Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
path: root/intern
diff options
context:
space:
mode:
authorBrecht Van Lommel <brechtvanlommel@gmail.com>2015-11-22 04:29:31 +0300
committerBrecht Van Lommel <brechtvanlommel@gmail.com>2015-11-23 00:49:03 +0300
commite6c58df74e1fe8e7921048bc145b6318322541f2 (patch)
treebd0e5517298cf5aacf3dc59eeaa5252f49e98236 /intern
parent5e524333719794f140dafee0555ede5fd308b9ae (diff)
OpenNL: replace SuperLU by Eigen SparseLU solver.
Performance is roughly the same because it's using the same COLAMD ordering and supernodal LU factorization algorithms. Solve results also appear to be identical.
Diffstat (limited to 'intern')
-rw-r--r--intern/opennl/CMakeLists.txt37
-rw-r--r--intern/opennl/SConscript4
-rw-r--r--intern/opennl/doc/OpenNL_License.txt341
-rw-r--r--intern/opennl/doc/OpenNL_Readme.txt13
-rw-r--r--intern/opennl/doc/SuperLU_License.txt31
-rw-r--r--intern/opennl/doc/SuperLU_Readme.txt52
-rw-r--r--intern/opennl/extern/ONL_opennl.h2
-rw-r--r--intern/opennl/intern/opennl.cpp185
-rw-r--r--intern/opennl/superlu/Cnames.h284
-rw-r--r--intern/opennl/superlu/get_perm_c.c466
-rw-r--r--intern/opennl/superlu/heap_relax_snode.c119
-rw-r--r--intern/opennl/superlu/lsame.c76
-rw-r--r--intern/opennl/superlu/memory.c214
-rw-r--r--intern/opennl/superlu/mmd.c1028
-rw-r--r--intern/opennl/superlu/relax_snode.c74
-rw-r--r--intern/opennl/superlu/scolumn_bmod.c355
-rw-r--r--intern/opennl/superlu/scolumn_dfs.c273
-rw-r--r--intern/opennl/superlu/scopy_to_ucol.c108
-rw-r--r--intern/opennl/superlu/sgssv.c224
-rw-r--r--intern/opennl/superlu/sgstrf.c457
-rw-r--r--intern/opennl/superlu/sgstrs.c334
-rw-r--r--intern/opennl/superlu/smemory.c683
-rw-r--r--intern/opennl/superlu/smyblas2.c235
-rw-r--r--intern/opennl/superlu/sp_coletree.c335
-rw-r--r--intern/opennl/superlu/sp_ienv.c68
-rw-r--r--intern/opennl/superlu/sp_preorder.c209
-rw-r--r--intern/opennl/superlu/spanel_bmod.c452
-rw-r--r--intern/opennl/superlu/spanel_dfs.c252
-rw-r--r--intern/opennl/superlu/spivotL.c176
-rw-r--r--intern/opennl/superlu/spruneL.c152
-rw-r--r--intern/opennl/superlu/ssnode_bmod.c120
-rw-r--r--intern/opennl/superlu/ssnode_dfs.c109
-rw-r--r--intern/opennl/superlu/ssp_blas2.c475
-rw-r--r--intern/opennl/superlu/ssp_blas3.c124
-rw-r--r--intern/opennl/superlu/ssp_defs.h240
-rw-r--r--intern/opennl/superlu/strsv.c323
-rw-r--r--intern/opennl/superlu/superlu_timer.c61
-rw-r--r--intern/opennl/superlu/supermatrix.h143
-rw-r--r--intern/opennl/superlu/sutil.c485
-rw-r--r--intern/opennl/superlu/util.c400
-rw-r--r--intern/opennl/superlu/util.h271
-rw-r--r--intern/opennl/superlu/xerbla.c47
42 files changed, 46 insertions, 9991 deletions
diff --git a/intern/opennl/CMakeLists.txt b/intern/opennl/CMakeLists.txt
index 32bd438d531..9416bc2b9ea 100644
--- a/intern/opennl/CMakeLists.txt
+++ b/intern/opennl/CMakeLists.txt
@@ -43,51 +43,16 @@ add_definitions(
set(INC
extern
- superlu
)
set(INC_SYS
../../extern/colamd/Include
+ ../../extern/Eigen3
)
set(SRC
intern/opennl.cpp
- superlu/get_perm_c.c
- superlu/heap_relax_snode.c
- superlu/lsame.c
- superlu/memory.c
- superlu/mmd.c
- superlu/relax_snode.c
- superlu/scolumn_bmod.c
- superlu/scolumn_dfs.c
- superlu/scopy_to_ucol.c
- superlu/sgssv.c
- superlu/sgstrf.c
- superlu/sgstrs.c
- superlu/smemory.c
- superlu/smyblas2.c
- superlu/sp_coletree.c
- superlu/sp_ienv.c
- superlu/sp_preorder.c
- superlu/spanel_bmod.c
- superlu/spanel_dfs.c
- superlu/spivotL.c
- superlu/spruneL.c
- superlu/ssnode_bmod.c
- superlu/ssnode_dfs.c
- superlu/ssp_blas2.c
- superlu/ssp_blas3.c
- superlu/strsv.c
- superlu/superlu_timer.c
- superlu/sutil.c
- superlu/util.c
- superlu/xerbla.c
-
extern/ONL_opennl.h
- superlu/Cnames.h
- superlu/ssp_defs.h
- superlu/supermatrix.h
- superlu/util.h
)
blender_add_lib(bf_intern_opennl "${SRC}" "${INC}" "${INC_SYS}")
diff --git a/intern/opennl/SConscript b/intern/opennl/SConscript
index dcd9ea4a985..99df29b780a 100644
--- a/intern/opennl/SConscript
+++ b/intern/opennl/SConscript
@@ -27,9 +27,9 @@
Import ('env')
-sources = env.Glob('intern/*.cpp') + env.Glob('superlu/*.c')
+sources = env.Glob('intern/*.cpp')
-incs = 'extern superlu ../../extern/colamd/Include'
+incs = 'extern ../../extern/colamd/Include ../../extern/Eigen3'
env.BlenderLib ('bf_intern_opennl', sources, Split(incs), [], libtype=['intern','player'], priority=[100,90] )
diff --git a/intern/opennl/doc/OpenNL_License.txt b/intern/opennl/doc/OpenNL_License.txt
deleted file mode 100644
index 4e8d97fd526..00000000000
--- a/intern/opennl/doc/OpenNL_License.txt
+++ /dev/null
@@ -1,341 +0,0 @@
- GNU GENERAL PUBLIC LICENSE
- Version 2, June 1991
-
- Copyright (C) 1989, 1991 Free Software Foundation, Inc.
- 675 Mass Ave, Cambridge, MA 02139, USA
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- Preamble
-
- The licenses for most software are designed to take away your
-freedom to share and change it. By contrast, the GNU General Public
-License is intended to guarantee your freedom to share and change free
-software--to make sure the software is free for all its users. This
-General Public License applies to most of the Free Software
-Foundation's software and to any other program whose authors commit to
-using it. (Some other Free Software Foundation software is covered by
-the GNU Library General Public License instead.) You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-this service if you wish), that you receive source code or can get it
-if you want it, that you can change the software or use pieces of it
-in new free programs; and that you know you can do these things.
-
- To protect your rights, we need to make restrictions that forbid
-anyone to deny you these rights or to ask you to surrender the rights.
-These restrictions translate to certain responsibilities for you if you
-distribute copies of the software, or if you modify it.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must give the recipients all the rights that
-you have. You must make sure that they, too, receive or can get the
-source code. And you must show them these terms so they know their
-rights.
-
- We protect your rights with two steps: (1) copyright the software, and
-(2) offer you this license which gives you legal permission to copy,
-distribute and/or modify the software.
-
- Also, for each author's protection and ours, we want to make certain
-that everyone understands that there is no warranty for this free
-software. If the software is modified by someone else and passed on, we
-want its recipients to know that what they have is not the original, so
-that any problems introduced by others will not reflect on the original
-authors' reputations.
-
- Finally, any free program is threatened constantly by software
-patents. We wish to avoid the danger that redistributors of a free
-program will individually obtain patent licenses, in effect making the
-program proprietary. To prevent this, we have made it clear that any
-patent must be licensed for everyone's free use or not licensed at all.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- GNU GENERAL PUBLIC LICENSE
- TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
-
- 0. This License applies to any program or other work which contains
-a notice placed by the copyright holder saying it may be distributed
-under the terms of this General Public License. The "Program", below,
-refers to any such program or work, and a "work based on the Program"
-means either the Program or any derivative work under copyright law:
-that is to say, a work containing the Program or a portion of it,
-either verbatim or with modifications and/or translated into another
-language. (Hereinafter, translation is included without limitation in
-the term "modification".) Each licensee is addressed as "you".
-
-Activities other than copying, distribution and modification are not
-covered by this License; they are outside its scope. The act of
-running the Program is not restricted, and the output from the Program
-is covered only if its contents constitute a work based on the
-Program (independent of having been made by running the Program).
-Whether that is true depends on what the Program does.
-
- 1. You may copy and distribute verbatim copies of the Program's
-source code as you receive it, in any medium, provided that you
-conspicuously and appropriately publish on each copy an appropriate
-copyright notice and disclaimer of warranty; keep intact all the
-notices that refer to this License and to the absence of any warranty;
-and give any other recipients of the Program a copy of this License
-along with the Program.
-
-You may charge a fee for the physical act of transferring a copy, and
-you may at your option offer warranty protection in exchange for a fee.
-
- 2. You may modify your copy or copies of the Program or any portion
-of it, thus forming a work based on the Program, and copy and
-distribute such modifications or work under the terms of Section 1
-above, provided that you also meet all of these conditions:
-
- a) You must cause the modified files to carry prominent notices
- stating that you changed the files and the date of any change.
-
- b) You must cause any work that you distribute or publish, that in
- whole or in part contains or is derived from the Program or any
- part thereof, to be licensed as a whole at no charge to all third
- parties under the terms of this License.
-
- c) If the modified program normally reads commands interactively
- when run, you must cause it, when started running for such
- interactive use in the most ordinary way, to print or display an
- announcement including an appropriate copyright notice and a
- notice that there is no warranty (or else, saying that you provide
- a warranty) and that users may redistribute the program under
- these conditions, and telling the user how to view a copy of this
- License. (Exception: if the Program itself is interactive but
- does not normally print such an announcement, your work based on
- the Program is not required to print an announcement.)
-
-These requirements apply to the modified work as a whole. If
-identifiable sections of that work are not derived from the Program,
-and can be reasonably considered independent and separate works in
-themselves, then this License, and its terms, do not apply to those
-sections when you distribute them as separate works. But when you
-distribute the same sections as part of a whole which is a work based
-on the Program, the distribution of the whole must be on the terms of
-this License, whose permissions for other licensees extend to the
-entire whole, and thus to each and every part regardless of who wrote it.
-
-Thus, it is not the intent of this section to claim rights or contest
-your rights to work written entirely by you; rather, the intent is to
-exercise the right to control the distribution of derivative or
-collective works based on the Program.
-
-In addition, mere aggregation of another work not based on the Program
-with the Program (or with a work based on the Program) on a volume of
-a storage or distribution medium does not bring the other work under
-the scope of this License.
-
- 3. You may copy and distribute the Program (or a work based on it,
-under Section 2) in object code or executable form under the terms of
-Sections 1 and 2 above provided that you also do one of the following:
-
- a) Accompany it with the complete corresponding machine-readable
- source code, which must be distributed under the terms of Sections
- 1 and 2 above on a medium customarily used for software interchange; or,
-
- b) Accompany it with a written offer, valid for at least three
- years, to give any third party, for a charge no more than your
- cost of physically performing source distribution, a complete
- machine-readable copy of the corresponding source code, to be
- distributed under the terms of Sections 1 and 2 above on a medium
- customarily used for software interchange; or,
-
- c) Accompany it with the information you received as to the offer
- to distribute corresponding source code. (This alternative is
- allowed only for noncommercial distribution and only if you
- received the program in object code or executable form with such
- an offer, in accord with Subsection b above.)
-
-The source code for a work means the preferred form of the work for
-making modifications to it. For an executable work, complete source
-code means all the source code for all modules it contains, plus any
-associated interface definition files, plus the scripts used to
-control compilation and installation of the executable. However, as a
-special exception, the source code distributed need not include
-anything that is normally distributed (in either source or binary
-form) with the major components (compiler, kernel, and so on) of the
-operating system on which the executable runs, unless that component
-itself accompanies the executable.
-
-If distribution of executable or object code is made by offering
-access to copy from a designated place, then offering equivalent
-access to copy the source code from the same place counts as
-distribution of the source code, even though third parties are not
-compelled to copy the source along with the object code.
-
- 4. You may not copy, modify, sublicense, or distribute the Program
-except as expressly provided under this License. Any attempt
-otherwise to copy, modify, sublicense or distribute the Program is
-void, and will automatically terminate your rights under this License.
-However, parties who have received copies, or rights, from you under
-this License will not have their licenses terminated so long as such
-parties remain in full compliance.
-
- 5. You are not required to accept this License, since you have not
-signed it. However, nothing else grants you permission to modify or
-distribute the Program or its derivative works. These actions are
-prohibited by law if you do not accept this License. Therefore, by
-modifying or distributing the Program (or any work based on the
-Program), you indicate your acceptance of this License to do so, and
-all its terms and conditions for copying, distributing or modifying
-the Program or works based on it.
-
- 6. Each time you redistribute the Program (or any work based on the
-Program), the recipient automatically receives a license from the
-original licensor to copy, distribute or modify the Program subject to
-these terms and conditions. You may not impose any further
-restrictions on the recipients' exercise of the rights granted herein.
-You are not responsible for enforcing compliance by third parties to
-this License.
-
- 7. If, as a consequence of a court judgment or allegation of patent
-infringement or for any other reason (not limited to patent issues),
-conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot
-distribute so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you
-may not distribute the Program at all. For example, if a patent
-license would not permit royalty-free redistribution of the Program by
-all those who receive copies directly or indirectly through you, then
-the only way you could satisfy both it and this License would be to
-refrain entirely from distribution of the Program.
-
-If any portion of this section is held invalid or unenforceable under
-any particular circumstance, the balance of the section is intended to
-apply and the section as a whole is intended to apply in other
-circumstances.
-
-It is not the purpose of this section to induce you to infringe any
-patents or other property right claims or to contest validity of any
-such claims; this section has the sole purpose of protecting the
-integrity of the free software distribution system, which is
-implemented by public license practices. Many people have made
-generous contributions to the wide range of software distributed
-through that system in reliance on consistent application of that
-system; it is up to the author/donor to decide if he or she is willing
-to distribute software through any other system and a licensee cannot
-impose that choice.
-
-This section is intended to make thoroughly clear what is believed to
-be a consequence of the rest of this License.
-
- 8. If the distribution and/or use of the Program is restricted in
-certain countries either by patents or by copyrighted interfaces, the
-original copyright holder who places the Program under this License
-may add an explicit geographical distribution limitation excluding
-those countries, so that distribution is permitted only in or among
-countries not thus excluded. In such case, this License incorporates
-the limitation as if written in the body of this License.
-
- 9. The Free Software Foundation may publish revised and/or new versions
-of the General Public License from time to time. Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
-Each version is given a distinguishing version number. If the Program
-specifies a version number of this License which applies to it and "any
-later version", you have the option of following the terms and conditions
-either of that version or of any later version published by the Free
-Software Foundation. If the Program does not specify a version number of
-this License, you may choose any version ever published by the Free Software
-Foundation.
-
- 10. If you wish to incorporate parts of the Program into other free
-programs whose distribution conditions are different, write to the author
-to ask for permission. For software which is copyrighted by the Free
-Software Foundation, write to the Free Software Foundation; we sometimes
-make exceptions for this. Our decision will be guided by the two goals
-of preserving the free status of all derivatives of our free software and
-of promoting the sharing and reuse of software generally.
-
- NO WARRANTY
-
- 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
-FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
-OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
-PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
-OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
-TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
-PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
-REPAIR OR CORRECTION.
-
- 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
-REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
-INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
-OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
-TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
-YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
-PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGES.
-
-
- END OF TERMS AND CONDITIONS
-
- Appendix: How to Apply These Terms to Your New Programs
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-convey the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
- <one line to give the program's name and a brief idea of what it does.>
- Copyright (C) 19yy <name of author>
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-
-Also add information on how to contact you by electronic and paper mail.
-
-If the program is interactive, make it output a short notice like this
-when it starts in an interactive mode:
-
- Gnomovision version 69, Copyright (C) 19yy name of author
- Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License. Of course, the commands you use may
-be called something other than `show w' and `show c'; they could even be
-mouse-clicks or menu items--whatever suits your program.
-
-You should also get your employer (if you work as a programmer) or your
-school, if any, to sign a "copyright disclaimer" for the program, if
-necessary. Here is a sample; alter the names:
-
- Yoyodyne, Inc., hereby disclaims all copyright interest in the program
- `Gnomovision' (which makes passes at compilers) written by James Hacker.
-
- <signature of Ty Coon>, 1 April 1989
- Ty Coon, President of Vice
-
-This General Public License does not permit incorporating your program into
-proprietary programs. If your program is a subroutine library, you may
-consider it more useful to permit linking proprietary applications with the
-library. If this is what you want to do, use the GNU Library General
-Public License instead of this License.
-
diff --git a/intern/opennl/doc/OpenNL_Readme.txt b/intern/opennl/doc/OpenNL_Readme.txt
deleted file mode 100644
index e6aea3c0286..00000000000
--- a/intern/opennl/doc/OpenNL_Readme.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-
-This is OpenNL, a library to easily construct and solve sparse linear systems.
-* OpenNL is supplied with a set of iterative solvers (Conjugate gradient,
- BICGSTAB, GMRes) and preconditioners (Jacobi, SSOR).
-* OpenNL can also use other solvers (SuperLU 3.0 supported as an OpenNL
- extension)
-
-Note that to be compatible with OpenNL, SuperLU 3.0 needs to be compiled with
-the following flag (see make.inc in SuperLU3.0):
-CDEFS = -DAdd_ (the default is -DAdd__, just remove the second underscore)
-
-OpenNL was modified for Blender to be used only as a wrapper for SuperLU.
-
diff --git a/intern/opennl/doc/SuperLU_License.txt b/intern/opennl/doc/SuperLU_License.txt
deleted file mode 100644
index f31a01782e2..00000000000
--- a/intern/opennl/doc/SuperLU_License.txt
+++ /dev/null
@@ -1,31 +0,0 @@
-Copyright (c) 2003, The Regents of the University of California, through
-Lawrence Berkeley National Laboratory (subject to receipt of any required
-approvals from U.S. Dept. of Energy)
-
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification,
-are permitted provided that the following conditions are met:
-
-(1) Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
-(2) Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
-(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of
-Energy nor the names of its contributors may be used to endorse or promote
-products derived from this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
-CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
diff --git a/intern/opennl/doc/SuperLU_Readme.txt b/intern/opennl/doc/SuperLU_Readme.txt
deleted file mode 100644
index c1cedd09893..00000000000
--- a/intern/opennl/doc/SuperLU_Readme.txt
+++ /dev/null
@@ -1,52 +0,0 @@
- SuperLU (Version 3.0)
- =====================
-
-Copyright (c) 2003, The Regents of the University of California, through
-Lawrence Berkeley National Laboratory (subject to receipt of any required
-approvals from U.S. Dept. of Energy)
-
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-(1) Redistributions of source code must retain the above copyright notice,
-this list of conditions and the following disclaimer.
-(2) Redistributions in binary form must reproduce the above copyright notice,
-this list of conditions and the following disclaimer in the documentation
-and/or other materials provided with the distribution.
-(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of
-Energy nor the names of its contributors may be used to endorse or promote
-products derived from this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
-CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-
-SuperLU contains a set of subroutines to solve a sparse linear system
-A*X=B. It uses Gaussian elimination with partial pivoting (GEPP).
-The columns of A may be preordered before factorization; the
-preordering for sparsity is completely separate from the factorization.
-
-SuperLU is implemented in ANSI C, and must be compiled with standard
-ANSI C compilers. It provides functionality for both real and complex
-matrices, in both single and double precision. The file names for the
-single-precision real version start with letter "s" (such as sgstrf.c);
-the file names for the double-precision real version start with letter "d"
-(such as dgstrf.c); the file names for the single-precision complex
-version start with letter "c" (such as cgstrf.c); the file names
-for the double-precision complex version start with letter "z"
-(such as zgstrf.c).
-
-SuperLU was modified for Blender to only include single-precision
-functionality.
-
diff --git a/intern/opennl/extern/ONL_opennl.h b/intern/opennl/extern/ONL_opennl.h
index 6a36e13542f..d550a638693 100644
--- a/intern/opennl/extern/ONL_opennl.h
+++ b/intern/opennl/extern/ONL_opennl.h
@@ -42,8 +42,6 @@
#define NL_PARANOID
*/
-#define NL_USE_SUPERLU
-
#ifndef nlOPENNL_H
#define nlOPENNL_H
diff --git a/intern/opennl/intern/opennl.cpp b/intern/opennl/intern/opennl.cpp
index dbe59c9dec9..085375b0d8c 100644
--- a/intern/opennl/intern/opennl.cpp
+++ b/intern/opennl/intern/opennl.cpp
@@ -51,9 +51,11 @@
#endif
#endif
-/* SuperLU includes */
-#include <ssp_defs.h>
-#include <util.h>
+#include <Eigen/Sparse>
+#include <iostream>
+
+typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenSparseMatrix;
+typedef Eigen::SparseLU<EigenSparseMatrix> EigenSparseSolver;
/************************************************************************************/
/* Assertions */
@@ -316,24 +318,6 @@ static void __nlSparseMatrixClear( __NLSparseMatrix* M) {
__NL_CLEAR_ARRAY(NLdouble, M->diag, M->diag_size);
}
-/* Returns the number of non-zero coefficients */
-static NLuint __nlSparseMatrixNNZ( __NLSparseMatrix* M) {
- NLuint nnz = 0;
- NLuint i;
- if(M->storage & __NL_ROWS) {
- for(i = 0; i<M->m; i++) {
- nnz += M->row[i].size;
- }
- } else if (M->storage & __NL_COLUMNS) {
- for(i = 0; i<M->n; i++) {
- nnz += M->column[i].size;
- }
- } else {
- __nl_assert_not_reached;
- }
- return nnz;
-}
-
/************************************************************************************/
/* SparseMatrix x Vector routines, internal helper routines */
@@ -523,12 +507,9 @@ typedef struct {
NLdouble error;
__NLMatrixFunc matrix_vector_prod;
- struct __NLSuperLUContext {
- NLboolean alloc_slu;
- SuperMatrix L, U;
- NLint *perm_c, *perm_r;
- SuperLUStat_t stat;
- } slu;
+ struct __NLEigenContext {
+ EigenSparseSolver *sparse_solver;
+ } eigen;
} __NLContext;
static __NLContext* __nlCurrentContext = NULL;
@@ -547,7 +528,7 @@ NLContext nlNewContext(void) {
return result;
}
-static void __nlFree_SUPERLU(__NLContext *context);
+static void __nlFree_EIGEN(__NLContext *context);
void nlDeleteContext(NLContext context_in) {
__NLContext* context = (__NLContext*)(context_in);
@@ -581,8 +562,8 @@ void nlDeleteContext(NLContext context_in) {
if(context->alloc_x) {
__NL_DELETE_ARRAY(context->x);
}
- if (context->slu.alloc_slu) {
- __nlFree_SUPERLU(context);
+ if (context->eigen.sparse_solver) {
+ __nlFree_EIGEN(context);
}
#ifdef NL_PARANOID
@@ -914,31 +895,15 @@ void nlEnd(NLenum prim) {
}
/************************************************************************/
-/* SuperLU wrapper */
+/* Eigen wrapper */
-/* Note: SuperLU is difficult to call, but it is worth it. */
+/* Note: Eigen is difficult to call, but it is worth it. */
/* Here is a driver inspired by A. Sheffer's "cow flattener". */
-static NLboolean __nlFactorize_SUPERLU(__NLContext *context, NLint *permutation) {
+static NLboolean __nlFactorize_EIGEN(__NLContext *context, NLint *permutation) {
/* OpenNL Context */
__NLSparseMatrix* M = (context->least_squares)? &context->MtM: &context->M;
NLuint n = context->n;
- NLuint nnz = __nlSparseMatrixNNZ(M); /* number of non-zero coeffs */
-
- /*if(n > 10)
- n = 10;*/
-
- /* Compressed Row Storage matrix representation */
- NLint *xa = __NL_NEW_ARRAY(NLint, n+1);
- NLdouble *rhs = __NL_NEW_ARRAY(NLdouble, n);
- NLdouble *a = __NL_NEW_ARRAY(NLdouble, nnz);
- NLint *asub = __NL_NEW_ARRAY(NLint, nnz);
- NLint *etree = __NL_NEW_ARRAY(NLint, n);
-
- /* SuperLU variables */
- SuperMatrix At, AtP;
- NLint info, panel_size, relax;
- superlu_options_t options;
/* Temporary variables */
NLuint i, jj, count;
@@ -946,121 +911,57 @@ static NLboolean __nlFactorize_SUPERLU(__NLContext *context, NLint *permutation)
__nl_assert(!(M->storage & __NL_SYMMETRIC));
__nl_assert(M->storage & __NL_ROWS);
__nl_assert(M->m == M->n);
-
+
/* Convert M to compressed column format */
+ EigenSparseMatrix A(M->m, M->n);
+
for(i=0, count=0; i<n; i++) {
__NLRowColumn *Ri = M->row + i;
- xa[i] = count;
- for(jj=0; jj<Ri->size; jj++, count++) {
- a[count] = Ri->coeff[jj].value;
- asub[count] = Ri->coeff[jj].index;
- }
+ for(jj=0; jj<Ri->size; jj++, count++)
+ A.insert(i, Ri->coeff[jj].index) = Ri->coeff[jj].value;
}
- xa[n] = nnz;
+
+ A.makeCompressed();
/* Free M, don't need it anymore at this point */
__nlSparseMatrixClear(M);
- /* Create superlu A matrix transposed */
- sCreate_CompCol_Matrix(
- &At, n, n, nnz, a, asub, xa,
- SLU_NC, /* Colum wise, no supernode */
- SLU_S, /* doubles */
- SLU_GE /* general storage */
- );
-
- /* Set superlu options */
- set_default_options(&options);
- options.ColPerm = MY_PERMC;
- options.Fact = DOFACT;
-
- StatInit(&(context->slu.stat));
-
- panel_size = sp_ienv(1); /* sp_ienv give us the defaults */
- relax = sp_ienv(2);
-
- /* Compute permutation and permuted matrix */
- context->slu.perm_r = __NL_NEW_ARRAY(NLint, n);
- context->slu.perm_c = __NL_NEW_ARRAY(NLint, n);
-
- if ((permutation == NULL) || (*permutation == -1)) {
- get_perm_c(3, &At, context->slu.perm_c);
-
- if (permutation)
- memcpy(permutation, context->slu.perm_c, sizeof(NLint)*n);
- }
- else
- memcpy(context->slu.perm_c, permutation, sizeof(NLint)*n);
-
- sp_preorder(&options, &At, context->slu.perm_c, etree, &AtP);
-
- /* Decompose into L and U */
- sgstrf(&options, &AtP, relax, panel_size,
- etree, NULL, 0, context->slu.perm_c, context->slu.perm_r,
- &(context->slu.L), &(context->slu.U), &(context->slu.stat), &info);
-
- /* Cleanup */
+ /* Performance Sparse LU factorization */
+ EigenSparseSolver *sparse_solver = new EigenSparseSolver();
+ context->eigen.sparse_solver = sparse_solver;
- Destroy_SuperMatrix_Store(&At);
- Destroy_CompCol_Permuted(&AtP);
+ sparse_solver->analyzePattern(A);
+ sparse_solver->factorize(A);
- __NL_DELETE_ARRAY(etree);
- __NL_DELETE_ARRAY(xa);
- __NL_DELETE_ARRAY(rhs);
- __NL_DELETE_ARRAY(a);
- __NL_DELETE_ARRAY(asub);
-
- context->slu.alloc_slu = NL_TRUE;
-
- return (info == 0);
+ return (sparse_solver->info() == Eigen::Success);
}
-static NLboolean __nlInvert_SUPERLU(__NLContext *context) {
+static NLboolean __nlInvert_EIGEN(__NLContext *context) {
/* OpenNL Context */
NLdouble* b = (context->least_squares)? context->Mtb: context->b;
NLdouble* x = context->x;
NLuint n = context->n, j;
- /* SuperLU variables */
- SuperMatrix B;
- NLint info = 0;
-
+ /* Solve each right hand side */
for(j=0; j<context->nb_rhs; j++, b+=n, x+=n) {
- /* Create superlu array for B */
- sCreate_Dense_Matrix(
- &B, n, 1, b, n,
- SLU_DN, /* Fortran-type column-wise storage */
- SLU_S, /* doubles */
- SLU_GE /* general */
- );
-
- /* Forward/Back substitution to compute x */
- sgstrs(TRANS, &(context->slu.L), &(context->slu.U),
- context->slu.perm_c, context->slu.perm_r, &B,
- &(context->slu.stat), &info);
-
- if(info == 0)
- memcpy(x, ((DNformat*)B.Store)->nzval, sizeof(*x)*n);
-
- Destroy_SuperMatrix_Store(&B);
- }
+ Eigen::Map<Eigen::VectorXd> eigen_b(b, n);
- return (info == 0);
-}
+ Eigen::VectorXd eigen_x = context->eigen.sparse_solver->solve(eigen_b);
+ for (NLuint i = 0; i < n; i++)
+ x[i] = eigen_x[i];
-static void __nlFree_SUPERLU(__NLContext *context) {
-
- Destroy_SuperNode_Matrix(&(context->slu.L));
- Destroy_CompCol_Matrix(&(context->slu.U));
-
- StatFree(&(context->slu.stat));
+ if (context->eigen.sparse_solver->info() != Eigen::Success)
+ return false;
+ }
- __NL_DELETE_ARRAY(context->slu.perm_r);
- __NL_DELETE_ARRAY(context->slu.perm_c);
+ return true;
+}
- context->slu.alloc_slu = NL_FALSE;
+static void __nlFree_EIGEN(__NLContext *context) {
+ delete context->eigen.sparse_solver;
+ context->eigen.sparse_solver = NULL;
}
void nlPrintMatrix(void) {
@@ -1129,10 +1030,10 @@ NLboolean nlSolveAdvanced(NLint *permutation, NLboolean solveAgain) {
__nlCheckState(__NL_STATE_SYSTEM_CONSTRUCTED);
if (!__nlCurrentContext->solve_again)
- result = __nlFactorize_SUPERLU(__nlCurrentContext, permutation);
+ result = __nlFactorize_EIGEN(__nlCurrentContext, permutation);
if (result) {
- result = __nlInvert_SUPERLU(__nlCurrentContext);
+ result = __nlInvert_EIGEN(__nlCurrentContext);
if (result) {
__nlVectorToVariables();
diff --git a/intern/opennl/superlu/Cnames.h b/intern/opennl/superlu/Cnames.h
deleted file mode 100644
index 1be2aa8962a..00000000000
--- a/intern/opennl/superlu/Cnames.h
+++ /dev/null
@@ -1,284 +0,0 @@
-/** \file opennl/superlu/Cnames.h
- * \ingroup opennl
- */
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 1, 1997
- *
- */
-#ifndef __SUPERLU_CNAMES /* allow multiple inclusions */
-#define __SUPERLU_CNAMES
-
-/* We want this flag, safer than putting in build system */
-#define Add_
-
-/*
- * These macros define how C routines will be called. ADD_ assumes that
- * they will be called by fortran, which expects C routines to have an
- * underscore postfixed to the name (Suns, and the Intel expect this).
- * NOCHANGE indicates that fortran will be calling, and that it expects
- * the name called by fortran to be identical to that compiled by the C
- * (RS6K's do this). UPCASE says it expects C routines called by fortran
- * to be in all upcase (CRAY wants this).
- */
-
-#define ADD_ 0
-#define ADD__ 1
-#define NOCHANGE 2
-#define UPCASE 3
-#define C_CALL 4
-
-#ifdef UpCase
-#define F77_CALL_C UPCASE
-#endif
-
-#ifdef NoChange
-#define F77_CALL_C NOCHANGE
-#endif
-
-#ifdef Add_
-#define F77_CALL_C ADD_
-#endif
-
-#ifdef Add__
-#define F77_CALL_C ADD__
-#endif
-
-/* Default */
-#ifndef F77_CALL_C
-#define F77_CALL_C ADD_
-#endif
-
-
-#if (F77_CALL_C == ADD_)
-/*
- * These defines set up the naming scheme required to have a fortran 77
- * routine call a C routine
- * No redefinition necessary to have following Fortran to C interface:
- * FORTRAN CALL C DECLARATION
- * call dgemm(...) void dgemm_(...)
- *
- * This is the default.
- */
-
-#endif
-
-#if (F77_CALL_C == ADD__)
-/*
- * These defines set up the naming scheme required to have a fortran 77
- * routine call a C routine
- * for following Fortran to C interface:
- * FORTRAN CALL C DECLARATION
- * call dgemm(...) void dgemm__(...)
- */
-#define sasum_ sasum__
-#define isamax_ isamax__
-#define scopy_ scopy__
-#define sscal_ sscal__
-#define sger_ sger__
-#define snrm2_ snrm2__
-#define ssymv_ ssymv__
-#define sdot_ sdot__
-#define saxpy_ saxpy__
-#define ssyr2_ ssyr2__
-#define srot_ srot__
-#define sgemv_ sgemv__
-#define strsv_ strsv__
-#define sgemm_ sgemm__
-#define strsm_ strsm__
-
-#define dasum_ dasum__
-#define idamax_ idamax__
-#define dcopy_ dcopy__
-#define dscal_ dscal__
-#define dger_ dger__
-#define dnrm2_ dnrm2__
-#define dsymv_ dsymv__
-#define ddot_ ddot__
-#define daxpy_ daxpy__
-#define dsyr2_ dsyr2__
-#define drot_ drot__
-#define dgemv_ dgemv__
-#define dtrsv_ dtrsv__
-#define dgemm_ dgemm__
-#define dtrsm_ dtrsm__
-
-#define scasum_ scasum__
-#define icamax_ icamax__
-#define ccopy_ ccopy__
-#define cscal_ cscal__
-#define scnrm2_ scnrm2__
-#define caxpy_ caxpy__
-#define cgemv_ cgemv__
-#define ctrsv_ ctrsv__
-#define cgemm_ cgemm__
-#define ctrsm_ ctrsm__
-#define cgerc_ cgerc__
-#define chemv_ chemv__
-#define cher2_ cher2__
-
-#define dzasum_ dzasum__
-#define izamax_ izamax__
-#define zcopy_ zcopy__
-#define zscal_ zscal__
-#define dznrm2_ dznrm2__
-#define zaxpy_ zaxpy__
-#define zgemv_ zgemv__
-#define ztrsv_ ztrsv__
-#define zgemm_ zgemm__
-#define ztrsm_ ztrsm__
-#define zgerc_ zgerc__
-#define zhemv_ zhemv__
-#define zher2_ zher2__
-
-#define c_bridge_dgssv_ c_bridge_dgssv__
-#define c_fortran_dgssv_ c_fortran_dgssv__
-#endif
-
-#if (F77_CALL_C == UPCASE)
-/*
- * These defines set up the naming scheme required to have a fortran 77
- * routine call a C routine
- * following Fortran to C interface:
- * FORTRAN CALL C DECLARATION
- * call dgemm(...) void DGEMM(...)
- */
-#define sasum_ SASUM
-#define isamax_ ISAMAX
-#define scopy_ SCOPY
-#define sscal_ SSCAL
-#define sger_ SGER
-#define snrm2_ SNRM2
-#define ssymv_ SSYMV
-#define sdot_ SDOT
-#define saxpy_ SAXPY
-#define ssyr2_ SSYR2
-#define srot_ SROT
-#define sgemv_ SGEMV
-#define strsv_ STRSV
-#define sgemm_ SGEMM
-#define strsm_ STRSM
-
-#define dasum_ SASUM
-#define idamax_ ISAMAX
-#define dcopy_ SCOPY
-#define dscal_ SSCAL
-#define dger_ SGER
-#define dnrm2_ SNRM2
-#define dsymv_ SSYMV
-#define ddot_ SDOT
-#define daxpy_ SAXPY
-#define dsyr2_ SSYR2
-#define drot_ SROT
-#define dgemv_ SGEMV
-#define dtrsv_ STRSV
-#define dgemm_ SGEMM
-#define dtrsm_ STRSM
-
-#define scasum_ SCASUM
-#define icamax_ ICAMAX
-#define ccopy_ CCOPY
-#define cscal_ CSCAL
-#define scnrm2_ SCNRM2
-#define caxpy_ CAXPY
-#define cgemv_ CGEMV
-#define ctrsv_ CTRSV
-#define cgemm_ CGEMM
-#define ctrsm_ CTRSM
-#define cgerc_ CGERC
-#define chemv_ CHEMV
-#define cher2_ CHER2
-
-#define dzasum_ SCASUM
-#define izamax_ ICAMAX
-#define zcopy_ CCOPY
-#define zscal_ CSCAL
-#define dznrm2_ SCNRM2
-#define zaxpy_ CAXPY
-#define zgemv_ CGEMV
-#define ztrsv_ CTRSV
-#define zgemm_ CGEMM
-#define ztrsm_ CTRSM
-#define zgerc_ CGERC
-#define zhemv_ CHEMV
-#define zher2_ CHER2
-
-#define c_bridge_dgssv_ C_BRIDGE_DGSSV
-#define c_fortran_dgssv_ C_FORTRAN_DGSSV
-#endif
-
-#if (F77_CALL_C == NOCHANGE)
-/*
- * These defines set up the naming scheme required to have a fortran 77
- * routine call a C routine
- * for following Fortran to C interface:
- * FORTRAN CALL C DECLARATION
- * call dgemm(...) void dgemm(...)
