 ; col < n_col ; col++)
- {
- last_row = -1 ;
-
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
-
- while (cp < cp_end)
- {
- row = *cp++ ;
-
- /* make sure row indices within range */
- if (row < 0 || row >= n_row)
- {
- DEBUG0 (("colamd error! col %d row %d last_row %d\n",
- col, row, last_row)) ;
- return (-1) ;
- }
- else if (row <= last_row)
- {
- /* row indices are not sorted or repeated, thus cols */
- /* are jumbled */
- jumbled_columns = TRUE ;
- }
- /* prevent repeated row from being counted */
- if (Row [row].shared2.mark != col)
- {
- Row [row].length++ ;
- Row [row].shared2.mark = col ;
- last_row = row ;
- }
- else
- {
- /* this is a repeated entry in the column, */
- /* it will be removed */
- Col [col].length-- ;
- }
- }
- }
-
- /* === Compute row pointers ============================================= */
-
- /* row form of the matrix starts directly after the column */
- /* form of matrix in A */
- Row [0].start = p [n_col] ;
- Row [0].shared1.p = Row [0].start ;
- Row [0].shared2.mark = -1 ;
- for (row = 1 ; row < n_row ; row++)
- {
- Row [row].start = Row [row-1].start + Row [row-1].length ;
- Row [row].shared1.p = Row [row].start ;
- Row [row].shared2.mark = -1 ;
- }
-
- /* === Create row form ================================================== */
-
- if (jumbled_columns)
- {
- /* if cols jumbled, watch for repeated row indices */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- row = *cp++ ;
- if (Row [row].shared2.mark != col)
- {
- A [(Row [row].shared1.p)++] = col ;
- Row [row].shared2.mark = col ;
- }
- }
- }
- }
- else
- {
- /* if cols not jumbled, we don't need the mark (this is faster) */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- A [(Row [*cp++].shared1.p)++] = col ;
- }
- }
- }
-
- /* === Clear the row marks and set row degrees ========================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].shared2.mark = 0 ;
- Row [row].shared1.degree = Row [row].length ;
- }
-
- /* === See if we need to re-create columns ============================== */
-
- if (jumbled_columns)
- {
-
-#ifndef NDEBUG
- /* make sure column lengths are correct */
- for (col = 0 ; col < n_col ; col++)
- {
- p [col] = Col [col].length ;
- }
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- p [*rp++]-- ;
- }
- }
- for (col = 0 ; col < n_col ; col++)
- {
- assert (p [col] == 0) ;
- }
- /* now p is all zero (different than when debugging is turned off) */
-#endif
-
- /* === Compute col pointers ========================================= */
-
- /* col form of the matrix starts at A [0]. */
- /* Note, we may have a gap between the col form and the row */
- /* form if there were duplicate entries, if so, it will be */
- /* removed upon the first garbage collection */
- Col [0].start = 0 ;
- p [0] = Col [0].start ;
- for (col = 1 ; col < n_col ; col++)
- {
- /* note that the lengths here are for pruned columns, i.e. */
- /* no duplicate row indices will exist for these columns */
- Col [col].start = Col [col-1].start + Col [col-1].length ;
- p [col] = Col [col].start ;
- }
-
- /* === Re-create col form =========================================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- A [(p [*rp++])++] = row ;
- }
- }
- return (1) ;
- }
- else
- {
- /* no columns jumbled (this is faster) */
- return (0) ;
- }
-}
-
-
-/* ========================================================================== */
-/* === init_scoring ========================================================= */
-/* ========================================================================== */
-
-/*
- Kills dense or empty columns and rows, calculates an initial score for
- each column, and places all columns in the degree lists. Not user-callable.
-*/
-
-PRIVATE void init_scoring
-(
- /* === Parameters ======================================================= */
-
- int n_row, /* number of rows of A */
- int n_col, /* number of columns of A */
- RowInfo Row [], /* of size n_row+1 */
- ColInfo Col [], /* of size n_col+1 */
- int A [], /* column form and row form of A */
- int head [], /* of size n_col+1 */
- double knobs [COLAMD_KNOBS],/* parameters */
- int *p_n_row2, /* number of non-dense, non-empty rows */
- int *p_n_col2, /* number of non-dense, non-empty columns */
- int *p_max_deg /* maximum row degree */
-)
-{
- /* === Local variables ================================================== */
-
- int c ; /* a column index */
- int r, row ; /* a row index */
- int *cp ; /* a column pointer */
- int deg ; /* degree (# entries) of a row or column */
- int *cp_end ; /* a pointer to the end of a column */
- int *new_cp ; /* new column pointer */
- int col_length ; /* length of pruned column */
- int score ; /* current column score */
- int n_col2 ; /* number of non-dense, non-empty columns */
- int n_row2 ; /* number of non-dense, non-empty rows */
- int dense_row_count ; /* remove rows with more entries than this */
- int dense_col_count ; /* remove cols with more entries than this */
- int min_score ; /* smallest column score */
- int max_deg ; /* maximum row degree */
- int next_col ; /* Used to add to degree list.*/
-#ifndef NDEBUG
- int debug_count ; /* debug only. */
-#endif
-
- /* === Extract knobs ==================================================== */
-
- dense_row_count = MAX (0, MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ;
- dense_col_count = MAX (0, MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ;
- DEBUG0 (("densecount: %d %d\n", dense_row_count, dense_col_count)) ;
- max_deg = 0 ;
- n_col2 = n_col ;
- n_row2 = n_row ;