- */
-#define sasum_ sasum
-#define isamax_ isamax
-#define scopy_ scopy
-#define sscal_ sscal
-#define sger_ sger
-#define snrm2_ snrm2
-#define ssymv_ ssymv
-#define sdot_ sdot
-#define saxpy_ saxpy
-#define ssyr2_ ssyr2
-#define srot_ srot
-#define sgemv_ sgemv
-#define strsv_ strsv
-#define sgemm_ sgemm
-#define strsm_ strsm
-
-#define dasum_ dasum
-#define idamax_ idamax
-#define dcopy_ dcopy
-#define dscal_ dscal
-#define dger_ dger
-#define dnrm2_ dnrm2
-#define dsymv_ dsymv
-#define ddot_ ddot
-#define daxpy_ daxpy
-#define dsyr2_ dsyr2
-#define drot_ drot
-#define dgemv_ dgemv
-#define dtrsv_ dtrsv
-#define dgemm_ dgemm
-#define dtrsm_ dtrsm
-
-#define scasum_ scasum
-#define icamax_ icamax
-#define ccopy_ ccopy
-#define cscal_ cscal
-#define scnrm2_ scnrm2
-#define caxpy_ caxpy
-#define cgemv_ cgemv
-#define ctrsv_ ctrsv
-#define cgemm_ cgemm
-#define ctrsm_ ctrsm
-#define cgerc_ cgerc
-#define chemv_ chemv
-#define cher2_ cher2
-
-#define dzasum_ dzasum
-#define izamax_ izamax
-#define zcopy_ zcopy
-#define zscal_ zscal
-#define dznrm2_ dznrm2
-#define zaxpy_ zaxpy
-#define zgemv_ zgemv
-#define ztrsv_ ztrsv
-#define zgemm_ zgemm
-#define ztrsm_ ztrsm
-#define zgerc_ zgerc
-#define zhemv_ zhemv
-#define zher2_ zher2
-
-#define c_bridge_dgssv_ c_bridge_dgssv
-#define c_fortran_dgssv_ c_fortran_dgssv
-#endif
-
-#endif /* __SUPERLU_CNAMES */
diff --git a/intern/opennl/superlu/get_perm_c.c b/intern/opennl/superlu/get_perm_c.c
deleted file mode 100644
index 59889645988..00000000000
--- a/intern/opennl/superlu/get_perm_c.c
+++ /dev/null
@@ -1,466 +0,0 @@
-/** \file opennl/superlu/get_perm_c.c
- * \ingroup opennl
- */
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-
-#include "ssp_defs.h"
-#include "colamd.h"
-
-extern int genmmd_(int *, int *, int *, int *, int *, int *, int *,
- int *, int *, int *, int *, int *);
-
-static void
-get_colamd(
- const int m, /* number of rows in matrix A. */
- const int n, /* number of columns in matrix A. */
- const int nnz,/* number of nonzeros in matrix A. */
- int *colptr, /* column pointer of size n+1 for matrix A. */
- int *rowind, /* row indices of size nz for matrix A. */
- int *perm_c /* out - the column permutation vector. */
- )
-{
- int Alen, *A, i, info, *p;
- double *knobs;
- int stats[COLAMD_STATS];
-
- Alen = colamd_recommended(nnz, m, n);
-
- if ( !(knobs = (double *) SUPERLU_MALLOC(COLAMD_KNOBS * sizeof(double))) )
- ABORT("Malloc fails for knobs");
- colamd_set_defaults(knobs);
-
- if (!(A = (int *) SUPERLU_MALLOC(Alen * sizeof(int))) )
- ABORT("Malloc fails for A[]");
- if (!(p = (int *) SUPERLU_MALLOC((n+1) * sizeof(int))) )
- ABORT("Malloc fails for p[]");
- for (i = 0; i <= n; ++i) p[i] = colptr[i];
- for (i = 0; i < nnz; ++i) A[i] = rowind[i];
- info = colamd(m, n, Alen, A, p, knobs, stats);
- if ( info == FALSE ) ABORT("COLAMD failed");
-
- for (i = 0; i < n; ++i) perm_c[p[i]] = i;
-
- SUPERLU_FREE(knobs);
- SUPERLU_FREE(A);
- SUPERLU_FREE(p);
-}
-
-static void
-getata(
- const int m, /* number of rows in matrix A. */
- const int n, /* number of columns in matrix A. */
- const int nz, /* number of nonzeros in matrix A */
- int *colptr, /* column pointer of size n+1 for matrix A. */
- int *rowind, /* row indices of size nz for matrix A. */
- int *atanz, /* out - on exit, returns the actual number of
- nonzeros in matrix A'*A. */
- int **ata_colptr, /* out - size n+1 */
- int **ata_rowind /* out - size *atanz */
- )
-/*
- * Purpose
- * =======
- *
- * Form the structure of A'*A. A is an m-by-n matrix in column oriented
- * format represented by (colptr, rowind). The output A'*A is in column
- * oriented format (symmetrically, also row oriented), represented by
- * (ata_colptr, ata_rowind).
- *
- * This routine is modified from GETATA routine by Tim Davis.
- * The complexity of this algorithm is: SUM_{i=1,m} r(i)^2,
- * i.e., the sum of the square of the row counts.
- *
- * Questions
- * =========
- * o Do I need to withhold the *dense* rows?
- * o How do I know the number of nonzeros in A'*A?
- *
- */
-{
- register int i, j, k, col, num_nz, ti, trow;
- int *marker, *b_colptr, *b_rowind;
- int *t_colptr, *t_rowind; /* a column oriented form of T = A' */
-
- if ( !(marker = (int*) SUPERLU_MALLOC((SUPERLU_MAX(m,n)+1)*sizeof(int))) )
- ABORT("SUPERLU_MALLOC fails for marker[]");
- if ( !(t_colptr = (int*) SUPERLU_MALLOC((m+1) * sizeof(int))) )
- ABORT("SUPERLU_MALLOC t_colptr[]");
- if ( !(t_rowind = (int*) SUPERLU_MALLOC(nz * sizeof(int))) )
- ABORT("SUPERLU_MALLOC fails for t_rowind[]");
-
-
- /* Get counts of each column of T, and set up column pointers */
- for (i = 0; i < m; ++i) marker[i] = 0;
- for (j = 0; j < n; ++j) {
- for (i = colptr[j]; i < colptr[j+1]; ++i)
- ++marker[rowind[i]];
- }
- t_colptr[0] = 0;
- for (i = 0; i < m; ++i) {
- t_colptr[i+1] = t_colptr[i] + marker[i];
- marker[i] = t_colptr[i];
- }
-
- /* Transpose the matrix from A to T */
- for (j = 0; j < n; ++j)
- for (i = colptr[j]; i < colptr[j+1]; ++i) {
- col = rowind[i];
- t_rowind[marker[col]] = j;
- ++marker[col];
- }
-
-
- /* ----------------------------------------------------------------
- compute B = T * A, where column j of B is:
-
- Struct (B_*j) = UNION ( Struct (T_*k) )
- A_kj != 0
-
- do not include the diagonal entry
-
- ( Partition A as: A = (A_*1, ..., A_*n)
- Then B = T * A = (T * A_*1, ..., T * A_*n), where
- T * A_*j = (T_*1, ..., T_*m) * A_*j. )
- ---------------------------------------------------------------- */
-
- /* Zero the diagonal flag */
- for (i = 0; i < n; ++i) marker[i] = -1;
-
- /* First pass determines number of nonzeros in B */
- num_nz = 0;
- for (j = 0; j < n; ++j) {
- /* Flag the diagonal so it's not included in the B matrix */
- marker[j] = j;
-
- for (i = colptr[j]; i < colptr[j+1]; ++i) {
- /* A_kj is nonzero, add pattern of column T_*k to B_*j */
- k = rowind[i];
- for (ti = t_colptr[k]; ti < t_colptr[k+1]; ++ti) {
- trow = t_rowind[ti];
- if ( marker[trow] != j ) {
- marker[trow] = j;
- num_nz++;
- }
- }
- }
- }
- *atanz = num_nz;
-
- /* Allocate storage for A'*A */
- if ( !(*ata_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) )
- ABORT("SUPERLU_MALLOC fails for ata_colptr[]");
- if ( *atanz ) {
- if ( !(*ata_rowind = (int*) SUPERLU_MALLOC( *atanz * sizeof(int)) ) )
- ABORT("SUPERLU_MALLOC fails for ata_rowind[]");
- }
- b_colptr = *ata_colptr; /* aliasing */
- b_rowind = *ata_rowind;
-
- /* Zero the diagonal flag */
- for (i = 0; i < n; ++i) marker[i] = -1;
-
- /* Compute each column of B, one at a time */
- num_nz = 0;
- for (j = 0; j < n; ++j) {
- b_colptr[j] = num_nz;
-
- /* Flag the diagonal so it's not included in the B matrix */
- marker[j] = j;
-
- if ( *atanz ) {
- for (i = colptr[j]; i < colptr[j+1]; ++i) {
- /* A_kj is nonzero, add pattern of column T_*k to B_*j */
- k = rowind[i];
- for (ti = t_colptr[k]; ti < t_colptr[k+1]; ++ti) {
- trow = t_rowind[ti];
- if ( marker[trow] != j ) {
- marker[trow] = j;
- b_rowind[num_nz++] = trow;
- }
- }
- }
- }
- }
- b_colptr[n] = num_nz;
-
- SUPERLU_FREE(marker);
- SUPERLU_FREE(t_colptr);
- SUPERLU_FREE(t_rowind);
-}
-
-
-static void
-at_plus_a(
- const int n, /* number of columns in matrix A. */
- const int nz, /* number of nonzeros in matrix A */
- int *colptr, /* column pointer of size n+1 for matrix A. */
- int *rowind, /* row indices of size nz for matrix A. */
- int *bnz, /* out - on exit, returns the actual number of
- nonzeros in matrix A'*A. */
- int **b_colptr, /* out - size n+1 */
- int **b_rowind /* out - size *bnz */
- )
-{
-/*
- * Purpose
- * =======
- *
- * Form the structure of A'+A. A is an n-by-n matrix in column oriented
- * format represented by (colptr, rowind). The output A'+A is in column
- * oriented format (symmetrically, also row oriented), represented by
- * (b_colptr, b_rowind).
- *
- */
- register int i, j, k, col, num_nz;
- int *t_colptr, *t_rowind; /* a column oriented form of T = A' */
- int *marker;
-
- if ( !(marker = (int*) SUPERLU_MALLOC( n * sizeof(int)) ) )
- ABORT("SUPERLU_MALLOC fails for marker[]");
- if ( !(t_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) )
- ABORT("SUPERLU_MALLOC fails for t_colptr[]");
- if ( !(t_rowind = (int*) SUPERLU_MALLOC( nz * sizeof(int)) ) )
- ABORT("SUPERLU_MALLOC fails t_rowind[]");
-
-
- /* Get counts of each column of T, and set up column pointers */
- for (i = 0; i < n; ++i) marker[i] = 0;
- for (j = 0; j < n; ++j) {
- for (i = colptr[j]; i < colptr[j+1]; ++i)
- ++marker[rowind[i]];
- }
- t_colptr[0] = 0;
- for (i = 0; i < n; ++i) {
- t_colptr[i+1] = t_colptr[i] + marker[i];
- marker[i] = t_colptr[i];
- }
-
- /* Transpose the matrix from A to T */
- for (j = 0; j < n; ++j)
- for (i = colptr[j]; i < colptr[j+1]; ++i) {
- col = rowind[i];
- t_rowind[marker[col]] = j;
- ++marker[col];
- }
-
-
- /* ----------------------------------------------------------------
- compute B = A + T, where column j of B is:
-
- Struct (B_*j) = Struct (A_*k) UNION Struct (T_*k)
-
- do not include the diagonal entry
- ---------------------------------------------------------------- */
-
- /* Zero the diagonal flag */
- for (i = 0; i < n; ++i) marker[i] = -1;
-
- /* First pass determines number of nonzeros in B */
- num_nz = 0;
- for (j = 0; j < n; ++j) {
- /* Flag the diagonal so it's not included in the B matrix */
- marker[j] = j;
-
- /* Add pattern of column A_*k to B_*j */
- for (i = colptr[j]; i < colptr[j+1]; ++i) {
- k = rowind[i];
- if ( marker[k] != j ) {
- marker[k] = j;
- ++num_nz;
- }
- }
-
- /* Add pattern of column T_*k to B_*j */
- for (i = t_colptr[j]; i < t_colptr[j+1]; ++i) {
- k = t_rowind[i];
- if ( marker[k] != j ) {
- marker[k] = j;
- ++num_nz;
- }
- }
- }
- *bnz = num_nz;
-
- /* Allocate storage for A+A' */
- if ( !(*b_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) )
- ABORT("SUPERLU_MALLOC fails for b_colptr[]");
- if ( *bnz) {
- if ( !(*b_rowind = (int*) SUPERLU_MALLOC( *bnz * sizeof(int)) ) )
- ABORT("SUPERLU_MALLOC fails for b_rowind[]");
- }
-
- /* Zero the diagonal flag */
- for (i = 0; i < n; ++i) marker[i] = -1;
-
- /* Compute each column of B, one at a time */
- num_nz = 0;
- for (j = 0; j < n; ++j) {
- (*b_colptr)[j] = num_nz;
-
- /* Flag the diagonal so it's not included in the B matrix */
- marker[j] = j;
-
- /* Add pattern of column A_*k to B_*j */
- if (*bnz) {
- for (i = colptr[j]; i < colptr[j+1]; ++i) {
- k = rowind[i];
- if ( marker[k] != j ) {
- marker[k] = j;
- (*b_rowind)[num_nz++] = k;
- }
- }
-
- /* Add pattern of column T_*k to B_*j */
- for (i = t_colptr[j]; i < t_colptr[j+1]; ++i) {
- k = t_rowind[i];
- if ( marker[k] != j ) {
- marker[k] = j;
- (*b_rowind)[num_nz++] = k;
- }
- }
- }
- }
- (*b_colptr)[n] = num_nz;
-
- SUPERLU_FREE(marker);
- SUPERLU_FREE(t_colptr);
- SUPERLU_FREE(t_rowind);
-}
-
-void
-get_perm_c(int ispec, SuperMatrix *A, int *perm_c)
-/*
- * Purpose
- * =======
- *
- * GET_PERM_C obtains a permutation matrix Pc, by applying the multiple
- * minimum degree ordering code by Joseph Liu to matrix A'*A or A+A'.
- * or using approximate minimum degree column ordering by Davis et. al.
- * The LU factorization of A*Pc tends to have less fill than the LU
- * factorization of A.
- *
- * Arguments
- * =========
- *
- * ispec (input) int
- * Specifies the type of column ordering to reduce fill:
- * = 1: minimum degree on the structure of A^T * A
- * = 2: minimum degree on the structure of A^T + A
- * = 3: approximate minimum degree for unsymmetric matrices
- * If ispec == 0, the natural ordering (i.e., Pc = I) is returned.
- *
- * A (input) SuperMatrix*
- * Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
- * of the linear equations is A->nrow. Currently, the type of A
- * can be: Stype = NC; Dtype = _D; Mtype = GE. In the future,
- * more general A can be handled.
- *
- * perm_c (output) int*
- * Column permutation vector of size A->ncol, which defines the
- * permutation matrix Pc; perm_c[i] = j means column i of A is
- * in position j in A*Pc.
- *
- */
-{
- NCformat *Astore = A->Store;
- int m, n, bnz, *b_colptr, i;
- int delta, maxint, nofsub, *invp;
- int *b_rowind, *dhead, *qsize, *llist, *marker;
- /* double t, SuperLU_timer_(); */
-
- /* make gcc happy */
- b_rowind=NULL;
- b_colptr=NULL;
-
- m = A->nrow;
- n = A->ncol;
-
- /* t = SuperLU_timer_(); */
- switch ( ispec ) {
- case 0: /* Natural ordering */
- for (i = 0; i < n; ++i) perm_c[i] = i;
-#if ( PRNTlevel>=1 )
- printf("Use natural column ordering.\n");
-#endif
- return;
- case 1: /* Minimum degree ordering on A'*A */
- getata(m, n, Astore->nnz, Astore->colptr, Astore->rowind,
- &bnz, &b_colptr, &b_rowind);
-#if ( PRNTlevel>=1 )
- printf("Use minimum degree ordering on A'*A.\n");
-#endif
- /*t = SuperLU_timer_() - t;
- printf("Form A'*A time = %8.3f\n", t);*/
- break;
- case 2: /* Minimum degree ordering on A'+A */
- if ( m != n ) ABORT("Matrix is not square");
- at_plus_a(n, Astore->nnz, Astore->colptr, Astore->rowind,
- &bnz, &b_colptr, &b_rowind);
-#if ( PRNTlevel>=1 )
- printf("Use minimum degree ordering on A'+A.\n");
-#endif
- /*t = SuperLU_timer_() - t;
- printf("Form A'+A time = %8.3f\n", t);*/
- break;
- case 3: /* Approximate minimum degree column ordering. */
- get_colamd(m, n, Astore->nnz, Astore->colptr, Astore->rowind,
- perm_c);
-#if ( PRNTlevel>=1 )
- printf(".. Use approximate minimum degree column ordering.\n");
-#endif
- return;
- default:
- ABORT("Invalid ISPEC");
- return;
- }
-
- if ( bnz != 0 ) {
- /* t = SuperLU_timer_(); */
-
- /* Initialize and allocate storage for GENMMD. */
- delta = 1; /* DELTA is a parameter to allow the choice of nodes
- whose degree <= min-degree + DELTA. */
- maxint = 2147483647; /* 2**31 - 1 */
- invp = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int));
- if ( !invp ) ABORT("SUPERLU_MALLOC fails for invp.");
- dhead = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int));
- if ( !dhead ) ABORT("SUPERLU_MALLOC fails for dhead.");
- qsize = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int));
- if ( !qsize ) ABORT("SUPERLU_MALLOC fails for qsize.");
- llist = (int *) SUPERLU_MALLOC(n*sizeof(int));
- if ( !llist ) ABORT("SUPERLU_MALLOC fails for llist.");
- marker = (int *) SUPERLU_MALLOC(n*sizeof(int));
- if ( !marker ) ABORT("SUPERLU_MALLOC fails for marker.");
-
- /* Transform adjacency list into 1-based indexing required by GENMMD.*/
- for (i = 0; i <= n; ++i) ++b_colptr[i];
- for (i = 0; i < bnz; ++i) ++b_rowind[i];
-
- genmmd_(&n, b_colptr, b_rowind, perm_c, invp, &delta, dhead,
- qsize, llist, marker, &maxint, &nofsub);
-
- /* Transform perm_c into 0-based indexing. */
- for (i = 0; i < n; ++i) --perm_c[i];
-
- SUPERLU_FREE(b_colptr);
- SUPERLU_FREE(b_rowind);
- SUPERLU_FREE(invp);
- SUPERLU_FREE(dhead);
- SUPERLU_FREE(qsize);
- SUPERLU_FREE(llist);
- SUPERLU_FREE(marker);
-
- /* t = SuperLU_timer_() - t;
- printf("call GENMMD time = %8.3f\n", t);*/
-
- } else { /* Empty adjacency structure */
- for (i = 0; i < n; ++i) perm_c[i] = i;
- }
-
-}
diff --git a/intern/opennl/superlu/heap_relax_snode.c b/intern/opennl/superlu/heap_relax_snode.c
deleted file mode 100644
index cd88179bbb7..00000000000
--- a/intern/opennl/superlu/heap_relax_snode.c
+++ /dev/null
@@ -1,119 +0,0 @@
-/** \file opennl/superlu/heap_relax_snode.c
- * \ingroup opennl
- */
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-
-void
-heap_relax_snode (
- const int n,
- int *et, /* column elimination tree */
- const int relax_columns, /* max no of columns allowed in a
- relaxed snode */
- int *descendants, /* no of descendants of each node
- in the etree */
- int *relax_end /* last column in a supernode */
- )
-{
-/*
- * Purpose
- * =======
- * relax_snode() - Identify the initial relaxed supernodes, assuming that
- * the matrix has been reordered according to the postorder of the etree.
- *
- */
- register int i, j, k, l, parent;
- register int snode_start; /* beginning of a snode */
- int *et_save, *post, *inv_post, *iwork;
- int nsuper_et = 0, nsuper_et_post = 0;
-
- /* The etree may not be postordered, but is heap ordered. */
-
- iwork = (int*) intMalloc(3*n+2);
- if ( !iwork ) ABORT("SUPERLU_MALLOC fails for iwork[]");
- inv_post = iwork + n+1;
- et_save = inv_post + n+1;
-
- /* Post order etree */
- post = (int *) TreePostorder(n, et);
- for (i = 0; i < n+1; ++i) inv_post[post[i]] = i;
-
- /* Renumber etree in postorder */
- for (i = 0; i < n; ++i) {
- iwork[post[i]] = post[et[i]];
- et_save[i] = et[i]; /* Save the original etree */
- }
- for (i = 0; i < n; ++i) et[i] = iwork[i];
-
- /* Compute the number of descendants of each node in the etree */
- ifill (relax_end, n, EMPTY);
- for (j = 0; j < n; j++) descendants[j] = 0;
- for (j = 0; j < n; j++) {
- parent = et[j];
- if ( parent != n ) /* not the dummy root */
- descendants[parent] += descendants[j] + 1;
- }
-
- /* Identify the relaxed supernodes by postorder traversal of the etree. */
- for (j = 0; j < n; ) {
- parent = et[j];
- snode_start = j;
- while ( parent != n && descendants[parent] < relax_columns ) {
- j = parent;
- parent = et[j];
- }
- /* Found a supernode in postordered etree; j is the last column. */
- ++nsuper_et_post;
- k = n;
- for (i = snode_start; i <= j; ++i)
- k = SUPERLU_MIN(k, inv_post[i]);
- l = inv_post[j];
- if ( (l - k) == (j - snode_start) ) {
- /* It's also a supernode in the original etree */
- relax_end[k] = l; /* Last column is recorded */
- ++nsuper_et;
- } else {
- for (i = snode_start; i <= j; ++i) {
- l = inv_post[i];
- if ( descendants[i] == 0 ) relax_end[l] = l;
- }
- }
- j++;
- /* Search for a new leaf */
- while ( j < n && descendants[j] != 0 ) j++;
- }
-
-#if ( PRNTlevel>=1 )
- printf(".. heap_snode_relax:\n"
- "\tNo of relaxed snodes in postordered etree:\t%d\n"
- "\tNo of relaxed snodes in original etree:\t%d\n",
- nsuper_et_post, nsuper_et);
-#endif
-
- /* Recover the original etree */
- for (i = 0; i < n; ++i) et[i] = et_save[i];
-
- SUPERLU_FREE(post);
- SUPERLU_FREE(iwork);
-}
-
-
diff --git a/intern/opennl/superlu/lsame.c b/intern/opennl/superlu/lsame.c
deleted file mode 100644
index 2f2337d5001..00000000000
--- a/intern/opennl/superlu/lsame.c
+++ /dev/null
@@ -1,76 +0,0 @@
-/** \file opennl/superlu/lsame.c
- * \ingroup opennl
- */
-int lsame_(char *, char *);
-
-
-int lsame_(char *ca, char *cb)
-{
-/* -- LAPACK auxiliary routine (version 2.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
- Purpose
- =======
-
- LSAME returns .TRUE. if CA is the same letter as CB regardless of case.
-
- Arguments
- =========
-
- CA (input) CHARACTER*1
- CB (input) CHARACTER*1
- CA and CB specify the single characters to be compared.
-
- =====================================================================
-*/
-
- /* System generated locals */
- int ret_val;
-
- /* Local variables */
- int inta, intb, zcode;
-
- ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
- if (ret_val) {
- return ret_val;
- }
-
- /* Now test for equivalence if both characters are alphabetic. */
-
- zcode = 'Z';
-
- /* Use 'Z' rather than 'A' so that ASCII can be detected on Prime
- machines, on which ICHAR returns a value with bit 8 set.
- ICHAR('A') on Prime machines returns 193 which is the same as
- ICHAR('A') on an EBCDIC machine. */
-
- inta = *(unsigned char *)ca;
- intb = *(unsigned char *)cb;
-
- if (zcode == 90 || zcode == 122) {
- /* ASCII is assumed - ZCODE is the ASCII code of either lower or
- upper case 'Z'. */
- if (inta >= 97 && inta <= 122) inta += -32;
- if (intb >= 97 && intb <= 122) intb += -32;
-
- } else if (zcode == 233 || zcode == 169) {
- /* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
- upper case 'Z'. */
- if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) || (inta
- >= 162 && inta <= 169))
- inta += 64;
- if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) || (intb
- >= 162 && intb <= 169))
- intb += 64;
- } else if (zcode == 218 || zcode == 250) {
- /* ASCII is assumed, on Prime machines - ZCODE is the ASCII code
- plus 128 of either lower or upper case 'Z'. */
- if (inta >= 225 && inta <= 250) inta += -32;
- if (intb >= 225 && intb <= 250) intb += -32;
- }
- ret_val = inta == intb;
- return ret_val;
-
-} /* lsame_ */
diff --git a/intern/opennl/superlu/memory.c b/intern/opennl/superlu/memory.c
deleted file mode 100644
index a239f685424..00000000000
--- a/intern/opennl/superlu/memory.c
+++ /dev/null
@@ -1,214 +0,0 @@
-/** \file opennl/superlu/memory.c
- * \ingroup opennl
- */
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/** Precision-independent memory-related routines.
- (Shared by [sdcz]memory.c) **/
-
-#include "ssp_defs.h"
-
-/* prototypes --------------------------------- */
-void copy_mem_int(int, void *, void *);
-void user_bcopy(char *, char *, int);
-
-
-#if ( DEBUGlevel>=1 ) /* Debug malloc/free. */
-int superlu_malloc_total = 0;
-
-#define PAD_FACTOR 2
-#define DWORD (sizeof(double)) /* Be sure it's no smaller than double. */
-
-void *superlu_malloc(size_t size)
-{
- char *buf;
-
- buf = (char *) malloc(size + DWORD);
- if ( !buf ) {
- printf("superlu_malloc fails: malloc_total %.0f MB, size %d\n",
- superlu_malloc_total*1e-6, size);
- ABORT("superlu_malloc: out of memory");
- }
-
- ((int_t *) buf)[0] = size;
-#if 0
- superlu_malloc_total += size + DWORD;
-#else
- superlu_malloc_total += size;
-#endif
- return (void *) (buf + DWORD);
-}
-
-void superlu_free(void *addr)
-{
- char *p = ((char *) addr) - DWORD;
-
- if ( !addr )
- ABORT("superlu_free: tried to free NULL pointer");
-
- if ( !p )
- ABORT("superlu_free: tried to free NULL+DWORD pointer");
-
- {
- int_t n = ((int_t *) p)[0];
-
- if ( !n )
- ABORT("superlu_free: tried to free a freed pointer");
- *((int_t *) p) = 0; /* Set to zero to detect duplicate free's. */
-#if 0
- superlu_malloc_total -= (n + DWORD);
-#else
- superlu_malloc_total -= n;
-#endif
-
- if ( superlu_malloc_total < 0 )
- ABORT("superlu_malloc_total went negative!");
-
- /*free (addr);*/
- free (p);
- }
-
-}
-
-#else /* production mode */
-
-void *superlu_malloc(size_t size)
-{
- void *buf;
- buf = (void *) malloc(size);
- return (buf);
-}
-
-void superlu_free(void *addr)
-{
- free (addr);
-}
-
-#endif
-
-
-/*
- * Set up pointers for integer working arrays.
- */
-void
-SetIWork(int m, int n, int panel_size, int *iworkptr, int **segrep,
- int **parent, int **xplore, int **repfnz, int **panel_lsub,
- int **xprune, int **marker)
-{
- *segrep = iworkptr;
- *parent = iworkptr + m;
- *xplore = *parent + m;
- *repfnz = *xplore + m;
- *panel_lsub = *repfnz + panel_size * m;
- *xprune = *panel_lsub + panel_size * m;
- *marker = *xprune + n;
- ifill (*repfnz, m * panel_size, EMPTY);
- ifill (*panel_lsub, m * panel_size, EMPTY);
-}
-
-
-void
-copy_mem_int(int howmany, void *old, void *new)
-{
- register int i;
- int *iold = old;
- int *inew = new;
- for (i = 0; i < howmany; i++) inew[i] = iold[i];
-}
-
-
-void
-user_bcopy(char *src, char *dest, int bytes)
-{
- char *s_ptr, *d_ptr;
-
- s_ptr = src + bytes - 1;
- d_ptr = dest + bytes - 1;
- for (; d_ptr >= dest; --s_ptr, --d_ptr ) *d_ptr = *s_ptr;
-}
-
-
-
-int *intMalloc(int n)
-{
- int *buf;
- buf = (int *) SUPERLU_MALLOC(n * sizeof(int));
- if ( !buf ) {
- ABORT("SUPERLU_MALLOC fails for buf in intMalloc()");
- }
- return (buf);
-}
-
-int *intCalloc(int n)
-{
- int *buf;
- register int i;
- buf = (int *) SUPERLU_MALLOC(n * sizeof(int));
- if ( !buf ) {
- ABORT("SUPERLU_MALLOC fails for buf in intCalloc()");
- }
- for (i = 0; i < n; ++i) buf[i] = 0;
- return (buf);
-}
-
-
-
-#if 0
-check_expanders()
-{
- int p;
- printf("Check expanders:\n");
- for (p = 0; p < NO_MEMTYPE; p++) {
- printf("type %d, size %d, mem %d\n",
- p, expanders[p].size, (int)expanders[p].mem);
- }
-
- return 0;
-}
-
-
-StackInfo()
-{
- printf("Stack: size %d, used %d, top1 %d, top2 %d\n",
- stack.size, stack.used, stack.top1, stack.top2);
- return 0;
-}
-
-
-
-PrintStack(char *msg, GlobalLU_t *Glu)
-{
- int i;
- int *xlsub, *lsub, *xusub, *usub;
-
- xlsub = Glu->xlsub;
- lsub = Glu->lsub;
- xusub = Glu->xusub;
- usub = Glu->usub;
-
- printf("%s\n", msg);
-
-/* printf("\nUCOL: ");
- for (i = 0; i < xusub[ndim]; ++i)
- printf("%f ", ucol[i]);
-
- printf("\nLSUB: ");
- for (i = 0; i < xlsub[ndim]; ++i)
- printf("%d ", lsub[i]);
-
- printf("\nUSUB: ");
- for (i = 0; i < xusub[ndim]; ++i)
- printf("%d ", usub[i]);
-
- printf("\n");*/
- return 0;
-}
-#endif
-
-
-
diff --git a/intern/opennl/superlu/mmd.c b/intern/opennl/superlu/mmd.c
deleted file mode 100644
index a9c20fd9e81..00000000000
--- a/intern/opennl/superlu/mmd.c
+++ /dev/null
@@ -1,1028 +0,0 @@
-/** \file opennl/superlu/mmd.c
- * \ingroup opennl
- */
-
-typedef int shortint;
-
-
-/* prototypes -------------------- */
-int genmmd_(int *, int *, int *, int *, int *, int *, int *,
- int *, int *, int *, int *, int *);
-int mmdint_(int *, int *, shortint *, shortint *, shortint *, shortint *, shortint *,
- shortint *, shortint *);
-int mmdelm_(int *, int *, shortint *, shortint *, shortint *, shortint *, shortint *,
- shortint *, shortint *, int *, int *);
-int mmdupd_(int *, int *, int *, shortint *, int *, int *, shortint *,
- shortint *, shortint *, shortint *, shortint *, shortint *, int *, int *);
-int mmdnum_(int *, shortint *, shortint *, shortint *);
-
-
-/* *************************************************************** */
-/* *************************************************************** */
-/* **** GENMMD ..... MULTIPLE MINIMUM EXTERNAL DEGREE **** */
-/* *************************************************************** */
-/* *************************************************************** */
-
-/* AUTHOR - JOSEPH W.H. LIU */
-/* DEPT OF COMPUTER SCIENCE, YORK UNIVERSITY. */
-
-/* PURPOSE - THIS ROUTINE IMPLEMENTS THE MINIMUM DEGREE */
-/* ALGORITHM. IT MAKES USE OF THE IMPLICIT REPRESENTATION */
-/* OF ELIMINATION GRAPHS BY QUOTIENT GRAPHS, AND THE */
-/* NOTION OF INDISTINGUISHABLE NODES. IT ALSO IMPLEMENTS */
-/* THE MODIFICATIONS BY MULTIPLE ELIMINATION AND MINIMUM */
-/* EXTERNAL DEGREE. */
-/* --------------------------------------------- */
-/* CAUTION - THE ADJACENCY VECTOR ADJNCY WILL BE */
-/* DESTROYED. */
-/* --------------------------------------------- */
-
-/* INPUT PARAMETERS - */
-/* NEQNS - NUMBER OF EQUATIONS. */
-/* (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE. */
-/* DELTA - TOLERANCE VALUE FOR MULTIPLE ELIMINATION. */
-/* MAXINT - MAXIMUM MACHINE REPRESENTABLE (SHORT) INTEGER */
-/* (ANY SMALLER ESTIMATE WILL DO) FOR MARKING */
-/* NODES. */
-
-/* OUTPUT PARAMETERS - */
-/* PERM - THE MINIMUM DEGREE ORDERING. */
-/* INVP - THE INVERSE OF PERM. */
-/* NOFSUB - AN UPPER BOUND ON THE NUMBER OF NONZERO */
-/* SUBSCRIPTS FOR THE COMPRESSED STORAGE SCHEME. */
-
-/* WORKING PARAMETERS - */
-/* DHEAD - VECTOR FOR HEAD OF DEGREE LISTS. */
-/* INVP - USED TEMPORARILY FOR DEGREE FORWARD LINK. */
-/* PERM - USED TEMPORARILY FOR DEGREE BACKWARD LINK. */
-/* QSIZE - VECTOR FOR SIZE OF SUPERNODES. */
-/* LLIST - VECTOR FOR TEMPORARY LINKED LISTS. */
-/* MARKER - A TEMPORARY MARKER VECTOR. */
-
-/* PROGRAM SUBROUTINES - */
-/* MMDELM, MMDINT, MMDNUM, MMDUPD. */
-
-/* *************************************************************** */
-
-/* Subroutine */ int genmmd_(int *neqns, int *xadj, shortint *adjncy,
- shortint *invp, shortint *perm, int *delta, shortint *dhead,
- shortint *qsize, shortint *llist, shortint *marker, int *maxint,
- int *nofsub)
-{
- /* System generated locals */
- int i__1;
-
- /* Local variables */
- static int mdeg, ehead, i, mdlmt, mdnode;
- extern /* Subroutine */ int mmdelm_(int *, int *, shortint *,
- shortint *, shortint *, shortint *, shortint *, shortint *,
- shortint *, int *, int *), mmdupd_(int *, int *,
- int *, shortint *, int *, int *, shortint *, shortint
- *, shortint *, shortint *, shortint *, shortint *, int *,
- int *), mmdint_(int *, int *, shortint *, shortint *,
- shortint *, shortint *, shortint *, shortint *, shortint *),
- mmdnum_(int *, shortint *, shortint *, shortint *);
- static int nextmd, tag, num;
-
-
-/* *************************************************************** */
-
-
-/* *************************************************************** */
-
- /* Parameter adjustments */
- --marker;
- --llist;
- --qsize;
- --dhead;
- --perm;
- --invp;
- --adjncy;
- --xadj;
-
- /* Function Body */
- if (*neqns <= 0) {
- return 0;
- }
-
-/* ------------------------------------------------ */
-/* INITIALIZATION FOR THE MINIMUM DEGREE ALGORITHM. */
-/* ------------------------------------------------ */
- *nofsub = 0;
- mmdint_(neqns, &xadj[1], &adjncy[1], &dhead[1], &invp[1], &perm[1], &
- qsize[1], &llist[1], &marker[1]);
-
-/* ---------------------------------------------- */
-/* NUM COUNTS THE NUMBER OF ORDERED NODES PLUS 1. */
-/* ---------------------------------------------- */
- num = 1;
-
-/* ----------------------------- */
-/* ELIMINATE ALL ISOLATED NODES. */
-/* ----------------------------- */
- nextmd = dhead[1];
-L100:
- if (nextmd <= 0) {
- goto L200;
- }
- mdnode = nextmd;
- nextmd = invp[mdnode];
- marker[mdnode] = *maxint;
- invp[mdnode] = -num;
- ++num;
- goto L100;
-
-L200:
-/* ---------------------------------------- */
-/* SEARCH FOR NODE OF THE MINIMUM DEGREE. */
-/* MDEG IS THE CURRENT MINIMUM DEGREE; */
-/* TAG IS USED TO FACILITATE MARKING NODES. */
-/* ---------------------------------------- */
- if (num > *neqns) {
- goto L1000;
- }
- tag = 1;
- dhead[1] = 0;
- mdeg = 2;
-L300:
- if (dhead[mdeg] > 0) {
- goto L400;
- }
- ++mdeg;
- goto L300;
-L400:
-/* ------------------------------------------------- */
-/* USE VALUE OF DELTA TO SET UP MDLMT, WHICH GOVERNS */
-/* WHEN A DEGREE UPDATE IS TO BE PERFORMED. */
-/* ------------------------------------------------- */
- mdlmt = mdeg + *delta;
- ehead = 0;
-
-L500:
- mdnode = dhead[mdeg];
- if (mdnode > 0) {
- goto L600;
- }
- ++mdeg;
- if (mdeg > mdlmt) {
- goto L900;
- }
- goto L500;
-L600:
-/* ---------------------------------------- */
-/* REMOVE MDNODE FROM THE DEGREE STRUCTURE. */
-/* ---------------------------------------- */
- nextmd = invp[mdnode];
- dhead[mdeg] = nextmd;
- if (nextmd > 0) {
- perm[nextmd] = -mdeg;
- }
- invp[mdnode] = -num;
- *nofsub = *nofsub + mdeg + qsize[mdnode] - 2;
- if (num + qsize[mdnode] > *neqns) {
- goto L1000;
- }
-/* ---------------------------------------------- */
-/* ELIMINATE MDNODE AND PERFORM QUOTIENT GRAPH */
-/* TRANSFORMATION. RESET TAG VALUE IF NECESSARY. */
-/* ---------------------------------------------- */
- ++tag;
- if (tag < *maxint) {
- goto L800;
- }
- tag = 1;
- i__1 = *neqns;
- for (i = 1; i <= i__1; ++i) {
- if (marker[i] < *maxint) {
- marker[i] = 0;
- }
-/* L700: */
- }
-L800:
- mmdelm_(&mdnode, &xadj[1], &adjncy[1], &dhead[1], &invp[1], &perm[1], &
- qsize[1], &llist[1], &marker[1], maxint, &tag);
- num += qsize[mdnode];
- llist[mdnode] = ehead;
- ehead = mdnode;
- if (*delta >= 0) {
- goto L500;
- }
-L900:
-/* ------------------------------------------- */
-/* UPDATE DEGREES OF THE NODES INVOLVED IN THE */
-/* MINIMUM DEGREE NODES ELIMINATION. */
-/* ------------------------------------------- */
- if (num > *neqns) {
- goto L1000;
- }
- mmdupd_(&ehead, neqns, &xadj[1], &adjncy[1], delta, &mdeg, &dhead[1], &
- invp[1], &perm[1], &qsize[1], &llist[1], &marker[1], maxint, &tag)
- ;
- goto L300;
-
-L1000:
- mmdnum_(neqns, &perm[1], &invp[1], &qsize[1]);
- return 0;
-
-} /* genmmd_ */
-
-/* *************************************************************** */
-/* *************************************************************** */
-/* *** MMDINT ..... MULT MINIMUM DEGREE INITIALIZATION *** */
-/* *************************************************************** */
-/* *************************************************************** */
-
-/* AUTHOR - JOSEPH W.H. LIU */
-/* DEPT OF COMPUTER SCIENCE, YORK UNIVERSITY. */
-
-/* PURPOSE - THIS ROUTINE PERFORMS INITIALIZATION FOR THE */
-/* MULTIPLE ELIMINATION VERSION OF THE MINIMUM DEGREE */
-/* ALGORITHM. */
-
-/* INPUT PARAMETERS - */
-/* NEQNS - NUMBER OF EQUATIONS. */
-/* (XADJ,ADJNCY) - ADJACENCY STRUCTURE. */
-
-/* OUTPUT PARAMETERS - */
-/* (DHEAD,DFORW,DBAKW) - DEGREE DOUBLY LINKED STRUCTURE. */
-/* QSIZE - SIZE OF SUPERNODE (INITIALIZED TO ONE). */
-/* LLIST - LINKED LIST. */
-/* MARKER - MARKER VECTOR. */
-
-/* *************************************************************** */
-
-/* Subroutine */ int mmdint_(int *neqns, int *xadj, shortint *adjncy,
- shortint *dhead, shortint *dforw, shortint *dbakw, shortint *qsize,
- shortint *llist, shortint *marker)
-{
- /* System generated locals */
- int i__1;
-
- /* Local variables */
- static int ndeg, node, fnode;
-
-
-/* *************************************************************** */
-
-
-/* *************************************************************** */
-
- /* Parameter adjustments */
- --marker;
- --llist;
- --qsize;
- --dbakw;
- --dforw;
- --dhead;
- --adjncy;
- --xadj;
-
- /* Function Body */
- i__1 = *neqns;
- for (node = 1; node <= i__1; ++node) {
- dhead[node] = 0;
- qsize[node] = 1;
- marker[node] = 0;
- llist[node] = 0;
-/* L100: */
- }
-/* ------------------------------------------ */
-/* INITIALIZE THE DEGREE DOUBLY LINKED LISTS. */
-/* ------------------------------------------ */
- i__1 = *neqns;
- for (node = 1; node <= i__1; ++node) {
- ndeg = xadj[node + 1] - xadj[node] + 1;
- fnode = dhead[ndeg];
- dforw[node] = fnode;
- dhead[ndeg] = node;
- if (fnode > 0) {
- dbakw[fnode] = node;
- }
- dbakw[node] = -ndeg;
-/* L200: */
- }
- return 0;
-
-} /* mmdint_ */
-
-/* *************************************************************** */
-/* *************************************************************** */
-/* ** MMDELM ..... MULTIPLE MINIMUM DEGREE ELIMINATION *** */
-/* *************************************************************** */
-/* *************************************************************** */
-
-/* AUTHOR - JOSEPH W.H. LIU */
-/* DEPT OF COMPUTER SCIENCE, YORK UNIVERSITY. */
-
-/* PURPOSE - THIS ROUTINE ELIMINATES THE NODE MDNODE OF */
-/* MINIMUM DEGREE FROM THE ADJACENCY STRUCTURE, WHICH */
-/* IS STORED IN THE QUOTIENT GRAPH FORMAT. IT ALSO */
-/* TRANSFORMS THE QUOTIENT GRAPH REPRESENTATION OF THE */
-/* ELIMINATION GRAPH. */
-
-/* INPUT PARAMETERS - */
-/* MDNODE - NODE OF MINIMUM DEGREE. */
-/* MAXINT - ESTIMATE OF MAXIMUM REPRESENTABLE (SHORT) */
-/* INT. */
-/* TAG - TAG VALUE. */
-
-/* UPDATED PARAMETERS - */
-/* (XADJ,ADJNCY) - UPDATED ADJACENCY STRUCTURE. */
-/* (DHEAD,DFORW,DBAKW) - DEGREE DOUBLY LINKED STRUCTURE. */
-/* QSIZE - SIZE OF SUPERNODE. */
-/* MARKER - MARKER VECTOR. */
-/* LLIST - TEMPORARY LINKED LIST OF ELIMINATED NABORS. */
-
-/* *************************************************************** */
-
-/* Subroutine */ int mmdelm_(int *mdnode, int *xadj, shortint *adjncy,
- shortint *dhead, shortint *dforw, shortint *dbakw, shortint *qsize,
- shortint *llist, shortint *marker, int *maxint, int *tag)
-{
- /* System generated locals */
- int i__1, i__2;
-
- /* Local variables */
- static int node, link, rloc, rlmt, i, j, nabor, rnode, elmnt, xqnbr,
- istop, jstop, istrt, jstrt, nxnode, pvnode, nqnbrs, npv;
-
-
-/* *************************************************************** */
-
-
-/* *************************************************************** */
-
-/* ----------------------------------------------- */
-/* FIND REACHABLE SET AND PLACE IN DATA STRUCTURE. */
-/* ----------------------------------------------- */
- /* Parameter adjustments */
- --marker;
- --llist;
- --qsize;
- --dbakw;
- --dforw;
- --dhead;
- --adjncy;
- --xadj;
-
- /* Function Body */
- marker[*mdnode] = *tag;
- istrt = xadj[*mdnode];
- istop = xadj[*mdnode + 1] - 1;
-/* ------------------------------------------------------- */
-/* ELMNT POINTS TO THE BEGINNING OF THE LIST OF ELIMINATED */
-/* NABORS OF MDNODE, AND RLOC GIVES THE STORAGE LOCATION */
-/* FOR THE NEXT REACHABLE NODE. */
-/* ------------------------------------------------------- */
- elmnt = 0;
- rloc = istrt;
- rlmt = istop;
- i__1 = istop;
- for (i = istrt; i <= i__1; ++i) {
- nabor = adjncy[i];
- if (nabor == 0) {
- goto L300;
- }
- if (marker[nabor] >= *tag) {
- goto L200;
- }
- marker[nabor] = *tag;
- if (dforw[nabor] < 0) {
- goto L100;
- }
- adjncy[rloc] = nabor;
- ++rloc;
- goto L200;
-L100:
- llist[nabor] = elmnt;
- elmnt = nabor;
-L200:
- ;
- }
-L300:
-/* ----------------------------------------------------- */
-/* MERGE WITH REACHABLE NODES FROM GENERALIZED ELEMENTS. */
-/* ----------------------------------------------------- */
- if (elmnt <= 0) {
- goto L1000;
- }
- adjncy[rlmt] = -elmnt;
- link = elmnt;
-L400:
- jstrt = xadj[link];
- jstop = xadj[link + 1] - 1;
- i__1 = jstop;
- for (j = jstrt; j <= i__1; ++j) {
- node = adjncy[j];
- link = -node;
- if (node < 0) {
- goto L400;
- } else if (node == 0) {
- goto L900;
- } else {
- goto L500;
- }
-L500:
- if (marker[node] >= *tag || dforw[node] < 0) {
- goto L800;
- }
- marker[node] = *tag;
-/* --------------------------------- */
-/* USE STORAGE FROM ELIMINATED NODES */
-/* IF NECESSARY. */
-/* --------------------------------- */
-L600:
- if (rloc < rlmt) {
- goto L700;
- }
- link = -adjncy[rlmt];
- rloc = xadj[link];
- rlmt = xadj[link + 1] - 1;
- goto L600;
-L700:
- adjncy[rloc] = node;
- ++rloc;
-L800:
- ;
- }
-L900:
- elmnt = llist[elmnt];
- goto L300;
-L1000:
- if (rloc <= rlmt) {
- adjncy[rloc] = 0;
- }
-/* -------------------------------------------------------- */
-/* FOR EACH NODE IN THE REACHABLE SET, DO THE FOLLOWING ... */
-/* -------------------------------------------------------- */
- link = *mdnode;
-L1100:
- istrt = xadj[link];
- istop = xadj[link + 1] - 1;
- i__1 = istop;
- for (i = istrt; i <= i__1; ++i) {
- rnode = adjncy[i];
- link = -rnode;
- if (rnode < 0) {
- goto L1100;
- } else if (rnode == 0) {
- goto L1800;
- } else {
- goto L1200;
- }
-L1200:
-/* -------------------------------------------- */
-/* IF RNODE IS IN THE DEGREE LIST STRUCTURE ... */
-/* -------------------------------------------- */
- pvnode = dbakw[rnode];
- if (pvnode == 0 || pvnode == -(*maxint)) {
- goto L1300;
- }
-/* ------------------------------------- */
-/* THEN REMOVE RNODE FROM THE STRUCTURE. */
-/* ------------------------------------- */
- nxnode = dforw[rnode];
- if (nxnode > 0) {
- dbakw[nxnode] = pvnode;
- }
- if (pvnode > 0) {
- dforw[pvnode] = nxnode;
- }
- npv = -pvnode;
- if (pvnode < 0) {
- dhead[npv] = nxnode;
- }
-L1300:
-/* ---------------------------------------- */
-/* PURGE INACTIVE QUOTIENT NABORS OF RNODE. */
-/* ---------------------------------------- */
- jstrt = xadj[rnode];
- jstop = xadj[rnode + 1] - 1;
- xqnbr = jstrt;
- i__2 = jstop;
- for (j = jstrt; j <= i__2; ++j) {
- nabor = adjncy[j];
- if (nabor == 0) {
- goto L1500;
- }
- if (marker[nabor] >= *tag) {
- goto L1400;
- }
- adjncy[xqnbr] = nabor;
- ++xqnbr;
-L1400:
- ;
- }
-L1500:
-/* ---------------------------------------- */
-/* IF NO ACTIVE NABOR AFTER THE PURGING ... */
-/* ---------------------------------------- */
- nqnbrs = xqnbr - jstrt;
- if (nqnbrs > 0) {
- goto L1600;
- }
-/* ----------------------------- */
-/* THEN MERGE RNODE WITH MDNODE. */
-/* ----------------------------- */
- qsize[*mdnode] += qsize[rnode];
- qsize[rnode] = 0;
- marker[rnode] = *maxint;
- dforw[rnode] = -(*mdnode);
- dbakw[rnode] = -(*maxint);
- goto L1700;
-L1600:
-/* -------------------------------------- */
-/* ELSE FLAG RNODE FOR DEGREE UPDATE, AND */
-/* ADD MDNODE AS A NABOR OF RNODE. */
-/* -------------------------------------- */
- dforw[rnode] = nqnbrs + 1;
- dbakw[rnode] = 0;
- adjncy[xqnbr] = *mdnode;
- ++xqnbr;
- if (xqnbr <= jstop) {
- adjncy[xqnbr] = 0;
- }
-
-L1700:
- ;
- }
-L1800:
- return 0;
-
-} /* mmdelm_ */
-
-/* *************************************************************** */
-/* *************************************************************** */
-/* ***** MMDUPD ..... MULTIPLE MINIMUM DEGREE UPDATE ***** */
-/* *************************************************************** */
-/* *************************************************************** */
-
-/* AUTHOR - JOSEPH W.H. LIU */
-/* DEPT OF COMPUTER SCIENCE, YORK UNIVERSITY. */
-
-/* PURPOSE - THIS ROUTINE UPDATES THE DEGREES OF NODES */
-/* AFTER A MULTIPLE ELIMINATION STEP. */
-
-/* INPUT PARAMETERS - */
-/* EHEAD - THE BEGINNING OF THE LIST OF ELIMINATED */
-/* NODES (I.E., NEWLY FORMED ELEMENTS). */
-/* NEQNS - NUMBER OF EQUATIONS. */
-/* (XADJ,ADJNCY) - ADJACENCY STRUCTURE. */
-/* DELTA - TOLERANCE VALUE FOR MULTIPLE ELIMINATION. */
-/* MAXINT - MAXIMUM MACHINE REPRESENTABLE (SHORT) */
-/* INTEGER. */
-
-/* UPDATED PARAMETERS - */
-/* MDEG - NEW MINIMUM DEGREE AFTER DEGREE UPDATE. */
-/* (DHEAD,DFORW,DBAKW) - DEGREE DOUBLY LINKED STRUCTURE. */
-/* QSIZE - SIZE OF SUPERNODE. */
-/* LLIST - WORKING LINKED LIST. */
-/* MARKER - MARKER VECTOR FOR DEGREE UPDATE. */
-/* TAG - TAG VALUE. */
-
-/* *************************************************************** */
-
-/* Subroutine */ int mmdupd_(int *ehead, int *neqns, int *xadj,
- shortint *adjncy, int *delta, int *mdeg, shortint *dhead,
- shortint *dforw, shortint *dbakw, shortint *qsize, shortint *llist,
- shortint *marker, int *maxint, int *tag)
-{
- /* System generated locals */
- int i__1, i__2;
-
- /* Local variables */
- static int node, mtag, link, mdeg0, i, j, enode, fnode, nabor, elmnt,
- istop, jstop, q2head, istrt, jstrt, qxhead, iq2, deg, deg0;
-
-
-/* *************************************************************** */
-
-
-/* *************************************************************** */
-
- /* Parameter adjustments */
- --marker;
- --llist;
- --qsize;
- --dbakw;
- --dforw;
- --dhead;
- --adjncy;
- --xadj;
-
- /* Function Body */
- mdeg0 = *mdeg + *delta;
- elmnt = *ehead;
-L100:
-/* ------------------------------------------------------- */
-/* FOR EACH OF THE NEWLY FORMED ELEMENT, DO THE FOLLOWING. */
-/* (RESET TAG VALUE IF NECESSARY.) */
-/* ------------------------------------------------------- */
- if (elmnt <= 0) {
- return 0;
- }
- mtag = *tag + mdeg0;
- if (mtag < *maxint) {
- goto L300;
- }
- *tag = 1;
- i__1 = *neqns;
- for (i = 1; i <= i__1; ++i) {
- if (marker[i] < *maxint) {
- marker[i] = 0;
- }
-/* L200: */
- }
- mtag = *tag + mdeg0;
-L300:
-/* --------------------------------------------- */
-/* CREATE TWO LINKED LISTS FROM NODES ASSOCIATED */
-/* WITH ELMNT: ONE WITH TWO NABORS (Q2HEAD) IN */
-/* ADJACENCY STRUCTURE, AND THE OTHER WITH MORE */
-/* THAN TWO NABORS (QXHEAD). ALSO COMPUTE DEG0, */
-/* NUMBER OF NODES IN THIS ELEMENT. */
-/* --------------------------------------------- */
- q2head = 0;
- qxhead = 0;
- deg0 = 0;
- link = elmnt;
-L400:
- istrt = xadj[link];
- istop = xadj[link + 1] - 1;
- i__1 = istop;
- for (i = istrt; i <= i__1; ++i) {
- enode = adjncy[i];
- link = -enode;
- if (enode < 0) {
- goto L400;
- } else if (enode == 0) {
- goto L800;
- } else {
- goto L500;
- }
-
-L500:
- if (qsize[enode] == 0) {
- goto L700;
- }
- deg0 += qsize[enode];
- marker[enode] = mtag;
-/* ---------------------------------- */
-/* IF ENODE REQUIRES A DEGREE UPDATE, */
-/* THEN DO THE FOLLOWING. */
-/* ---------------------------------- */
- if (dbakw[enode] != 0) {
- goto L700;
- }
-/* ---------------------------------------
-*/
-/* PLACE EITHER IN QXHEAD OR Q2HEAD LISTS.
-*/
-/* ---------------------------------------
-*/
- if (dforw[enode] == 2) {
- goto L600;
- }
- llist[enode] = qxhead;
- qxhead = enode;
- goto L700;
-L600:
- llist[enode] = q2head;
- q2head = enode;
-L700:
- ;
- }
-L800:
-/* -------------------------------------------- */
-/* FOR EACH ENODE IN Q2 LIST, DO THE FOLLOWING. */
-/* -------------------------------------------- */
- enode = q2head;
- iq2 = 1;
-L900:
- if (enode <= 0) {
- goto L1500;
- }
- if (dbakw[enode] != 0) {
- goto L2200;
- }
- ++(*tag);
- deg = deg0;
-/* ------------------------------------------ */
-/* IDENTIFY THE OTHER ADJACENT ELEMENT NABOR. */
-/* ------------------------------------------ */
- istrt = xadj[enode];
- nabor = adjncy[istrt];
- if (nabor == elmnt) {
- nabor = adjncy[istrt + 1];
- }
-/* ------------------------------------------------ */
-/* IF NABOR IS UNELIMINATED, INCREASE DEGREE COUNT. */
-/* ------------------------------------------------ */
- link = nabor;
- if (dforw[nabor] < 0) {
- goto L1000;
- }
- deg += qsize[nabor];
- goto L2100;
-L1000:
-/* -------------------------------------------- */
-/* OTHERWISE, FOR EACH NODE IN THE 2ND ELEMENT, */
-/* DO THE FOLLOWING. */
-/* -------------------------------------------- */
- istrt = xadj[link];
- istop = xadj[link + 1] - 1;
- i__1 = istop;
- for (i = istrt; i <= i__1; ++i) {
- node = adjncy[i];
- link = -node;
- if (node == enode) {
- goto L1400;
- }
- if (node < 0) {
- goto L1000;
- } else if (node == 0) {
- goto L2100;
- } else {
- goto L1100;
- }
-
-L1100:
- if (qsize[node] == 0) {
- goto L1400;
- }
- if (marker[node] >= *tag) {
- goto L1200;
- }
-/* -----------------------------------
--- */
-/* CASE WHEN NODE IS NOT YET CONSIDERED
-. */
-/* -----------------------------------
--- */
- marker[node] = *tag;
- deg += qsize[node];
- goto L1400;
-L1200:
-/* ----------------------------------------
- */
-/* CASE WHEN NODE IS INDISTINGUISHABLE FROM
- */
-/* ENODE. MERGE THEM INTO A NEW SUPERNODE.
- */
-/* ----------------------------------------
- */
- if (dbakw[node] != 0) {
- goto L1400;
- }
- if (dforw[node] != 2) {
- goto L1300;
- }
- qsize[enode] += qsize[node];
- qsize[node] = 0;
- marker[node] = *maxint;
- dforw[node] = -enode;
- dbakw[node] = -(*maxint);
- goto L1400;
-L1300:
-/* --------------------------------------
-*/
-/* CASE WHEN NODE IS OUTMATCHED BY ENODE.
-*/
-/* --------------------------------------
-*/
- if (dbakw[node] == 0) {
- dbakw[node] = -(*maxint);
- }
-L1400:
- ;
- }
- goto L2100;
-L1500:
-/* ------------------------------------------------ */
-/* FOR EACH ENODE IN THE QX LIST, DO THE FOLLOWING. */
-/* ------------------------------------------------ */
- enode = qxhead;
- iq2 = 0;
-L1600:
- if (enode <= 0) {
- goto L2300;
- }
- if (dbakw[enode] != 0) {
- goto L2200;
- }
- ++(*tag);
- deg = deg0;
-/* --------------------------------- */
-/* FOR EACH UNMARKED NABOR OF ENODE, */
-/* DO THE FOLLOWING. */
-/* --------------------------------- */
- istrt = xadj[enode];
- istop = xadj[enode + 1] - 1;
- i__1 = istop;
- for (i = istrt; i <= i__1; ++i) {
- nabor = adjncy[i];
- if (nabor == 0) {
- goto L2100;
- }
- if (marker[nabor] >= *tag) {
- goto L2000;
- }
- marker[nabor] = *tag;
- link = nabor;
-/* ------------------------------ */
-/* IF UNELIMINATED, INCLUDE IT IN */
-/* DEG COUNT. */
-/* ------------------------------ */
- if (dforw[nabor] < 0) {
- goto L1700;
- }
- deg += qsize[nabor];
- goto L2000;
-L1700:
-/* -------------------------------
-*/
-/* IF ELIMINATED, INCLUDE UNMARKED
-*/
-/* NODES IN THIS ELEMENT INTO THE
-*/
-/* DEGREE COUNT. */
-/* -------------------------------
-*/
- jstrt = xadj[link];
- jstop = xadj[link + 1] - 1;
- i__2 = jstop;
- for (j = jstrt; j <= i__2; ++j) {
- node = adjncy[j];
- link = -node;
- if (node < 0) {
- goto L1700;
- } else if (node == 0) {
- goto L2000;
- } else {
- goto L1800;
- }
-
-L1800:
- if (marker[node] >= *tag) {
- goto L1900;
- }
- marker[node] = *tag;
- deg += qsize[node];
-L1900:
- ;
- }
-L2000:
- ;
- }
-L2100:
-/* ------------------------------------------- */
-/* UPDATE EXTERNAL DEGREE OF ENODE IN DEGREE */
-/* STRUCTURE, AND MDEG (MIN DEG) IF NECESSARY. */
-/* ------------------------------------------- */
- deg = deg - qsize[enode] + 1;
- fnode = dhead[deg];
- dforw[enode] = fnode;
- dbakw[enode] = -deg;
- if (fnode > 0) {
- dbakw[fnode] = enode;
- }
- dhead[deg] = enode;
- if (deg < *mdeg) {
- *mdeg = deg;
- }
-L2200:
-/* ---------------------------------- */
-/* GET NEXT ENODE IN CURRENT ELEMENT. */
-/* ---------------------------------- */
- enode = llist[enode];
- if (iq2 == 1) {
- goto L900;
- }
- goto L1600;
-L2300:
-/* ----------------------------- */
-/* GET NEXT ELEMENT IN THE LIST. */
-/* ----------------------------- */
- *tag = mtag;
- elmnt = llist[elmnt];
- goto L100;
-
-} /* mmdupd_ */
-
-/* *************************************************************** */
-/* *************************************************************** */
-/* ***** MMDNUM ..... MULTI MINIMUM DEGREE NUMBERING ***** */
-/* *************************************************************** */
-/* *************************************************************** */
-
-/* AUTHOR - JOSEPH W.H. LIU */
-/* DEPT OF COMPUTER SCIENCE, YORK UNIVERSITY. */
-
-/* PURPOSE - THIS ROUTINE PERFORMS THE FINAL STEP IN */
-/* PRODUCING THE PERMUTATION AND INVERSE PERMUTATION */
-/* VECTORS IN THE MULTIPLE ELIMINATION VERSION OF THE */
-/* MINIMUM DEGREE ORDERING ALGORITHM. */
-
-/* INPUT PARAMETERS - */
-/* NEQNS - NUMBER OF EQUATIONS. */
-/* QSIZE - SIZE OF SUPERNODES AT ELIMINATION. */
-
-/* UPDATED PARAMETERS - */
-/* INVP - INVERSE PERMUTATION VECTOR. ON INPUT, */
-/* IF QSIZE(NODE)=0, THEN NODE HAS BEEN MERGED */
-/* INTO THE NODE -INVP(NODE); OTHERWISE, */
-/* -INVP(NODE) IS ITS INVERSE LABELLING. */
-
-/* OUTPUT PARAMETERS - */
-/* PERM - THE PERMUTATION VECTOR. */
-
-/* *************************************************************** */
-
-/* Subroutine */ int mmdnum_(int *neqns, shortint *perm, shortint *invp,
- shortint *qsize)
-{
- /* System generated locals */
- int i__1;
-
- /* Local variables */
- static int node, root, nextf, father, nqsize, num;
-
-
-/* *************************************************************** */
-
-
-/* *************************************************************** */
-
- /* Parameter adjustments */
- --qsize;
- --invp;
- --perm;
-
- /* Function Body */
- i__1 = *neqns;
- for (node = 1; node <= i__1; ++node) {
- nqsize = qsize[node];
- if (nqsize <= 0) {
- perm[node] = invp[node];
- }
- if (nqsize > 0) {
- perm[node] = -invp[node];
- }
-/* L100: */
- }
-/* ------------------------------------------------------ */
-/* FOR EACH NODE WHICH HAS BEEN MERGED, DO THE FOLLOWING. */
-/* ------------------------------------------------------ */
- i__1 = *neqns;
- for (node = 1; node <= i__1; ++node) {
- if (perm[node] > 0) {
- goto L500;
- }
-/* ----------------------------------------- */
-/* TRACE THE MERGED TREE UNTIL ONE WHICH HAS */
-/* NOT BEEN MERGED, CALL IT ROOT. */
-/* ----------------------------------------- */
- father = node;
-L200:
- if (perm[father] > 0) {
- goto L300;
- }
- father = -perm[father];
- goto L200;
-L300:
-/* ----------------------- */
-/* NUMBER NODE AFTER ROOT. */
-/* ----------------------- */
- root = father;
- num = perm[root] + 1;
- invp[node] = -num;
- perm[root] = num;
-/* ------------------------ */
-/* SHORTEN THE MERGED TREE. */
-/* ------------------------ */
- father = node;
-L400:
- nextf = -perm[father];
- if (nextf <= 0) {
- goto L500;
- }
- perm[father] = -root;
- father = nextf;
- goto L400;
-L500:
- ;
- }
-/* ---------------------- */
-/* READY TO COMPUTE PERM. */
-/* ---------------------- */
- i__1 = *neqns;
- for (node = 1; node <= i__1; ++node) {
- num = -invp[node];
- invp[node] = num;
- perm[num] = node;
-/* L600: */
- }
- return 0;
-
-} /* mmdnum_ */
-
diff --git a/intern/opennl/superlu/relax_snode.c b/intern/opennl/superlu/relax_snode.c
deleted file mode 100644
index 4a9265e0fde..00000000000
--- a/intern/opennl/superlu/relax_snode.c
+++ /dev/null
@@ -1,74 +0,0 @@
-/** \file opennl/superlu/relax_snode.c
- * \ingroup opennl
- */
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-
-void
-relax_snode (
- const int n,
- int *et, /* column elimination tree */
- const int relax_columns, /* max no of columns allowed in a
- relaxed snode */
- int *descendants, /* no of descendants of each node
- in the etree */
- int *relax_end /* last column in a supernode */
- )
-{
-/*
- * Purpose
- * =======
- * relax_snode() - Identify the initial relaxed supernodes, assuming that
- * the matrix has been reordered according to the postorder of the etree.
- *
- */
- register int j, parent;
- register int snode_start; /* beginning of a snode */
-
- ifill (relax_end, n, EMPTY);
- for (j = 0; j < n; j++) descendants[j] = 0;
-
- /* Compute the number of descendants of each node in the etree */
- for (j = 0; j < n; j++) {
- parent = et[j];
- if ( parent != n ) /* not the dummy root */
- descendants[parent] += descendants[j] + 1;
- }
-
- /* Identify the relaxed supernodes by postorder traversal of the etree. */
- for (j = 0; j < n; ) {
- parent = et[j];
- snode_start = j;
- while ( parent != n && descendants[parent] < relax_columns ) {
- j = parent;
- parent = et[j];
- }
- /* Found a supernode with j being the last column. */
- relax_end[snode_start] = j; /* Last column is recorded */
- j++;
- /* Search for a new leaf */
- while ( j < n && descendants[j] != 0 ) j++;
- }
-
- /*printf("No of relaxed snodes: %d; relaxed columns: %d\n",
- nsuper, no_relaxed_col); */
-}
diff --git a/intern/opennl/superlu/scolumn_bmod.c b/intern/opennl/superlu/scolumn_bmod.c
deleted file mode 100644
index 9854115b894..00000000000
--- a/intern/opennl/superlu/scolumn_bmod.c
+++ /dev/null
@@ -1,355 +0,0 @@
-/** \file opennl/superlu/scolumn_bmod.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include "ssp_defs.h"
-
-/*
- * Function prototypes
- */
-void susolve(int, int, double*, double*);
-void slsolve(int, int, double*, double*);
-void smatvec(int, int, int, double*, double*, double*);
-
-
-
-/* Return value: 0 - successful return
- * > 0 - number of bytes allocated when run out of space
- */
-int
-scolumn_bmod (
- const int jcol, /* in */
- const int nseg, /* in */
- double *dense, /* in */
- double *tempv, /* working array */
- int *segrep, /* in */
- int *repfnz, /* in */
- int fpanelc, /* in -- first column in the current panel */
- GlobalLU_t *Glu, /* modified */
- SuperLUStat_t *stat /* output */
- )
-{
-/*
- * Purpose:
- * ========
- * Performs numeric block updates (sup-col) in topological order.
- * It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
- * Special processing on the supernodal portion of L\U[*,j]
- *
- */
-#ifdef _CRAY
- _fcd ftcs1 = _cptofcd("L", strlen("L")),
- ftcs2 = _cptofcd("N", strlen("N")),
- ftcs3 = _cptofcd("U", strlen("U"));
-#endif
-
-#ifdef USE_VENDOR_BLAS
- int incx = 1, incy = 1;
- double alpha, beta;
-#endif
-
- /* krep = representative of current k-th supernode
- * fsupc = first supernodal column
- * nsupc = no of columns in supernode
- * nsupr = no of rows in supernode (used as leading dimension)
- * luptr = location of supernodal LU-block in storage
- * kfnz = first nonz in the k-th supernodal segment
- * no_zeros = no of leading zeros in a supernodal U-segment
- */
- double ukj, ukj1, ukj2;
- int luptr, luptr1, luptr2;
- int fsupc, nsupc, nsupr, segsze;
- int nrow; /* No of rows in the matrix of matrix-vector */
- int jcolp1, jsupno, k, ksub, krep, krep_ind, ksupno;
- register int lptr, kfnz, isub, irow, i;
- register int no_zeros, new_next;
- int ufirst, nextlu;
- int fst_col; /* First column within small LU update */
- int d_fsupc; /* Distance between the first column of the current
- panel and the first column of the current snode. */
- int *xsup, *supno;
- int *lsub, *xlsub;
- double *lusup;
- int *xlusup;
- int nzlumax;
- double *tempv1;
- double zero = 0.0;
-#ifdef USE_VENDOR_BLAS
- double one = 1.0;
- double none = -1.0;
-#endif
- int mem_error;
- flops_t *ops = stat->ops;
-
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- lusup = Glu->lusup;
- xlusup = Glu->xlusup;
- nzlumax = Glu->nzlumax;
- jcolp1 = jcol + 1;
- jsupno = supno[jcol];
-
- /*
- * For each nonz supernode segment of U[*,j] in topological order
- */
- k = nseg - 1;
- for (ksub = 0; ksub < nseg; ksub++) {
-
- krep = segrep[k];
- k--;
- ksupno = supno[krep];
- if ( jsupno != ksupno ) { /* Outside the rectangular supernode */
-
- fsupc = xsup[ksupno];
- fst_col = SUPERLU_MAX ( fsupc, fpanelc );
-
- /* Distance from the current supernode to the current panel;
- d_fsupc=0 if fsupc > fpanelc. */
- d_fsupc = fst_col - fsupc;
-
- luptr = xlusup[fst_col] + d_fsupc;
- lptr = xlsub[fsupc] + d_fsupc;
-
- kfnz = repfnz[krep];
- kfnz = SUPERLU_MAX ( kfnz, fpanelc );
-
- segsze = krep - kfnz + 1;
- nsupc = krep - fst_col + 1;
- nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
- nrow = nsupr - d_fsupc - nsupc;
- krep_ind = lptr + nsupc - 1;
-
- ops[TRSV] += segsze * (segsze - 1);
- ops[GEMV] += 2 * nrow * segsze;
-
-
- /*
- * Case 1: Update U-segment of size 1 -- col-col update
- */
- if ( segsze == 1 ) {
- ukj = dense[lsub[krep_ind]];
- luptr += nsupr*(nsupc-1) + nsupc;
-
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
- irow = lsub[i];
- dense[irow] -= ukj*lusup[luptr];
- luptr++;
- }
-
- } else if ( segsze <= 3 ) {
- ukj = dense[lsub[krep_ind]];
- luptr += nsupr*(nsupc-1) + nsupc-1;
- ukj1 = dense[lsub[krep_ind - 1]];
- luptr1 = luptr - nsupr;
-
- if ( segsze == 2 ) { /* Case 2: 2cols-col update */
- ukj -= ukj1 * lusup[luptr1];
- dense[lsub[krep_ind]] = ukj;
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
- irow = lsub[i];
- luptr++;
- luptr1++;
- dense[irow] -= ( ukj*lusup[luptr]
- + ukj1*lusup[luptr1] );
- }
- } else { /* Case 3: 3cols-col update */
- ukj2 = dense[lsub[krep_ind - 2]];
- luptr2 = luptr1 - nsupr;
- ukj1 -= ukj2 * lusup[luptr2-1];
- ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2];
- dense[lsub[krep_ind]] = ukj;
- dense[lsub[krep_ind-1]] = ukj1;
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
- irow = lsub[i];
- luptr++;
- luptr1++;
- luptr2++;
- dense[irow] -= ( ukj*lusup[luptr]
- + ukj1*lusup[luptr1] + ukj2*lusup[luptr2] );
- }
- }
-
-
-
- } else {
- /*
- * Case: sup-col update
- * Perform a triangular solve and block update,
- * then scatter the result of sup-col update to dense
- */
-
- no_zeros = kfnz - fst_col;
-
- /* Copy U[*,j] segment from dense[*] to tempv[*] */
- isub = lptr + no_zeros;
- for (i = 0; i < segsze; i++) {
- irow = lsub[isub];
- tempv[i] = dense[irow];
- ++isub;
- }
-
- /* Dense triangular solve -- start effective triangle */
- luptr += nsupr * no_zeros + no_zeros;
-
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
- &nsupr, tempv, &incx );
-#else
- strsv_( "L", "N", "U", &segsze, &lusup[luptr],
- &nsupr, tempv, &incx );
-#endif
- luptr += segsze; /* Dense matrix-vector */
- tempv1 = &tempv[segsze];
- alpha = one;
- beta = zero;
-#ifdef _CRAY
- SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr],
- &nsupr, tempv, &incx, &beta, tempv1, &incy );
-#else
- sgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr],
- &nsupr, tempv, &incx, &beta, tempv1, &incy );
-#endif
-#else
- slsolve ( nsupr, segsze, &lusup[luptr], tempv );
-
- luptr += segsze; /* Dense matrix-vector */
- tempv1 = &tempv[segsze];
- smatvec (nsupr, nrow , segsze, &lusup[luptr], tempv, tempv1);
-#endif
-
-
- /* Scatter tempv[] into SPA dense[] as a temporary storage */
- isub = lptr + no_zeros;
- for (i = 0; i < segsze; i++) {
- irow = lsub[isub];
- dense[irow] = tempv[i];
- tempv[i] = zero;
- ++isub;
- }
-
- /* Scatter tempv1[] into SPA dense[] */
- for (i = 0; i < nrow; i++) {
- irow = lsub[isub];
- dense[irow] -= tempv1[i];
- tempv1[i] = zero;
- ++isub;
- }
- }
-
- } /* if jsupno ... */
-
- } /* for each segment... */
-
- /*
- * Process the supernodal portion of L\U[*,j]
- */
- nextlu = xlusup[jcol];
- fsupc = xsup[jsupno];
-
- /* Copy the SPA dense into L\U[*,j] */
- new_next = nextlu + xlsub[fsupc+1] - xlsub[fsupc];
- while ( new_next > nzlumax ) {
- if ((mem_error = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu)))
- return (mem_error);
- lusup = Glu->lusup;
- lsub = Glu->lsub;
- }
-
- for (isub = xlsub[fsupc]; isub < xlsub[fsupc+1]; isub++) {
- irow = lsub[isub];
- lusup[nextlu] = dense[irow];
- dense[irow] = zero;
- ++nextlu;
- }
-
- xlusup[jcolp1] = nextlu; /* Close L\U[*,jcol] */
-
- /* For more updates within the panel (also within the current supernode),
- * should start from the first column of the panel, or the first column
- * of the supernode, whichever is bigger. There are 2 cases:
- * 1) fsupc < fpanelc, then fst_col := fpanelc
- * 2) fsupc >= fpanelc, then fst_col := fsupc
- */
- fst_col = SUPERLU_MAX ( fsupc, fpanelc );
-
- if ( fst_col < jcol ) {
-
- /* Distance between the current supernode and the current panel.
- d_fsupc=0 if fsupc >= fpanelc. */
- d_fsupc = fst_col - fsupc;
-
- luptr = xlusup[fst_col] + d_fsupc;
- nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
- nsupc = jcol - fst_col; /* Excluding jcol */
- nrow = nsupr - d_fsupc - nsupc;
-
- /* Points to the beginning of jcol in snode L\U(jsupno) */
- ufirst = xlusup[jcol] + d_fsupc;
-
- ops[TRSV] += nsupc * (nsupc - 1);
- ops[GEMV] += 2 * nrow * nsupc;
-
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr],
- &nsupr, &lusup[ufirst], &incx );
-#else
- strsv_( "L", "N", "U", &nsupc, &lusup[luptr],
- &nsupr, &lusup[ufirst], &incx );
-#endif
-
- alpha = none; beta = one; /* y := beta*y + alpha*A*x */
-
-#ifdef _CRAY
- SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
- &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
-#else
- sgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
- &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
-#endif
-#else
- slsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] );
-
- smatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc],
- &lusup[ufirst], tempv );
-
- /* Copy updates from tempv[*] into lusup[*] */
- isub = ufirst + nsupc;
- for (i = 0; i < nrow; i++) {
- lusup[isub] -= tempv[i];
- tempv[i] = 0.0;
- ++isub;
- }
-
-#endif
-
-
- } /* if fst_col < jcol ... */
-
- return 0;
-}
diff --git a/intern/opennl/superlu/scolumn_dfs.c b/intern/opennl/superlu/scolumn_dfs.c
deleted file mode 100644
index 8f7da485a86..00000000000
--- a/intern/opennl/superlu/scolumn_dfs.c
+++ /dev/null
@@ -1,273 +0,0 @@
-/** \file opennl/superlu/scolumn_dfs.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-
-/* What type of supernodes we want */
-#define T2_SUPER
-
-int
-scolumn_dfs(
- const int m, /* in - number of rows in the matrix */
- const int jcol, /* in */
- int *perm_r, /* in */
- int *nseg, /* modified - with new segments appended */
- int *lsub_col, /* in - defines the RHS vector to start the dfs */
- int *segrep, /* modified - with new segments appended */
- int *repfnz, /* modified */
- int *xprune, /* modified */
- int *marker, /* modified */
- int *parent, /* working array */
- int *xplore, /* working array */
- GlobalLU_t *Glu /* modified */
- )
-{
-/*
- * Purpose
- * =======
- * "column_dfs" performs a symbolic factorization on column jcol, and
- * decide the supernode boundary.
- *
- * This routine does not use numeric values, but only use the RHS
- * row indices to start the dfs.
- *
- * A supernode representative is the last column of a supernode.
- * The nonzeros in U[*,j] are segments that end at supernodal
- * representatives. The routine returns a list of such supernodal
- * representatives in topological order of the dfs that generates them.
- * The location of the first nonzero in each such supernodal segment
- * (supernodal entry location) is also returned.
- *
- * Local parameters
- * ================
- * nseg: no of segments in current U[*,j]
- * jsuper: jsuper=EMPTY if column j does not belong to the same
- * supernode as j-1. Otherwise, jsuper=nsuper.
- *
- * marker2: A-row --> A-row/col (0/1)
- * repfnz: SuperA-col --> PA-row
- * parent: SuperA-col --> SuperA-col
- * xplore: SuperA-col --> index to L-structure
- *
- * Return value
- * ============
- * 0 success;
- * > 0 number of bytes allocated when run out of space.
- *
- */
- int jcolp1, jcolm1, jsuper, nsuper, nextl;
- int k, krep, krow, kmark, kperm;
- int *marker2; /* Used for small panel LU */
- int fsupc; /* First column of a snode */
- int myfnz; /* First nonz column of a U-segment */
- int chperm, chmark, chrep, kchild;
- int xdfs, maxdfs, kpar, oldrep;
- int jptr, jm1ptr;
- int ito, ifrom, istop; /* Used to compress row subscripts */
- int mem_error;
- int *xsup, *supno, *lsub, *xlsub;
- int nzlmax;
- static int first = 1, maxsuper;
-
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- nzlmax = Glu->nzlmax;
-
- if ( first ) {
- maxsuper = sp_ienv(3);
- first = 0;
- }
- jcolp1 = jcol + 1;
- jcolm1 = jcol - 1;
- nsuper = supno[jcol];
- jsuper = nsuper;
- nextl = xlsub[jcol];
- marker2 = &marker[2*m];
-
-
- /* For each nonzero in A[*,jcol] do dfs */
- for (k = 0; lsub_col[k] != EMPTY; k++) {
-
- krow = lsub_col[k];
- lsub_col[k] = EMPTY;
- kmark = marker2[krow];
-
- /* krow was visited before, go to the next nonz */
- if ( kmark == jcol ) continue;
-
- /* For each unmarked nbr krow of jcol
- * krow is in L: place it in structure of L[*,jcol]
- */
- marker2[krow] = jcol;
- kperm = perm_r[krow];
-
- if ( kperm == EMPTY ) {
- lsub[nextl++] = krow; /* krow is indexed into A */
- if ( nextl >= nzlmax ) {
- if ((mem_error = sLUMemXpand(jcol, nextl, LSUB, &nzlmax, Glu)))
- return (mem_error);
- lsub = Glu->lsub;
- }
- if ( kmark != jcolm1 ) jsuper = EMPTY;/* Row index subset testing */
- } else {
- /* krow is in U: if its supernode-rep krep
- * has been explored, update repfnz[*]
- */
- krep = xsup[supno[kperm]+1] - 1;
- myfnz = repfnz[krep];
-
- if ( myfnz != EMPTY ) { /* Visited before */
- if ( myfnz > kperm ) repfnz[krep] = kperm;
- /* continue; */
- }
- else {
- /* Otherwise, perform dfs starting at krep */
- oldrep = EMPTY;
- parent[krep] = oldrep;
- repfnz[krep] = kperm;
- xdfs = xlsub[krep];
- maxdfs = xprune[krep];
-
- do {
- /*
- * For each unmarked kchild of krep
- */
- while ( xdfs < maxdfs ) {
-
- kchild = lsub[xdfs];
- xdfs++;
- chmark = marker2[kchild];
-
- if ( chmark != jcol ) { /* Not reached yet */
- marker2[kchild] = jcol;
- chperm = perm_r[kchild];
-
- /* Case kchild is in L: place it in L[*,k] */
- if ( chperm == EMPTY ) {
- lsub[nextl++] = kchild;
- if ( nextl >= nzlmax ) {
- if ((mem_error =
- sLUMemXpand(jcol,nextl,LSUB,&nzlmax,Glu)))
- return (mem_error);
- lsub = Glu->lsub;
- }
- if ( chmark != jcolm1 ) jsuper = EMPTY;
- } else {
- /* Case kchild is in U:
- * chrep = its supernode-rep. If its rep has
- * been explored, update its repfnz[*]
- */
- chrep = xsup[supno[chperm]+1] - 1;
- myfnz = repfnz[chrep];
- if ( myfnz != EMPTY ) { /* Visited before */
- if ( myfnz > chperm )
- repfnz[chrep] = chperm;
- } else {
- /* Continue dfs at super-rep of kchild */
- xplore[krep] = xdfs;
- oldrep = krep;
- krep = chrep; /* Go deeper down G(L^t) */
- parent[krep] = oldrep;
- repfnz[krep] = chperm;
- xdfs = xlsub[krep];
- maxdfs = xprune[krep];
- } /* else */
-
- } /* else */
-
- } /* if */
-
- } /* while */
-
- /* krow has no more unexplored nbrs;
- * place supernode-rep krep in postorder DFS.