-
- /* === Kill empty columns =============================================== */
-
- /* Put the empty columns at the end in their natural, so that LU */
- /* factorization can proceed as far as possible. */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- deg = Col [c].length ;
- if (deg == 0)
- {
- /* this is a empty column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- DEBUG0 (("null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense columns =============================================== */
-
- /* Put the dense columns at the end, in their natural order */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip any dead columns */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- deg = Col [c].length ;
- if (deg > dense_col_count)
- {
- /* this is a dense column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- /* decrement the row degrees */
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- Row [*cp++].shared1.degree-- ;
- }
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- DEBUG0 (("Dense and null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense and empty rows ======================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- deg = Row [r].shared1.degree ;
- assert (deg >= 0 && deg <= n_col) ;
- if (deg > dense_row_count || deg == 0)
- {
- /* kill a dense or empty row */
- KILL_ROW (r) ;
- --n_row2 ;
- }
- else
- {
- /* keep track of max degree of remaining rows */
- max_deg = MAX (max_deg, deg) ;
- }
- }
- DEBUG0 (("Dense and null rows killed: %d\n", n_row - n_row2)) ;
-
- /* === Compute initial column scores ==================================== */
-
- /* At this point the row degrees are accurate. They reflect the number */
- /* of "live" (non-dense) columns in each row. No empty rows exist. */
- /* Some "live" columns may contain only dead rows, however. These are */
- /* pruned in the code below. */
-
- /* now find the initial matlab score for each column */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip dead column */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- score = 0 ;
- cp = &A [Col [c].start] ;
- new_cp = cp ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- /* skip if dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- /* compact the column */
- *new_cp++ = row ;
- /* add row's external degree */
- score += Row [row].shared1.degree - 1 ;
- /* guard against integer overflow */
- score = MIN (score, n_col) ;
- }
- /* determine pruned column length */
- col_length = (int) (new_cp - &A [Col [c].start]) ;
- if (col_length == 0)
- {
- /* a newly-made null column (all rows in this col are "dense" */
- /* and have already been killed) */
- DEBUG0 (("Newly null killed: %d\n", c)) ;
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- else
- {
- /* set column length and set score */
- assert (score >= 0) ;
- assert (score <= n_col) ;
- Col [c].length = col_length ;
- Col [c].shared2.score = score ;
- }
- }
- DEBUG0 (("Dense, null, and newly-null columns killed: %d\n",n_col-n_col2)) ;
-
- /* At this point, all empty rows and columns are dead. All live columns */
- /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
- /* yet). Rows may contain dead columns, but all live rows contain at */
- /* least one live column. */
-
-#ifndef NDEBUG
- debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
-#endif
-
- /* === Initialize degree lists ========================================== */
-
-#ifndef NDEBUG
- debug_count = 0 ;
-#endif
-
- /* clear the hash buckets */
- for (c = 0 ; c <= n_col ; c++)
- {
- head [c] = EMPTY ;
- }
- min_score = n_col ;
- /* place in reverse order, so low column indices are at the front */
- /* of the lists. This is to encourage natural tie-breaking */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* only add principal columns to degree lists */
- if (COL_IS_ALIVE (c))
- {
- DEBUG4 (("place %d score %d minscore %d ncol %d\n",
- c, Col [c].shared2.score, min_score, n_col)) ;
-
- /* === Add columns score to DList =============================== */
-
- score = Col [c].shared2.score ;
-
- assert (min_score >= 0) ;
- assert (min_score <= n_col) ;
- assert (score >= 0) ;
- assert (score <= n_col) ;
- assert (head [score] >= EMPTY) ;
-
- /* now add this column to dList at proper score location */
- next_col = head [score] ;
- Col [c].shared3.prev = EMPTY ;
- Col [c].shared4.degree_next = next_col ;
-
- /* if there already was a column with the same score, set its */
- /* previous pointer to this new column */
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = c ;
- }
- head [score] = c ;
-
- /* see if this score is less than current min */
- min_score = MIN (min_score, score) ;
-
-#ifndef NDEBUG
- debug_count++ ;
-#endif
- }
- }
-
-#ifndef NDEBUG
- DEBUG0 (("Live cols %d out of %d, non-princ: %d\n",
- debug_count, n_col, n_col-debug_count)) ;
- assert (debug_count == n_col2) ;
- debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
-#endif
-
- /* === Return number of remaining columns, and max row degree =========== */
-
- *p_n_col2 = n_col2 ;
- *p_n_row2 = n_row2 ;
- *p_max_deg = max_deg ;
-}
-
-
-/* ========================================================================== */
-/* === find_ordering ======================================================== */
-/* ========================================================================== */
-
-/*
- Order the principal columns of the supercolumn form of the matrix
- (no supercolumns on input). Uses a minimum approximate column minimum
- degree ordering method. Not user-callable.
-*/
-
-PRIVATE int find_ordering /* return the number of garbage collections */
-(
- /* === Parameters ======================================================= */
-
- int n_row, /* number of rows of A */
- int n_col, /* number of columns of A */
- int Alen, /* size of A, 2*nnz + elbow_room or larger */
- RowInfo Row [], /* of size n_row+1 */
- ColInfo Col [], /* of size n_col+1 */
- int A [], /* column form and row form of A */
- int head [], /* of size n_col+1 */
- int n_col2, /* Remaining columns to order */
- int max_deg, /* Maximum row degree */
- int pfree /* index of first free slot (2*nnz on entry) */
-)
-{
- /* === Local variables ================================================== */
-
- int k ; /* current pivot ordering step */
- int pivot_col ; /* current pivot column */
- int *cp ; /* a column pointer */
- int *rp ; /* a row pointer */
- int pivot_row ; /* current pivot row */
- int *new_cp ; /* modified column pointer */
- int *new_rp ; /* modified row pointer */
- int pivot_row_start ; /* pointer to start of pivot row */
- int pivot_row_degree ; /* # of columns in pivot row */
- int pivot_row_length ; /* # of supercolumns in pivot row */
- int pivot_col_score ; /* score of pivot column */
- int needed_memory ; /* free space needed for pivot row */
- int *cp_end ; /* pointer to the end of a column */
- int *rp_end ; /* pointer to the end of a row */
- int row ; /* a row index */
- int col ; /* a column index */
- int max_score ; /* maximum possible score */
- int cur_score ; /* score of current column */
- unsigned int hash ; /* hash value for supernode detection */
- int head_column ; /* head of hash bucket */
- int first_col ; /* first column in hash bucket */
- int tag_mark ; /* marker value for mark array */
- int row_mark ; /* Row [row].shared2.mark */
- int set_difference ; /* set difference size of row with pivot row */
- int min_score ; /* smallest column score */
- int col_thickness ; /* "thickness" (# of columns in a supercol) */
- int max_mark ; /* maximum value of tag_mark */
- int pivot_col_thickness ; /* number of columns represented by pivot col */
- int prev_col ; /* Used by Dlist operations. */
- int next_col ; /* Used by Dlist operations. */
- int ngarbage ; /* number of garbage collections performed */
-#ifndef NDEBUG
- int debug_d ; /* debug loop counter */
- int debug_step = 0 ; /* debug loop counter */
-#endif
-
- /* === Initialization and clear mark ==================================== */
-
- max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
- tag_mark = clear_mark (n_row, Row) ;
- min_score = 0 ;
- ngarbage = 0 ;
- DEBUG0 (("Ordering.. n_col2=%d\n", n_col2)) ;
-
- /* === Order the columns ================================================ */
-
- for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
- {
-
-#ifndef NDEBUG
- if (debug_step % 100 == 0)
- {
- DEBUG0 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
- }
- else
- {
- DEBUG1 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
- }
- debug_step++ ;
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k, max_deg) ;
- debug_matrix (n_row, n_col, Row, Col, A) ;
-#endif
-
- /* === Select pivot column, and order it ============================ */
-
- /* make sure degree list isn't empty */
- assert (min_score >= 0) ;
- assert (min_score <= n_col) ;
- assert (head [min_score] >= EMPTY) ;
-
-#ifndef NDEBUG
- for (debug_d = 0 ; debug_d < min_score ; debug_d++)
- {
- assert (head [debug_d] == EMPTY) ;
- }
-#endif
-
- /* get pivot column from head of minimum degree list */
- while (head [min_score] == EMPTY && min_score < n_col)
- {
- min_score++ ;
- }
- pivot_col = head [min_score] ;
- assert (pivot_col >= 0 && pivot_col <= n_col) ;
- next_col = Col [pivot_col].shared4.degree_next ;
- head [min_score] = next_col ;
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = EMPTY ;
- }
-
- assert (COL_IS_ALIVE (pivot_col)) ;
- DEBUG3 (("Pivot col: %d\n", pivot_col)) ;
-
- /* remember score for defrag check */
- pivot_col_score = Col [pivot_col].shared2.score ;
-
- /* the pivot column is the kth column in the pivot order */
- Col [pivot_col].shared2.order = k ;
-
- /* increment order count by column thickness */
- pivot_col_thickness = Col [pivot_col].shared1.thickness ;
- k += pivot_col_thickness ;
- assert (pivot_col_thickness > 0) ;
-
- /* === Garbage_collection, if necessary ============================= */
-
- needed_memory = MIN (pivot_col_score, n_col - k) ;
- if (pfree + needed_memory >= Alen)
- {
- pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
- ngarbage++ ;
- /* after garbage collection we will have enough */
- assert (pfree + needed_memory < Alen) ;
- /* garbage collection has wiped out the Row[].shared2.mark array */
- tag_mark = clear_mark (n_row, Row) ;
-#ifndef NDEBUG
- debug_matrix (n_row, n_col, Row, Col, A) ;
-#endif
- }
-
- /* === Compute pivot row pattern ==================================== */
-
- /* get starting location for this new merged row */
- pivot_row_start = pfree ;
-
- /* initialize new row counts to zero */
- pivot_row_degree = 0 ;
-
- /* tag pivot column as having been visited so it isn't included */
- /* in merged pivot row */
- Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
-
- /* pivot row is the union of all rows in the pivot column pattern */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
- /* skip if row is dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- /* add the column, if alive and untagged */
- col_thickness = Col [col].shared1.thickness ;
- if (col_thickness > 0 && COL_IS_ALIVE (col))
- {
- /* tag column in pivot row */
- Col [col].shared1.thickness = -col_thickness ;
- assert (pfree < Alen) ;
- /* place column in pivot row */
- A [pfree++] = col ;
- pivot_row_degree += col_thickness ;
- }
- }
- }
-
- /* clear tag on pivot column */
- Col [pivot_col].shared1.thickness = pivot_col_thickness ;
- max_deg = MAX (max_deg, pivot_row_degree) ;
-
-#ifndef NDEBUG
- DEBUG3 (("check2\n")) ;
- debug_mark (n_row, Row, tag_mark, max_mark) ;
-#endif
-
- /* === Kill all rows used to construct pivot row ==================== */
-
- /* also kill pivot row, temporarily */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* may be killing an already dead row */
- row = *cp++ ;
- DEBUG2 (("Kill row in pivot col: %d\n", row)) ;
- KILL_ROW (row) ;
- }
-
- /* === Select a row index to use as the new pivot row =============== */
-
- pivot_row_length = pfree - pivot_row_start ;
- if (pivot_row_length > 0)
- {
- /* pick the "pivot" row arbitrarily (first row in col) */