- * backtrack dfs to its parent
- */
- segrep[*nseg] = krep;
- ++(*nseg);
- kpar = parent[krep]; /* Pop from stack, mimic recursion */
- if ( kpar == EMPTY ) break; /* dfs done */
- krep = kpar;
- xdfs = xplore[krep];
- maxdfs = xprune[krep];
-
- } while ( kpar != EMPTY ); /* Until empty stack */
-
- } /* else */
-
- } /* else */
-
- } /* for each nonzero ... */
-
- /* Check to see if j belongs in the same supernode as j-1 */
- if ( jcol == 0 ) { /* Do nothing for column 0 */
- nsuper = supno[0] = 0;
- } else {
- fsupc = xsup[nsuper];
- jptr = xlsub[jcol]; /* Not compressed yet */
- jm1ptr = xlsub[jcolm1];
-
-#ifdef T2_SUPER
- if ( (nextl-jptr != jptr-jm1ptr-1) ) jsuper = EMPTY;
-#endif
- /* Make sure the number of columns in a supernode doesn't
- exceed threshold. */
- if ( jcol - fsupc >= maxsuper ) jsuper = EMPTY;
-
- /* If jcol starts a new supernode, reclaim storage space in
- * lsub from the previous supernode. Note we only store
- * the subscript set of the first and last columns of
- * a supernode. (first for num values, last for pruning)
- */
- if ( jsuper == EMPTY ) { /* starts a new supernode */
- if ( (fsupc < jcolm1-1) ) { /* >= 3 columns in nsuper */
-#ifdef CHK_COMPRESS
- printf(" Compress lsub[] at super %d-%d\n", fsupc, jcolm1);
-#endif
- ito = xlsub[fsupc+1];
- xlsub[jcolm1] = ito;
- istop = ito + jptr - jm1ptr;
- xprune[jcolm1] = istop; /* Initialize xprune[jcol-1] */
- xlsub[jcol] = istop;
- for (ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito)
- lsub[ito] = lsub[ifrom];
- nextl = ito; /* = istop + length(jcol) */
- }
- nsuper++;
- supno[jcol] = nsuper;
- } /* if a new supernode */
-
- } /* else: jcol > 0 */
-
- /* Tidy up the pointers before exit */
- xsup[nsuper+1] = jcolp1;
- supno[jcolp1] = nsuper;
- xprune[jcol] = nextl; /* Initialize upper bound for pruning */
- xlsub[jcolp1] = nextl;
-
- return 0;
-}
diff --git a/intern/opennl/superlu/scopy_to_ucol.c b/intern/opennl/superlu/scopy_to_ucol.c
deleted file mode 100644
index 4cf7d64a349..00000000000
--- a/intern/opennl/superlu/scopy_to_ucol.c
+++ /dev/null
@@ -1,108 +0,0 @@
-/** \file opennl/superlu/scopy_to_ucol.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-#include "util.h"
-
-int
-scopy_to_ucol(
- int jcol, /* in */
- int nseg, /* in */
- int *segrep, /* in */
- int *repfnz, /* in */
- int *perm_r, /* in */
- double *dense, /* modified - reset to zero on return */
- GlobalLU_t *Glu /* modified */
- )
-{
-/*
- * Gather from SPA dense[*] to global ucol[*].
- */
- int ksub, krep, ksupno;
- int i, k, kfnz, segsze;
- int fsupc, isub, irow;
- int jsupno, nextu;
- int new_next, mem_error;
- int *xsup, *supno;
- int *lsub, *xlsub;
- double *ucol;
- int *usub, *xusub;
- int nzumax;
-
- double zero = 0.0;
-
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- ucol = Glu->ucol;
- usub = Glu->usub;
- xusub = Glu->xusub;
- nzumax = Glu->nzumax;
-
- jsupno = supno[jcol];
- nextu = xusub[jcol];
- k = nseg - 1;
- for (ksub = 0; ksub < nseg; ksub++) {
- krep = segrep[k--];
- ksupno = supno[krep];
-
- if ( ksupno != jsupno ) { /* Should go into ucol[] */
- kfnz = repfnz[krep];
- if ( kfnz != EMPTY ) { /* Nonzero U-segment */
-
- fsupc = xsup[ksupno];
- isub = xlsub[fsupc] + kfnz - fsupc;
- segsze = krep - kfnz + 1;
-
- new_next = nextu + segsze;
- while ( new_next > nzumax ) {
- if ((mem_error = sLUMemXpand(jcol, nextu, UCOL, &nzumax, Glu)))
- return (mem_error);
- ucol = Glu->ucol;
- if ((mem_error = sLUMemXpand(jcol, nextu, USUB, &nzumax, Glu)))
- return (mem_error);
- usub = Glu->usub;
- lsub = Glu->lsub;
- }
-
- for (i = 0; i < segsze; i++) {
- irow = lsub[isub];
- usub[nextu] = perm_r[irow];
- ucol[nextu] = dense[irow];
- dense[irow] = zero;
- nextu++;
- isub++;
- }
-
- }
-
- }
-
- } /* for each segment... */
-
- xusub[jcol + 1] = nextu; /* Close U[*,jcol] */
- return 0;
-}
diff --git a/intern/opennl/superlu/sgssv.c b/intern/opennl/superlu/sgssv.c
deleted file mode 100644
index b2a9848e597..00000000000
--- a/intern/opennl/superlu/sgssv.c
+++ /dev/null
@@ -1,224 +0,0 @@
-/** \file opennl/superlu/sgssv.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-#include "ssp_defs.h"
-
-void
-sgssv(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
- SuperMatrix *L, SuperMatrix *U, SuperMatrix *B,
- SuperLUStat_t *stat, int *info )
-{
-/*
- * Purpose
- * =======
- *
- * SGSSV solves the system of linear equations A*X=B, using the
- * LU factorization from SGSTRF. It performs the following steps:
- *
- * 1. If A is stored column-wise (A->Stype = SLU_NC):
- *
- * 1.1. Permute the columns of A, forming A*Pc, where Pc
- * is a permutation matrix. For more details of this step,
- * see sp_preorder.c.
- *
- * 1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
- * by Gaussian elimination with partial pivoting.
- * L is unit lower triangular with offdiagonal entries
- * bounded by 1 in magnitude, and U is upper triangular.
- *
- * 1.3. Solve the system of equations A*X=B using the factored
- * form of A.
- *
- * 2. If A is stored row-wise (A->Stype = SLU_NR), apply the
- * above algorithm to the transpose of A:
- *
- * 2.1. Permute columns of transpose(A) (rows of A),
- * forming transpose(A)*Pc, where Pc is a permutation matrix.
- * For more details of this step, see sp_preorder.c.
- *
- * 2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
- * determined by Gaussian elimination with partial pivoting.
- * L is unit lower triangular with offdiagonal entries
- * bounded by 1 in magnitude, and U is upper triangular.
- *
- * 2.3. Solve the system of equations A*X=B using the factored
- * form of A.
- *
- * See supermatrix.h for the definition of 'SuperMatrix' structure.
- *
- * Arguments
- * =========
- *
- * options (input) superlu_options_t*
- * The structure defines the input parameters to control
- * how the LU decomposition will be performed and how the
- * system will be solved.
- *
- * A (input) SuperMatrix*
- * Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
- * of linear equations is A->nrow. Currently, the type of A can be:
- * Stype = SLU_NC or SLU_NR; Dtype = SLU_S; Mtype = SLU_GE.
- * In the future, more general A may be handled.
- *
- * perm_c (input/output) int*
- * If A->Stype = SLU_NC, column permutation vector of size A->ncol
- * which defines the permutation matrix Pc; perm_c[i] = j means
- * column i of A is in position j in A*Pc.
- * If A->Stype = SLU_NR, column permutation vector of size A->nrow
- * which describes permutation of columns of transpose(A)
- * (rows of A) as described above.
- *
- * If options->ColPerm = MY_PERMC or options->Fact = SamePattern or
- * options->Fact = SamePattern_SameRowPerm, it is an input argument.
- * On exit, perm_c may be overwritten by the product of the input
- * perm_c and a permutation that postorders the elimination tree
- * of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
- * is already in postorder.
- * Otherwise, it is an output argument.
- *
- * perm_r (input/output) int*
- * If A->Stype = SLU_NC, row permutation vector of size A->nrow,
- * which defines the permutation matrix Pr, and is determined
- * by partial pivoting. perm_r[i] = j means row i of A is in
- * position j in Pr*A.
- * If A->Stype = SLU_NR, permutation vector of size A->ncol, which
- * determines permutation of rows of transpose(A)
- * (columns of A) as described above.
- *
- * If options->RowPerm = MY_PERMR or
- * options->Fact = SamePattern_SameRowPerm, perm_r is an
- * input argument.
- * otherwise it is an output argument.
- *
- * L (output) SuperMatrix*
- * The factor L from the factorization
- * Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
- * Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
- * Uses compressed row subscripts storage for supernodes, i.e.,
- * L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
- *
- * U (output) SuperMatrix*
- * The factor U from the factorization
- * Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
- * Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
- * Uses column-wise storage scheme, i.e., U has types:
- * Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.
- *
- * B (input/output) SuperMatrix*
- * B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
- * On entry, the right hand side matrix.
- * On exit, the solution matrix if info = 0;
- *
- * stat (output) SuperLUStat_t*
- * Record the statistics on runtime and doubleing-point operation count.
- * See util.h for the definition of 'SuperLUStat_t'.
- *
- * info (output) int*
- * = 0: successful exit
- * > 0: if info = i, and i is
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
- * been completed, but the factor U is exactly singular,
- * so the solution could not be computed.
- * > A->ncol: number of bytes allocated when memory allocation
- * failure occurred, plus A->ncol.
- *
- */
- DNformat *Bstore;
- SuperMatrix *AA = NULL;/* A in SLU_NC format used by the factorization routine.*/
- SuperMatrix AC; /* Matrix postmultiplied by Pc */
- int lwork = 0, *etree, i;
-
- /* Set default values for some parameters */
- int panel_size; /* panel size */
- int relax; /* no of columns in a relaxed snodes */
- int permc_spec;
- trans_t trans = NOTRANS;
- double *utime;
- double t; /* Temporary time */
-
- /* Test the input parameters ... */
- *info = 0;
- Bstore = B->Store;
- if ( options->Fact != DOFACT ) *info = -1;
- else if ( A->nrow != A->ncol || A->nrow < 0 ||
- (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
- A->Dtype != SLU_S || A->Mtype != SLU_GE )
- *info = -2;
- else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
- B->Stype != SLU_DN || B->Dtype != SLU_S || B->Mtype != SLU_GE )
- *info = -7;
- if ( *info != 0 ) {
- i = -(*info);
- xerbla_("sgssv", &i);
- return;
- }
-
- utime = stat->utime;
-
- /* Convert A to SLU_NC format when necessary. */
- if ( A->Stype == SLU_NR ) {
- NRformat *Astore = A->Store;
- AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
- sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
- Astore->nzval, Astore->colind, Astore->rowptr,
- SLU_NC, A->Dtype, A->Mtype);
- trans = TRANS;
- } else {
- if ( A->Stype == SLU_NC ) AA = A;
- }
-
- t = SuperLU_timer_();
- /*
- * Get column permutation vector perm_c[], according to permc_spec:
- * permc_spec = NATURAL: natural ordering
- * permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
- * permc_spec = MMD_ATA: minimum degree on structure of A'*A
- * permc_spec = COLAMD: approximate minimum degree column ordering
- * permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
- */
- permc_spec = options->ColPerm;
- if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
- get_perm_c(permc_spec, AA, perm_c);
- utime[COLPERM] = SuperLU_timer_() - t;
-
- etree = intMalloc(A->ncol);
-
- t = SuperLU_timer_();
- sp_preorder(options, AA, perm_c, etree, &AC);
- utime[ETREE] = SuperLU_timer_() - t;
-
- panel_size = sp_ienv(1);
- relax = sp_ienv(2);
-
- /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n",
- relax, panel_size, sp_ienv(3), sp_ienv(4));*/
- t = SuperLU_timer_();
- /* Compute the LU factorization of A. */
- sgstrf(options, &AC, relax, panel_size,
- etree, NULL, lwork, perm_c, perm_r, L, U, stat, info);
- utime[FACT] = SuperLU_timer_() - t;
-
- t = SuperLU_timer_();
- if ( *info == 0 ) {
- /* Solve the system A*X=B, overwriting B with X. */
- sgstrs (trans, L, U, perm_c, perm_r, B, stat, info);
- }
- utime[SOLVE] = SuperLU_timer_() - t;
-
- SUPERLU_FREE (etree);
- Destroy_CompCol_Permuted(&AC);
- if ( A->Stype == SLU_NR ) {
- Destroy_SuperMatrix_Store(AA);
- SUPERLU_FREE(AA);
- }
-
-}
diff --git a/intern/opennl/superlu/sgstrf.c b/intern/opennl/superlu/sgstrf.c
deleted file mode 100644
index 78b1ba21865..00000000000
--- a/intern/opennl/superlu/sgstrf.c
+++ /dev/null
@@ -1,457 +0,0 @@
-/** \file opennl/superlu/sgstrf.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-
-void
-sgstrf (superlu_options_t *options, SuperMatrix *A,
- int relax, int panel_size, int *etree, void *work, int lwork,
- int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U,
- SuperLUStat_t *stat, int *info)
-{
-/*
- * Purpose
- * =======
- *
- * SGSTRF computes an LU factorization of a general sparse m-by-n
- * matrix A using partial pivoting with row interchanges.
- * The factorization has the form
- * Pr * A = L * U
- * where Pr is a row permutation matrix, L is lower triangular with unit
- * diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
- * triangular (upper trapezoidal if A->nrow < A->ncol).
- *
- * See supermatrix.h for the definition of 'SuperMatrix' structure.
- *
- * Arguments
- * =========
- *
- * options (input) superlu_options_t*
- * The structure defines the input parameters to control
- * how the LU decomposition will be performed.
- *
- * A (input) SuperMatrix*
- * Original matrix A, permuted by columns, of dimension
- * (A->nrow, A->ncol). The type of A can be:
- * Stype = SLU_NCP; Dtype = SLU_S; Mtype = SLU_GE.
- *
- * drop_tol (input) double (NOT IMPLEMENTED)
- * Drop tolerance parameter. At step j of the Gaussian elimination,
- * if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
- * 0 <= drop_tol <= 1. The default value of drop_tol is 0.
- *
- * relax (input) int
- * To control degree of relaxing supernodes. If the number
- * of nodes (columns) in a subtree of the elimination tree is less
- * than relax, this subtree is considered as one supernode,
- * regardless of the row structures of those columns.
- *
- * panel_size (input) int
- * A panel consists of at most panel_size consecutive columns.
- *
- * etree (input) int*, dimension (A->ncol)
- * Elimination tree of A'*A.
- * Note: etree is a vector of parent pointers for a forest whose
- * vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
- * On input, the columns of A should be permuted so that the
- * etree is in a certain postorder.
- *
- * work (input/output) void*, size (lwork) (in bytes)
- * User-supplied work space and space for the output data structures.
- * Not referenced if lwork = 0;
- *
- * lwork (input) int
- * Specifies the size of work array in bytes.
- * = 0: allocate space internally by system malloc;
- * > 0: use user-supplied work array of length lwork in bytes,
- * returns error if space runs out.
- * = -1: the routine guesses the amount of space needed without
- * performing the factorization, and returns it in
- * *info; no other side effects.
- *
- * perm_c (input) int*, dimension (A->ncol)
- * Column permutation vector, which defines the
- * permutation matrix Pc; perm_c[i] = j means column i of A is
- * in position j in A*Pc.
- * When searching for diagonal, perm_c[*] is applied to the
- * row subscripts of A, so that diagonal threshold pivoting
- * can find the diagonal of A, rather than that of A*Pc.
- *
- * perm_r (input/output) int*, dimension (A->nrow)
- * Row permutation vector which defines the permutation matrix Pr,
- * perm_r[i] = j means row i of A is in position j in Pr*A.
- * If options->Fact = SamePattern_SameRowPerm, the pivoting routine
- * will try to use the input perm_r, unless a certain threshold
- * criterion is violated. In that case, perm_r is overwritten by
- * a new permutation determined by partial pivoting or diagonal
- * threshold pivoting.
- * Otherwise, perm_r is output argument;
- *
- * L (output) SuperMatrix*
- * The factor L from the factorization Pr*A=L*U; use compressed row
- * subscripts storage for supernodes, i.e., L has type:
- * Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
- *
- * U (output) SuperMatrix*
- * The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
- * storage scheme, i.e., U has types: Stype = SLU_NC,
- * Dtype = SLU_S, Mtype = SLU_TRU.
- *
- * stat (output) SuperLUStat_t*
- * Record the statistics on runtime and doubleing-point operation count.
- * See util.h for the definition of 'SuperLUStat_t'.
- *
- * info (output) int*
- * = 0: successful exit
- * < 0: if info = -i, the i-th argument had an illegal value
- * > 0: if info = i, and i is
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
- * been completed, but the factor U is exactly singular,
- * and division by zero will occur if it is used to solve a
- * system of equations.
- * > A->ncol: number of bytes allocated when memory allocation
- * failure occurred, plus A->ncol. If lwork = -1, it is
- * the estimated amount of space needed, plus A->ncol.
- *
- * ======================================================================
- *
- * Local Working Arrays:
- * ======================
- * m = number of rows in the matrix
- * n = number of columns in the matrix
- *
- * xprune[0:n-1]: xprune[*] points to locations in subscript
- * vector lsub[*]. For column i, xprune[i] denotes the point where
- * structural pruning begins. I.e. only xlsub[i],..,xprune[i]-1 need
- * to be traversed for symbolic factorization.
- *
- * marker[0:3*m-1]: marker[i] = j means that node i has been
- * reached when working on column j.
- * Storage: relative to original row subscripts
- * NOTE: There are 3 of them: marker/marker1 are used for panel dfs,
- * see spanel_dfs.c; marker2 is used for inner-factorization,
- * see scolumn_dfs.c.
- *
- * parent[0:m-1]: parent vector used during dfs
- * Storage: relative to new row subscripts
- *
- * xplore[0:m-1]: xplore[i] gives the location of the next (dfs)
- * unexplored neighbor of i in lsub[*]
- *
- * segrep[0:nseg-1]: contains the list of supernodal representatives
- * in topological order of the dfs. A supernode representative is the
- * last column of a supernode.
- * The maximum size of segrep[] is n.
- *
- * repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a
- * supernodal representative r, repfnz[r] is the location of the first
- * nonzero in this segment. It is also used during the dfs: repfnz[r]>0
- * indicates the supernode r has been explored.
- * NOTE: There are W of them, each used for one column of a panel.
- *
- * panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below
- * the panel diagonal. These are filled in during spanel_dfs(), and are
- * used later in the inner LU factorization within the panel.
- * panel_lsub[]/dense[] pair forms the SPA data structure.
- * NOTE: There are W of them.
- *
- * dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
- * NOTE: there are W of them.
- *
- * tempv[0:*]: real temporary used for dense numeric kernels;
- * The size of this array is defined by NUM_TEMPV() in ssp_defs.h.
- *
- */
- /* Local working arrays */
- NCPformat *Astore;
- int *iperm_r = NULL; /* inverse of perm_r;
- used when options->Fact == SamePattern_SameRowPerm */
- int *iperm_c; /* inverse of perm_c */
- int *iwork;
- double *swork;
- int *segrep, *repfnz, *parent, *xplore;
- int *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
- int *xprune;
- int *marker;
- double *dense, *tempv;
- int *relax_end;
- double *a;
- int *asub;
- int *xa_begin, *xa_end;
- int *xsup, *supno;
- int *xlsub, *xlusup, *xusub;
- int nzlumax;
- static GlobalLU_t Glu; /* persistent to facilitate multiple factors. */
-
- /* Local scalars */
- fact_t fact = options->Fact;
- double diag_pivot_thresh = options->DiagPivotThresh;
- int pivrow; /* pivotal row number in the original matrix A */
- int nseg1; /* no of segments in U-column above panel row jcol */
- int nseg; /* no of segments in each U-column */
- register int jcol;
- register int kcol; /* end column of a relaxed snode */
- register int icol;
- register int i, k, jj, new_next, iinfo;
- int m, n, min_mn, jsupno, fsupc, nextlu, nextu;
- int w_def; /* upper bound on panel width */
- int usepr, iperm_r_allocated = 0;
- int nnzL, nnzU;
- int *panel_histo = stat->panel_histo;
- flops_t *ops = stat->ops;
-
- iinfo = 0;
- m = A->nrow;
- n = A->ncol;
- min_mn = SUPERLU_MIN(m, n);
- Astore = A->Store;
- a = Astore->nzval;
- asub = Astore->rowind;
- xa_begin = Astore->colbeg;
- xa_end = Astore->colend;
-
- /* Allocate storage common to the factor routines */
- *info = sLUMemInit(fact, work, lwork, m, n, Astore->nnz,
- panel_size, L, U, &Glu, &iwork, &swork);
- if ( *info ) return;
-
- xsup = Glu.xsup;
- supno = Glu.supno;
- xlsub = Glu.xlsub;
- xlusup = Glu.xlusup;
- xusub = Glu.xusub;
-
- SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
- &repfnz, &panel_lsub, &xprune, &marker);
- sSetRWork(m, panel_size, swork, &dense, &tempv);
-
- usepr = (fact == SamePattern_SameRowPerm);
- if ( usepr ) {
- /* Compute the inverse of perm_r */
- iperm_r = (int *) intMalloc(m);
- for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
- iperm_r_allocated = 1;
- }
- iperm_c = (int *) intMalloc(n);
- for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;
-
- /* Identify relaxed snodes */
- relax_end = (int *) intMalloc(n);
- if ( options->SymmetricMode == YES ) {
- heap_relax_snode(n, etree, relax, marker, relax_end);
- } else {
- relax_snode(n, etree, relax, marker, relax_end);
- }
-
- ifill (perm_r, m, EMPTY);
- ifill (marker, m * NO_MARKER, EMPTY);
- supno[0] = -1;
- xsup[0] = xlsub[0] = xusub[0] = xlusup[0] = 0;
- w_def = panel_size;
-
- /*
- * Work on one "panel" at a time. A panel is one of the following:
- * (a) a relaxed supernode at the bottom of the etree, or
- * (b) panel_size contiguous columns, defined by the user
- */
- for (jcol = 0; jcol < min_mn; ) {
-
- if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
- kcol = relax_end[jcol]; /* end of the relaxed snode */
- panel_histo[kcol-jcol+1]++;
-
- /* --------------------------------------
- * Factorize the relaxed supernode(jcol:kcol)
- * -------------------------------------- */
- /* Determine the union of the row structure of the snode */
- if ( (*info = ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
- xprune, marker, &Glu)) != 0 ) {
- if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
- SUPERLU_FREE (iperm_c);
- SUPERLU_FREE (relax_end);
- return;
- }
-
- nextu = xusub[jcol];
- nextlu = xlusup[jcol];
- jsupno = supno[jcol];
- fsupc = xsup[jsupno];
- new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
- nzlumax = Glu.nzlumax;
- while ( new_next > nzlumax ) {
- if ( (*info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu)) ) {
- if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
- SUPERLU_FREE (iperm_c);
- SUPERLU_FREE (relax_end);
- return;
- }
- }
-
- for (icol = jcol; icol<= kcol; icol++) {
- xusub[icol+1] = nextu;
-
- /* Scatter into SPA dense[*] */
- for (k = xa_begin[icol]; k < xa_end[icol]; k++)
- dense[asub[k]] = a[k];
-
- /* Numeric update within the snode */
- ssnode_bmod(icol, fsupc, dense, tempv, &Glu, stat);
-
- if ( (*info = spivotL(icol, diag_pivot_thresh, &usepr, perm_r,
- iperm_r, iperm_c, &pivrow, &Glu, stat)) )
- if ( iinfo == 0 ) iinfo = *info;
-
-#ifdef DEBUG
- sprint_lu_col("[1]: ", icol, pivrow, xprune, &Glu);
-#endif
-
- }
-
- jcol = icol;
-
- } else { /* Work on one panel of panel_size columns */
-
- /* Adjust panel_size so that a panel won't overlap with the next
- * relaxed snode.
- */
- panel_size = w_def;
- for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
- if ( relax_end[k] != EMPTY ) {
- panel_size = k - jcol;
- break;
- }
- if ( k == min_mn ) panel_size = min_mn - jcol;
- panel_histo[panel_size]++;
-
- /* symbolic factor on a panel of columns */
- spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
- dense, panel_lsub, segrep, repfnz, xprune,
- marker, parent, xplore, &Glu);
-
- /* numeric sup-panel updates in topological order */
- spanel_bmod(m, panel_size, jcol, nseg1, dense,
- tempv, segrep, repfnz, &Glu, stat);
-
- /* Sparse LU within the panel, and below panel diagonal */
- for ( jj = jcol; jj < jcol + panel_size; jj++) {
- k = (jj - jcol) * m; /* column index for w-wide arrays */
-
- nseg = nseg1; /* Begin after all the panel segments */
-
- if ((*info = scolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
- segrep, &repfnz[k], xprune, marker,
- parent, xplore, &Glu)) != 0) {
- if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
- SUPERLU_FREE (iperm_c);
- SUPERLU_FREE (relax_end);
- return;
- }
-
- /* Numeric updates */
- if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
- tempv, &segrep[nseg1], &repfnz[k],
- jcol, &Glu, stat)) != 0) {
- if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
- SUPERLU_FREE (iperm_c);
- SUPERLU_FREE (relax_end);
- return;
- }
-
- /* Copy the U-segments to ucol[*] */
- if ((*info = scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
- perm_r, &dense[k], &Glu)) != 0) {
- if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
- SUPERLU_FREE (iperm_c);
- SUPERLU_FREE (relax_end);
- return;
- }
-
- if ( (*info = spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
- iperm_r, iperm_c, &pivrow, &Glu, stat)) )
- if ( iinfo == 0 ) iinfo = *info;
-
- /* Prune columns (0:jj-1) using column jj */
- spruneL(jj, perm_r, pivrow, nseg, segrep,
- &repfnz[k], xprune, &Glu);
-
- /* Reset repfnz[] for this column */
- resetrep_col (nseg, segrep, &repfnz[k]);
-
-#ifdef DEBUG
- sprint_lu_col("[2]: ", jj, pivrow, xprune, &Glu);
-#endif
-
- }
-
- jcol += panel_size; /* Move to the next panel */
-
- } /* else */
-
- } /* for */
-
- *info = iinfo;
-
- if ( m > n ) {
- k = 0;
- for (i = 0; i < m; ++i)
- if ( perm_r[i] == EMPTY ) {
- perm_r[i] = n + k;
- ++k;
- }
- }
-
- countnz(min_mn, xprune, &nnzL, &nnzU, &Glu);
- fixupL(min_mn, perm_r, &Glu);
-
- sLUWorkFree(iwork, swork, &Glu); /* Free work space and compress storage */
-
- if ( fact == SamePattern_SameRowPerm ) {
- /* L and U structures may have changed due to possibly different
- pivoting, even though the storage is available.
- There could also be memory expansions, so the array locations
- may have changed, */
- ((SCformat *)L->Store)->nnz = nnzL;
- ((SCformat *)L->Store)->nsuper = Glu.supno[n];
- ((SCformat *)L->Store)->nzval = Glu.lusup;
- ((SCformat *)L->Store)->nzval_colptr = Glu.xlusup;
- ((SCformat *)L->Store)->rowind = Glu.lsub;
- ((SCformat *)L->Store)->rowind_colptr = Glu.xlsub;
- ((NCformat *)U->Store)->nnz = nnzU;
- ((NCformat *)U->Store)->nzval = Glu.ucol;
- ((NCformat *)U->Store)->rowind = Glu.usub;
- ((NCformat *)U->Store)->colptr = Glu.xusub;
- } else {
- sCreate_SuperNode_Matrix(L, A->nrow, A->ncol, nnzL, Glu.lusup,
- Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
- Glu.xsup, SLU_SC, SLU_S, SLU_TRLU);
- sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol,
- Glu.usub, Glu.xusub, SLU_NC, SLU_S, SLU_TRU);
- }
-
- ops[FACT] += ops[TRSV] + ops[GEMV];
-
- if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
- SUPERLU_FREE (iperm_c);
- SUPERLU_FREE (relax_end);
-}
diff --git a/intern/opennl/superlu/sgstrs.c b/intern/opennl/superlu/sgstrs.c
deleted file mode 100644
index 5387e319d99..00000000000
--- a/intern/opennl/superlu/sgstrs.c
+++ /dev/null
@@ -1,334 +0,0 @@
-/** \file opennl/superlu/sgstrs.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-
-
-/*
- * Function prototypes
- */
-void susolve(int, int, double*, double*);
-void slsolve(int, int, double*, double*);
-void smatvec(int, int, int, double*, double*, double*);
-void sprint_soln(int , double *);
-
-void
-sgstrs (trans_t trans, SuperMatrix *L, SuperMatrix *U,
- int *perm_c, int *perm_r, SuperMatrix *B,
- SuperLUStat_t *stat, int *info)
-{
-/*
- * Purpose
- * =======
- *
- * SGSTRS solves a system of linear equations A*X=B or A'*X=B
- * with A sparse and B dense, using the LU factorization computed by
- * SGSTRF.
- *
- * See supermatrix.h for the definition of 'SuperMatrix' structure.
- *
- * Arguments
- * =========
- *
- * trans (input) trans_t
- * Specifies the form of the system of equations:
- * = NOTRANS: A * X = B (No transpose)
- * = TRANS: A'* X = B (Transpose)
- * = CONJ: A**H * X = B (Conjugate transpose)
- *
- * L (input) SuperMatrix*
- * The factor L from the factorization Pr*A*Pc=L*U as computed by
- * sgstrf(). Use compressed row subscripts storage for supernodes,
- * i.e., L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
- *
- * U (input) SuperMatrix*
- * The factor U from the factorization Pr*A*Pc=L*U as computed by
- * sgstrf(). Use column-wise storage scheme, i.e., U has types:
- * Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.
- *
- * perm_c (input) int*, dimension (L->ncol)
- * Column permutation vector, which defines the
- * permutation matrix Pc; perm_c[i] = j means column i of A is
- * in position j in A*Pc.
- *
- * perm_r (input) int*, dimension (L->nrow)
- * Row permutation vector, which defines the permutation matrix Pr;
- * perm_r[i] = j means row i of A is in position j in Pr*A.
- *
- * B (input/output) SuperMatrix*
- * B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
- * On entry, the right hand side matrix.
- * On exit, the solution matrix if info = 0;
- *
- * stat (output) SuperLUStat_t*
- * Record the statistics on runtime and doubleing-point operation count.
- * See util.h for the definition of 'SuperLUStat_t'.
- *
- * info (output) int*
- * = 0: successful exit
- * < 0: if info = -i, the i-th argument had an illegal value
- *
- */
-#ifdef _CRAY
- _fcd ftcs1, ftcs2, ftcs3, ftcs4;
-#endif
-#ifdef USE_VENDOR_BLAS
- double alpha = 1.0, beta = 1.0;
- double *work_col;
-#endif
- DNformat *Bstore;
- double *Bmat;
- SCformat *Lstore;
- NCformat *Ustore;
- double *Lval, *Uval;
- int fsupc, nrow, nsupr, nsupc, luptr, istart, irow;
- int i, j, k, iptr, jcol, n, ldb, nrhs;
- double *work, *rhs_work, *soln;
- flops_t solve_ops;
- void sprint_soln();
-
- /* Test input parameters ... */
- *info = 0;
- Bstore = B->Store;
- ldb = Bstore->lda;
- nrhs = B->ncol;
- if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;
- else if ( L->nrow != L->ncol || L->nrow < 0 ||
- L->Stype != SLU_SC || L->Dtype != SLU_S || L->Mtype != SLU_TRLU )
- *info = -2;
- else if ( U->nrow != U->ncol || U->nrow < 0 ||
- U->Stype != SLU_NC || U->Dtype != SLU_S || U->Mtype != SLU_TRU )
- *info = -3;
- else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
- B->Stype != SLU_DN || B->Dtype != SLU_S || B->Mtype != SLU_GE )
- *info = -6;
- if ( *info ) {
- i = -(*info);
- xerbla_("sgstrs", &i);
- return;
- }
-
- n = L->nrow;
- work = doubleCalloc(n * nrhs);
- if ( !work ) ABORT("Malloc fails for local work[].");
- soln = doubleMalloc(n);
- if ( !soln ) ABORT("Malloc fails for local soln[].");
-
- Bmat = Bstore->nzval;
- Lstore = L->Store;
- Lval = Lstore->nzval;
- Ustore = U->Store;
- Uval = Ustore->nzval;
- solve_ops = 0;
-
- if ( trans == NOTRANS ) {
- /* Permute right hand sides to form Pr*B */
- for (i = 0; i < nrhs; i++) {
- rhs_work = &Bmat[i*ldb];
- for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
- for (k = 0; k < n; k++) rhs_work[k] = soln[k];
- }
-
- /* Forward solve PLy=Pb. */
- for (k = 0; k <= Lstore->nsuper; k++) {
- fsupc = L_FST_SUPC(k);
- istart = L_SUB_START(fsupc);
- nsupr = L_SUB_START(fsupc+1) - istart;
- nsupc = L_FST_SUPC(k+1) - fsupc;
- nrow = nsupr - nsupc;
-
- solve_ops += nsupc * (nsupc - 1) * nrhs;
- solve_ops += 2 * nrow * nsupc * nrhs;
-
- if ( nsupc == 1 ) {
- for (j = 0; j < nrhs; j++) {
- rhs_work = &Bmat[j*ldb];
- luptr = L_NZ_START(fsupc);
- for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){
- irow = L_SUB(iptr);
- ++luptr;
- rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr];
- }
- }
- } else {
- luptr = L_NZ_START(fsupc);
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- ftcs1 = _cptofcd("L", strlen("L"));
- ftcs2 = _cptofcd("N", strlen("N"));
- ftcs3 = _cptofcd("U", strlen("U"));
- STRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
- &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
-
- SGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha,
- &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb,
- &beta, &work[0], &n );
-#else
- strsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
- &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
-
- sgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha,
- &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb,
- &beta, &work[0], &n );
-#endif
- for (j = 0; j < nrhs; j++) {
- rhs_work = &Bmat[j*ldb];
- work_col = &work[j*n];
- iptr = istart + nsupc;
- for (i = 0; i < nrow; i++) {
- irow = L_SUB(iptr);
- rhs_work[irow] -= work_col[i]; /* Scatter */
- work_col[i] = 0.0;
- iptr++;
- }
- }
-#else
- for (j = 0; j < nrhs; j++) {
- rhs_work = &Bmat[j*ldb];
- slsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
- smatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
- &rhs_work[fsupc], &work[0] );
-
- iptr = istart + nsupc;
- for (i = 0; i < nrow; i++) {
- irow = L_SUB(iptr);
- rhs_work[irow] -= work[i];
- work[i] = 0.0;
- iptr++;
- }
- }
-#endif
- } /* else ... */
- } /* for L-solve */
-
-#ifdef DEBUG
- printf("After L-solve: y=\n");
- sprint_soln(n, Bmat);
-#endif
-
- /*
- * Back solve Ux=y.
- */
- for (k = Lstore->nsuper; k >= 0; k--) {
- fsupc = L_FST_SUPC(k);
- istart = L_SUB_START(fsupc);
- nsupr = L_SUB_START(fsupc+1) - istart;
- nsupc = L_FST_SUPC(k+1) - fsupc;
- luptr = L_NZ_START(fsupc);
-
- solve_ops += nsupc * (nsupc + 1) * nrhs;
-
- if ( nsupc == 1 ) {
- rhs_work = &Bmat[0];
- for (j = 0; j < nrhs; j++) {
- rhs_work[fsupc] /= Lval[luptr];
- rhs_work += ldb;
- }
- } else {
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- ftcs1 = _cptofcd("L", strlen("L"));
- ftcs2 = _cptofcd("U", strlen("U"));
- ftcs3 = _cptofcd("N", strlen("N"));
- STRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
- &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
-#else
- strsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
- &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
-#endif
-#else
- for (j = 0; j < nrhs; j++)
- susolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );
-#endif
- }
-
- for (j = 0; j < nrhs; ++j) {
- rhs_work = &Bmat[j*ldb];
- for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
- solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
- for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){
- irow = U_SUB(i);
- rhs_work[irow] -= rhs_work[jcol] * Uval[i];
- }
- }
- }
-
- } /* for U-solve */
-
-#ifdef DEBUG
- printf("After U-solve: x=\n");
- sprint_soln(n, Bmat);
-#endif
-
- /* Compute the final solution X := Pc*X. */
- for (i = 0; i < nrhs; i++) {
- rhs_work = &Bmat[i*ldb];
- for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
- for (k = 0; k < n; k++) rhs_work[k] = soln[k];
- }
-
- stat->ops[SOLVE] = solve_ops;
-
- } else { /* Solve A'*X=B or CONJ(A)*X=B */
- /* Permute right hand sides to form Pc'*B. */
- for (i = 0; i < nrhs; i++) {
- rhs_work = &Bmat[i*ldb];
- for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
- for (k = 0; k < n; k++) rhs_work[k] = soln[k];
- }
-
- stat->ops[SOLVE] = 0;
- for (k = 0; k < nrhs; ++k) {
-
- /* Multiply by inv(U'). */
- sp_strsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);
-
- /* Multiply by inv(L'). */
- sp_strsv("L", "T", "U", L, U, &Bmat[k*ldb], stat, info);
-
- }
- /* Compute the final solution X := Pr'*X (=inv(Pr)*X) */
- for (i = 0; i < nrhs; i++) {
- rhs_work = &Bmat[i*ldb];
- for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
- for (k = 0; k < n; k++) rhs_work[k] = soln[k];
- }
-
- }
-
- SUPERLU_FREE(work);
- SUPERLU_FREE(soln);
-}
-
-/*
- * Diagnostic print of the solution vector
- */
-void
-sprint_soln(int n, double *soln)
-{
- int i;
-
- for (i = 0; i < n; i++)
- printf("\t%d: %.4f\n", i, soln[i]);
-}
diff --git a/intern/opennl/superlu/smemory.c b/intern/opennl/superlu/smemory.c
deleted file mode 100644
index c3b28a90e62..00000000000
--- a/intern/opennl/superlu/smemory.c
+++ /dev/null
@@ -1,683 +0,0 @@
-/** \file smemory.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-#include "ssp_defs.h"
-
-
-/* blender only: needed for int_ptr, no other BLI used here */
-#include "../../../source/blender/blenlib/BLI_sys_types.h"
-
-/* Constants */
-#define NO_MEMTYPE 4 /* 0: lusup;
- 1: ucol;
- 2: lsub;
- 3: usub */
-#define GluIntArray(n) (5 * (n) + 5)
-
-/* Internal prototypes */
-void *sexpand (int *, MemType,int, int, GlobalLU_t *);
-int sLUWorkInit (int, int, int, int **, double **, LU_space_t);
-void copy_mem_double (int, void *, void *);
-void sStackCompress (GlobalLU_t *);
-void sSetupSpace (void *, int, LU_space_t *);
-void *suser_malloc (int, int);
-void suser_free (int, int);
-
-/* External prototypes (in memory.c - prec-indep) */
-extern void copy_mem_int (int, void *, void *);
-extern void user_bcopy (char *, char *, int);
-
-/* Headers for 4 types of dynamatically managed memory */
-typedef struct e_node {
- int size; /* length of the memory that has been used */
- void *mem; /* pointer to the new malloc'd store */
-} ExpHeader;
-
-typedef struct {
- int size;
- int used;
- int top1; /* grow upward, relative to &array[0] */
- int top2; /* grow downward */
- void *array;
-} LU_stack_t;
-
-/* Variables local to this file */
-static ExpHeader *expanders = 0; /* Array of pointers to 4 types of memory */
-static LU_stack_t stack;
-static int no_expand;
-
-/* Macros to manipulate stack */
-#define StackFull(x) ( x + stack.used >= stack.size )
-#define NotDoubleAlign(addr) ( (intptr_t)addr & 7 )
-#define DoubleAlign(addr) ( ((intptr_t)addr + 7) & ~7L )
-#define TempSpace(m, w) ( (2*w + 4 + NO_MARKER) * m * sizeof(int) + \
- (w + 1) * m * sizeof(double) )
-#define Reduce(alpha) ((alpha + 1) / 2) /* i.e. (alpha-1)/2 + 1 */
-
-
-
-
-/*
- * Setup the memory model to be used for factorization.
- * lwork = 0: use system malloc;
- * lwork > 0: use user-supplied work[] space.
- */
-void sSetupSpace(void *work, int lwork, LU_space_t *MemModel)
-{
- if ( lwork == 0 ) {
- *MemModel = SYSTEM; /* malloc/free */
- } else if ( lwork > 0 ) {
- *MemModel = USER; /* user provided space */
- stack.used = 0;
- stack.top1 = 0;
- stack.top2 = (lwork/4)*4; /* must be word addressable */
- stack.size = stack.top2;
- stack.array = (void *) work;
- }
-}
-
-
-
-void *suser_malloc(int bytes, int which_end)
-{
- void *buf;
-
- if ( StackFull(bytes) ) return (NULL);
-
- if ( which_end == HEAD ) {
- buf = (char*) stack.array + stack.top1;
- stack.top1 += bytes;
- } else {
- stack.top2 -= bytes;
- buf = (char*) stack.array + stack.top2;
- }
-
- stack.used += bytes;
- return buf;
-}
-
-
-void suser_free(int bytes, int which_end)
-{
- if ( which_end == HEAD ) {
- stack.top1 -= bytes;
- } else {
- stack.top2 += bytes;
- }
- stack.used -= bytes;
-}
-
-
-
-/*
- * mem_usage consists of the following fields:
- * - for_lu (double)
- * The amount of space used in bytes for the L\U data structures.
- * - total_needed (double)
- * The amount of space needed in bytes to perform factorization.
- * - expansions (int)
- * Number of memory expansions during the LU factorization.
- */
-int sQuerySpace(SuperMatrix *L, SuperMatrix *U, mem_usage_t *mem_usage)
-{
- SCformat *Lstore;
- NCformat *Ustore;
- register int n, iword, dword, panel_size = sp_ienv(1);
-
- Lstore = L->Store;
- Ustore = U->Store;
- n = L->ncol;
- iword = sizeof(int);
- dword = sizeof(double);
-
- /* For LU factors */
- mem_usage->for_lu = (double)( (4*n + 3) * iword + Lstore->nzval_colptr[n] *
- dword + Lstore->rowind_colptr[n] * iword );
- mem_usage->for_lu += (double)( (n + 1) * iword +
- Ustore->colptr[n] * (dword + iword) );
-
- /* Working storage to support factorization */
- mem_usage->total_needed = mem_usage->for_lu +
- (double)( (2 * panel_size + 4 + NO_MARKER) * n * iword +
- (panel_size + 1) * n * dword );
-
- mem_usage->expansions = --no_expand;
-
- return 0;
-} /* sQuerySpace */
-
-/*
- * Allocate storage for the data structures common to all factor routines.
- * For those unpredictable size, make a guess as FILL * nnz(A).
- * Return value:
- * If lwork = -1, return the estimated amount of space required, plus n;
- * otherwise, return the amount of space actually allocated when
- * memory allocation failure occurred.
- */
-int
-sLUMemInit(fact_t fact, void *work, int lwork, int m, int n, int annz,
- int panel_size, SuperMatrix *L, SuperMatrix *U, GlobalLU_t *Glu,
- int **iwork, double **dwork)
-{
- int info, iword, dword;
- SCformat *Lstore;
- NCformat *Ustore;
- int *xsup, *supno;
- int *lsub, *xlsub;
- double *lusup;
- int *xlusup;
- double *ucol;
- int *usub, *xusub;
- int nzlmax, nzumax, nzlumax;
- int FILL = sp_ienv(6);
-
- Glu->n = n;
- no_expand = 0;
- iword = sizeof(int);
- dword = sizeof(double);
-
- if ( !expanders )
- expanders = (ExpHeader*)SUPERLU_MALLOC(NO_MEMTYPE * sizeof(ExpHeader));
- if ( !expanders ) ABORT("SUPERLU_MALLOC fails for expanders");
-
- if ( fact != SamePattern_SameRowPerm ) {
- /* Guess for L\U factors */
- nzumax = nzlumax = FILL * annz;
- nzlmax = SUPERLU_MAX(1, FILL/4.) * annz;
-
- if ( lwork == -1 ) {
- return ( GluIntArray(n) * iword + TempSpace(m, panel_size)
- + (nzlmax+nzumax)*iword + (nzlumax+nzumax)*dword + n );
- } else {
- sSetupSpace(work, lwork, &Glu->MemModel);
- }
-
-#ifdef DEBUG
- printf("sLUMemInit() called: annz %d, MemModel %d\n",
- annz, Glu->MemModel);
-#endif
-
- /* Integer pointers for L\U factors */
- if ( Glu->MemModel == SYSTEM ) {
- xsup = intMalloc(n+1);
- supno = intMalloc(n+1);
- xlsub = intMalloc(n+1);
- xlusup = intMalloc(n+1);
- xusub = intMalloc(n+1);
- } else {
- xsup = (int *)suser_malloc((n+1) * iword, HEAD);
- supno = (int *)suser_malloc((n+1) * iword, HEAD);
- xlsub = (int *)suser_malloc((n+1) * iword, HEAD);
- xlusup = (int *)suser_malloc((n+1) * iword, HEAD);
- xusub = (int *)suser_malloc((n+1) * iword, HEAD);
- }
-
- lusup = (double *) sexpand( &nzlumax, LUSUP, 0, 0, Glu );
- ucol = (double *) sexpand( &nzumax, UCOL, 0, 0, Glu );
- lsub = (int *) sexpand( &nzlmax, LSUB, 0, 0, Glu );
- usub = (int *) sexpand( &nzumax, USUB, 0, 1, Glu );
-
- while ( !lusup || !ucol || !lsub || !usub ) {
- if ( Glu->MemModel == SYSTEM ) {
- SUPERLU_FREE(lusup);
- SUPERLU_FREE(ucol);
- SUPERLU_FREE(lsub);
- SUPERLU_FREE(usub);
- } else {
- suser_free((nzlumax+nzumax)*dword+(nzlmax+nzumax)*iword, HEAD);
- }
- nzlumax /= 2;
- nzumax /= 2;
- nzlmax /= 2;
- if ( nzlumax < annz ) {
- printf("Not enough memory to perform factorization.\n");
- return (smemory_usage(nzlmax, nzumax, nzlumax, n) + n);
- }
- lusup = (double *) sexpand( &nzlumax, LUSUP, 0, 0, Glu );
- ucol = (double *) sexpand( &nzumax, UCOL, 0, 0, Glu );
- lsub = (int *) sexpand( &nzlmax, LSUB, 0, 0, Glu );
- usub = (int *) sexpand( &nzumax, USUB, 0, 1, Glu );
- }
-
- } else {
- /* fact == SamePattern_SameRowPerm */
- Lstore = L->Store;
- Ustore = U->Store;
- xsup = Lstore->sup_to_col;
- supno = Lstore->col_to_sup;
- xlsub = Lstore->rowind_colptr;
- xlusup = Lstore->nzval_colptr;
- xusub = Ustore->colptr;
- nzlmax = Glu->nzlmax; /* max from previous factorization */
- nzumax = Glu->nzumax;
- nzlumax = Glu->nzlumax;
-
- if ( lwork == -1 ) {
- return ( GluIntArray(n) * iword + TempSpace(m, panel_size)
- + (nzlmax+nzumax)*iword + (nzlumax+nzumax)*dword + n );
- } else if ( lwork == 0 ) {
- Glu->MemModel = SYSTEM;
- } else {
- Glu->MemModel = USER;
- stack.top2 = (lwork/4)*4; /* must be word-addressable */
- stack.size = stack.top2;
- }
-
- lsub = expanders[LSUB].mem = Lstore->rowind;
- lusup = expanders[LUSUP].mem = Lstore->nzval;
- usub = expanders[USUB].mem = Ustore->rowind;
- ucol = expanders[UCOL].mem = Ustore->nzval;;
- expanders[LSUB].size = nzlmax;
- expanders[LUSUP].size = nzlumax;
- expanders[USUB].size = nzumax;
- expanders[UCOL].size = nzumax;
- }
-
- Glu->xsup = xsup;
- Glu->supno = supno;
- Glu->lsub = lsub;
- Glu->xlsub = xlsub;
- Glu->lusup = lusup;
- Glu->xlusup = xlusup;
- Glu->ucol = ucol;
- Glu->usub = usub;
- Glu->xusub = xusub;
- Glu->nzlmax = nzlmax;
- Glu->nzumax = nzumax;
- Glu->nzlumax = nzlumax;
-
- info = sLUWorkInit(m, n, panel_size, iwork, dwork, Glu->MemModel);
- if ( info )
- return ( info + smemory_usage(nzlmax, nzumax, nzlumax, n) + n);
-
- ++no_expand;
- return 0;
-
-} /* sLUMemInit */
-
-/* Allocate known working storage. Returns 0 if success, otherwise
- returns the number of bytes allocated so far when failure occurred. */
-int
-sLUWorkInit(int m, int n, int panel_size, int **iworkptr,
- double **dworkptr, LU_space_t MemModel)
-{
- int isize, dsize, extra;
- double *old_ptr;
- int maxsuper = sp_ienv(3),
- rowblk = sp_ienv(4);
-
- isize = ( (2 * panel_size + 3 + NO_MARKER ) * m + n ) * sizeof(int);
- dsize = (m * panel_size +
- NUM_TEMPV(m,panel_size,maxsuper,rowblk)) * sizeof(double);
-
- if ( MemModel == SYSTEM )
- *iworkptr = (int *) intCalloc(isize/sizeof(int));
- else
- *iworkptr = (int *) suser_malloc(isize, TAIL);
- if ( ! *iworkptr ) {
- fprintf(stderr, "sLUWorkInit: malloc fails for local iworkptr[]\n");
- return (isize + n);
- }
-
- if ( MemModel == SYSTEM )
- *dworkptr = (double *) SUPERLU_MALLOC(dsize);
- else {
- *dworkptr = (double *) suser_malloc(dsize, TAIL);
- if ( NotDoubleAlign(*dworkptr) ) {
- old_ptr = *dworkptr;
- *dworkptr = (double*) DoubleAlign(*dworkptr);
- *dworkptr = (double*) ((double*)*dworkptr - 1);
- extra = (char*)old_ptr - (char*)*dworkptr;
-#ifdef DEBUG
- printf("sLUWorkInit: not aligned, extra %d\n", extra);
-#endif
- stack.top2 -= extra;
- stack.used += extra;
- }
- }
- if ( ! *dworkptr ) {
- fprintf(stderr, "malloc fails for local dworkptr[].");
- return (isize + dsize + n);
- }
-
- return 0;
-}
-
-
-/*
- * Set up pointers for real working arrays.
- */
-void
-sSetRWork(int m, int panel_size, double *dworkptr,
- double **dense, double **tempv)
-{
- double zero = 0.0;
-
- int maxsuper = sp_ienv(3),
- rowblk = sp_ienv(4);
- *dense = dworkptr;
- *tempv = *dense + panel_size*m;
- sfill (*dense, m * panel_size, zero);
- sfill (*tempv, NUM_TEMPV(m,panel_size,maxsuper,rowblk), zero);
-}
-
-/*
- * Free the working storage used by factor routines.
- */
-void sLUWorkFree(int *iwork, double *dwork, GlobalLU_t *Glu)
-{
- if ( Glu->MemModel == SYSTEM ) {
- SUPERLU_FREE (iwork);
- SUPERLU_FREE (dwork);
- } else {
- stack.used -= (stack.size - stack.top2);
- stack.top2 = stack.size;
-/* sStackCompress(Glu); */
- }
-
- SUPERLU_FREE (expanders);
- expanders = 0;
-}
-
-/* Expand the data structures for L and U during the factorization.
- * Return value: 0 - successful return
- * > 0 - number of bytes allocated when run out of space
- */
-int
-sLUMemXpand(int jcol,
- int next, /* number of elements currently in the factors */
- MemType mem_type, /* which type of memory to expand */
- int *maxlen, /* modified - maximum length of a data structure */
- GlobalLU_t *Glu /* modified - global LU data structures */
- )
-{
- void *new_mem;
-
-#ifdef DEBUG
- printf("sLUMemXpand(): jcol %d, next %d, maxlen %d, MemType %d\n",
- jcol, next, *maxlen, mem_type);
-#endif
-
- if (mem_type == USUB)
- new_mem = sexpand(maxlen, mem_type, next, 1, Glu);
- else
- new_mem = sexpand(maxlen, mem_type, next, 0, Glu);
-
- if ( !new_mem ) {
- int nzlmax = Glu->nzlmax;
- int nzumax = Glu->nzumax;
- int nzlumax = Glu->nzlumax;
- fprintf(stderr, "Can't expand MemType %d: jcol %d\n", mem_type, jcol);
- return (smemory_usage(nzlmax, nzumax, nzlumax, Glu->n) + Glu->n);
- }
-
- switch ( mem_type ) {
- case LUSUP:
- Glu->lusup = (double *) new_mem;
- Glu->nzlumax = *maxlen;
- break;
- case UCOL:
- Glu->ucol = (double *) new_mem;
- Glu->nzumax = *maxlen;
- break;
- case LSUB:
- Glu->lsub = (int *) new_mem;
- Glu->nzlmax = *maxlen;
- break;
- case USUB:
- Glu->usub = (int *) new_mem;
- Glu->nzumax = *maxlen;
- break;
- }
-
- return 0;
-
-}
-
-
-
-void
-copy_mem_double(int howmany, void *old, void *new)
-{
- register int i;
- double *dold = old;
- double *dnew = new;
- for (i = 0; i < howmany; i++) dnew[i] = dold[i];
-}
-
-/*
- * Expand the existing storage to accommodate more fill-ins.
- */
-void
-*sexpand (
- int *prev_len, /* length used from previous call */
- MemType type, /* which part of the memory to expand */
- int len_to_copy, /* size of the memory to be copied to new store */
- int keep_prev, /* = 1: use prev_len;
- = 0: compute new_len to expand */
- GlobalLU_t *Glu /* modified - global LU data structures */
- )
-{
- double EXPAND = 1.5;
- double alpha;
- void *new_mem, *old_mem;
- int new_len, tries, lword, extra, bytes_to_copy;
-
- alpha = EXPAND;
-
- if ( no_expand == 0 || keep_prev ) /* First time allocate requested */
- new_len = *prev_len;
- else {
- new_len = alpha * *prev_len;
- }
-
- if ( type == LSUB || type == USUB ) lword = sizeof(int);
- else lword = sizeof(double);
-
- if ( Glu->MemModel == SYSTEM ) {
- new_mem = (void *) SUPERLU_MALLOC((size_t)new_len * (size_t)lword);
-/* new_mem = (void *) calloc(new_len, lword); */
- if ( no_expand != 0 ) {
- tries = 0;
- if ( keep_prev ) {
- if ( !new_mem ) return (NULL);
- } else {
- while ( !new_mem ) {
- if ( ++tries > 10 ) return (NULL);
- alpha = Reduce(alpha);
- new_len = alpha * *prev_len;
- new_mem = (void *) SUPERLU_MALLOC((size_t)new_len * (size_t)lword);
-/* new_mem = (void *) calloc(new_len, lword); */
- }
- }
- if ( type == LSUB || type == USUB ) {
- copy_mem_int(len_to_copy, expanders[type].mem, new_mem);
- } else {
- copy_mem_double(len_to_copy, expanders[type].mem, new_mem);
- }
- SUPERLU_FREE (expanders[type].mem);
- }
- expanders[type].mem = (void *) new_mem;
-
- } else { /* MemModel == USER */
- if ( no_expand == 0 ) {
- new_mem = suser_malloc((size_t)new_len * (size_t)lword, HEAD);
- if ( NotDoubleAlign(new_mem) &&
- (type == LUSUP || type == UCOL) ) {
- old_mem = new_mem;
- new_mem = (void *)DoubleAlign(new_mem);
- extra = (char*)new_mem - (char*)old_mem;
-#ifdef DEBUG
- printf("expand(): not aligned, extra %d\n", extra);
-#endif
- stack.top1 += extra;
- stack.used += extra;
- }
- expanders[type].mem = (void *) new_mem;
- }
- else {
- tries = 0;
- extra = (new_len - *prev_len) * lword;
- if ( keep_prev ) {
- if ( StackFull(extra) ) return (NULL);
- } else {
- while ( StackFull(extra) ) {
- if ( ++tries > 10 ) return (NULL);
- alpha = Reduce(alpha);
- new_len = alpha * *prev_len;
- extra = (new_len - *prev_len) * lword;
- }
- }
-
- if ( type != USUB ) {
- new_mem = (void*)((char*)expanders[type + 1].mem + extra);
- bytes_to_copy = (char*)stack.array + stack.top1
- - (char*)expanders[type + 1].mem;
- user_bcopy(expanders[type+1].mem, new_mem, bytes_to_copy);
-
- if ( type < USUB ) {
- Glu->usub = expanders[USUB].mem =
- (void*)((char*)expanders[USUB].mem + extra);
- }
- if ( type < LSUB ) {
- Glu->lsub = expanders[LSUB].mem =
- (void*)((char*)expanders[LSUB].mem + extra);
- }
- if ( type < UCOL ) {
- Glu->ucol = expanders[UCOL].mem =
- (void*)((char*)expanders[UCOL].mem + extra);
- }
- stack.top1 += extra;
- stack.used += extra;
- if ( type == UCOL ) {
- stack.top1 += extra; /* Add same amount for USUB */
- stack.used += extra;
- }
-
- } /* if ... */
-
- } /* else ... */
- }
-
- expanders[type].size = new_len;
- *prev_len = new_len;
- if ( no_expand ) ++no_expand;
-
- return (void *) expanders[type].mem;
-
-} /* sexpand */
-
-
-/*
- * Compress the work[] array to remove fragmentation.
- */
-void
-sStackCompress(GlobalLU_t *Glu)
-{
- register int iword, dword, ndim;
- char *last, *fragment;
- int *ifrom, *ito;
- double *dfrom, *dto;
- int *xlsub, *lsub, *xusub, *usub, *xlusup;
- double *ucol, *lusup;
-
- iword = sizeof(int);
- dword = sizeof(double);
- ndim = Glu->n;
-
- xlsub = Glu->xlsub;
- lsub = Glu->lsub;
- xusub = Glu->xusub;
- usub = Glu->usub;
- xlusup = Glu->xlusup;
- ucol = Glu->ucol;
- lusup = Glu->lusup;
-
- dfrom = ucol;
- dto = (double *)((char*)lusup + xlusup[ndim] * dword);
- copy_mem_double(xusub[ndim], dfrom, dto);
- ucol = dto;
-
- ifrom = lsub;
- ito = (int *) ((char*)ucol + xusub[ndim] * iword);
- copy_mem_int(xlsub[ndim], ifrom, ito);
- lsub = ito;
-
- ifrom = usub;
- ito = (int *) ((char*)lsub + xlsub[ndim] * iword);
- copy_mem_int(xusub[ndim], ifrom, ito);
- usub = ito;
-
- last = (char*)usub + xusub[ndim] * iword;
- fragment = (char*) (((char*)stack.array + stack.top1) - last);
- stack.used -= (intptr_t) fragment;
- stack.top1 -= (intptr_t) fragment;
-
- Glu->ucol = ucol;
- Glu->lsub = lsub;
- Glu->usub = usub;
-
-#ifdef DEBUG
- printf("sStackCompress: fragment %d\n", (int)*fragment);
- /* for (last = 0; last < ndim; ++last)
- print_lu_col("After compress:", last, 0);*/
-#endif
-
-}
-
-/*
- * Allocate storage for original matrix A
- */
-void
-sallocateA(int n, int nnz, double **a, int **asub, int **xa)
-{
- *a = (double *) doubleMalloc(nnz);
- *asub = (int *) intMalloc(nnz);
- *xa = (int *) intMalloc(n+1);
-}
-
-
-double *doubleMalloc(int n)
-{
- double *buf;
- buf = (double *) SUPERLU_MALLOC(n * sizeof(double));
- if ( !buf ) {
- ABORT("SUPERLU_MALLOC failed for buf in doubleMalloc()\n");
- }
- return (buf);
-}
-
-double *doubleCalloc(int n)
-{
- double *buf;
- register int i;
- double zero = 0.0;
- buf = (double *) SUPERLU_MALLOC(n * sizeof(double));
- if ( !buf ) {
- ABORT("SUPERLU_MALLOC failed for buf in doubleCalloc()\n");
- }
- for (i = 0; i < n; ++i) buf[i] = zero;
- return (buf);
-}
-
-
-int smemory_usage(const int nzlmax, const int nzumax,
- const int nzlumax, const int n)
-{
- register int iword, dword;
-
- iword = sizeof(int);
- dword = sizeof(double);
-
- return (10 * n * iword +
- nzlmax * iword + nzumax * (iword + dword) + nzlumax * dword);
-
-}
diff --git a/intern/opennl/superlu/smyblas2.c b/intern/opennl/superlu/smyblas2.c
deleted file mode 100644
index 11e3b4b4761..00000000000
--- a/intern/opennl/superlu/smyblas2.c
+++ /dev/null
@@ -1,235 +0,0 @@
-/** \file opennl/superlu/smyblas2.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/*
- * File name: smyblas2.c
- * Purpose:
- * Level 2 BLAS operations: solves and matvec, written in C.
- * Note:
- * This is only used when the system lacks an efficient BLAS library.
- */
-
-/*
- * Solves a dense UNIT lower triangular system. The unit lower
- * triangular matrix is stored in a 2D array M(1:nrow,1:ncol).
- * The solution will be returned in the rhs vector.
- */
-
-/* local prototypes*/
-void slsolve ( int, int, double *, double *);
-void susolve ( int, int, double *, double *);
-void smatvec ( int, int, int, double *, double *, double *);
-
-
-void slsolve ( int ldm, int ncol, double *M, double *rhs )
-{
- int k;
- double x0, x1, x2, x3, x4, x5, x6, x7;
- double *M0;
- register double *Mki0, *Mki1, *Mki2, *Mki3, *Mki4, *Mki5, *Mki6, *Mki7;
- register int firstcol = 0;
-
- M0 = &M[0];
-
- while ( firstcol < ncol - 7 ) { /* Do 8 columns */
- Mki0 = M0 + 1;
- Mki1 = Mki0 + ldm + 1;
- Mki2 = Mki1 + ldm + 1;
- Mki3 = Mki2 + ldm + 1;
- Mki4 = Mki3 + ldm + 1;
- Mki5 = Mki4 + ldm + 1;
- Mki6 = Mki5 + ldm + 1;
- Mki7 = Mki6 + ldm + 1;
-
- x0 = rhs[firstcol];
- x1 = rhs[firstcol+1] - x0 * *Mki0++;
- x2 = rhs[firstcol+2] - x0 * *Mki0++ - x1 * *Mki1++;
- x3 = rhs[firstcol+3] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++;
- x4 = rhs[firstcol+4] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++
- - x3 * *Mki3++;
- x5 = rhs[firstcol+5] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++
- - x3 * *Mki3++ - x4 * *Mki4++;
- x6 = rhs[firstcol+6] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++
- - x3 * *Mki3++ - x4 * *Mki4++ - x5 * *Mki5++;
- x7 = rhs[firstcol+7] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++
- - x3 * *Mki3++ - x4 * *Mki4++ - x5 * *Mki5++
- - x6 * *Mki6++;
-
- rhs[++firstcol] = x1;
- rhs[++firstcol] = x2;
- rhs[++firstcol] = x3;
- rhs[++firstcol] = x4;
- rhs[++firstcol] = x5;
- rhs[++firstcol] = x6;
- rhs[++firstcol] = x7;
- ++firstcol;
-
- for (k = firstcol; k < ncol; k++)
- rhs[k] = rhs[k] - x0 * *Mki0++ - x1 * *Mki1++
- - x2 * *Mki2++ - x3 * *Mki3++
- - x4 * *Mki4++ - x5 * *Mki5++
- - x6 * *Mki6++ - x7 * *Mki7++;
-
- M0 += 8 * ldm + 8;
- }
-
- while ( firstcol < ncol - 3 ) { /* Do 4 columns */
- Mki0 = M0 + 1;
- Mki1 = Mki0 + ldm + 1;
- Mki2 = Mki1 + ldm + 1;
- Mki3 = Mki2 + ldm + 1;
-
- x0 = rhs[firstcol];
- x1 = rhs[firstcol+1] - x0 * *Mki0++;
- x2 = rhs[firstcol+2] - x0 * *Mki0++ - x1 * *Mki1++;
- x3 = rhs[firstcol+3] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++;
-
- rhs[++firstcol] = x1;
- rhs[++firstcol] = x2;
- rhs[++firstcol] = x3;
- ++firstcol;
-
- for (k = firstcol; k < ncol; k++)
- rhs[k] = rhs[k] - x0 * *Mki0++ - x1 * *Mki1++
- - x2 * *Mki2++ - x3 * *Mki3++;
-
- M0 += 4 * ldm + 4;
- }
-
- if ( firstcol < ncol - 1 ) { /* Do 2 columns */
- Mki0 = M0 + 1;
- Mki1 = Mki0 + ldm + 1;
-
- x0 = rhs[firstcol];
- x1 = rhs[firstcol+1] - x0 * *Mki0++;
-
- rhs[++firstcol] = x1;
- ++firstcol;
-
- for (k = firstcol; k < ncol; k++)
- rhs[k] = rhs[k] - x0 * *Mki0++ - x1 * *Mki1++;
-
- }
-
-}
-
-/*
- * Solves a dense upper triangular system. The upper triangular matrix is
- * stored in a 2-dim array M(1:ldm,1:ncol). The solution will be returned
- * in the rhs vector.
- */
-void
-susolve ( ldm, ncol, M, rhs )
-int ldm; /* in */
-int ncol; /* in */
-double *M; /* in */
-double *rhs; /* modified */
-{
- double xj;
- int jcol, j, irow;
-
- jcol = ncol - 1;
-
- for (j = 0; j < ncol; j++) {
-
- xj = rhs[jcol] / M[jcol + jcol*ldm]; /* M(jcol, jcol) */
- rhs[jcol] = xj;
-
- for (irow = 0; irow < jcol; irow++)
- rhs[irow] -= xj * M[irow + jcol*ldm]; /* M(irow, jcol) */
-
- jcol--;
-
- }
-}
-
-
-/*
- * Performs a dense matrix-vector multiply: Mxvec = Mxvec + M * vec.
- * The input matrix is M(1:nrow,1:ncol); The product is returned in Mxvec[].
- */
-void smatvec ( ldm, nrow, ncol, M, vec, Mxvec )
-
-int ldm; /* in -- leading dimension of M */
-int nrow; /* in */
-int ncol; /* in */
-double *M; /* in */
-double *vec; /* in */
-double *Mxvec; /* in/out */
-
-{
- double vi0, vi1, vi2, vi3, vi4, vi5, vi6, vi7;
- double *M0;
- register double *Mki0, *Mki1, *Mki2, *Mki3, *Mki4, *Mki5, *Mki6, *Mki7;
- register int firstcol = 0;
- int k;
-
- M0 = &M[0];
- while ( firstcol < ncol - 7 ) { /* Do 8 columns */
-
- Mki0 = M0;
- Mki1 = Mki0 + ldm;
- Mki2 = Mki1 + ldm;
- Mki3 = Mki2 + ldm;
- Mki4 = Mki3 + ldm;
- Mki5 = Mki4 + ldm;
- Mki6 = Mki5 + ldm;
- Mki7 = Mki6 + ldm;
-
- vi0 = vec[firstcol++];
- vi1 = vec[firstcol++];
- vi2 = vec[firstcol++];
- vi3 = vec[firstcol++];
- vi4 = vec[firstcol++];
- vi5 = vec[firstcol++];
- vi6 = vec[firstcol++];
- vi7 = vec[firstcol++];
-
- for (k = 0; k < nrow; k++)
- Mxvec[k] += vi0 * *Mki0++ + vi1 * *Mki1++
- + vi2 * *Mki2++ + vi3 * *Mki3++
- + vi4 * *Mki4++ + vi5 * *Mki5++
- + vi6 * *Mki6++ + vi7 * *Mki7++;
-
- M0 += 8 * ldm;
- }
-
- while ( firstcol < ncol - 3 ) { /* Do 4 columns */
-
- Mki0 = M0;
- Mki1 = Mki0 + ldm;
- Mki2 = Mki1 + ldm;
- Mki3 = Mki2 + ldm;
-
- vi0 = vec[firstcol++];
- vi1 = vec[firstcol++];
- vi2 = vec[firstcol++];
- vi3 = vec[firstcol++];
- for (k = 0; k < nrow; k++)
- Mxvec[k] += vi0 * *Mki0++ + vi1 * *Mki1++
- + vi2 * *Mki2++ + vi3 * *Mki3++ ;
-
- M0 += 4 * ldm;
- }
-
- while ( firstcol < ncol ) { /* Do 1 column */
-
- Mki0 = M0;
- vi0 = vec[firstcol++];
- for (k = 0; k < nrow; k++)
- Mxvec[k] += vi0 * *Mki0++;
-
- M0 += ldm;
- }
-
-}
-
diff --git a/intern/opennl/superlu/sp_coletree.c b/intern/opennl/superlu/sp_coletree.c
deleted file mode 100644
index 7e7187ae8b0..00000000000
--- a/intern/opennl/superlu/sp_coletree.c
+++ /dev/null
@@ -1,335 +0,0 @@
-/** \file opennl/superlu/sp_coletree.c
- * \ingroup opennl
- */
-
-/* Elimination tree computation and layout routines */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include "ssp_defs.h"
-
-/*
- * Implementation of disjoint set union routines.
- * Elements are integers in 0..n-1, and the
- * names of the sets themselves are of type int.
- *
- * Calls are:
- * initialize_disjoint_sets (n) initial call.
- * s = make_set (i) returns a set containing only i.
- * s = link (t, u) returns s = t union u, destroying t and u.
- * s = find (i) return name of set containing i.
- * finalize_disjoint_sets final call.
- *
- * This implementation uses path compression but not weighted union.
- * See Tarjan's book for details.
- * John Gilbert, CMI, 1987.
- *
- * Implemented path-halving by XSL 07/05/95.
- */
-
-static int *pp; /* parent array for sets */
-
-static
-int *mxCallocInt(int n)
-{
- register int i;
- int *buf;
-
- buf = (int *) SUPERLU_MALLOC( n * sizeof(int) );
- if ( !buf ) {
- ABORT("SUPERLU_MALLOC fails for buf in mxCallocInt()");
- }
- for (i = 0; i < n; i++) buf[i] = 0;
- return (buf);
-}
-
-static
-void initialize_disjoint_sets (
- int n
- )
-{
- pp = mxCallocInt(n);
-}
-
-
-static
-int make_set (
- int i
- )
-{
- pp[i] = i;
- return i;
-}
-
-
-static
-int link (
- int s,
- int t
- )
-{
- pp[s] = t;
- return t;
-}
-
-
-/* PATH HALVING */
-static
-int find (int i)
-{
- register int p, gp;
-
- p = pp[i];
- gp = pp[p];
- while (gp != p) {
- pp[i] = gp;
- i = gp;
- p = pp[i];
- gp = pp[p];
- }
- return (p);
-}
-
-#if 0
-/* PATH COMPRESSION */
-static
-int find (
- int i
- )
-{
- if (pp[i] != i)
- pp[i] = find (pp[i]);
- return pp[i];
-}
-#endif
-
-static
-void finalize_disjoint_sets (
- void
- )
-{
- SUPERLU_FREE(pp);
-}
-
-
-/*
- * Find the elimination tree for A'*A.
- * This uses something similar to Liu's algorithm.
- * It runs in time O(nz(A)*log n) and does not form A'*A.
- *
- * Input:
- * Sparse matrix A. Numeric values are ignored, so any
- * explicit zeros are treated as nonzero.
- * Output:
- * Integer array of parents representing the elimination
- * tree of the symbolic product A'*A. Each vertex is a
- * column of A, and nc means a root of the elimination forest.
- *
- * John R. Gilbert, Xerox, 10 Dec 1990
- * Based on code by JRG dated 1987, 1988, and 1990.
- */
-
-/*
- * Nonsymmetric elimination tree
- */
-int
-sp_coletree(
- int *acolst, int *acolend, /* column start and end past 1 */
- int *arow, /* row indices of A */
- int nr, int nc, /* dimension of A */
- int *parent /* parent in elim tree */
- )
-{
- int *root; /* root of subtee of etree */
- int *firstcol; /* first nonzero col in each row*/
- int rset, cset;
- int row, col;
- int rroot;
- int p;
-
- root = mxCallocInt (nc);
- initialize_disjoint_sets (nc);
-
- /* Compute firstcol[row] = first nonzero column in row */
-
- firstcol = mxCallocInt (nr);
- for (row = 0; row < nr; firstcol[row++] = nc);
- for (col = 0; col < nc; col++)
- for (p = acolst[col]; p < acolend[col]; p++) {
- row = arow[p];
- firstcol[row] = SUPERLU_MIN(firstcol[row], col);
- }
-
- /* Compute etree by Liu's algorithm for symmetric matrices,
- except use (firstcol[r],c) in place of an edge (r,c) of A.
- Thus each row clique in A'*A is replaced by a star
- centered at its first vertex, which has the same fill. */
-
- for (col = 0; col < nc; col++) {
- cset = make_set (col);
- root[cset] = col;
- parent[col] = nc; /* Matlab */
- for (p = acolst[col]; p < acolend[col]; p++) {
- row = firstcol[arow[p]];
- if (row >= col) continue;
- rset = find (row);
- rroot = root[rset];
- if (rroot != col) {
- parent[rroot] = col;
- cset = link (cset, rset);
- root[cset] = col;
- }
- }
- }
-
- SUPERLU_FREE (root);
- SUPERLU_FREE (firstcol);
- finalize_disjoint_sets ();
- return 0;
-}
-
-/*
- * q = TreePostorder (n, p);
- *
- * Postorder a tree.
- * Input:
- * p is a vector of parent pointers for a forest whose
- * vertices are the integers 0 to n-1; p[root]==n.
- * Output:
- * q is a vector indexed by 0..n-1 such that q[i] is the
- * i-th vertex in a postorder numbering of the tree.
- *
- * ( 2/7/95 modified by X.Li:
- * q is a vector indexed by 0:n-1 such that vertex i is the
- * q[i]-th vertex in a postorder numbering of the tree.
- * That is, this is the inverse of the previous q. )
- *
- * In the child structure, lower-numbered children are represented
- * first, so that a tree which is already numbered in postorder
- * will not have its order changed.
- *
- * Written by John Gilbert, Xerox, 10 Dec 1990.
- * Based on code written by John Gilbert at CMI in 1987.
- */
-
-static int *first_kid, *next_kid; /* Linked list of children. */
-static int *post, postnum;
-
-static
-/*
- * Depth-first search from vertex v.
- */
-void etdfs (
- int v
- )
-{
- int w;
-
- for (w = first_kid[v]; w != -1; w = next_kid[w]) {
- etdfs (w);
- }
- /* post[postnum++] = v; in Matlab */
- post[v] = postnum++; /* Modified by X.Li on 2/14/95 */
-}
-
-
-/*
- * Post order a tree
- */
-int *TreePostorder(
- int n,
- int *parent
-)
-{
- int v, dad;
-
- /* Allocate storage for working arrays and results */
- first_kid = mxCallocInt (n+1);
- next_kid = mxCallocInt (n+1);
- post = mxCallocInt (n+1);
-
- /* Set up structure describing children */
- for (v = 0; v <= n; first_kid[v++] = -1);
- for (v = n-1; v >= 0; v--) {
- dad = parent[v];
- next_kid[v] = first_kid[dad];
- first_kid[dad] = v;
- }
-
- /* Depth-first search from dummy root vertex #n */
- postnum = 0;
- etdfs (n);
-
- SUPERLU_FREE (first_kid);
- SUPERLU_FREE (next_kid);
- return post;
-}
-
-
-/*
- * p = spsymetree (A);
- *
- * Find the elimination tree for symmetric matrix A.
- * This uses Liu's algorithm, and runs in time O(nz*log n).
- *
- * Input:
- * Square sparse matrix A. No check is made for symmetry;
- * elements below and on the diagonal are ignored.
- * Numeric values are ignored, so any explicit zeros are
- * treated as nonzero.
- * Output:
- * Integer array of parents representing the etree, with n
- * meaning a root of the elimination forest.
- * Note:
- * This routine uses only the upper triangle, while sparse
- * Cholesky (as in spchol.c) uses only the lower. Matlab's
- * dense Cholesky uses only the upper. This routine could
- * be modified to use the lower triangle either by transposing
- * the matrix or by traversing it by rows with auxiliary
- * pointer and link arrays.
- *
- * John R. Gilbert, Xerox, 10 Dec 1990
- * Based on code by JRG dated 1987, 1988, and 1990.
- * Modified by X.S. Li, November 1999.
- */
-
-/*
- * Symmetric elimination tree
- */
-int
-sp_symetree(
- int *acolst, int *acolend, /* column starts and ends past 1 */
- int *arow, /* row indices of A */
- int n, /* dimension of A */
- int *parent /* parent in elim tree */
- )
-{
- int *root; /* root of subtree of etree */
- int rset, cset;
- int row, col;
- int rroot;
- int p;
-
- root = mxCallocInt (n);
- initialize_disjoint_sets (n);
-
- for (col = 0; col < n; col++) {
- cset = make_set (col);
- root[cset] = col;
- parent[col] = n; /* Matlab */
- for (p = acolst[col]; p < acolend[col]; p++) {
- row = arow[p];
- if (row >= col) continue;
- rset = find (row);
- rroot = root[rset];
- if (rroot != col) {
- parent[rroot] = col;
- cset = link (cset, rset);
- root[cset] = col;
- }
- }
- }
- SUPERLU_FREE (root);
- finalize_disjoint_sets ();
- return 0;
-} /* SP_SYMETREE */
diff --git a/intern/opennl/superlu/sp_ienv.c b/intern/opennl/superlu/sp_ienv.c
deleted file mode 100644
index e0f9693ae71..00000000000
--- a/intern/opennl/superlu/sp_ienv.c
+++ /dev/null
@@ -1,68 +0,0 @@
-/** \file opennl/superlu/sp_ienv.c
- * \ingroup opennl
- */
-/*
- * File name: sp_ienv.c
- * History: Modified from lapack routine ILAENV
- */
-
-#include "ssp_defs.h"
-#include "util.h"
-
-int
-sp_ienv(int ispec)
-{
-/*
- Purpose
- =======
-
- sp_ienv() is inquired to choose machine-dependent parameters for the
- local environment. See ISPEC for a description of the parameters.