- pivot_row = A [Col [pivot_col].start] ;
- DEBUG2 (("Pivotal row is %d\n", pivot_row)) ;
- }
- else
- {
- /* there is no pivot row, since it is of zero length */
- pivot_row = EMPTY ;
- assert (pivot_row_length == 0) ;
- }
- assert (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
-
- /* === Approximate degree computation =============================== */
-
- /* Here begins the computation of the approximate degree. The column */
- /* score is the sum of the pivot row "length", plus the size of the */
- /* set differences of each row in the column minus the pattern of the */
- /* pivot row itself. The column ("thickness") itself is also */
- /* excluded from the column score (we thus use an approximate */
- /* external degree). */
-
- /* The time taken by the following code (compute set differences, and */
- /* add them up) is proportional to the size of the data structure */
- /* being scanned - that is, the sum of the sizes of each column in */
- /* the pivot row. Thus, the amortized time to compute a column score */
- /* is proportional to the size of that column (where size, in this */
- /* context, is the column "length", or the number of row indices */
- /* in that column). The number of row indices in a column is */
- /* monotonically non-decreasing, from the length of the original */
- /* column on input to colamd. */
-
- /* === Compute set differences ====================================== */
-
- DEBUG1 (("** Computing set differences phase. **\n")) ;
-
- /* pivot row is currently dead - it will be revived later. */
-
- DEBUG2 (("Pivot row: ")) ;
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- assert (COL_IS_ALIVE (col) && col != pivot_col) ;
- DEBUG2 (("Col: %d\n", col)) ;
-
- /* clear tags used to construct pivot row pattern */
- col_thickness = -Col [col].shared1.thickness ;
- assert (col_thickness > 0) ;
- Col [col].shared1.thickness = col_thickness ;
-
- /* === Remove column from degree list =========================== */
-
- cur_score = Col [col].shared2.score ;
- prev_col = Col [col].shared3.prev ;
- next_col = Col [col].shared4.degree_next ;
- assert (cur_score >= 0) ;
- assert (cur_score <= n_col) ;
- assert (cur_score >= EMPTY) ;
- if (prev_col == EMPTY)
- {
- head [cur_score] = next_col ;
- }
- else
- {
- Col [prev_col].shared4.degree_next = next_col ;
- }
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = prev_col ;
- }
-
- /* === Scan the column ========================================== */
-
- cp = &A [Col [col].start] ;
- cp_end = cp + Col [col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- assert (row != pivot_row) ;
- set_difference = row_mark - tag_mark ;
- /* check if the row has been seen yet */
- if (set_difference < 0)
- {
- assert (Row [row].shared1.degree <= max_deg) ;
- set_difference = Row [row].shared1.degree ;
- }
- /* subtract column thickness from this row's set difference */
- set_difference -= col_thickness ;
- assert (set_difference >= 0) ;
- /* absorb this row if the set difference becomes zero */
- if (set_difference == 0)
- {
- DEBUG1 (("aggressive absorption. Row: %d\n", row)) ;
- KILL_ROW (row) ;
- }
- else
- {
- /* save the new mark */
- Row [row].shared2.mark = set_difference + tag_mark ;
- }
- }
- }
-
-#ifndef NDEBUG
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k-pivot_row_degree, max_deg) ;
-#endif
-
- /* === Add up set differences for each column ======================= */
-
- DEBUG1 (("** Adding set differences phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- assert (COL_IS_ALIVE (col) && col != pivot_col) ;
- hash = 0 ;
- cur_score = 0 ;
- cp = &A [Col [col].start] ;
- /* compact the column */
- new_cp = cp ;
- cp_end = cp + Col [col].length ;
-
- DEBUG2 (("Adding set diffs for Col: %d.\n", col)) ;
-
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- assert(row >= 0 && row < n_row) ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- assert (row_mark > tag_mark) ;
- /* compact the column */
- *new_cp++ = row ;
- /* compute hash function */
- hash += row ;
- /* add set difference */
- cur_score += row_mark - tag_mark ;
- /* integer overflow... */
- cur_score = MIN (cur_score, n_col) ;
- }
-
- /* recompute the column's length */
- Col [col].length = (int) (new_cp - &A [Col [col].start]) ;
-
- /* === Further mass elimination ================================= */
-
- if (Col [col].length == 0)
- {
- DEBUG1 (("further mass elimination. Col: %d\n", col)) ;
- /* nothing left but the pivot row in this column */
- KILL_PRINCIPAL_COL (col) ;
- pivot_row_degree -= Col [col].shared1.thickness ;
- assert (pivot_row_degree >= 0) ;
- /* order it */
- Col [col].shared2.order = k ;
- /* increment order count by column thickness */
- k += Col [col].shared1.thickness ;
- }
- else
- {
- /* === Prepare for supercolumn detection ==================== */
-
- DEBUG2 (("Preparing supercol detection for Col: %d.\n", col)) ;
-
- /* save score so far */
- Col [col].shared2.score = cur_score ;
-
- /* add column to hash table, for supercolumn detection */
- hash %= n_col + 1 ;
-
- DEBUG2 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
- assert (hash <= n_col) ;
-
- head_column = head [hash] ;
- if (head_column > EMPTY)
- {
- /* degree list "hash" is non-empty, use prev (shared3) of */
- /* first column in degree list as head of hash bucket */
- first_col = Col [head_column].shared3.headhash ;
- Col [head_column].shared3.headhash = col ;
- }
- else
- {
- /* degree list "hash" is empty, use head as hash bucket */
- first_col = - (head_column + 2) ;
- head [hash] = - (col + 2) ;
- }
- Col [col].shared4.hash_next = first_col ;
-
- /* save hash function in Col [col].shared3.hash */
- Col [col].shared3.hash = (int) hash ;
- assert (COL_IS_ALIVE (col)) ;
- }
- }
-
- /* The approximate external column degree is now computed. */
-
- /* === Supercolumn detection ======================================== */
-
- DEBUG1 (("** Supercolumn detection phase. **\n")) ;
-
- detect_super_cols (
-#ifndef NDEBUG
- n_col, Row,
-#endif
- Col, A, head, pivot_row_start, pivot_row_length) ;
-
- /* === Kill the pivotal column ====================================== */
-
- KILL_PRINCIPAL_COL (pivot_col) ;
-
- /* === Clear mark =================================================== */
-
- tag_mark += (max_deg + 1) ;
- if (tag_mark >= max_mark)
- {
- DEBUG1 (("clearing tag_mark\n")) ;
- tag_mark = clear_mark (n_row, Row) ;
- }
-#ifndef NDEBUG
- DEBUG3 (("check3\n")) ;
- debug_mark (n_row, Row, tag_mark, max_mark) ;
-#endif
-
- /* === Finalize the new pivot row, and column scores ================ */
-