-
- This version provides a set of parameters which should give good,
- but not optimal, performance on many of the currently available
- computers. Users are encouraged to modify this subroutine to set
- the tuning parameters for their particular machine using the option
- and problem size information in the arguments.
-
- Arguments
- =========
-
- ISPEC (input) int
- Specifies the parameter to be returned as the value of SP_IENV.
- = 1: the panel size w; a panel consists of w consecutive
- columns of matrix A in the process of Gaussian elimination.
- The best value depends on machine's cache characters.
- = 2: the relaxation parameter relax; if the number of
- nodes (columns) in a subtree of the elimination tree is less
- than relax, this subtree is considered as one supernode,
- regardless of their row structures.
- = 3: the maximum size for a supernode;
- = 4: the minimum row dimension for 2-D blocking to be used;
- = 5: the minimum column dimension for 2-D blocking to be used;
- = 6: the estimated fills factor for L and U, compared with A;
-
- (SP_IENV) (output) int
- >= 0: the value of the parameter specified by ISPEC
- < 0: if SP_IENV = -k, the k-th argument had an illegal value.
-
- =====================================================================
-*/
- int i;
-
- switch (ispec) {
- case 1: return (10);
- case 2: return (5);
- case 3: return (100);
- case 4: return (200);
- case 5: return (40);
- case 6: return (20);
- }
-
- /* Invalid value for ISPEC */
- i = 1;
- xerbla_("sp_ienv", &i);
- return 0;
-
-} /* sp_ienv_ */
-
diff --git a/intern/opennl/superlu/sp_preorder.c b/intern/opennl/superlu/sp_preorder.c
deleted file mode 100644
index 9504669726e..00000000000
--- a/intern/opennl/superlu/sp_preorder.c
+++ /dev/null
@@ -1,209 +0,0 @@
-/** \file opennl/superlu/sp_preorder.c
- * \ingroup opennl
- */
-#include "ssp_defs.h"
-
-int check_perm(char *, int , int *);
-
-
-void
-sp_preorder(superlu_options_t *options, SuperMatrix *A, int *perm_c,
- int *etree, SuperMatrix *AC)
-{
-/*
- * Purpose
- * =======
- *
- * sp_preorder() permutes the columns of the original matrix. It performs
- * the following steps:
- *
- * 1. Apply column permutation perm_c[] to A's column pointers to form AC;
- *
- * 2. If options->Fact = DOFACT, then
- * (1) Compute column elimination tree etree[] of AC'AC;
- * (2) Post order etree[] to get a postordered elimination tree etree[],
- * and a postorder permutation post[];
- * (3) Apply post[] permutation to columns of AC;
- * (4) Overwrite perm_c[] with the product perm_c * post.
- *
- * Arguments
- * =========
- *
- * options (input) superlu_options_t*
- * Specifies whether or not the elimination tree will be re-used.
- * If options->Fact == DOFACT, this means first time factor A,
- * etree is computed, postered, and output.
- * Otherwise, re-factor A, etree is input, unchanged on exit.
- *
- * A (input) SuperMatrix*
- * Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
- * of the linear equations is A->nrow. Currently, the type of A can be:
- * Stype = NC or SLU_NCP; Mtype = SLU_GE.
- * In the future, more general A may be handled.
- *
- * perm_c (input/output) int*
- * Column permutation vector of size A->ncol, which defines the
- * permutation matrix Pc; perm_c[i] = j means column i of A is
- * in position j in A*Pc.
- * If options->Fact == DOFACT, perm_c is both input and output.
- * On output, it is changed according to a postorder of etree.
- * Otherwise, perm_c is input.
- *
- * etree (input/output) int*
- * Elimination tree of Pc'*A'*A*Pc, dimension A->ncol.
- * If options->Fact == DOFACT, etree is an output argument,
- * otherwise it is an input argument.
- * Note: etree is a vector of parent pointers for a forest whose
- * vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
- *
- * AC (output) SuperMatrix*
- * The resulting matrix after applied the column permutation
- * perm_c[] to matrix A. The type of AC can be:
- * Stype = SLU_NCP; Dtype = A->Dtype; Mtype = SLU_GE.
- *
- */
-
- NCformat *Astore;
- NCPformat *ACstore;
- int *iwork, *post;
- register int n, i;
-
- n = A->ncol;
-
- /* Apply column permutation perm_c to A's column pointers so to
- obtain NCP format in AC = A*Pc. */
- AC->Stype = SLU_NCP;
- AC->Dtype = A->Dtype;
- AC->Mtype = A->Mtype;
- AC->nrow = A->nrow;
- AC->ncol = A->ncol;
- Astore = A->Store;
- ACstore = AC->Store = (void *) SUPERLU_MALLOC( sizeof(NCPformat) );
- if ( !ACstore ) ABORT("SUPERLU_MALLOC fails for ACstore");
- ACstore->nnz = Astore->nnz;
- ACstore->nzval = Astore->nzval;
- ACstore->rowind = Astore->rowind;
- ACstore->colbeg = (int*) SUPERLU_MALLOC(n*sizeof(int));
- if ( !(ACstore->colbeg) ) ABORT("SUPERLU_MALLOC fails for ACstore->colbeg");
- ACstore->colend = (int*) SUPERLU_MALLOC(n*sizeof(int));
- if ( !(ACstore->colend) ) ABORT("SUPERLU_MALLOC fails for ACstore->colend");
-
-#ifdef DEBUG
- print_int_vec("pre_order:", n, perm_c);
- check_perm("Initial perm_c", n, perm_c);
-#endif
-
- for (i = 0; i < n; i++) {
- ACstore->colbeg[perm_c[i]] = Astore->colptr[i];
- ACstore->colend[perm_c[i]] = Astore->colptr[i+1];
- }
-
- if ( options->Fact == DOFACT ) {
-#undef ETREE_ATplusA
-#ifdef ETREE_ATplusA
- /*--------------------------------------------
- COMPUTE THE ETREE OF Pc*(A'+A)*Pc'.
- --------------------------------------------*/
- int *b_colptr, *b_rowind, bnz, j;
- int *c_colbeg, *c_colend;
-
- /*printf("Use etree(A'+A)\n");*/
-
- /* Form B = A + A'. */
- at_plus_a(n, Astore->nnz, Astore->colptr, Astore->rowind,
- &bnz, &b_colptr, &b_rowind);
-
- /* Form C = Pc*B*Pc'. */
- c_colbeg = (int*) SUPERLU_MALLOC(2*n*sizeof(int));
- c_colend = c_colbeg + n;
- if (!c_colbeg ) ABORT("SUPERLU_MALLOC fails for c_colbeg/c_colend");
- for (i = 0; i < n; i++) {
- c_colbeg[perm_c[i]] = b_colptr[i];
- c_colend[perm_c[i]] = b_colptr[i+1];
- }
- for (j = 0; j < n; ++j) {
- for (i = c_colbeg[j]; i < c_colend[j]; ++i) {
- b_rowind[i] = perm_c[b_rowind[i]];
- }
- }
-
- /* Compute etree of C. */
- sp_symetree(c_colbeg, c_colend, b_rowind, n, etree);
-
- SUPERLU_FREE(b_colptr);
- if ( bnz ) SUPERLU_FREE(b_rowind);
- SUPERLU_FREE(c_colbeg);
-
-#else
- /*--------------------------------------------
- COMPUTE THE COLUMN ELIMINATION TREE.
- --------------------------------------------*/
- sp_coletree(ACstore->colbeg, ACstore->colend, ACstore->rowind,
- A->nrow, A->ncol, etree);
-#endif
-#ifdef DEBUG
- print_int_vec("etree:", n, etree);
-#endif
-
- /* In symmetric mode, do not do postorder here. */
- if ( options->SymmetricMode == NO ) {
- /* Post order etree */
- post = (int *) TreePostorder(n, etree);
- /* for (i = 0; i < n+1; ++i) inv_post[post[i]] = i;
- iwork = post; */
-
-#ifdef DEBUG
- print_int_vec("post:", n+1, post);
- check_perm("post", n, post);
-#endif
- iwork = (int*) SUPERLU_MALLOC((n+1)*sizeof(int));
- if ( !iwork ) ABORT("SUPERLU_MALLOC fails for iwork[]");
-
- /* Renumber etree in postorder */
- for (i = 0; i < n; ++i) iwork[post[i]] = post[etree[i]];
- for (i = 0; i < n; ++i) etree[i] = iwork[i];
-
-#ifdef DEBUG
- print_int_vec("postorder etree:", n, etree);
-#endif
-
- /* Postmultiply A*Pc by post[] */
- for (i = 0; i < n; ++i) iwork[post[i]] = ACstore->colbeg[i];
- for (i = 0; i < n; ++i) ACstore->colbeg[i] = iwork[i];
- for (i = 0; i < n; ++i) iwork[post[i]] = ACstore->colend[i];
- for (i = 0; i < n; ++i) ACstore->colend[i] = iwork[i];
-
- for (i = 0; i < n; ++i)
- iwork[i] = post[perm_c[i]]; /* product of perm_c and post */
- for (i = 0; i < n; ++i) perm_c[i] = iwork[i];
-
-#ifdef DEBUG
- print_int_vec("Pc*post:", n, perm_c);
- check_perm("final perm_c", n, perm_c);
-#endif
- SUPERLU_FREE (post);
- SUPERLU_FREE (iwork);
- } /* end postordering */
-
- } /* if options->Fact == DOFACT ... */
-
-}
-
-int check_perm(char *what, int n, int *perm)
-{
- register int i;
- int *marker;
- marker = (int *) calloc(n, sizeof(int));
-
- for (i = 0; i < n; ++i) {
- if ( marker[perm[i]] == 1 || perm[i] >= n ) {
- printf("%s: Not a valid PERM[%d] = %d\n", what, i, perm[i]);
- ABORT("check_perm");
- } else {
- marker[perm[i]] = 1;
- }
- }
-
- SUPERLU_FREE(marker);
- return 0;
-}
diff --git a/intern/opennl/superlu/spanel_bmod.c b/intern/opennl/superlu/spanel_bmod.c
deleted file mode 100644
index 5f150e640fd..00000000000
--- a/intern/opennl/superlu/spanel_bmod.c
+++ /dev/null
@@ -1,452 +0,0 @@
-/** \file opennl/superlu/spanel_bmod.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include "ssp_defs.h"
-
-/*
- * Function prototypes
- */
-void slsolve(int, int, double *, double *);
-void smatvec(int, int, int, double *, double *, double *);
-extern void scheck_tempv();
-
-void
-spanel_bmod (
- const int m, /* in - number of rows in the matrix */
- const int w, /* in */
- const int jcol, /* in */
- const int nseg, /* in */
- double *dense, /* out, of size n by w */
- double *tempv, /* working array */
- int *segrep, /* in */
- int *repfnz, /* in, of size n by w */
- GlobalLU_t *Glu, /* modified */
- SuperLUStat_t *stat /* output */
- )
-{
-/*
- * Purpose
- * =======
- *
- * Performs numeric block updates (sup-panel) in topological order.
- * It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
- * Special processing on the supernodal portion of L\U[*,j]
- *
- * Before entering this routine, the original nonzeros in the panel
- * were already copied into the spa[m,w].
- *
- * Updated/Output parameters-
- * dense[0:m-1,w]: L[*,j:j+w-1] and U[*,j:j+w-1] are returned
- * collectively in the m-by-w vector dense[*].
- *
- */
-
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- _fcd ftcs1 = _cptofcd("L", strlen("L")),
- ftcs2 = _cptofcd("N", strlen("N")),
- ftcs3 = _cptofcd("U", strlen("U"));
-#endif
- int incx = 1, incy = 1;
- double alpha, beta;
-#endif
-
- register int k, ksub;
- int fsupc, nsupc, nsupr, nrow;
- int krep, krep_ind;
- double ukj, ukj1, ukj2;
- int luptr, luptr1, luptr2;
- int segsze;
- int block_nrow; /* no of rows in a block row */
- register int lptr; /* Points to the row subscripts of a supernode */
- int kfnz, irow, no_zeros;
- register int isub, isub1, i;
- register int jj; /* Index through each column in the panel */
- int *xsup, *supno;
- int *lsub, *xlsub;
- double *lusup;
- int *xlusup;
- int *repfnz_col; /* repfnz[] for a column in the panel */
- double *dense_col; /* dense[] for a column in the panel */
- double *tempv1; /* Used in 1-D update */
- double *TriTmp, *MatvecTmp; /* used in 2-D update */
- double zero = 0.0;
- register int ldaTmp;
- register int r_ind, r_hi;
- static int first = 1, maxsuper, rowblk, colblk;
- flops_t *ops = stat->ops;
-
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- lusup = Glu->lusup;
- xlusup = Glu->xlusup;
-
- if ( first ) {
- maxsuper = sp_ienv(3);
- rowblk = sp_ienv(4);
- colblk = sp_ienv(5);
- first = 0;
- }
- ldaTmp = maxsuper + rowblk;
-
- /*
- * For each nonz supernode segment of U[*,j] in topological order
- */
- k = nseg - 1;
- for (ksub = 0; ksub < nseg; ksub++) { /* for each updating supernode */
-
- /* krep = representative of current k-th supernode
- * fsupc = first supernodal column
- * nsupc = no of columns in a supernode
- * nsupr = no of rows in a supernode
- */
- krep = segrep[k--];
- fsupc = xsup[supno[krep]];
- nsupc = krep - fsupc + 1;
- nsupr = xlsub[fsupc+1] - xlsub[fsupc];
- nrow = nsupr - nsupc;
- lptr = xlsub[fsupc];
- krep_ind = lptr + nsupc - 1;
-
- repfnz_col = repfnz;
- dense_col = dense;
-
- if ( nsupc >= colblk && nrow > rowblk ) { /* 2-D block update */
-
- TriTmp = tempv;
-
- /* Sequence through each column in panel -- triangular solves */
- for (jj = jcol; jj < jcol + w; jj++,
- repfnz_col += m, dense_col += m, TriTmp += ldaTmp ) {
-
- kfnz = repfnz_col[krep];
- if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
-
- segsze = krep - kfnz + 1;
- luptr = xlusup[fsupc];
-
- ops[TRSV] += segsze * (segsze - 1);
- ops[GEMV] += 2 * nrow * segsze;
-
- /* Case 1: Update U-segment of size 1 -- col-col update */
- if ( segsze == 1 ) {
- ukj = dense_col[lsub[krep_ind]];
- luptr += nsupr*(nsupc-1) + nsupc;
-
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; i++) {
- irow = lsub[i];
- dense_col[irow] -= ukj * lusup[luptr];
- ++luptr;
- }
-
- } else if ( segsze <= 3 ) {
- ukj = dense_col[lsub[krep_ind]];
- ukj1 = dense_col[lsub[krep_ind - 1]];
- luptr += nsupr*(nsupc-1) + nsupc-1;
- luptr1 = luptr - nsupr;
-
- if ( segsze == 2 ) {
- ukj -= ukj1 * lusup[luptr1];
- dense_col[lsub[krep_ind]] = ukj;
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
- irow = lsub[i];
- luptr++; luptr1++;
- dense_col[irow] -= (ukj*lusup[luptr]
- + ukj1*lusup[luptr1]);
- }
- } else {
- ukj2 = dense_col[lsub[krep_ind - 2]];
- luptr2 = luptr1 - nsupr;
- ukj1 -= ukj2 * lusup[luptr2-1];
- ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2];
- dense_col[lsub[krep_ind]] = ukj;
- dense_col[lsub[krep_ind-1]] = ukj1;
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
- irow = lsub[i];
- luptr++; luptr1++; luptr2++;
- dense_col[irow] -= ( ukj*lusup[luptr]
- + ukj1*lusup[luptr1] + ukj2*lusup[luptr2] );
- }
- }
-
- } else { /* segsze >= 4 */
-
- /* Copy U[*,j] segment from dense[*] to TriTmp[*], which
- holds the result of triangular solves. */
- no_zeros = kfnz - fsupc;
- isub = lptr + no_zeros;
- for (i = 0; i < segsze; ++i) {
- irow = lsub[isub];
- TriTmp[i] = dense_col[irow]; /* Gather */
- ++isub;
- }
-
- /* start effective triangle */
- luptr += nsupr * no_zeros + no_zeros;
-
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
- &nsupr, TriTmp, &incx );
-#else
- strsv_( "L", "N", "U", &segsze, &lusup[luptr],
- &nsupr, TriTmp, &incx );
-#endif
-#else
- slsolve ( nsupr, segsze, &lusup[luptr], TriTmp );
-#endif
-
-
- } /* else ... */
-
- } /* for jj ... end tri-solves */
-
- /* Block row updates; push all the way into dense[*] block */
- for ( r_ind = 0; r_ind < nrow; r_ind += rowblk ) {
-
- r_hi = SUPERLU_MIN(nrow, r_ind + rowblk);
- block_nrow = SUPERLU_MIN(rowblk, r_hi - r_ind);
- luptr = xlusup[fsupc] + nsupc + r_ind;
- isub1 = lptr + nsupc + r_ind;
-
- repfnz_col = repfnz;
- TriTmp = tempv;
- dense_col = dense;
-
- /* Sequence through each column in panel -- matrix-vector */
- for (jj = jcol; jj < jcol + w; jj++,
- repfnz_col += m, dense_col += m, TriTmp += ldaTmp) {
-
- kfnz = repfnz_col[krep];
- if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
-
- segsze = krep - kfnz + 1;
- if ( segsze <= 3 ) continue; /* skip unrolled cases */
-
- /* Perform a block update, and scatter the result of
- matrix-vector to dense[]. */
- no_zeros = kfnz - fsupc;
- luptr1 = luptr + nsupr * no_zeros;
- MatvecTmp = &TriTmp[maxsuper];
-
-#ifdef USE_VENDOR_BLAS
- alpha = one;
- beta = zero;
-#ifdef _CRAY
- SGEMV(ftcs2, &block_nrow, &segsze, &alpha, &lusup[luptr1],
- &nsupr, TriTmp, &incx, &beta, MatvecTmp, &incy);
-#else
- sgemv_("N", &block_nrow, &segsze, &alpha, &lusup[luptr1],
- &nsupr, TriTmp, &incx, &beta, MatvecTmp, &incy);
-#endif
-#else
- smatvec(nsupr, block_nrow, segsze, &lusup[luptr1],
- TriTmp, MatvecTmp);
-#endif
-
- /* Scatter MatvecTmp[*] into SPA dense[*] temporarily
- * such that MatvecTmp[*] can be re-used for the
- * the next blok row update. dense[] will be copied into
- * global store after the whole panel has been finished.
- */
- isub = isub1;
- for (i = 0; i < block_nrow; i++) {
- irow = lsub[isub];
- dense_col[irow] -= MatvecTmp[i];
- MatvecTmp[i] = zero;
- ++isub;
- }
-
- } /* for jj ... */
-
- } /* for each block row ... */
-
- /* Scatter the triangular solves into SPA dense[*] */
- repfnz_col = repfnz;
- TriTmp = tempv;
- dense_col = dense;
-
- for (jj = jcol; jj < jcol + w; jj++,
- repfnz_col += m, dense_col += m, TriTmp += ldaTmp) {
- kfnz = repfnz_col[krep];
- if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
-
- segsze = krep - kfnz + 1;
- if ( segsze <= 3 ) continue; /* skip unrolled cases */
-
- no_zeros = kfnz - fsupc;
- isub = lptr + no_zeros;
- for (i = 0; i < segsze; i++) {
- irow = lsub[isub];
- dense_col[irow] = TriTmp[i];
- TriTmp[i] = zero;
- ++isub;
- }
-
- } /* for jj ... */
-
- } else { /* 1-D block modification */
-
-
- /* Sequence through each column in the panel */
- for (jj = jcol; jj < jcol + w; jj++,
- repfnz_col += m, dense_col += m) {
-
- kfnz = repfnz_col[krep];
- if ( kfnz == EMPTY ) continue; /* Skip any zero segment */
-
- segsze = krep - kfnz + 1;
- luptr = xlusup[fsupc];
-
- ops[TRSV] += segsze * (segsze - 1);
- ops[GEMV] += 2 * nrow * segsze;
-
- /* Case 1: Update U-segment of size 1 -- col-col update */
- if ( segsze == 1 ) {
- ukj = dense_col[lsub[krep_ind]];
- luptr += nsupr*(nsupc-1) + nsupc;
-
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; i++) {
- irow = lsub[i];
- dense_col[irow] -= ukj * lusup[luptr];
- ++luptr;
- }
-
- } else if ( segsze <= 3 ) {
- ukj = dense_col[lsub[krep_ind]];
- luptr += nsupr*(nsupc-1) + nsupc-1;
- ukj1 = dense_col[lsub[krep_ind - 1]];
- luptr1 = luptr - nsupr;
-
- if ( segsze == 2 ) {
- ukj -= ukj1 * lusup[luptr1];
- dense_col[lsub[krep_ind]] = ukj;
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
- irow = lsub[i];
- ++luptr; ++luptr1;
- dense_col[irow] -= (ukj*lusup[luptr]
- + ukj1*lusup[luptr1]);
- }
- } else {
- ukj2 = dense_col[lsub[krep_ind - 2]];
- luptr2 = luptr1 - nsupr;
- ukj1 -= ukj2 * lusup[luptr2-1];
- ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2];
- dense_col[lsub[krep_ind]] = ukj;
- dense_col[lsub[krep_ind-1]] = ukj1;
- for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
- irow = lsub[i];
- ++luptr; ++luptr1; ++luptr2;
- dense_col[irow] -= ( ukj*lusup[luptr]
- + ukj1*lusup[luptr1] + ukj2*lusup[luptr2] );
- }
- }
-
- } else { /* segsze >= 4 */
- /*
- * Perform a triangular solve and block update,
- * then scatter the result of sup-col update to dense[].
- */
- no_zeros = kfnz - fsupc;
-
- /* Copy U[*,j] segment from dense[*] to tempv[*]:
- * The result of triangular solve is in tempv[*];
- * The result of matrix vector update is in dense_col[*]
- */
- isub = lptr + no_zeros;
- for (i = 0; i < segsze; ++i) {
- irow = lsub[isub];
- tempv[i] = dense_col[irow]; /* Gather */
- ++isub;
- }
-
- /* start effective triangle */
- luptr += nsupr * no_zeros + no_zeros;
-
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
- &nsupr, tempv, &incx );
-#else
- strsv_( "L", "N", "U", &segsze, &lusup[luptr],
- &nsupr, tempv, &incx );
-#endif
-
- luptr += segsze; /* Dense matrix-vector */
- tempv1 = &tempv[segsze];
- alpha = one;
- beta = zero;
-#ifdef _CRAY
- SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr],
- &nsupr, tempv, &incx, &beta, tempv1, &incy );
-#else
- sgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr],
- &nsupr, tempv, &incx, &beta, tempv1, &incy );
-#endif
-#else
- slsolve ( nsupr, segsze, &lusup[luptr], tempv );
-
- luptr += segsze; /* Dense matrix-vector */
- tempv1 = &tempv[segsze];
- smatvec (nsupr, nrow, segsze, &lusup[luptr], tempv, tempv1);
-#endif
-
- /* Scatter tempv[*] into SPA dense[*] temporarily, such
- * that tempv[*] can be used for the triangular solve of
- * the next column of the panel. They will be copied into
- * ucol[*] after the whole panel has been finished.
- */
- isub = lptr + no_zeros;
- for (i = 0; i < segsze; i++) {
- irow = lsub[isub];
- dense_col[irow] = tempv[i];
- tempv[i] = zero;
- isub++;
- }
-
- /* Scatter the update from tempv1[*] into SPA dense[*] */
- /* Start dense rectangular L */
- for (i = 0; i < nrow; i++) {
- irow = lsub[isub];
- dense_col[irow] -= tempv1[i];
- tempv1[i] = zero;
- ++isub;
- }
-
- } /* else segsze>=4 ... */
-
- } /* for each column in the panel... */
-
- } /* else 1-D update ... */
-
- } /* for each updating supernode ... */
-
-}
-
-
-
diff --git a/intern/opennl/superlu/spanel_dfs.c b/intern/opennl/superlu/spanel_dfs.c
deleted file mode 100644
index 80e6814dde9..00000000000
--- a/intern/opennl/superlu/spanel_dfs.c
+++ /dev/null
@@ -1,252 +0,0 @@
-/** \file opennl/superlu/spanel_dfs.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-#include "util.h"
-
-void
-spanel_dfs (
- const int m, /* in - number of rows in the matrix */
- const int w, /* in */
- const int jcol, /* in */
- SuperMatrix *A, /* in - original matrix */
- int *perm_r, /* in */
- int *nseg, /* out */
- double *dense, /* out */
- int *panel_lsub, /* out */
- int *segrep, /* out */
- int *repfnz, /* out */
- int *xprune, /* out */
- int *marker, /* out */
- int *parent, /* working array */
- int *xplore, /* working array */
- GlobalLU_t *Glu /* modified */
- )
-{
-/*
- * Purpose
- * =======
- *
- * Performs a symbolic factorization on a panel of columns [jcol, jcol+w).
- *
- * A supernode representative is the last column of a supernode.
- * The nonzeros in U[*,j] are segments that end at supernodal
- * representatives.
- *
- * The routine returns one list of the supernodal representatives
- * in topological order of the dfs that generates them. This list is
- * a superset of the topological order of each individual column within
- * the panel.
- * The location of the first nonzero in each supernodal segment
- * (supernodal entry location) is also returned. Each column has a
- * separate list for this purpose.
- *
- * Two marker arrays are used for dfs:
- * marker[i] == jj, if i was visited during dfs of current column jj;
- * marker1[i] >= jcol, if i was visited by earlier columns in this panel;
- *
- * marker: A-row --> A-row/col (0/1)
- * repfnz: SuperA-col --> PA-row
- * parent: SuperA-col --> SuperA-col
- * xplore: SuperA-col --> index to L-structure
- *
- */
- NCPformat *Astore;
- double *a;
- int *asub;
- int *xa_begin, *xa_end;
- int krep, chperm, chmark, chrep, oldrep, kchild, myfnz;
- int k, krow, kmark, kperm;
- int xdfs, maxdfs, kpar;
- int jj; /* index through each column in the panel */
- int *marker1; /* marker1[jj] >= jcol if vertex jj was visited
- by a previous column within this panel. */
- int *repfnz_col; /* start of each column in the panel */
- double *dense_col; /* start of each column in the panel */
- int nextl_col; /* next available position in panel_lsub[*,jj] */
- int *xsup, *supno;
- int *lsub, *xlsub;
-
- /* Initialize pointers */
- Astore = A->Store;
- a = Astore->nzval;
- asub = Astore->rowind;
- xa_begin = Astore->colbeg;
- xa_end = Astore->colend;
- marker1 = marker + m;
- repfnz_col = repfnz;
- dense_col = dense;
- *nseg = 0;
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
-
- /* For each column in the panel */
- for (jj = jcol; jj < jcol + w; jj++) {
- nextl_col = (jj - jcol) * m;
-
-#ifdef CHK_DFS
- printf("\npanel col %d: ", jj);
-#endif
-
- /* For each nonz in A[*,jj] do dfs */
- for (k = xa_begin[jj]; k < xa_end[jj]; k++) {
- krow = asub[k];
- dense_col[krow] = a[k];
- kmark = marker[krow];
- if ( kmark == jj )
- continue; /* krow visited before, go to the next nonzero */
-
- /* For each unmarked nbr krow of jj
- * krow is in L: place it in structure of L[*,jj]
- */
- marker[krow] = jj;
- kperm = perm_r[krow];
-
- if ( kperm == EMPTY ) {
- panel_lsub[nextl_col++] = krow; /* krow is indexed into A */
- }
- /*
- * krow is in U: if its supernode-rep krep
- * has been explored, update repfnz[*]
- */
- else {
-
- krep = xsup[supno[kperm]+1] - 1;
- myfnz = repfnz_col[krep];
-
-#ifdef CHK_DFS
- printf("krep %d, myfnz %d, perm_r[%d] %d\n", krep, myfnz, krow, kperm);
-#endif
- if ( myfnz != EMPTY ) { /* Representative visited before */
- if ( myfnz > kperm ) repfnz_col[krep] = kperm;
- /* continue; */
- }
- else {
- /* Otherwise, perform dfs starting at krep */
- oldrep = EMPTY;
- parent[krep] = oldrep;
- repfnz_col[krep] = kperm;
- xdfs = xlsub[krep];
- maxdfs = xprune[krep];
-
-#ifdef CHK_DFS
- printf(" xdfs %d, maxdfs %d: ", xdfs, maxdfs);
- for (i = xdfs; i < maxdfs; i++) printf(" %d", lsub[i]);
- printf("\n");
-#endif
- do {
- /*
- * For each unmarked kchild of krep
- */
- while ( xdfs < maxdfs ) {
-
- kchild = lsub[xdfs];
- xdfs++;
- chmark = marker[kchild];
-
- if ( chmark != jj ) { /* Not reached yet */
- marker[kchild] = jj;
- chperm = perm_r[kchild];
-
- /* Case kchild is in L: place it in L[*,j] */
- if ( chperm == EMPTY ) {
- panel_lsub[nextl_col++] = kchild;
- }
- /* Case kchild is in U:
- * chrep = its supernode-rep. If its rep has
- * been explored, update its repfnz[*]
- */
- else {
-
- chrep = xsup[supno[chperm]+1] - 1;
- myfnz = repfnz_col[chrep];
-#ifdef CHK_DFS
- printf("chrep %d,myfnz %d,perm_r[%d] %d\n",chrep,myfnz,kchild,chperm);
-#endif
- if ( myfnz != EMPTY ) { /* Visited before */
- if ( myfnz > chperm )
- repfnz_col[chrep] = chperm;
- }
- else {
- /* Cont. dfs at snode-rep of kchild */
- xplore[krep] = xdfs;
- oldrep = krep;
- krep = chrep; /* Go deeper down G(L) */
- parent[krep] = oldrep;
- repfnz_col[krep] = chperm;
- xdfs = xlsub[krep];
- maxdfs = xprune[krep];
-#ifdef CHK_DFS
- printf(" xdfs %d, maxdfs %d: ", xdfs, maxdfs);
- for (i = xdfs; i < maxdfs; i++) printf(" %d", lsub[i]);
- printf("\n");
-#endif
- } /* else */
-
- } /* else */
-
- } /* if... */
-
- } /* while xdfs < maxdfs */
-
- /* krow has no more unexplored nbrs:
- * Place snode-rep krep in postorder DFS, if this
- * segment is seen for the first time. (Note that
- * "repfnz[krep]" may change later.)
- * Backtrack dfs to its parent.
- */
- if ( marker1[krep] < jcol ) {
- segrep[*nseg] = krep;
- ++(*nseg);
- marker1[krep] = jj;
- }
-
- kpar = parent[krep]; /* Pop stack, mimic recursion */
- if ( kpar == EMPTY ) break; /* dfs done */
- krep = kpar;
- xdfs = xplore[krep];
- maxdfs = xprune[krep];
-
-#ifdef CHK_DFS
- printf(" pop stack: krep %d,xdfs %d,maxdfs %d: ", krep,xdfs,maxdfs);
- for (i = xdfs; i < maxdfs; i++) printf(" %d", lsub[i]);
- printf("\n");
-#endif
- } while ( kpar != EMPTY ); /* do-while - until empty stack */
-
- } /* else */
-
- } /* else */
-
- } /* for each nonz in A[*,jj] */
-
- repfnz_col += m; /* Move to next column */
- dense_col += m;
-
- } /* for jj ... */
-
-}
diff --git a/intern/opennl/superlu/spivotL.c b/intern/opennl/superlu/spivotL.c
deleted file mode 100644
index 1a0302d0101..00000000000
--- a/intern/opennl/superlu/spivotL.c
+++ /dev/null
@@ -1,176 +0,0 @@
-/** \file opennl/superlu/spivotL.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include <math.h>
-#include <stdlib.h>
-#include "ssp_defs.h"
-
-#undef DEBUG
-
-int
-spivotL(
- const int jcol, /* in */
- const double u, /* in - diagonal pivoting threshold */
- int *usepr, /* re-use the pivot sequence given by perm_r/iperm_r */
- int *perm_r, /* may be modified */
- int *iperm_r, /* in - inverse of perm_r */
- int *iperm_c, /* in - used to find diagonal of Pc*A*Pc' */
- int *pivrow, /* out */
- GlobalLU_t *Glu, /* modified - global LU data structures */
- SuperLUStat_t *stat /* output */
- )
-{
-/*
- * Purpose
- * =======
- * Performs the numerical pivoting on the current column of L,
- * and the CDIV operation.
- *
- * Pivot policy:
- * (1) Compute thresh = u * max_(i>=j) abs(A_ij);
- * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN
- * pivot row = k;
- * ELSE IF abs(A_jj) >= thresh THEN
- * pivot row = j;
- * ELSE
- * pivot row = m;
- *
- * Note: If you absolutely want to use a given pivot order, then set u=0.0.
- *
- * Return value: 0 success;
- * i > 0 U(i,i) is exactly zero.
- *
- */
- int fsupc; /* first column in the supernode */
- int nsupc; /* no of columns in the supernode */
- int nsupr; /* no of rows in the supernode */
- int lptr; /* points to the starting subscript of the supernode */
- int pivptr, old_pivptr, diag, diagind;
- double pivmax, rtemp, thresh;
- double temp;
- double *lu_sup_ptr;
- double *lu_col_ptr;
- int *lsub_ptr;
- int isub, icol, k, itemp;
- int *lsub, *xlsub;
- double *lusup;
- int *xlusup;
- flops_t *ops = stat->ops;
-
- /* Initialize pointers */
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- lusup = Glu->lusup;
- xlusup = Glu->xlusup;
- fsupc = (Glu->xsup)[(Glu->supno)[jcol]];
- nsupc = jcol - fsupc; /* excluding jcol; nsupc >= 0 */
- lptr = xlsub[fsupc];
- nsupr = xlsub[fsupc+1] - lptr;
- lu_sup_ptr = &lusup[xlusup[fsupc]]; /* start of the current supernode */
- lu_col_ptr = &lusup[xlusup[jcol]]; /* start of jcol in the supernode */
- lsub_ptr = &lsub[lptr]; /* start of row indices of the supernode */
-
-#ifdef DEBUG
-if ( jcol == MIN_COL ) {
- printf("Before cdiv: col %d\n", jcol);
- for (k = nsupc; k < nsupr; k++)
- printf(" lu[%d] %f\n", lsub_ptr[k], lu_col_ptr[k]);
-}
-#endif
-
- /* Determine the largest abs numerical value for partial pivoting;
- Also search for user-specified pivot, and diagonal element. */
- if ( *usepr ) *pivrow = iperm_r[jcol];
- diagind = iperm_c[jcol];
- pivmax = 0.0;
- pivptr = nsupc;
- diag = EMPTY;
- old_pivptr = nsupc;
- for (isub = nsupc; isub < nsupr; ++isub) {
- rtemp = fabs (lu_col_ptr[isub]);
- if ( rtemp > pivmax ) {
- pivmax = rtemp;
- pivptr = isub;
- }
- if ( *usepr && lsub_ptr[isub] == *pivrow ) old_pivptr = isub;
- if ( lsub_ptr[isub] == diagind ) diag = isub;
- }
-
- /* Test for singularity */
- if ( pivmax == 0.0 ) {
- *pivrow = lsub_ptr[pivptr];
- perm_r[*pivrow] = jcol;
- *usepr = 0;
- return (jcol+1);
- }
-
- thresh = u * pivmax;
-
- /* Choose appropriate pivotal element by our policy. */
- if ( *usepr ) {
- rtemp = fabs (lu_col_ptr[old_pivptr]);
- if ( rtemp != 0.0 && rtemp >= thresh )
- pivptr = old_pivptr;
- else
- *usepr = 0;
- }
- if ( *usepr == 0 ) {
- /* Use diagonal pivot? */
- if ( diag >= 0 ) { /* diagonal exists */
- rtemp = fabs (lu_col_ptr[diag]);
- if ( rtemp != 0.0 && rtemp >= thresh ) pivptr = diag;
- }
- *pivrow = lsub_ptr[pivptr];
- }
-
- /* Record pivot row */
- perm_r[*pivrow] = jcol;
-
- /* Interchange row subscripts */
- if ( pivptr != nsupc ) {
- itemp = lsub_ptr[pivptr];
- lsub_ptr[pivptr] = lsub_ptr[nsupc];
- lsub_ptr[nsupc] = itemp;
-
- /* Interchange numerical values as well, for the whole snode, such
- * that L is indexed the same way as A.
- */
- for (icol = 0; icol <= nsupc; icol++) {
- itemp = pivptr + icol * nsupr;
- temp = lu_sup_ptr[itemp];
- lu_sup_ptr[itemp] = lu_sup_ptr[nsupc + icol*nsupr];
- lu_sup_ptr[nsupc + icol*nsupr] = temp;
- }
- } /* if */
-
- /* cdiv operation */
- ops[FACT] += nsupr - nsupc;
-
- temp = 1.0 / lu_col_ptr[nsupc];
- for (k = nsupc+1; k < nsupr; k++)
- lu_col_ptr[k] *= temp;
-
- return 0;
-}
-
diff --git a/intern/opennl/superlu/spruneL.c b/intern/opennl/superlu/spruneL.c
deleted file mode 100644
index 3cf29658596..00000000000
--- a/intern/opennl/superlu/spruneL.c
+++ /dev/null
@@ -1,152 +0,0 @@
-/** \file opennl/superlu/spruneL.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-#include "util.h"
-
-void
-spruneL(
- const int jcol, /* in */
- const int *perm_r, /* in */
- const int pivrow, /* in */
- const int nseg, /* in */
- const int *segrep, /* in */
- const int *repfnz, /* in */
- int *xprune, /* out */
- GlobalLU_t *Glu /* modified - global LU data structures */
- )
-{
-/*
- * Purpose
- * =======
- * Prunes the L-structure of supernodes whose L-structure
- * contains the current pivot row "pivrow"
- *
- */
- double utemp;
- int jsupno, irep, irep1, kmin, kmax, krow, movnum;
- int i, ktemp, minloc, maxloc;
- int do_prune; /* logical variable */
- int *xsup, *supno;
- int *lsub, *xlsub;
- double *lusup;
- int *xlusup;
-
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- lusup = Glu->lusup;
- xlusup = Glu->xlusup;
-
- /*
- * For each supernode-rep irep in U[*,j]
- */
- jsupno = supno[jcol];
- for (i = 0; i < nseg; i++) {
-
- irep = segrep[i];
- irep1 = irep + 1;
- do_prune = FALSE;
-
- /* Don't prune with a zero U-segment */
- if ( repfnz[irep] == EMPTY )
- continue;
-
- /* If a snode overlaps with the next panel, then the U-segment
- * is fragmented into two parts -- irep and irep1. We should let
- * pruning occur at the rep-column in irep1's snode.
- */
- if ( supno[irep] == supno[irep1] ) /* Don't prune */
- continue;
-
- /*
- * If it has not been pruned & it has a nonz in row L[pivrow,i]
- */
- if ( supno[irep] != jsupno ) {
- if ( xprune[irep] >= xlsub[irep1] ) {
- kmin = xlsub[irep];
- kmax = xlsub[irep1] - 1;
- for (krow = kmin; krow <= kmax; krow++)
- if ( lsub[krow] == pivrow ) {
- do_prune = TRUE;
- break;
- }
- }
-
- if ( do_prune ) {
-
- /* Do a quicksort-type partition
- * movnum=TRUE means that the num values have to be exchanged.
- */
- movnum = FALSE;
- if ( irep == xsup[supno[irep]] ) /* Snode of size 1 */
- movnum = TRUE;
-
- while ( kmin <= kmax ) {
-
- if ( perm_r[lsub[kmax]] == EMPTY )
- kmax--;
- else if ( perm_r[lsub[kmin]] != EMPTY )
- kmin++;
- else { /* kmin below pivrow, and kmax above pivrow:
- * interchange the two subscripts
- */
- ktemp = lsub[kmin];
- lsub[kmin] = lsub[kmax];
- lsub[kmax] = ktemp;
-
- /* If the supernode has only one column, then we
- * only keep one set of subscripts. For any subscript
- * interchange performed, similar interchange must be
- * done on the numerical values.