- DEBUG1 (("** Finalize scores phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- /* compact the pivot row */
- new_rp = rp ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- /* skip dead columns */
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
- *new_rp++ = col ;
- /* add new pivot row to column */
- A [Col [col].start + (Col [col].length++)] = pivot_row ;
-
- /* retrieve score so far and add on pivot row's degree. */
- /* (we wait until here for this in case the pivot */
- /* row's degree was reduced due to mass elimination). */
- cur_score = Col [col].shared2.score + pivot_row_degree ;
-
- /* calculate the max possible score as the number of */
- /* external columns minus the 'k' value minus the */
- /* columns thickness */
- max_score = n_col - k - Col [col].shared1.thickness ;
-
- /* make the score the external degree of the union-of-rows */
- cur_score -= Col [col].shared1.thickness ;
-
- /* make sure score is less or equal than the max score */
- cur_score = MIN (cur_score, max_score) ;
- assert (cur_score >= 0) ;
-
- /* store updated score */
- Col [col].shared2.score = cur_score ;
-
- /* === Place column back in degree list ========================= */
-
- assert (min_score >= 0) ;
- assert (min_score <= n_col) ;
- assert (cur_score >= 0) ;
- assert (cur_score <= n_col) ;
- assert (head [cur_score] >= EMPTY) ;
- next_col = head [cur_score] ;
- Col [col].shared4.degree_next = next_col ;
- Col [col].shared3.prev = EMPTY ;
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = col ;
- }
- head [cur_score] = col ;
-
- /* see if this score is less than current min */
- min_score = MIN (min_score, cur_score) ;
-
- }
-
-#ifndef NDEBUG
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k, max_deg) ;
-#endif
-
- /* === Resurrect the new pivot row ================================== */
-
- if (pivot_row_degree > 0)
- {
- /* update pivot row length to reflect any cols that were killed */
- /* during super-col detection and mass elimination */
- Row [pivot_row].start = pivot_row_start ;
- Row [pivot_row].length = (int) (new_rp - &A[pivot_row_start]) ;
- Row [pivot_row].shared1.degree = pivot_row_degree ;
- Row [pivot_row].shared2.mark = 0 ;
- /* pivot row is no longer dead */
- }
- }
-
- /* === All principal columns have now been ordered ====================== */
-
- return (ngarbage) ;
-}
-
-
-/* ========================================================================== */
-/* === order_children ======================================================= */
-/* ========================================================================== */
-
-/*
- The find_ordering routine has ordered all of the principal columns (the
- representatives of the supercolumns). The non-principal columns have not
- yet been ordered. This routine orders those columns by walking up the
- parent tree (a column is a child of the column which absorbed it). The
- final permutation vector is then placed in p [0 ... n_col-1], with p [0]
- being the first column, and p [n_col-1] being the last. It doesn't look
- like it at first glance, but be assured that this routine takes time linear
- in the number of columns. Although not immediately obvious, the time
- taken by this routine is O (n_col), that is, linear in the number of
- columns. Not user-callable.
-*/
-
-PRIVATE void order_children
-(
- /* === Parameters ======================================================= */
-
- int n_col, /* number of columns of A */
- ColInfo Col [], /* of size n_col+1 */
- int p [] /* p [0 ... n_col-1] is the column permutation*/
-)
-{
- /* === Local variables ================================================== */
-
- int i ; /* loop counter for all columns */
- int c ; /* column index */
- int parent ; /* index of column's parent */
- int order ; /* column's order */
-
- /* === Order each non-principal column ================================== */
-
- for (i = 0 ; i < n_col ; i++)
- {
- /* find an un-ordered non-principal column */
- assert (COL_IS_DEAD (i)) ;
- if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
- {
- parent = i ;
- /* once found, find its principal parent */
- do
- {
- parent = Col [parent].shared1.parent ;
- } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
-
- /* now, order all un-ordered non-principal columns along path */
- /* to this parent. collapse tree at the same time */
- c = i ;
- /* get order of parent */
- order = Col [parent].shared2.order ;
-
- do
- {
- assert (Col [c].shared2.order == EMPTY) ;
-
- /* order this column */
- Col [c].shared2.order = order++ ;
- /* collaps tree */
- Col [c].shared1.parent = parent ;
-
- /* get immediate parent of this column */
- c = Col [c].shared1.parent ;
-
- /* continue until we hit an ordered column. There are */
- /* guarranteed not to be anymore unordered columns */
- /* above an ordered column */
- } while (Col [c].shared2.order == EMPTY) ;
-
- /* re-order the super_col parent to largest order for this group */
- Col [parent].shared2.order = order ;
- }
- }
-
- /* === Generate the permutation ========================================= */
-
- for (c = 0 ; c < n_col ; c++)
- {
- p [Col [c].shared2.order] = c ;
- }
-}
-
-
-/* ========================================================================== */
-/* === detect_super_cols ==================================================== */
-/* ========================================================================== */
-
-/*
- Detects supercolumns by finding matches between columns in the hash buckets.
- Check amongst columns in the set A [row_start ... row_start + row_length-1].
- The columns under consideration are currently *not* in the degree lists,
- and have already been placed in the hash buckets.
-
- The hash bucket for columns whose hash function is equal to h is stored
- as follows:
-
- if head [h] is >= 0, then head [h] contains a degree list, so:
-
- head [h] is the first column in degree bucket h.
- Col [head [h]].headhash gives the first column in hash bucket h.
-
- otherwise, the degree list is empty, and:
-
- -(head [h] + 2) is the first column in hash bucket h.
-
- For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
- column" pointer. Col [c].shared3.hash is used instead as the hash number
- for that column. The value of Col [c].shared4.hash_next is the next column
- in the same hash bucket.
-
- Assuming no, or "few" hash collisions, the time taken by this routine is
- linear in the sum of the sizes (lengths) of each column whose score has
- just been computed in the approximate degree computation.
- Not user-callable.