- */
- if ( movnum ) {
- minloc = xlusup[irep] + (kmin - xlsub[irep]);
- maxloc = xlusup[irep] + (kmax - xlsub[irep]);
- utemp = lusup[minloc];
- lusup[minloc] = lusup[maxloc];
- lusup[maxloc] = utemp;
- }
-
- kmin++;
- kmax--;
-
- }
-
- } /* while */
-
- xprune[irep] = kmin; /* Pruning */
-
-#ifdef CHK_PRUNE
- printf(" After spruneL(),using col %d: xprune[%d] = %d\n",
- jcol, irep, kmin);
-#endif
- } /* if do_prune */
-
- } /* if */
-
- } /* for each U-segment... */
-}
diff --git a/intern/opennl/superlu/ssnode_bmod.c b/intern/opennl/superlu/ssnode_bmod.c
deleted file mode 100644
index 9533373f212..00000000000
--- a/intern/opennl/superlu/ssnode_bmod.c
+++ /dev/null
@@ -1,120 +0,0 @@
-/** \file opennl/superlu/ssnode_bmod.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-
-void slsolve(int, int, double*, double*);
-void smatvec(int, int, int, double*, double*, double*);
-
-/*
- * Performs numeric block updates within the relaxed snode.
- */
-int
-ssnode_bmod (
- const int jcol, /* in */
- const int fsupc, /* in */
- double *dense, /* in */
- double *tempv, /* working array */
- GlobalLU_t *Glu, /* modified */
- SuperLUStat_t *stat /* output */
- )
-{
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- _fcd ftcs1 = _cptofcd("L", strlen("L")),
- ftcs2 = _cptofcd("N", strlen("N")),
- ftcs3 = _cptofcd("U", strlen("U"));
-#endif
- int incx = 1, incy = 1;
- double alpha = -1.0, beta = 1.0;
-#endif
-
- int luptr, nsupc, nsupr, nrow;
- int isub, irow, i, iptr;
- register int ufirst, nextlu;
- int *lsub, *xlsub;
- double *lusup;
- int *xlusup;
- flops_t *ops = stat->ops;
-
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- lusup = Glu->lusup;
- xlusup = Glu->xlusup;
-
- nextlu = xlusup[jcol];
-
- /*
- * Process the supernodal portion of L\U[*,j]
- */
- for (isub = xlsub[fsupc]; isub < xlsub[fsupc+1]; isub++) {
- irow = lsub[isub];
- lusup[nextlu] = dense[irow];
- dense[irow] = 0;
- ++nextlu;
- }
-
- xlusup[jcol + 1] = nextlu; /* Initialize xlusup for next column */
-
- if ( fsupc < jcol ) {
-
- luptr = xlusup[fsupc];
- nsupr = xlsub[fsupc+1] - xlsub[fsupc];
- nsupc = jcol - fsupc; /* Excluding jcol */
- ufirst = xlusup[jcol]; /* Points to the beginning of column
- jcol in supernode L\U(jsupno). */
- nrow = nsupr - nsupc;
-
- ops[TRSV] += nsupc * (nsupc - 1);
- ops[GEMV] += 2 * nrow * nsupc;
-
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr], &nsupr,
- &lusup[ufirst], &incx );
- SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
- &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
-#else
- strsv_( "L", "N", "U", &nsupc, &lusup[luptr], &nsupr,
- &lusup[ufirst], &incx );
- sgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
- &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
-#endif
-#else
- slsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] );
- smatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc],
- &lusup[ufirst], &tempv[0] );
-
- /* Scatter tempv[*] into lusup[*] */
- iptr = ufirst + nsupc;
- for (i = 0; i < nrow; i++) {
- lusup[iptr++] -= tempv[i];
- tempv[i] = 0.0;
- }
-#endif
-
- }
-
- return 0;
-}
diff --git a/intern/opennl/superlu/ssnode_dfs.c b/intern/opennl/superlu/ssnode_dfs.c
deleted file mode 100644
index 0dfc8d86d82..00000000000
--- a/intern/opennl/superlu/ssnode_dfs.c
+++ /dev/null
@@ -1,109 +0,0 @@
-/** \file opennl/superlu/ssnode_dfs.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include "ssp_defs.h"
-#include "util.h"
-
-int
-ssnode_dfs (
- const int jcol, /* in - start of the supernode */
- const int kcol, /* in - end of the supernode */
- const int *asub, /* in */
- const int *xa_begin, /* in */
- const int *xa_end, /* in */
- int *xprune, /* out */
- int *marker, /* modified */
- GlobalLU_t *Glu /* modified */
- )
-{
-/* Purpose
- * =======
- * ssnode_dfs() - Determine the union of the row structures of those
- * columns within the relaxed snode.
- * Note: The relaxed snodes are leaves of the supernodal etree, therefore,
- * the portion outside the rectangular supernode must be zero.
- *
- * Return value
- * ============
- * 0 success;
- * >0 number of bytes allocated when run out of memory.
- *
- */
- register int i, k, ifrom, ito, nextl, new_next;
- int nsuper, krow, kmark, mem_error;
- int *xsup, *supno;
- int *lsub, *xlsub;
- int nzlmax;
-
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- nzlmax = Glu->nzlmax;
-
- nsuper = ++supno[jcol]; /* Next available supernode number */
- nextl = xlsub[jcol];
-
- for (i = jcol; i <= kcol; i++) {
- /* For each nonzero in A[*,i] */
- for (k = xa_begin[i]; k < xa_end[i]; k++) {
- krow = asub[k];
- kmark = marker[krow];
- if ( kmark != kcol ) { /* First time visit krow */
- marker[krow] = kcol;
- lsub[nextl++] = krow;
- if ( nextl >= nzlmax ) {
- if ( (mem_error = sLUMemXpand(jcol, nextl, LSUB, &nzlmax, Glu)) )
- return (mem_error);
- lsub = Glu->lsub;
- }
- }
- }
- supno[i] = nsuper;
- }
-
- /* Supernode > 1, then make a copy of the subscripts for pruning */
- if ( jcol < kcol ) {
- new_next = nextl + (nextl - xlsub[jcol]);
- while ( new_next > nzlmax ) {
- if ( (mem_error = sLUMemXpand(jcol, nextl, LSUB, &nzlmax, Glu)) )
- return (mem_error);
- lsub = Glu->lsub;
- }
- ito = nextl;
- for (ifrom = xlsub[jcol]; ifrom < nextl; )
- lsub[ito++] = lsub[ifrom++];
- for (i = jcol+1; i <= kcol; i++) xlsub[i] = nextl;
- nextl = ito;
- }
-
- xsup[nsuper+1] = kcol + 1;
- supno[kcol+1] = nsuper;
- xprune[kcol] = nextl;
- xlsub[kcol+1] = nextl;
-
- return 0;
-}
-
diff --git a/intern/opennl/superlu/ssp_blas2.c b/intern/opennl/superlu/ssp_blas2.c
deleted file mode 100644
index 9215d48dc09..00000000000
--- a/intern/opennl/superlu/ssp_blas2.c
+++ /dev/null
@@ -1,475 +0,0 @@
-/** \file opennl/superlu/ssp_blas2.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- * File name: ssp_blas2.c
- * Purpose: Sparse BLAS 2, using some dense BLAS 2 operations.
- */
-
-#include "ssp_defs.h"
-
-/*
- * Function prototypes
- */
-void susolve(int, int, double*, double*);
-void slsolve(int, int, double*, double*);
-void smatvec(int, int, int, double*, double*, double*);
-int strsv_(char*, char*, char*, int*, double*, int*, double*, int*);
-
-int
-sp_strsv(char *uplo, char *trans, char *diag, SuperMatrix *L,
- SuperMatrix *U, double *x, SuperLUStat_t *stat, int *info)
-{
-/*
- * Purpose
- * =======
- *
- * sp_strsv() solves one of the systems of equations
- * A*x = b, or A'*x = b,
- * where b and x are n element vectors and A is a sparse unit , or
- * non-unit, upper or lower triangular matrix.
- * No test for singularity or near-singularity is included in this
- * routine. Such tests must be performed before calling this routine.
- *
- * Parameters
- * ==========
- *
- * uplo - (input) char*
- * On entry, uplo specifies whether the matrix is an upper or
- * lower triangular matrix as follows:
- * uplo = 'U' or 'u' A is an upper triangular matrix.
- * uplo = 'L' or 'l' A is a lower triangular matrix.
- *
- * trans - (input) char*
- * On entry, trans specifies the equations to be solved as
- * follows:
- * trans = 'N' or 'n' A*x = b.
- * trans = 'T' or 't' A'*x = b.
- * trans = 'C' or 'c' A'*x = b.
- *
- * diag - (input) char*
- * On entry, diag specifies whether or not A is unit
- * triangular as follows:
- * diag = 'U' or 'u' A is assumed to be unit triangular.
- * diag = 'N' or 'n' A is not assumed to be unit
- * triangular.
- *
- * L - (input) SuperMatrix*
- * The factor L from the factorization Pr*A*Pc=L*U. Use
- * compressed row subscripts storage for supernodes,
- * i.e., L has types: Stype = SC, Dtype = SLU_S, Mtype = TRLU.
- *
- * U - (input) SuperMatrix*
- * The factor U from the factorization Pr*A*Pc=L*U.
- * U has types: Stype = NC, Dtype = SLU_S, Mtype = TRU.
- *
- * x - (input/output) double*
- * Before entry, the incremented array X must contain the n
- * element right-hand side vector b. On exit, X is overwritten
- * with the solution vector x.
- *
- * info - (output) int*
- * If *info = -i, the i-th argument had an illegal value.
- *
- */
-#ifdef _CRAY
- _fcd ftcs1 = _cptofcd("L", strlen("L")),
- ftcs2 = _cptofcd("N", strlen("N")),
- ftcs3 = _cptofcd("U", strlen("U"));
-#endif
- SCformat *Lstore;
- NCformat *Ustore;
- double *Lval, *Uval;
- int incx = 1;
- int nrow;
- int fsupc, nsupr, nsupc, luptr, istart, irow;
- int i, k, iptr, jcol;
- double *work;
- flops_t solve_ops;
-
- /* Test the input parameters */
- *info = 0;
- if ( !lsame_(uplo,"L") && !lsame_(uplo, "U") ) *info = -1;
- else if ( !lsame_(trans, "N") && !lsame_(trans, "T") &&
- !lsame_(trans, "C")) *info = -2;
- else if ( !lsame_(diag, "U") && !lsame_(diag, "N") ) *info = -3;
- else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -4;
- else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -5;
- if ( *info ) {
- i = -(*info);
- xerbla_("sp_strsv", &i);
- return 0;
- }
-
- Lstore = L->Store;
- Lval = Lstore->nzval;
- Ustore = U->Store;
- Uval = Ustore->nzval;
- solve_ops = 0;
-
- if ( !(work = doubleCalloc(L->nrow)) )
- ABORT("Malloc fails for work in sp_strsv().");
-
- if ( lsame_(trans, "N") ) { /* Form x := inv(A)*x. */
-
- if ( lsame_(uplo, "L") ) {
- /* Form x := inv(L)*x */
- if ( L->nrow == 0 ) {
- SUPERLU_FREE(work);
- return 0; /* Quick return */
- }
-
- for (k = 0; k <= Lstore->nsuper; k++) {
- fsupc = L_FST_SUPC(k);
- istart = L_SUB_START(fsupc);
- nsupr = L_SUB_START(fsupc+1) - istart;
- nsupc = L_FST_SUPC(k+1) - fsupc;
- luptr = L_NZ_START(fsupc);
- nrow = nsupr - nsupc;
-
- solve_ops += nsupc * (nsupc - 1);
- solve_ops += 2 * nrow * nsupc;
-
- if ( nsupc == 1 ) {
- for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); ++iptr) {
- irow = L_SUB(iptr);
- ++luptr;
- x[irow] -= x[fsupc] * Lval[luptr];
- }
- } else {
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-
- SGEMV(ftcs2, &nrow, &nsupc, &alpha, &Lval[luptr+nsupc],
- &nsupr, &x[fsupc], &incx, &beta, &work[0], &incy);
-#else
- strsv_("L", "N", "U", &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-
- sgemv_("N", &nrow, &nsupc, &alpha, &Lval[luptr+nsupc],
- &nsupr, &x[fsupc], &incx, &beta, &work[0], &incy);
-#endif
-#else
- slsolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc]);
-
- smatvec ( nsupr, nsupr-nsupc, nsupc, &Lval[luptr+nsupc],
- &x[fsupc], &work[0] );
-#endif
-
- iptr = istart + nsupc;
- for (i = 0; i < nrow; ++i, ++iptr) {
- irow = L_SUB(iptr);
- x[irow] -= work[i]; /* Scatter */
- work[i] = 0.0;
-
- }
- }
- } /* for k ... */
-
- } else {
- /* Form x := inv(U)*x */
-
- if ( U->nrow == 0 ) return 0; /* Quick return */
-
- for (k = Lstore->nsuper; k >= 0; k--) {
- fsupc = L_FST_SUPC(k);
- nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc);
- nsupc = L_FST_SUPC(k+1) - fsupc;
- luptr = L_NZ_START(fsupc);
-
- solve_ops += nsupc * (nsupc + 1);
-
- if ( nsupc == 1 ) {
- x[fsupc] /= Lval[luptr];
- for (i = U_NZ_START(fsupc); i < U_NZ_START(fsupc+1); ++i) {
- irow = U_SUB(i);
- x[irow] -= x[fsupc] * Uval[i];
- }
- } else {
-#ifdef USE_VENDOR_BLAS
-#ifdef _CRAY
- STRSV(ftcs3, ftcs2, ftcs2, &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-#else
- strsv_("U", "N", "N", &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-#endif
-#else
- susolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc] );
-#endif
-
- for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) {
- solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
- for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1);
- i++) {
- irow = U_SUB(i);
- x[irow] -= x[jcol] * Uval[i];
- }
- }
- }
- } /* for k ... */
-
- }
- } else { /* Form x := inv(A')*x */
-
- if ( lsame_(uplo, "L") ) {
- /* Form x := inv(L')*x */
- if ( L->nrow == 0 ) return 0; /* Quick return */
-
- for (k = Lstore->nsuper; k >= 0; --k) {
- fsupc = L_FST_SUPC(k);
- istart = L_SUB_START(fsupc);
- nsupr = L_SUB_START(fsupc+1) - istart;
- nsupc = L_FST_SUPC(k+1) - fsupc;
- luptr = L_NZ_START(fsupc);
-
- solve_ops += 2 * (nsupr - nsupc) * nsupc;
-
- for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) {
- iptr = istart + nsupc;
- for (i = L_NZ_START(jcol) + nsupc;
- i < L_NZ_START(jcol+1); i++) {
- irow = L_SUB(iptr);
- x[jcol] -= x[irow] * Lval[i];
- iptr++;
- }
- }
-
- if ( nsupc > 1 ) {
- solve_ops += nsupc * (nsupc - 1);
-#ifdef _CRAY
- ftcs1 = _cptofcd("L", strlen("L"));
- ftcs2 = _cptofcd("T", strlen("T"));
- ftcs3 = _cptofcd("U", strlen("U"));
- STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-#else
- strsv_("L", "T", "U", &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-#endif
- }
- }
- } else {
- /* Form x := inv(U')*x */
- if ( U->nrow == 0 ) return 0; /* Quick return */
-
- for (k = 0; k <= Lstore->nsuper; k++) {
- fsupc = L_FST_SUPC(k);
- nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc);
- nsupc = L_FST_SUPC(k+1) - fsupc;
- luptr = L_NZ_START(fsupc);
-
- for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) {
- solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
- for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++) {
- irow = U_SUB(i);
- x[jcol] -= x[irow] * Uval[i];
- }
- }
-
- solve_ops += nsupc * (nsupc + 1);
-
- if ( nsupc == 1 ) {
- x[fsupc] /= Lval[luptr];
- } else {
-#ifdef _CRAY
- ftcs1 = _cptofcd("U", strlen("U"));
- ftcs2 = _cptofcd("T", strlen("T"));
- ftcs3 = _cptofcd("N", strlen("N"));
- STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-#else
- strsv_("U", "T", "N", &nsupc, &Lval[luptr], &nsupr,
- &x[fsupc], &incx);
-#endif
- }
- } /* for k ... */
- }
- }
-
- stat->ops[SOLVE] += solve_ops;
- SUPERLU_FREE(work);
- return 0;
-}
-
-
-
-
-int
-sp_sgemv(char *trans, double alpha, SuperMatrix *A, double *x,
- int incx, double beta, double *y, int incy)
-{
-/* Purpose
- =======
-
- sp_sgemv() performs one of the matrix-vector operations
- y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
- where alpha and beta are scalars, x and y are vectors and A is a
- sparse A->nrow by A->ncol matrix.
-
- Parameters
- ==========
-
- TRANS - (input) char*
- On entry, TRANS specifies the operation to be performed as
- follows:
- TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
- TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
- TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
-
- ALPHA - (input) double
- On entry, ALPHA specifies the scalar alpha.
-
- A - (input) SuperMatrix*
- Matrix A with a sparse format, of dimension (A->nrow, A->ncol).
- Currently, the type of A can be:
- Stype = NC or NCP; Dtype = SLU_S; Mtype = GE.
- In the future, more general A can be handled.
-
- X - (input) double*, array of DIMENSION at least
- ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
- and at least
- ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
- Before entry, the incremented array X must contain the
- vector x.
-
- INCX - (input) int
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
-
- BETA - (input) double
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then Y need not be set on input.
-
- Y - (output) double*, array of DIMENSION at least
- ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
- and at least
- ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
- Before entry with BETA non-zero, the incremented array Y
- must contain the vector y. On exit, Y is overwritten by the
- updated vector y.
-
- INCY - (input) int
- On entry, INCY specifies the increment for the elements of
- Y. INCY must not be zero.
-
- ==== Sparse Level 2 Blas routine.
-*/
-
- /* Local variables */
- NCformat *Astore;
- double *Aval;
- int info;
- double temp;
- int lenx, leny, i, j, irow;
- int iy, jx, jy, kx, ky;
- int notran;
-
- notran = lsame_(trans, "N");
- Astore = A->Store;
- Aval = Astore->nzval;
-
- /* Test the input parameters */
- info = 0;
- if ( !notran && !lsame_(trans, "T") && !lsame_(trans, "C")) info = 1;
- else if ( A->nrow < 0 || A->ncol < 0 ) info = 3;
- else if (incx == 0) info = 5;
- else if (incy == 0) info = 8;
- if (info != 0) {
- xerbla_("sp_sgemv ", &info);
- return 0;
- }
-
- /* Quick return if possible. */
- if (A->nrow == 0 || A->ncol == 0 || (alpha == 0. && beta == 1.))
- return 0;
-
- /* Set LENX and LENY, the lengths of the vectors x and y, and set
- up the start points in X and Y. */
- if (lsame_(trans, "N")) {
- lenx = A->ncol;
- leny = A->nrow;
- } else {
- lenx = A->nrow;
- leny = A->ncol;
- }
- if (incx > 0) kx = 0;
- else kx = - (lenx - 1) * incx;
- if (incy > 0) ky = 0;
- else ky = - (leny - 1) * incy;
-
- /* Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A. */
- /* First form y := beta*y. */
- if (beta != 1.) {
- if (incy == 1) {
- if (beta == 0.)
- for (i = 0; i < leny; ++i) y[i] = 0.;
- else
- for (i = 0; i < leny; ++i) y[i] = beta * y[i];
- } else {
- iy = ky;
- if (beta == 0.)
- for (i = 0; i < leny; ++i) {
- y[iy] = 0.;
- iy += incy;
- }
- else
- for (i = 0; i < leny; ++i) {
- y[iy] = beta * y[iy];
- iy += incy;
- }
- }
- }
-
- if (alpha == 0.) return 0;
-
- if ( notran ) {
- /* Form y := alpha*A*x + y. */
- jx = kx;
- if (incy == 1) {
- for (j = 0; j < A->ncol; ++j) {
- if (x[jx] != 0.) {
- temp = alpha * x[jx];
- for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
- irow = Astore->rowind[i];
- y[irow] += temp * Aval[i];
- }
- }
- jx += incx;
- }
- } else {
- ABORT("Not implemented.");
- }
- } else {
- /* Form y := alpha*A'*x + y. */
- jy = ky;
- if (incx == 1) {
- for (j = 0; j < A->ncol; ++j) {
- temp = 0.;
- for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
- irow = Astore->rowind[i];
- temp += Aval[i] * x[irow];
- }
- y[jy] += alpha * temp;
- jy += incy;
- }
- } else {
- ABORT("Not implemented.");
- }
- }
- return 0;
-} /* sp_sgemv */
-
-
-
diff --git a/intern/opennl/superlu/ssp_blas3.c b/intern/opennl/superlu/ssp_blas3.c
deleted file mode 100644
index aeb51b0c1ca..00000000000
--- a/intern/opennl/superlu/ssp_blas3.c
+++ /dev/null
@@ -1,124 +0,0 @@
-/** \file opennl/superlu/ssp_blas3.c
- * \ingroup opennl
- */
-
-
-/*
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- */
-/*
- * File name: sp_blas3.c
- * Purpose: Sparse BLAS3, using some dense BLAS3 operations.
- */
-
-#include "ssp_defs.h"
-#include "util.h"
-
-int
-sp_sgemm(char *transa, int n,
- double alpha, SuperMatrix *A, double *b, int ldb,
- double beta, double *c, int ldc)
-{
-/* Purpose
- =======
-
- sp_s performs one of the matrix-matrix operations
-
- C := alpha*op( A )*op( B ) + beta*C,
-
- where op( X ) is one of
-
- op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
-
- alpha and beta are scalars, and A, B and C are matrices, with op( A )
- an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
-
-
- Parameters
- ==========
-
- TRANSA - (input) char*
- On entry, TRANSA specifies the form of op( A ) to be used in
- the matrix multiplication as follows:
- TRANSA = 'N' or 'n', op( A ) = A.
- TRANSA = 'T' or 't', op( A ) = A'.
- TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
- Unchanged on exit.
-
- TRANSB - (input) char*
- On entry, TRANSB specifies the form of op( B ) to be used in
- the matrix multiplication as follows:
- TRANSB = 'N' or 'n', op( B ) = B.
- TRANSB = 'T' or 't', op( B ) = B'.
- TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
- Unchanged on exit.
-
- M - (input) int
- On entry, M specifies the number of rows of the matrix
- op( A ) and of the matrix C. M must be at least zero.
- Unchanged on exit.
-
- N - (input) int
- On entry, N specifies the number of columns of the matrix
- op( B ) and the number of columns of the matrix C. N must be
- at least zero.
- Unchanged on exit.
-
- K - (input) int
- On entry, K specifies the number of columns of the matrix
- op( A ) and the number of rows of the matrix op( B ). K must
- be at least zero.
- Unchanged on exit.
-
- ALPHA - (input) double
- On entry, ALPHA specifies the scalar alpha.
-
- A - (input) SuperMatrix*
- Matrix A with a sparse format, of dimension (A->nrow, A->ncol).
- Currently, the type of A can be:
- Stype = NC or NCP; Dtype = SLU_S; Mtype = GE.
- In the future, more general A can be handled.
-
- B - FLOAT PRECISION array of DIMENSION ( LDB, kb ), where kb is
- n when TRANSB = 'N' or 'n', and is k otherwise.
- Before entry with TRANSB = 'N' or 'n', the leading k by n
- part of the array B must contain the matrix B, otherwise
- the leading n by k part of the array B must contain the
- matrix B.
- Unchanged on exit.
-
- LDB - (input) int
- On entry, LDB specifies the first dimension of B as declared
- in the calling (sub) program. LDB must be at least max( 1, n ).
- Unchanged on exit.
-
- BETA - (input) double
- On entry, BETA specifies the scalar beta. When BETA is
- supplied as zero then C need not be set on input.
-
- C - FLOAT PRECISION array of DIMENSION ( LDC, n ).
- Before entry, the leading m by n part of the array C must
- contain the matrix C, except when beta is zero, in which
- case C need not be set on entry.
- On exit, the array C is overwritten by the m by n matrix
- ( alpha*op( A )*B + beta*C ).
-
- LDC - (input) int
- On entry, LDC specifies the first dimension of C as declared
- in the calling (sub)program. LDC must be at least max(1,m).
- Unchanged on exit.
-
- ==== Sparse Level 3 Blas routine.
-*/
- int incx = 1, incy = 1;
- int j;
-
- for (j = 0; j < n; ++j) {
- sp_sgemv(transa, alpha, A, &b[ldb*j], incx, beta, &c[ldc*j], incy);
- }
- return 0;
-}
diff --git a/intern/opennl/superlu/ssp_defs.h b/intern/opennl/superlu/ssp_defs.h
deleted file mode 100644
index 5110fc5ad69..00000000000
--- a/intern/opennl/superlu/ssp_defs.h
+++ /dev/null
@@ -1,240 +0,0 @@
-/** \file opennl/superlu/ssp_defs.h
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-#ifndef __SUPERLU_sSP_DEFS /* allow multiple inclusions */
-#define __SUPERLU_sSP_DEFS
-
-/*
- * File name: ssp_defs.h
- * Purpose: Sparse matrix types and function prototypes
- * History:
- */
-
-#ifdef _CRAY
-#include <fortran.h>
-#include <string.h>
-#endif
-
-/* Define my integer type int_t */
-typedef int int_t; /* default */
-
-#include "Cnames.h"
-#include "supermatrix.h"
-#include "util.h"
-
-
-/*
- * Global data structures used in LU factorization -
- *
- * nsuper: #supernodes = nsuper + 1, numbered [0, nsuper].
- * (xsup,supno): supno[i] is the supernode no to which i belongs;
- * xsup(s) points to the beginning of the s-th supernode.
- * e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12)
- * xsup 0 1 2 4 7 12
- * Note: dfs will be performed on supernode rep. relative to the new
- * row pivoting ordering
- *
- * (xlsub,lsub): lsub[*] contains the compressed subscript of
- * rectangular supernodes; xlsub[j] points to the starting
- * location of the j-th column in lsub[*]. Note that xlsub
- * is indexed by column.
- * Storage: original row subscripts
- *
- * During the course of sparse LU factorization, we also use
- * (xlsub,lsub) for the purpose of symmetric pruning. For each
- * supernode {s,s+1,...,t=s+r} with first column s and last
- * column t, the subscript set
- * lsub[j], j=xlsub[s], .., xlsub[s+1]-1
- * is the structure of column s (i.e. structure of this supernode).
- * It is used for the storage of numerical values.
- * Furthermore,
- * lsub[j], j=xlsub[t], .., xlsub[t+1]-1
- * is the structure of the last column t of this supernode.
- * It is for the purpose of symmetric pruning. Therefore, the
- * structural subscripts can be rearranged without making physical
- * interchanges among the numerical values.
- *
- * However, if the supernode has only one column, then we
- * only keep one set of subscripts. For any subscript interchange
- * performed, similar interchange must be done on the numerical
- * values.
- *
- * The last column structures (for pruning) will be removed
- * after the numercial LU factorization phase.
- *
- * (xlusup,lusup): lusup[*] contains the numerical values of the
- * rectangular supernodes; xlusup[j] points to the starting
- * location of the j-th column in storage vector lusup[*]
- * Note: xlusup is indexed by column.
- * Each rectangular supernode is stored by column-major
- * scheme, consistent with Fortran 2-dim array storage.
- *
- * (xusub,ucol,usub): ucol[*] stores the numerical values of
- * U-columns outside the rectangular supernodes. The row
- * subscript of nonzero ucol[k] is stored in usub[k].
- * xusub[i] points to the starting location of column i in ucol.
- * Storage: new row subscripts; that is subscripts of PA.
- */
-typedef struct {
- int *xsup; /* supernode and column mapping */
- int *supno;
- int *lsub; /* compressed L subscripts */
- int *xlsub;
- double *lusup; /* L supernodes */
- int *xlusup;
- double *ucol; /* U columns */
- int *usub;
- int *xusub;
- int nzlmax; /* current max size of lsub */
- int nzumax; /* " " " ucol */
- int nzlumax; /* " " " lusup */
- int n; /* number of columns in the matrix */
- LU_space_t MemModel; /* 0 - system malloc'd; 1 - user provided */
-} GlobalLU_t;
-
-typedef struct {
- double for_lu;
- double total_needed;
- int expansions;
-} mem_usage_t;
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* Driver routines */
-extern void
-sgssv(superlu_options_t *, SuperMatrix *, int *, int *, SuperMatrix *,
- SuperMatrix *, SuperMatrix *, SuperLUStat_t *, int *);
-extern void
-sgssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *,
- char *, double *, double *, SuperMatrix *, SuperMatrix *,
- void *, int, SuperMatrix *, SuperMatrix *,
- double *, double *, double *, double *,
- mem_usage_t *, SuperLUStat_t *, int *);
-
-/* Supernodal LU factor related */
-extern void
-sCreate_CompCol_Matrix(SuperMatrix *, int, int, int, double *,
- int *, int *, Stype_t, Dtype_t, Mtype_t);
-extern void
-sCreate_CompRow_Matrix(SuperMatrix *, int, int, int, double *,
- int *, int *, Stype_t, Dtype_t, Mtype_t);
-extern void
-sCopy_CompCol_Matrix(SuperMatrix *, SuperMatrix *);
-extern void
-sCreate_Dense_Matrix(SuperMatrix *, int, int, double *, int,
- Stype_t, Dtype_t, Mtype_t);
-extern void
-sCreate_SuperNode_Matrix(SuperMatrix *, int, int, int, double *,
- int *, int *, int *, int *, int *,
- Stype_t, Dtype_t, Mtype_t);
-extern void
-sCopy_Dense_Matrix(int, int, double *, int, double *, int);
-
-extern void countnz (const int, int *, int *, int *, GlobalLU_t *);
-extern void fixupL (const int, const int *, GlobalLU_t *);
-
-extern void sallocateA (int, int, double **, int **, int **);
-extern void sgstrf (superlu_options_t*, SuperMatrix*,
- int, int, int*, void *, int, int *, int *,
- SuperMatrix *, SuperMatrix *, SuperLUStat_t*, int *);
-extern int ssnode_dfs (const int, const int, const int *, const int *,
- const int *, int *, int *, GlobalLU_t *);
-extern int ssnode_bmod (const int, const int, double *,
- double *, GlobalLU_t *, SuperLUStat_t*);
-extern void spanel_dfs (const int, const int, const int, SuperMatrix *,
- int *, int *, double *, int *, int *, int *,
- int *, int *, int *, int *, GlobalLU_t *);
-extern void spanel_bmod (const int, const int, const int, const int,
- double *, double *, int *, int *,
- GlobalLU_t *, SuperLUStat_t*);
-extern int scolumn_dfs (const int, const int, int *, int *, int *, int *,
- int *, int *, int *, int *, int *, GlobalLU_t *);
-extern int scolumn_bmod (const int, const int, double *,
- double *, int *, int *, int,
- GlobalLU_t *, SuperLUStat_t*);
-extern int scopy_to_ucol (int, int, int *, int *, int *,
- double *, GlobalLU_t *);
-extern int spivotL (const int, const double, int *, int *,
- int *, int *, int *, GlobalLU_t *, SuperLUStat_t*);
-extern void spruneL (const int, const int *, const int, const int,
- const int *, const int *, int *, GlobalLU_t *);
-extern void sreadmt (int *, int *, int *, double **, int **, int **);
-extern void sGenXtrue (int, int, double *, int);
-extern void sFillRHS (trans_t, int, double *, int, SuperMatrix *,
- SuperMatrix *);
-extern void sgstrs (trans_t, SuperMatrix *, SuperMatrix *, int *, int *,
- SuperMatrix *, SuperLUStat_t*, int *);
-
-
-/* Driver related */
-
-extern void sgsequ (SuperMatrix *, double *, double *, double *,
- double *, double *, int *);
-extern void slaqgs (SuperMatrix *, double *, double *, double,
- double, double, char *);
-extern void sgscon (char *, SuperMatrix *, SuperMatrix *,
- double, double *, SuperLUStat_t*, int *);
-extern double sPivotGrowth(int, SuperMatrix *, int *,
- SuperMatrix *, SuperMatrix *);
-extern void sgsrfs (trans_t, SuperMatrix *, SuperMatrix *,
- SuperMatrix *, int *, int *, char *, double *,
- double *, SuperMatrix *, SuperMatrix *,
- double *, double *, SuperLUStat_t*, int *);
-
-extern int sp_strsv (char *, char *, char *, SuperMatrix *,
- SuperMatrix *, double *, SuperLUStat_t*, int *);
-extern int sp_sgemv (char *, double, SuperMatrix *, double *,
- int, double, double *, int);
-
-extern int sp_sgemm (char *, int, double,
- SuperMatrix *, double *, int, double,
- double *, int);
-
-/* Memory-related */
-extern int sLUMemInit (fact_t, void *, int, int, int, int, int,
- SuperMatrix *, SuperMatrix *,
- GlobalLU_t *, int **, double **);
-extern void sSetRWork (int, int, double *, double **, double **);
-extern void sLUWorkFree (int *, double *, GlobalLU_t *);
-extern int sLUMemXpand (int, int, MemType, int *, GlobalLU_t *);
-
-extern double *doubleMalloc(int);
-extern double *doubleCalloc(int);
-extern int smemory_usage(const int, const int, const int, const int);
-extern int sQuerySpace (SuperMatrix *, SuperMatrix *, mem_usage_t *);
-
-/* Auxiliary routines */
-extern void sreadhb(int *, int *, int *, double **, int **, int **);
-extern void sCompRow_to_CompCol(int, int, int, double*, int*, int*,
- double **, int **, int **);
-extern void sfill (double *, int, double);
-extern void sinf_norm_error (int, SuperMatrix *, double *);
-extern void PrintPerf (SuperMatrix *, SuperMatrix *, mem_usage_t *,
- double, double, double *, double *, char *);
-
-/* Routines for debugging */
-extern void sPrint_CompCol_Matrix(char *, SuperMatrix *);
-extern void sPrint_SuperNode_Matrix(char *, SuperMatrix *);
-extern void sPrint_Dense_Matrix(char *, SuperMatrix *);
-extern void print_lu_col(char *, int, int, int *, GlobalLU_t *);
-extern void check_tempv(int, double *);
-extern int print_int_vec(char *what, int n, int *vec);
-
-extern int sp_symetree(int *acolst, int *acolend, int *arow, int n, int *parent);
-extern void sprint_lu_col(char *msg, int jcol, int pivrow, int *xprune, GlobalLU_t *Glu); // added to build with debug for blender - campbell
-#ifdef __cplusplus
- }
-#endif
-
-#endif /* __SUPERLU_sSP_DEFS */
-
diff --git a/intern/opennl/superlu/strsv.c b/intern/opennl/superlu/strsv.c
deleted file mode 100644
index a34f5fb38a1..00000000000
--- a/intern/opennl/superlu/strsv.c
+++ /dev/null
@@ -1,323 +0,0 @@
-/** \file opennl/superlu/strsv.c
- * \ingroup opennl
- */
-int strsv_(char *, char *, char *, int *, double *, int *, double *, int *);
-
-
-/* Subroutine */ int strsv_(char *uplo, char *trans, char *diag, int *n,
- double *a, int *lda, double *x, int *incx)
-{
-
-
- /* Local variables */
- static int info;
- static double temp;
- static int i, j;
- extern int lsame_(char *, char *);
- static int ix, jx, kx;
- extern /* Subroutine */ int xerbla_(char *, int *);
- static int nounit;
-
-
-/* Purpose
- =======
-
- STRSV solves one of the systems of equations
-
- A*x = b, or A'*x = b,
-
- where b and x are n element vectors and A is an n by n unit, or
- non-unit, upper or lower triangular matrix.
-
- No test for singularity or near-singularity is included in this
- routine. Such tests must be performed before calling this routine.
-
- Parameters
- ==========
-
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix is an upper or
- lower triangular matrix as follows:
-
- UPLO = 'U' or 'u' A is an upper triangular matrix.
-
- UPLO = 'L' or 'l' A is a lower triangular matrix.
-
- Unchanged on exit.
-
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the equations to be solved as
- follows:
-
- TRANS = 'N' or 'n' A*x = b.
-
- TRANS = 'T' or 't' A'*x = b.
-
- TRANS = 'C' or 'c' A'*x = b.
-
- Unchanged on exit.
-
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit
- triangular as follows:
-
- DIAG = 'U' or 'u' A is assumed to be unit triangular.
-
- DIAG = 'N' or 'n' A is not assumed to be unit
- triangular.
-
- Unchanged on exit.
-
- N - INTEGER.
- On entry, N specifies the order of the matrix A.
- N must be at least zero.
- Unchanged on exit.
-
- A - REAL array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading n by n
- upper triangular part of the array A must contain the upper
-
- triangular matrix and the strictly lower triangular part of
-
- A is not referenced.
- Before entry with UPLO = 'L' or 'l', the leading n by n
- lower triangular part of the array A must contain the lower
-
- triangular matrix and the strictly upper triangular part of
-
- A is not referenced.
- Note that when DIAG = 'U' or 'u', the diagonal elements of
-
- A are not referenced either, but are assumed to be unity.
- Unchanged on exit.
-
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared
-
- in the calling (sub) program. LDA must be at least
- max( 1, n ).
- Unchanged on exit.
-
- X - REAL array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ).
- Before entry, the incremented array X must contain the n
- element right-hand side vector b. On exit, X is overwritten
-
- with the solution vector x.
-
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of
- X. INCX must not be zero.
- Unchanged on exit.
-
-
- Level 2 Blas routine.
-
- -- Written on 22-October-1986.
- Jack Dongarra, Argonne National Lab.
- Jeremy Du Croz, Nag Central Office.
- Sven Hammarling, Nag Central Office.
- Richard Hanson, Sandia National Labs.
-
-
-
- Test the input parameters.
-
-
- Parameter adjustments
- Function Body */
-#define X(I) x[(I)-1]
-
-#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
-
- info = 0;
- if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
- info = 1;
- } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") &&
- ! lsame_(trans, "C")) {
- info = 2;
- } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*lda < ((1 > *n)? 1: *n)) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- }
- if (info != 0) {
- xerbla_("STRSV ", &info);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- nounit = lsame_(diag, "N");
-
-/* Set up the start point in X if the increment is not unity. This
- will be ( N - 1 )*INCX too small for descending loops. */
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/* Start the operations. In this version the elements of A are
- accessed sequentially with one pass through A. */
-
- if (lsame_(trans, "N")) {
-
-/* Form x := inv( A )*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- if (X(j) != 0.f) {
- if (nounit) {
- X(j) /= A(j,j);
- }
- temp = X(j);
- for (i = j - 1; i >= 1; --i) {
- X(i) -= temp * A(i,j);
-/* L10: */
- }
- }
-/* L20: */
- }
- } else {
- jx = kx + (*n - 1) * *incx;
- for (j = *n; j >= 1; --j) {
- if (X(jx) != 0.f) {
- if (nounit) {
- X(jx) /= A(j,j);
- }
- temp = X(jx);
- ix = jx;
- for (i = j - 1; i >= 1; --i) {
- ix -= *incx;
- X(ix) -= temp * A(i,j);
-/* L30: */
- }
- }
- jx -= *incx;
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = 1; j <= *n; ++j) {
- if (X(j) != 0.f) {
- if (nounit) {
- X(j) /= A(j,j);
- }
- temp = X(j);
- for (i = j + 1; i <= *n; ++i) {
- X(i) -= temp * A(i,j);
-/* L50: */
- }
- }
-/* L60: */
- }
- } else {
- jx = kx;
- for (j = 1; j <= *n; ++j) {
- if (X(jx) != 0.f) {
- if (nounit) {
- X(jx) /= A(j,j);
- }
- temp = X(jx);
- ix = jx;
- for (i = j + 1; i <= *n; ++i) {
- ix += *incx;
- X(ix) -= temp * A(i,j);
-/* L70: */
- }
- }
- jx += *incx;
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := inv( A' )*x. */
-
- if (lsame_(uplo, "U")) {
- if (*incx == 1) {
- for (j = 1; j <= *n; ++j) {
- temp = X(j);
- for (i = 1; i <= j-1; ++i) {
- temp -= A(i,j) * X(i);
-/* L90: */
- }
- if (nounit) {
- temp /= A(j,j);
- }
- X(j) = temp;
-/* L100: */
- }
- } else {
- jx = kx;
- for (j = 1; j <= *n; ++j) {
- temp = X(jx);
- ix = kx;
- for (i = 1; i <= j-1; ++i) {
- temp -= A(i,j) * X(ix);
- ix += *incx;
-/* L110: */
- }
- if (nounit) {
- temp /= A(j,j);
- }
- X(jx) = temp;
- jx += *incx;
-/* L120: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- temp = X(j);
- for (i = *n; i >= j+1; --i) {
- temp -= A(i,j) * X(i);
-/* L130: */
- }
- if (nounit) {
- temp /= A(j,j);
- }
- X(j) = temp;
-/* L140: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- temp = X(jx);
- ix = kx;
- for (i = *n; i >= j+1; --i) {
- temp -= A(i,j) * X(ix);
- ix -= *incx;
-/* L150: */
- }
- if (nounit) {
- temp /= A(j,j);
- }
- X(jx) = temp;
- jx -= *incx;
-/* L160: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of STRSV . */
-
-} /* strsv_ */
-
diff --git a/intern/opennl/superlu/superlu_timer.c b/intern/opennl/superlu/superlu_timer.c
deleted file mode 100644
index abcafe8fa1f..00000000000
--- a/intern/opennl/superlu/superlu_timer.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/** \file opennl/superlu/superlu_timer.c
- * \ingroup opennl
- */
-/*
- * Purpose
- * =======
- * Returns the time in seconds used by the process.