-*/
-
-PRIVATE void detect_super_cols
-(
- /* === Parameters ======================================================= */
-
-#ifndef NDEBUG
- /* these two parameters are only needed when debugging is enabled: */
- int n_col, /* number of columns of A */
- RowInfo Row [], /* of size n_row+1 */
-#endif
- ColInfo Col [], /* of size n_col+1 */
- int A [], /* row indices of A */
- int head [], /* head of degree lists and hash buckets */
- int row_start, /* pointer to set of columns to check */
- int row_length /* number of columns to check */
-)
-{
- /* === Local variables ================================================== */
-
- int hash ; /* hash # for a column */
- int *rp ; /* pointer to a row */
- int c ; /* a column index */
- int super_c ; /* column index of the column to absorb into */
- int *cp1 ; /* column pointer for column super_c */
- int *cp2 ; /* column pointer for column c */
- int length ; /* length of column super_c */
- int prev_c ; /* column preceding c in hash bucket */
- int i ; /* loop counter */
- int *rp_end ; /* pointer to the end of the row */
- int col ; /* a column index in the row to check */
- int head_column ; /* first column in hash bucket or degree list */
- int first_col ; /* first column in hash bucket */
-
- /* === Consider each column in the row ================================== */
-
- rp = &A [row_start] ;
- rp_end = rp + row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
-
- /* get hash number for this column */
- hash = Col [col].shared3.hash ;
- assert (hash <= n_col) ;
-
- /* === Get the first column in this hash bucket ===================== */
-
- head_column = head [hash] ;
- if (head_column > EMPTY)
- {
- first_col = Col [head_column].shared3.headhash ;
- }
- else
- {
- first_col = - (head_column + 2) ;
- }
-
- /* === Consider each column in the hash bucket ====================== */
-
- for (super_c = first_col ; super_c != EMPTY ;
- super_c = Col [super_c].shared4.hash_next)
- {
- assert (COL_IS_ALIVE (super_c)) ;
- assert (Col [super_c].shared3.hash == hash) ;
- length = Col [super_c].length ;
-
- /* prev_c is the column preceding column c in the hash bucket */
- prev_c = super_c ;
-
- /* === Compare super_c with all columns after it ================ */
-
- for (c = Col [super_c].shared4.hash_next ;
- c != EMPTY ; c = Col [c].shared4.hash_next)
- {
- assert (c != super_c) ;
- assert (COL_IS_ALIVE (c)) ;
- assert (Col [c].shared3.hash == hash) ;
-
- /* not identical if lengths or scores are different */
- if (Col [c].length != length ||
- Col [c].shared2.score != Col [super_c].shared2.score)
- {
- prev_c = c ;
- continue ;
- }
-
- /* compare the two columns */
- cp1 = &A [Col [super_c].start] ;
- cp2 = &A [Col [c].start] ;
-
- for (i = 0 ; i < length ; i++)
- {
- /* the columns are "clean" (no dead rows) */
- assert (ROW_IS_ALIVE (*cp1)) ;
- assert (ROW_IS_ALIVE (*cp2)) ;
- /* row indices will same order for both supercols, */
- /* no gather scatter nessasary */
- if (*cp1++ != *cp2++)
- {
- break ;
- }
- }
-
- /* the two columns are different if the for-loop "broke" */
- if (i != length)
- {
- prev_c = c ;
- continue ;
- }
-
- /* === Got it! two columns are identical =================== */
-
- assert (Col [c].shared2.score == Col [super_c].shared2.score) ;
-
- Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
- Col [c].shared1.parent = super_c ;
- KILL_NON_PRINCIPAL_COL (c) ;
- /* order c later, in order_children() */
- Col [c].shared2.order = EMPTY ;
- /* remove c from hash bucket */
- Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
- }
- }
-
- /* === Empty this hash bucket ======================================= */
-
- if (head_column > EMPTY)
- {
- /* corresponding degree list "hash" is not empty */
- Col [head_column].shared3.headhash = EMPTY ;
- }
- else
- {
- /* corresponding degree list "hash" is empty */
- head [hash] = EMPTY ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === garbage_collection =================================================== */
-/* ========================================================================== */
-
-/*
- Defragments and compacts columns and rows in the workspace A. Used when
- all avaliable memory has been used while performing row merging. Returns
- the index of the first free position in A, after garbage collection. The
- time taken by this routine is linear is the size of the array A, which is
- itself linear in the number of nonzeros in the input matrix.
- Not user-callable.
-*/
-
-PRIVATE int garbage_collection /* returns the new value of pfree */
-(
- /* === Parameters ======================================================= */
-
- int n_row, /* number of rows */
- int n_col, /* number of columns */
- RowInfo Row [], /* row info */
- ColInfo Col [], /* column info */
- int A [], /* A [0 ... Alen-1] holds the matrix */
- int *pfree /* &A [0] ... pfree is in use */
-)
-{
- /* === Local variables ================================================== */
-
- int *psrc ; /* source pointer */
- int *pdest ; /* destination pointer */
- int j ; /* counter */
- int r ; /* a row index */
- int c ; /* a column index */
- int length ; /* length of a row or column */
-
-#ifndef NDEBUG
- int debug_rows ;
- DEBUG0 (("Defrag..\n")) ;
- for (psrc = &A[0] ; psrc < pfree ; psrc++) assert (*psrc >= 0) ;
- debug_rows = 0 ;
-#endif
-
- /* === Defragment the columns =========================================== */
-
- pdest = &A[0] ;
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- psrc = &A [Col [c].start] ;
-
- /* move and compact the column */
- assert (pdest <= psrc) ;
- Col [c].start = (int) (pdest - &A [0]) ;
- length = Col [c].length ;
- for (j = 0 ; j < length ; j++)
- {
- r = *psrc++ ;
- if (ROW_IS_ALIVE (r))
- {
- *pdest++ = r ;
- }
- }
- Col [c].length = (int) (pdest - &A [Col [c].start]) ;
- }
- }
-
- /* === Prepare to defragment the rows =================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- if (Row [r].length == 0)
- {
- /* this row is of zero length. cannot compact it, so kill it */
- DEBUG0 (("Defrag row kill\n")) ;
- KILL_ROW (r) ;
- }
- else
- {
- /* save first column index in Row [r].shared2.first_column */
- psrc = &A [Row [r].start] ;
- Row [r].shared2.first_column = *psrc ;
- assert (ROW_IS_ALIVE (r)) ;
- /* flag the start of the row with the one's complement of row */
- *psrc = ONES_COMPLEMENT (r) ;
-#ifndef NDEBUG
- debug_rows++ ;
-#endif
- }
- }
- }
-
- /* === Defragment the rows ============================================== */
-
- psrc = pdest ;
- while (psrc < pfree)
- {
- /* find a negative number ... the start of a row */
- if (*psrc++ < 0)
- {
- psrc-- ;
- /* get the row index */
- r = ONES_COMPLEMENT (*psrc) ;
- assert (r >= 0 && r < n_row) ;
- /* restore first column index */
- *psrc = Row [r].shared2.first_column ;
- assert (ROW_IS_ALIVE (r)) ;
-
- /* move and compact the row */
- assert (pdest <= psrc) ;
- Row [r].start = (int) (pdest - &A [0]) ;
- length = Row [r].length ;
- for (j = 0 ; j < length ; j++)
- {
- c = *psrc++ ;
- if (COL_IS_ALIVE (c))
- {
- *pdest++ = c ;
- }
- }
- Row [r].length = (int) (pdest - &A [Row [r].start]) ;
-#ifndef NDEBUG
- debug_rows-- ;
-#endif
- }
- }
- /* ensure we found all the rows */
- assert (debug_rows == 0) ;
-
- /* === Return the new value of pfree ==================================== */
-
- return ((int) (pdest - &A [0])) ;
-}
-
-
-/* ========================================================================== */
-/* === clear_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Clears the Row [].shared2.mark array, and returns the new tag_mark.
- Return value is the new tag_mark. Not user-callable.
-*/
-
-PRIVATE int clear_mark /* return the new value for tag_mark */
-(
- /* === Parameters ======================================================= */
-
- int n_row, /* number of rows in A */
- RowInfo Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
-)
-{
- /* === Local variables ================================================== */
-
- int r ;
-
- DEBUG0 (("Clear mark\n")) ;
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- Row [r].shared2.mark = 0 ;
- }
- }
- return (1) ;
-}
-
-
-/* ========================================================================== */
-/* === debugging routines =================================================== */
-/* ========================================================================== */
-
-/* When debugging is disabled, the remainder of this file is ignored. */
-
-#ifndef NDEBUG
-
-
-/* ========================================================================== */
-/* === debug_structures ===================================================== */
-/* ========================================================================== */
-
-/*
- At this point, all empty rows and columns are dead. All live columns
- are "clean" (containing no dead rows) and simplicial (no supercolumns
- yet). Rows may contain dead columns, but all live rows contain at
- least one live column.
-*/
-
-PRIVATE void debug_structures
-(
- /* === Parameters ======================================================= */
-
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int A [],
- int n_col2
-)
-{
- /* === Local variables ================================================== */
-
- int i ;
- int c ;
- int *cp ;
- int *cp_end ;
- int len ;
- int score ;
- int r ;
- int *rp ;
- int *rp_end ;
- int deg ;
-
- /* === Check A, Row, and Col ============================================ */
-
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- len = Col [c].length ;
- score = Col [c].shared2.score ;
- DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
- assert (len > 0) ;
- assert (score >= 0) ;
- assert (Col [c].shared1.thickness == 1) ;
- cp = &A [Col [c].start] ;
- cp_end = cp + len ;
- while (cp < cp_end)
- {
- r = *cp++ ;
- assert (ROW_IS_ALIVE (r)) ;
- }
- }
- else
- {
- i = Col [c].shared2.order ;
- assert (i >= n_col2 && i < n_col) ;
- }
- }
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- i = 0 ;
- len = Row [r].length ;
- deg = Row [r].shared1.degree ;
- assert (len > 0) ;
- assert (deg > 0) ;
- rp = &A [Row [r].start] ;
- rp_end = rp + len ;
- while (rp < rp_end)
- {
- c = *rp++ ;
- if (COL_IS_ALIVE (c))
- {
- i++ ;
- }
- }
- assert (i > 0) ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_deg_lists ====================================================== */
-/* ========================================================================== */
-
-/*
- Prints the contents of the degree lists. Counts the number of columns
- in the degree list and compares it to the total it should have. Also
- checks the row degrees.
-*/
-
-PRIVATE void debug_deg_lists
-(
- /* === Parameters ======================================================= */
-
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int head [],
- int min_score,
- int should,
- int max_deg
-)
-{
- /* === Local variables ================================================== */
-
- int deg ;
- int col ;
- int have ;
- int row ;
-
- /* === Check the degree lists =========================================== */
-
- if (n_col > 10000 && debug_colamd <= 0)
- {
- return ;
- }
- have = 0 ;
- DEBUG4 (("Degree lists: %d\n", min_score)) ;
- for (deg = 0 ; deg <= n_col ; deg++)
- {
- col = head [deg] ;
- if (col == EMPTY)
- {
- continue ;
- }
- DEBUG4 (("%d:", deg)) ;
- while (col != EMPTY)
- {
- DEBUG4 ((" %d", col)) ;
- have += Col [col].shared1.thickness ;
- assert (COL_IS_ALIVE (col)) ;
- col = Col [col].shared4.degree_next ;
- }
- DEBUG4 (("\n")) ;
- }
- DEBUG4 (("should %d have %d\n", should, have)) ;
- assert (should == have) ;
-
- /* === Check the row degrees ============================================ */
-
- if (n_row > 10000 && debug_colamd <= 0)
- {
- return ;
- }
- for (row = 0 ; row < n_row ; row++)
- {
- if (ROW_IS_ALIVE (row))
- {
- assert (Row [row].shared1.degree <= max_deg) ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Ensures that the tag_mark is less that the maximum and also ensures that
- each entry in the mark array is less than the tag mark.
-*/
-
-PRIVATE void debug_mark
-(
- /* === Parameters ======================================================= */
-
- int n_row,
- RowInfo Row [],
- int tag_mark,
- int max_mark
-)
-{
- /* === Local variables ================================================== */
-
- int r ;
-
- /* === Check the Row marks ============================================== */
-
- assert (tag_mark > 0 && tag_mark <= max_mark) ;
- if (n_row > 10000 && debug_colamd <= 0)
- {
- return ;
- }
- for (r = 0 ; r < n_row ; r++)
- {
- assert (Row [r].shared2.mark < tag_mark) ;
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_matrix ========================================================= */
-/* ========================================================================== */
-
-/*
- Prints out the contents of the columns and the rows.
-*/
-
-PRIVATE void debug_matrix
-(
- /* === Parameters ======================================================= */
-
- int n_row,
- int n_col,
- RowInfo Row [],
- ColInfo Col [],
- int A []
-)
-{
- /* === Local variables ================================================== */
-
- int r ;
- int c ;
- int *rp ;
- int *rp_end ;
- int *cp ;
- int *cp_end ;
-
- /* === Dump the rows and columns of the matrix ========================== */
-
- if (debug_colamd < 3)
- {
- return ;
- }
- DEBUG3 (("DUMP MATRIX:\n")) ;
- for (r = 0 ; r < n_row ; r++)
- {
- DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
- if (ROW_IS_DEAD (r))
- {
- continue ;
- }
- DEBUG3 (("start %d length %d degree %d\n",
- Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
- rp = &A [Row [r].start] ;
- rp_end = rp + Row [r].length ;
- while (rp < rp_end)
- {
- c = *rp++ ;
- DEBUG3 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
- }
- }
-
- for (c = 0 ; c < n_col ; c++)
- {
- DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
- Col [c].start, Col [c].length,
- Col [c].shared1.thickness, Col [c].shared2.score)) ;
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- r = *cp++ ;
- DEBUG3 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
- }
- }
-}
-
-#endif
-
diff --git a/intern/opennl/superlu/colamd.h b/intern/opennl/superlu/colamd.h
deleted file mode 100644
index 00f670ce01f..00000000000
--- a/intern/opennl/superlu/colamd.h
+++ /dev/null
@@ -1,70 +0,0 @@
-/** \file opennl/superlu/colamd.h
- * \ingroup opennl
- */
-/* ========================================================================== */
-/* === colamd prototypes and definitions ==================================== */
-/* ========================================================================== */
-
-/*
- This is the colamd include file,
-
- http://www.cise.ufl.edu/~davis/colamd/colamd.h
-
- for use in the colamd.c, colamdmex.c, and symamdmex.c files located at
-
- http://www.cise.ufl.edu/~davis/colamd/
-
- See those files for a description of colamd and symamd, and for the
- copyright notice, which also applies to this file.
-
- August 3, 1998. Version 1.0.
-*/
-
-/* ========================================================================== */
-/* === Definitions ========================================================== */
-/* ========================================================================== */
-
-/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
-#define COLAMD_KNOBS 20
-
-/* number of output statistics. Only A [0..2] are currently used. */
-#define COLAMD_STATS 20
-
-/* knobs [0] and A [0]: dense row knob and output statistic. */
-#define COLAMD_DENSE_ROW 0
-
-/* knobs [1] and A [1]: dense column knob and output statistic. */
-#define COLAMD_DENSE_COL 1
-
-/* A [2]: memory defragmentation count output statistic */
-#define COLAMD_DEFRAG_COUNT 2
-
-/* A [3]: whether or not the input columns were jumbled or had duplicates */
-#define COLAMD_JUMBLED_COLS 3
-
-/* ========================================================================== */
-/* === Prototypes of user-callable routines ================================= */
-/* ========================================================================== */
-
-int colamd_recommended /* returns recommended value of Alen */
-(
- int nnz, /* nonzeros in A */
- int n_row, /* number of rows in A */
- int n_col /* number of columns in A */
-) ;
-
-void colamd_set_defaults /* sets default parameters */
-( /* knobs argument is modified on output */
- double knobs [COLAMD_KNOBS] /* parameter settings for colamd */
-) ;
-
-int colamd /* returns TRUE if successful, FALSE otherwise*/
-( /* A and p arguments are modified on output */
- int n_row, /* number of rows in A */
- int n_col, /* number of columns in A */
- int Alen, /* size of the array A */
- int A [], /* row indices of A, of size Alen */
- int p [], /* column pointers of A, of size n_col+1 */
- double knobs [COLAMD_KNOBS] /* parameter settings for colamd */
-) ;
-
diff --git a/intern/opennl/superlu/get_perm_c.c b/intern/opennl/superlu/get_perm_c.c
index c08d79af81a..2eb0aea678e 100644
--- a/intern/opennl/superlu/get_perm_c.c
+++ b/intern/opennl/superlu/get_perm_c.c
@@ -27,6 +27,7 @@ get_colamd(
{
int Alen, *A, i, info, *p;
double *knobs;
+ int stats[COLAMD_STATS];
Alen = colamd_recommended(nnz, m, n);
@@ -40,7 +41,7 @@ get_colamd(
ABORT("Malloc fails for p[]");
for (i = 0; i <= n; ++i) p[i] = colptr[i];
for (i = 0; i < nnz; ++i) A[i] = rowind[i];
- info = colamd(m, n, Alen, A, p, knobs);
+ info = colamd(m, n, Alen, A, p, knobs, stats);
if ( info == FALSE ) ABORT("COLAMD failed");
for (i = 0; i < n; ++i) perm_c[p[i]] = i;
diff --git a/intern/opennl/superlu/superlu_sys_types.h b/intern/opennl/superlu/superlu_sys_types.h
index 9bdf3434582..80d3da4d243 100644
--- a/intern/opennl/superlu/superlu_sys_types.h
+++ b/intern/opennl/superlu/superlu_sys_types.h
@@ -1,6 +1,4 @@
/*
- * $Id$
- *
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or