- *
- * Note: the timer function call is machine dependent. Use conditional
- * compilation to choose the appropriate function.
- *
- */
-
-/* We want this flag, safer than putting in build system */
-#define NO_TIMER
-
-double SuperLU_timer_ ();
-
-#ifdef SUN
-/*
- * It uses the system call gethrtime(3C), which is accurate to
- * nanoseconds.
-*/
-#include <sys/time.h>
-
-double SuperLU_timer_() {
- return ( (double)gethrtime() / 1e9 );
-}
-
-#else
-
-#ifndef NO_TIMER
-#include <sys/types.h>
-#include <sys/times.h>
-#include <time.h>
-#include <sys/time.h>
-#endif
-
-#ifndef CLK_TCK
-#define CLK_TCK 60
-#endif
-double SuperLU_timer_(void);
-
-double SuperLU_timer_(void)
-{
-#ifdef NO_TIMER
- /* no sys/times.h on WIN32 */
- double tmp;
- tmp = 0.0;
-#else
- struct tms use;
- double tmp;
- times(&use);
- tmp = use.tms_utime;
- tmp += use.tms_stime;
-#endif
- return (double)(tmp) / CLK_TCK;
-}
-
-#endif
-
diff --git a/intern/opennl/superlu/supermatrix.h b/intern/opennl/superlu/supermatrix.h
deleted file mode 100644
index 74dfde4df7c..00000000000
--- a/intern/opennl/superlu/supermatrix.h
+++ /dev/null
@@ -1,143 +0,0 @@
-/** \file opennl/superlu/supermatrix.h
- * \ingroup opennl
- */
-#ifndef __SUPERLU_SUPERMATRIX /* allow multiple inclusions */
-#define __SUPERLU_SUPERMATRIX
-
-/********************************************
- * The matrix types are defined as follows. *
- ********************************************/
-typedef enum {
- SLU_NC, /* column-wise, no supernode */
- SLU_NR, /* row-wize, no supernode */
- SLU_SC, /* column-wise, supernode */
- SLU_SR, /* row-wise, supernode */
- SLU_NCP, /* column-wise, column-permuted, no supernode
- (The consecutive columns of nonzeros, after permutation,
- may not be stored contiguously.) */
- SLU_DN /* Fortran style column-wise storage for dense matrix */
-} Stype_t;
-
-typedef enum {
- SLU_S, /* single */
- SLU_D, /* double */
- SLU_C, /* single complex */
- SLU_Z /* double complex */
-} Dtype_t;
-
-typedef enum {
- SLU_GE, /* general */
- SLU_TRLU, /* lower triangular, unit diagonal */
- SLU_TRUU, /* upper triangular, unit diagonal */
- SLU_TRL, /* lower triangular */
- SLU_TRU, /* upper triangular */
- SLU_SYL, /* symmetric, store lower half */
- SLU_SYU, /* symmetric, store upper half */
- SLU_HEL, /* Hermitian, store lower half */
- SLU_HEU /* Hermitian, store upper half */
-} Mtype_t;
-
-typedef struct {
- Stype_t Stype; /* Storage type: interprets the storage structure
- pointed to by *Store. */
- Dtype_t Dtype; /* Data type. */
- Mtype_t Mtype; /* Matrix type: describes the mathematical property of
- the matrix. */
- int_t nrow; /* number of rows */
- int_t ncol; /* number of columns */
- void *Store; /* pointer to the actual storage of the matrix */
-} SuperMatrix;
-
-/***********************************************
- * The storage schemes are defined as follows. *
- ***********************************************/
-
-/* Stype == NC (Also known as Harwell-Boeing sparse matrix format) */
-typedef struct {
- int_t nnz; /* number of nonzeros in the matrix */
- void *nzval; /* pointer to array of nonzero values, packed by column */
- int_t *rowind; /* pointer to array of row indices of the nonzeros */
- int_t *colptr; /* pointer to array of beginning of columns in nzval[]
- and rowind[] */
- /* Note:
- Zero-based indexing is used;
- colptr[] has ncol+1 entries, the last one pointing
- beyond the last column, so that colptr[ncol] = nnz. */
-} NCformat;
-
-/* Stype == NR (Also known as row compressed storage (RCS). */
-typedef struct {
- int_t nnz; /* number of nonzeros in the matrix */
- void *nzval; /* pointer to array of nonzero values, packed by row */
- int_t *colind; /* pointer to array of column indices of the nonzeros */
- int_t *rowptr; /* pointer to array of beginning of rows in nzval[]
- and colind[] */
- /* Note:
- Zero-based indexing is used;
- nzval[] and colind[] are of the same length, nnz;
- rowptr[] has nrow+1 entries, the last one pointing
- beyond the last column, so that rowptr[nrow] = nnz. */
-} NRformat;
-
-/* Stype == SC */
-typedef struct {
- int_t nnz; /* number of nonzeros in the matrix */
- int_t nsuper; /* number of supernodes, minus 1 */
- void *nzval; /* pointer to array of nonzero values, packed by column */
- int_t *nzval_colptr;/* pointer to array of beginning of columns in nzval[] */
- int_t *rowind; /* pointer to array of compressed row indices of
- rectangular supernodes */
- int_t *rowind_colptr;/* pointer to array of beginning of columns in rowind[] */
- int_t *col_to_sup; /* col_to_sup[j] is the supernode number to which column
- j belongs; mapping from column to supernode number. */
- int_t *sup_to_col; /* sup_to_col[s] points to the start of the s-th
- supernode; mapping from supernode number to column.
- e.g.: col_to_sup: 0 1 2 2 3 3 3 4 4 4 4 4 4 (ncol=12)
- sup_to_col: 0 1 2 4 7 12 (nsuper=4) */
- /* Note:
- Zero-based indexing is used;
- nzval_colptr[], rowind_colptr[], col_to_sup and
- sup_to_col[] have ncol+1 entries, the last one
- pointing beyond the last column.
- For col_to_sup[], only the first ncol entries are
- defined. For sup_to_col[], only the first nsuper+2
- entries are defined. */
-} SCformat;
-
-/* Stype == NCP */
-typedef struct {
- int_t nnz; /* number of nonzeros in the matrix */
- void *nzval; /* pointer to array of nonzero values, packed by column */
- int_t *rowind;/* pointer to array of row indices of the nonzeros */
- /* Note: nzval[]/rowind[] always have the same length */
- int_t *colbeg;/* colbeg[j] points to the beginning of column j in nzval[]
- and rowind[] */
- int_t *colend;/* colend[j] points to one past the last element of column
- j in nzval[] and rowind[] */
- /* Note:
- Zero-based indexing is used;
- The consecutive columns of the nonzeros may not be
- contiguous in storage, because the matrix has been
- postmultiplied by a column permutation matrix. */
-} NCPformat;
-
-/* Stype == DN */
-typedef struct {
- int_t lda; /* leading dimension */
- void *nzval; /* array of size lda*ncol to represent a dense matrix */
-} DNformat;
-
-
-
-/*********************************************************
- * Macros used for easy access of sparse matrix entries. *
- *********************************************************/
-#define L_SUB_START(col) ( Lstore->rowind_colptr[col] )
-#define L_SUB(ptr) ( Lstore->rowind[ptr] )
-#define L_NZ_START(col) ( Lstore->nzval_colptr[col] )
-#define L_FST_SUPC(superno) ( Lstore->sup_to_col[superno] )
-#define U_NZ_START(col) ( Ustore->colptr[col] )
-#define U_SUB(ptr) ( Ustore->rowind[ptr] )
-
-
-#endif /* __SUPERLU_SUPERMATRIX */
diff --git a/intern/opennl/superlu/sutil.c b/intern/opennl/superlu/sutil.c
deleted file mode 100644
index 52728e47f56..00000000000
--- a/intern/opennl/superlu/sutil.c
+++ /dev/null
@@ -1,485 +0,0 @@
-/** \file opennl/superlu/sutil.c
- * \ingroup opennl
- */
-
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include <math.h>
-#include "ssp_defs.h"
-
-/* prototypes */
-void sprint_lu_col(char *msg, int jcol, int pivrow, int *xprune, GlobalLU_t *Glu);
-void scheck_tempv(int n, double *tempv);
-void sPrintPerf(SuperMatrix *, SuperMatrix *, mem_usage_t *,double , double ,
- double *, double *, char *, SuperLUStat_t *);
-int print_double_vec(char *what, int n, double *vec);
-/* ********** */
-
-void
-sCreate_CompCol_Matrix(SuperMatrix *A, int m, int n, int nnz,
- double *nzval, int *rowind, int *colptr,
- Stype_t stype, Dtype_t dtype, Mtype_t mtype)
-{
- NCformat *Astore;
-
- A->Stype = stype;
- A->Dtype = dtype;
- A->Mtype = mtype;
- A->nrow = m;
- A->ncol = n;
- A->Store = (void *) SUPERLU_MALLOC( sizeof(NCformat) );
- if ( !(A->Store) ) ABORT("SUPERLU_MALLOC fails for A->Store");
- Astore = A->Store;
- Astore->nnz = nnz;
- Astore->nzval = nzval;
- Astore->rowind = rowind;
- Astore->colptr = colptr;
-}
-
-void
-sCreate_CompRow_Matrix(SuperMatrix *A, int m, int n, int nnz,
- double *nzval, int *colind, int *rowptr,
- Stype_t stype, Dtype_t dtype, Mtype_t mtype)
-{
- NRformat *Astore;
-
- A->Stype = stype;
- A->Dtype = dtype;
- A->Mtype = mtype;
- A->nrow = m;
- A->ncol = n;
- A->Store = (void *) SUPERLU_MALLOC( sizeof(NRformat) );
- if ( !(A->Store) ) ABORT("SUPERLU_MALLOC fails for A->Store");
- Astore = A->Store;
- Astore->nnz = nnz;
- Astore->nzval = nzval;
- Astore->colind = colind;
- Astore->rowptr = rowptr;
-}
-
-/* Copy matrix A into matrix B. */
-void
-sCopy_CompCol_Matrix(SuperMatrix *A, SuperMatrix *B)
-{
- NCformat *Astore, *Bstore;
- int ncol, nnz, i;
-
- B->Stype = A->Stype;
- B->Dtype = A->Dtype;
- B->Mtype = A->Mtype;
- B->nrow = A->nrow;;
- B->ncol = ncol = A->ncol;
- Astore = (NCformat *) A->Store;
- Bstore = (NCformat *) B->Store;
- Bstore->nnz = nnz = Astore->nnz;
- for (i = 0; i < nnz; ++i)
- ((double *)Bstore->nzval)[i] = ((double *)Astore->nzval)[i];
- for (i = 0; i < nnz; ++i) Bstore->rowind[i] = Astore->rowind[i];
- for (i = 0; i <= ncol; ++i) Bstore->colptr[i] = Astore->colptr[i];
-}
-
-
-void
-sCreate_Dense_Matrix(SuperMatrix *X, int m, int n, double *x, int ldx,
- Stype_t stype, Dtype_t dtype, Mtype_t mtype)
-{
- DNformat *Xstore;
-
- X->Stype = stype;
- X->Dtype = dtype;
- X->Mtype = mtype;
- X->nrow = m;
- X->ncol = n;
- X->Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
- if ( !(X->Store) ) ABORT("SUPERLU_MALLOC fails for X->Store");
- Xstore = (DNformat *) X->Store;
- Xstore->lda = ldx;
- Xstore->nzval = (double *) x;
-}
-
-void
-sCopy_Dense_Matrix(int M, int N, double *X, int ldx,
- double *Y, int ldy)
-{
-/*
- *
- * Purpose
- * =======
- *
- * Copies a two-dimensional matrix X to another matrix Y.
- */
- int i, j;
-
- for (j = 0; j < N; ++j)
- for (i = 0; i < M; ++i)
- Y[i + j*ldy] = X[i + j*ldx];
-}
-
-void
-sCreate_SuperNode_Matrix(SuperMatrix *L, int m, int n, int nnz,
- double *nzval, int *nzval_colptr, int *rowind,
- int *rowind_colptr, int *col_to_sup, int *sup_to_col,
- Stype_t stype, Dtype_t dtype, Mtype_t mtype)
-{
- SCformat *Lstore;
-
- L->Stype = stype;
- L->Dtype = dtype;
- L->Mtype = mtype;
- L->nrow = m;
- L->ncol = n;
- L->Store = (void *) SUPERLU_MALLOC( sizeof(SCformat) );
- if ( !(L->Store) ) ABORT("SUPERLU_MALLOC fails for L->Store");
- Lstore = L->Store;
- Lstore->nnz = nnz;
- Lstore->nsuper = col_to_sup[n];
- Lstore->nzval = nzval;
- Lstore->nzval_colptr = nzval_colptr;
- Lstore->rowind = rowind;
- Lstore->rowind_colptr = rowind_colptr;
- Lstore->col_to_sup = col_to_sup;
- Lstore->sup_to_col = sup_to_col;
-
-}
-
-
-/*
- * Convert a row compressed storage into a column compressed storage.
- */
-void
-sCompRow_to_CompCol(int m, int n, int nnz,
- double *a, int *colind, int *rowptr,
- double **at, int **rowind, int **colptr)
-{
- register int i, j, col, relpos;
- int *marker;
-
- /* Allocate storage for another copy of the matrix. */
- *at = (double *) doubleMalloc(nnz);
- *rowind = (int *) intMalloc(nnz);
- *colptr = (int *) intMalloc(n+1);
- marker = (int *) intCalloc(n);
-
- /* Get counts of each column of A, and set up column pointers */
- for (i = 0; i < m; ++i)
- for (j = rowptr[i]; j < rowptr[i+1]; ++j) ++marker[colind[j]];
- (*colptr)[0] = 0;
- for (j = 0; j < n; ++j) {
- (*colptr)[j+1] = (*colptr)[j] + marker[j];
- marker[j] = (*colptr)[j];
- }
-
- /* Transfer the matrix into the compressed column storage. */
- for (i = 0; i < m; ++i) {
- for (j = rowptr[i]; j < rowptr[i+1]; ++j) {
- col = colind[j];
- relpos = marker[col];
- (*rowind)[relpos] = i;
- (*at)[relpos] = a[j];
- ++marker[col];
- }
- }
-
- SUPERLU_FREE(marker);
-}
-
-
-void
-sPrint_CompCol_Matrix(char *what, SuperMatrix *A)
-{
- NCformat *Astore;
- register int i,n;
- double *dp;
-
- printf("\nCompCol matrix %s:\n", what);
- printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype);
- n = A->ncol;
- Astore = (NCformat *) A->Store;
- dp = (double *) Astore->nzval;
- printf("nrow %d, ncol %d, nnz %d\n", A->nrow,A->ncol,Astore->nnz);
- printf("nzval: ");
- for (i = 0; i < Astore->colptr[n]; ++i) printf("%f ", dp[i]);
- printf("\nrowind: ");
- for (i = 0; i < Astore->colptr[n]; ++i) printf("%d ", Astore->rowind[i]);
- printf("\ncolptr: ");
- for (i = 0; i <= n; ++i) printf("%d ", Astore->colptr[i]);
- printf("\n");
- fflush(stdout);
-}
-
-void
-sPrint_SuperNode_Matrix(char *what, SuperMatrix *A)
-{
- SCformat *Astore;
- register int i, j, k, c, d, n, nsup;
- double *dp;
- int *col_to_sup, *sup_to_col, *rowind, *rowind_colptr;
-
- printf("\nSuperNode matrix %s:\n", what);
- printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype);
- n = A->ncol;
- Astore = (SCformat *) A->Store;
- dp = (double *) Astore->nzval;
- col_to_sup = Astore->col_to_sup;
- sup_to_col = Astore->sup_to_col;
- rowind_colptr = Astore->rowind_colptr;
- rowind = Astore->rowind;
- printf("nrow %d, ncol %d, nnz %d, nsuper %d\n",
- A->nrow,A->ncol,Astore->nnz,Astore->nsuper);
- printf("nzval:\n");
- for (k = 0; k <= Astore->nsuper; ++k) {
- c = sup_to_col[k];
- nsup = sup_to_col[k+1] - c;
- for (j = c; j < c + nsup; ++j) {
- d = Astore->nzval_colptr[j];
- for (i = rowind_colptr[c]; i < rowind_colptr[c+1]; ++i) {
- printf("%d\t%d\t%e\n", rowind[i], j, dp[d++]);
- }
- }
- }
-#if 0
- for (i = 0; i < Astore->nzval_colptr[n]; ++i) printf("%f ", dp[i]);
-#endif
- printf("\nnzval_colptr: ");
- for (i = 0; i <= n; ++i) printf("%d ", Astore->nzval_colptr[i]);
- printf("\nrowind: ");
- for (i = 0; i < Astore->rowind_colptr[n]; ++i)
- printf("%d ", Astore->rowind[i]);
- printf("\nrowind_colptr: ");
- for (i = 0; i <= n; ++i) printf("%d ", Astore->rowind_colptr[i]);
- printf("\ncol_to_sup: ");
- for (i = 0; i < n; ++i) printf("%d ", col_to_sup[i]);
- printf("\nsup_to_col: ");
- for (i = 0; i <= Astore->nsuper+1; ++i)
- printf("%d ", sup_to_col[i]);
- printf("\n");
- fflush(stdout);
-}
-
-void
-sPrint_Dense_Matrix(char *what, SuperMatrix *A)
-{
- DNformat *Astore;
- register int i;
- double *dp;
-
- printf("\nDense matrix %s:\n", what);
- printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype);
- Astore = (DNformat *) A->Store;
- dp = (double *) Astore->nzval;
- printf("nrow %d, ncol %d, lda %d\n", A->nrow,A->ncol,Astore->lda);
- printf("\nnzval: ");
- for (i = 0; i < A->nrow; ++i) printf("%f ", dp[i]);
- printf("\n");
- fflush(stdout);
-}
-
-/*
- * Diagnostic print of column "jcol" in the U/L factor.
- */
-void
-sprint_lu_col(char *msg, int jcol, int pivrow, int *xprune, GlobalLU_t *Glu)
-{
- int i, k, fsupc;
- int *xsup, *supno;
- int *xlsub, *lsub;
- double *lusup;
- int *xlusup;
- double *ucol;
- int *usub, *xusub;
-
- xsup = Glu->xsup;
- supno = Glu->supno;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- lusup = Glu->lusup;
- xlusup = Glu->xlusup;
- ucol = Glu->ucol;
- usub = Glu->usub;
- xusub = Glu->xusub;
-
- printf("%s", msg);
- printf("col %d: pivrow %d, supno %d, xprune %d\n",
- jcol, pivrow, supno[jcol], xprune[jcol]);
-
- printf("\tU-col:\n");
- for (i = xusub[jcol]; i < xusub[jcol+1]; i++)
- printf("\t%d%10.4f\n", usub[i], ucol[i]);
- printf("\tL-col in rectangular snode:\n");
- fsupc = xsup[supno[jcol]]; /* first col of the snode */
- i = xlsub[fsupc];
- k = xlusup[jcol];
- while ( i < xlsub[fsupc+1] && k < xlusup[jcol+1] ) {
- printf("\t%d\t%10.4f\n", lsub[i], lusup[k]);
- i++; k++;
- }
- fflush(stdout);
-}
-
-
-/*
- * Check whether tempv[] == 0. This should be true before and after
- * calling any numeric routines, i.e., "panel_bmod" and "column_bmod".
- */
-void scheck_tempv(int n, double *tempv)
-{
- int i;
-
- for (i = 0; i < n; i++) {
- if (tempv[i] != 0.0)
- {
- fprintf(stderr,"tempv[%d] = %f\n", i,tempv[i]);
- ABORT("scheck_tempv");
- }
- }
-}
-
-
-void
-sGenXtrue(int n, int nrhs, double *x, int ldx)
-{
- int i, j;
- for (j = 0; j < nrhs; ++j)
- for (i = 0; i < n; ++i) {
- x[i + j*ldx] = 1.0;/* + (double)(i+1.)/n;*/
- }
-}
-
-/*
- * Let rhs[i] = sum of i-th row of A, so the solution vector is all 1's
- */
-void
-sFillRHS(trans_t trans, int nrhs, double *x, int ldx,
- SuperMatrix *A, SuperMatrix *B)
-{
- DNformat *Bstore;
- double *rhs;
- double one = 1.0;
- double zero = 0.0;
- int ldc;
- char transc[1];
-
- Bstore = B->Store;
- rhs = Bstore->nzval;
- ldc = Bstore->lda;
-
- if ( trans == NOTRANS ) *(unsigned char *)transc = 'N';
- else *(unsigned char *)transc = 'T';
-
- sp_sgemm(transc, nrhs, one, A,
- x, ldx, zero, rhs, ldc);
-
-}
-
-/*
- * Fills a double precision array with a given value.
- */
-void
-sfill(double *a, int alen, double dval)
-{
- register int i;
- for (i = 0; i < alen; i++) a[i] = dval;
-}
-
-
-
-/*
- * Check the inf-norm of the error vector
- */
-void sinf_norm_error(int nrhs, SuperMatrix *X, double *xtrue)
-{
- DNformat *Xstore;
- double err, xnorm;
- double *Xmat, *soln_work;
- int i, j;
-
- Xstore = X->Store;
- Xmat = Xstore->nzval;
-
- for (j = 0; j < nrhs; j++) {
- soln_work = &Xmat[j*Xstore->lda];
- err = xnorm = 0.0;
- for (i = 0; i < X->nrow; i++) {
- err = SUPERLU_MAX(err, fabs(soln_work[i] - xtrue[i]));
- xnorm = SUPERLU_MAX(xnorm, fabs(soln_work[i]));
- }
- err = err / xnorm;
- printf("||X - Xtrue||/||X|| = %e\n", err);
- }
-}
-
-
-
-/* Print performance of the code. */
-void
-sPrintPerf(SuperMatrix *L, SuperMatrix *U, mem_usage_t *mem_usage,
- double rpg, double rcond, double *ferr,
- double *berr, char *equed, SuperLUStat_t *stat)
-{
- SCformat *Lstore;
- NCformat *Ustore;
- double *utime;
- flops_t *ops;
-
- utime = stat->utime;
- ops = stat->ops;
-
- if ( utime[FACT] != 0. )
- printf("Factor flops = %e\tMflops = %8.2f\n", ops[FACT],
- ops[FACT]*1e-6/utime[FACT]);
- printf("Identify relaxed snodes = %8.2f\n", utime[RELAX]);
- if ( utime[SOLVE] != 0. )
- printf("Solve flops = %.0f, Mflops = %8.2f\n", ops[SOLVE],
- ops[SOLVE]*1e-6/utime[SOLVE]);
-
- Lstore = (SCformat *) L->Store;
- Ustore = (NCformat *) U->Store;
- printf("\tNo of nonzeros in factor L = %d\n", Lstore->nnz);
- printf("\tNo of nonzeros in factor U = %d\n", Ustore->nnz);
- printf("\tNo of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz);
-
- printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
- mem_usage->for_lu/1e6, mem_usage->total_needed/1e6,
- mem_usage->expansions);
-
- printf("\tFactor\tMflops\tSolve\tMflops\tEtree\tEquil\tRcond\tRefine\n");
- printf("PERF:%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f\n",
- utime[FACT], ops[FACT]*1e-6/utime[FACT],
- utime[SOLVE], ops[SOLVE]*1e-6/utime[SOLVE],
- utime[ETREE], utime[EQUIL], utime[RCOND], utime[REFINE]);
-
- printf("\tRpg\t\tRcond\t\tFerr\t\tBerr\t\tEquil?\n");
- printf("NUM:\t%e\t%e\t%e\t%e\t%s\n",
- rpg, rcond, ferr[0], berr[0], equed);
-
-}
-
-
-
-
-int print_double_vec(char *what, int n, double *vec)
-{
- int i;
- printf("%s: n %d\n", what, n);
- for (i = 0; i < n; ++i) printf("%d\t%f\n", i, vec[i]);
- return 0;
-}
-
diff --git a/intern/opennl/superlu/util.c b/intern/opennl/superlu/util.c
deleted file mode 100644
index 96f404d886b..00000000000
--- a/intern/opennl/superlu/util.c
+++ /dev/null
@@ -1,400 +0,0 @@
-/** \file opennl/superlu/util.c
- * \ingroup opennl
- */
-/*
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- */
-/*
- Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-
- Permission is hereby granted to use or copy this program for any
- purpose, provided the above notices are retained on all copies.
- Permission to modify the code and to distribute modified code is
- granted, provided the above notices are retained, and a notice that
- the code was modified is included with the above copyright notice.
-*/
-
-#include <math.h>
-#include "ssp_defs.h"
-#include "util.h"
-
-/* prototypes */
-flops_t LUFactFlops(SuperLUStat_t *stat);
-flops_t LUSolveFlops(SuperLUStat_t *stat);
-double SpaSize(int n, int np, double sum_npw);
-double DenseSize(int n, double sum_nw);
-
-/*
- * Global statistics variale
- */
-
-void superlu_abort_and_exit(char* msg)
-{
- fprintf(stderr, "%s", msg);
- exit (-1);
-}
-
-/*
- * Set the default values for the options argument.
- */
-void set_default_options(superlu_options_t *options)
-{
- options->Fact = DOFACT;
- options->Equil = YES;
- options->ColPerm = COLAMD;
- options->DiagPivotThresh = 1.0;
- options->Trans = NOTRANS;
- options->IterRefine = NOREFINE;
- options->SymmetricMode = NO;
- options->PivotGrowth = NO;
- options->ConditionNumber = NO;
- options->PrintStat = YES;
-}
-
-/* Deallocate the structure pointing to the actual storage of the matrix. */
-void
-Destroy_SuperMatrix_Store(SuperMatrix *A)
-{
- SUPERLU_FREE ( A->Store );
-}
-
-void
-Destroy_CompCol_Matrix(SuperMatrix *A)
-{
- SUPERLU_FREE( ((NCformat *)A->Store)->rowind );
- SUPERLU_FREE( ((NCformat *)A->Store)->colptr );
- SUPERLU_FREE( ((NCformat *)A->Store)->nzval );
- SUPERLU_FREE( A->Store );
-}
-
-void
-Destroy_CompRow_Matrix(SuperMatrix *A)
-{
- SUPERLU_FREE( ((NRformat *)A->Store)->colind );
- SUPERLU_FREE( ((NRformat *)A->Store)->rowptr );
- SUPERLU_FREE( ((NRformat *)A->Store)->nzval );
- SUPERLU_FREE( A->Store );
-}
-
-void
-Destroy_SuperNode_Matrix(SuperMatrix *A)
-{
- SUPERLU_FREE ( ((SCformat *)A->Store)->rowind );
- SUPERLU_FREE ( ((SCformat *)A->Store)->rowind_colptr );
- SUPERLU_FREE ( ((SCformat *)A->Store)->nzval );
- SUPERLU_FREE ( ((SCformat *)A->Store)->nzval_colptr );
- SUPERLU_FREE ( ((SCformat *)A->Store)->col_to_sup );
- SUPERLU_FREE ( ((SCformat *)A->Store)->sup_to_col );
- SUPERLU_FREE ( A->Store );
-}
-
-/* A is of type Stype==NCP */
-void
-Destroy_CompCol_Permuted(SuperMatrix *A)
-{
- SUPERLU_FREE ( ((NCPformat *)A->Store)->colbeg );
- SUPERLU_FREE ( ((NCPformat *)A->Store)->colend );
- SUPERLU_FREE ( A->Store );
-}
-
-/* A is of type Stype==DN */
-void
-Destroy_Dense_Matrix(SuperMatrix *A)
-{
- DNformat* Astore = A->Store;
- SUPERLU_FREE (Astore->nzval);
- SUPERLU_FREE ( A->Store );
-}
-
-/*
- * Reset repfnz[] for the current column
- */
-void
-resetrep_col (const int nseg, const int *segrep, int *repfnz)
-{
- int i, irep;
-
- for (i = 0; i < nseg; i++) {
- irep = segrep[i];
- repfnz[irep] = EMPTY;
- }
-}
-
-
-/*
- * Count the total number of nonzeros in factors L and U, and in the
- * symmetrically reduced L.
- */
-void
-countnz(const int n, int *xprune, int *nnzL, int *nnzU, GlobalLU_t *Glu)
-{
- int nsuper, fsupc, i, j;
- int nnzL0, jlen, irep;
- int *xsup, *xlsub;
-
- xsup = Glu->xsup;
- xlsub = Glu->xlsub;
- *nnzL = 0;
- *nnzU = (Glu->xusub)[n];
- nnzL0 = 0;
- nsuper = (Glu->supno)[n];
-
- if ( n <= 0 ) return;
-
- /*
- * For each supernode
- */
- for (i = 0; i <= nsuper; i++) {
- fsupc = xsup[i];
- jlen = xlsub[fsupc+1] - xlsub[fsupc];
-
- for (j = fsupc; j < xsup[i+1]; j++) {
- *nnzL += jlen;
- *nnzU += j - fsupc + 1;
- jlen--;
- }
- irep = xsup[i+1] - 1;
- nnzL0 += xprune[irep] - xlsub[irep];
- }
-
- /* printf("\tNo of nonzeros in symm-reduced L = %d\n", nnzL0);*/
-}
-
-
-
-/*
- * Fix up the data storage lsub for L-subscripts. It removes the subscript
- * sets for structural pruning, and applies permuation to the remaining
- * subscripts.
- */
-void
-fixupL(const int n, const int *perm_r, GlobalLU_t *Glu)
-{
- register int nsuper, fsupc, nextl, i, j, k, jstrt;
- int *xsup, *lsub, *xlsub;
-
- if ( n <= 1 ) return;
-
- xsup = Glu->xsup;
- lsub = Glu->lsub;
- xlsub = Glu->xlsub;
- nextl = 0;
- nsuper = (Glu->supno)[n];
-
- /*
- * For each supernode ...
- */
- for (i = 0; i <= nsuper; i++) {
- fsupc = xsup[i];
- jstrt = xlsub[fsupc];
- xlsub[fsupc] = nextl;
- for (j = jstrt; j < xlsub[fsupc+1]; j++) {
- lsub[nextl] = perm_r[lsub[j]]; /* Now indexed into P*A */
- nextl++;
- }
- for (k = fsupc+1; k < xsup[i+1]; k++)
- xlsub[k] = nextl; /* Other columns in supernode i */
-
- }
-
- xlsub[n] = nextl;
-}
-
-
-/*
- * Diagnostic print of segment info after panel_dfs().
- */
-void print_panel_seg(int n, int w, int jcol, int nseg,
- int *segrep, int *repfnz)
-{
- int j, k;
-
- for (j = jcol; j < jcol+w; j++) {
- printf("\tcol %d:\n", j);
- for (k = 0; k < nseg; k++)
- printf("\t\tseg %d, segrep %d, repfnz %d\n", k,
- segrep[k], repfnz[(j-jcol)*n + segrep[k]]);
- }
-
-}
-
-
-void
-StatInit(SuperLUStat_t *stat)
-{
- register int i, w, panel_size, relax;
-
- panel_size = sp_ienv(1);
- relax = sp_ienv(2);
- w = SUPERLU_MAX(panel_size, relax);
- stat->panel_histo = intCalloc(w+1);
- stat->utime = (double *) SUPERLU_MALLOC(NPHASES * sizeof(double));
- if (!stat->utime) ABORT("SUPERLU_MALLOC fails for stat->utime");
- stat->ops = (flops_t *) SUPERLU_MALLOC(NPHASES * sizeof(flops_t));
- if (!stat->ops) ABORT("SUPERLU_MALLOC fails for stat->ops");
- for (i = 0; i < NPHASES; ++i) {
- stat->utime[i] = 0.;
- stat->ops[i] = 0.;
- }
-}
-
-
-void
-StatPrint(SuperLUStat_t *stat)
-{
- double *utime;
- flops_t *ops;
-
- utime = stat->utime;
- ops = stat->ops;
- printf("Factor time = %8.2f\n", utime[FACT]);
- if ( utime[FACT] != 0.0 )
- printf("Factor flops = %e\tMflops = %8.2f\n", ops[FACT],
- ops[FACT]*1e-6/utime[FACT]);
-
- printf("Solve time = %8.2f\n", utime[SOLVE]);
- if ( utime[SOLVE] != 0.0 )
- printf("Solve flops = %e\tMflops = %8.2f\n", ops[SOLVE],
- ops[SOLVE]*1e-6/utime[SOLVE]);
-
-}
-
-
-void
-StatFree(SuperLUStat_t *stat)
-{
- SUPERLU_FREE(stat->panel_histo);
- SUPERLU_FREE(stat->utime);
- SUPERLU_FREE(stat->ops);
-}
-
-
-flops_t
-LUFactFlops(SuperLUStat_t *stat)
-{
- return (stat->ops[FACT]);
-}
-
-flops_t
-LUSolveFlops(SuperLUStat_t *stat)
-{
- return (stat->ops[SOLVE]);
-}
-
-
-
-
-
-/*
- * Fills an integer array with a given value.
- */
-void ifill(int *a, int alen, int ival)
-{
- register int i;
- for (i = 0; i < alen; i++) a[i] = ival;
-}
-
-
-
-/*
- * Get the statistics of the supernodes
- */
-#define NBUCKS 10
-static int max_sup_size;
-
-void super_stats(int nsuper, int *xsup)
-{
- register int nsup1 = 0;
- int i, isize, whichb, bl, bh;
- int bucket[NBUCKS];
-
- max_sup_size = 0;
-
- for (i = 0; i <= nsuper; i++) {
- isize = xsup[i+1] - xsup[i];
- if ( isize == 1 ) nsup1++;
- if ( max_sup_size < isize ) max_sup_size = isize;
- }
-
- printf(" Supernode statistics:\n\tno of super = %d\n", nsuper+1);
- printf("\tmax supernode size = %d\n", max_sup_size);
- printf("\tno of size 1 supernodes = %d\n", nsup1);
-
- /* Histogram of the supernode sizes */
- ifill (bucket, NBUCKS, 0);
-
- for (i = 0; i <= nsuper; i++) {
- isize = xsup[i+1] - xsup[i];
- whichb = (double) isize / max_sup_size * NBUCKS;
- if (whichb >= NBUCKS) whichb = NBUCKS - 1;
- bucket[whichb]++;
- }
-
- printf("\tHistogram of supernode sizes:\n");
- for (i = 0; i < NBUCKS; i++) {
- bl = (double) i * max_sup_size / NBUCKS;
- bh = (double) (i+1) * max_sup_size / NBUCKS;
- printf("\tsnode: %d-%d\t\t%d\n", bl+1, bh, bucket[i]);
- }
-
-}
-
-
-double SpaSize(int n, int np, double sum_npw)
-{
- return (sum_npw*8 + np*8 + n*4)/1024.;
-}
-
-double DenseSize(int n, double sum_nw)
-{
- return (sum_nw*8 + n*8)/1024.;;
-}
-
-
-
-/*
- * Check whether repfnz[] == EMPTY after reset.
- */
-void check_repfnz(int n, int w, int jcol, int *repfnz)
-{
- int jj, k;
-
- for (jj = jcol; jj < jcol+w; jj++)
- for (k = 0; k < n; k++)
- if ( repfnz[(jj-jcol)*n + k] != EMPTY ) {
- fprintf(stderr, "col %d, repfnz_col[%d] = %d\n", jj,
- k, repfnz[(jj-jcol)*n + k]);
- ABORT("check_repfnz");
- }
-}
-
-
-/* Print a summary of the testing results. */
-void
-PrintSumm(char *type, int nfail, int nrun, int nerrs)
-{
- if ( nfail > 0 )
- printf("%3s driver: %d out of %d tests failed to pass the threshold\n",
- type, nfail, nrun);
- else
- printf("All tests for %3s driver passed the threshold (%6d tests run)\n", type, nrun);
-
- if ( nerrs > 0 )
- printf("%6d error messages recorded\n", nerrs);
-}
-
-
-int print_int_vec(char *what, int n, int *vec)
-{
- int i;
- printf("%s\n", what);
- for (i = 0; i < n; ++i) printf("%d\t%d\n", i, vec[i]);
- return 0;
-}
diff --git a/intern/opennl/superlu/util.h b/intern/opennl/superlu/util.h
deleted file mode 100644
index da9a8dbe4e3..00000000000
--- a/intern/opennl/superlu/util.h
+++ /dev/null
@@ -1,271 +0,0 @@
-/** \file opennl/superlu/util.h
- * \ingroup opennl
- */
-#ifndef __SUPERLU_UTIL /* allow multiple inclusions */
-#define __SUPERLU_UTIL
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-/*
-#ifndef __STDC__
-#include <malloc.h>
-#endif
-*/
-#include <assert.h>
-
-/***********************************************************************
- * Macros
- ***********************************************************************/
-#define FIRSTCOL_OF_SNODE(i) (xsup[i])
-/* No of marker arrays used in the symbolic factorization,
- each of size n */
-#define NO_MARKER 3
-#define NUM_TEMPV(m,w,t,b) ( SUPERLU_MAX(m, (t + b)*w) )
-
-#ifndef USER_ABORT
-#define USER_ABORT(msg) \
- { fprintf(stderr, "%s", msg); exit (-1); }
-#endif
-
-#define ABORT(err_msg) \
- { char msg[256];\
- sprintf(msg,"%s at line %d in file %s\n",err_msg,__LINE__, __FILE__);\
- USER_ABORT(msg); }
-
-
-#ifndef USER_MALLOC
-#if 1
-#define USER_MALLOC(size) superlu_malloc(size)
-#else
-/* The following may check out some uninitialized data */
-#define USER_MALLOC(size) memset (superlu_malloc(size), '\x0F', size)
-#endif
-#endif
-
-#define SUPERLU_MALLOC(size) USER_MALLOC(size)
-
-#ifndef USER_FREE
-#define USER_FREE(addr) superlu_free(addr)
-#endif
-
-#define SUPERLU_FREE(addr) USER_FREE(addr)
-
-#define CHECK_MALLOC(where) { \
- extern int superlu_malloc_total; \
- printf("%s: malloc_total %d Bytes\n", \
- where, superlu_malloc_total); \
-}
-
-#define SUPERLU_MAX(x, y) ( (x) > (y) ? (x) : (y) )
-#define SUPERLU_MIN(x, y) ( (x) < (y) ? (x) : (y) )
-
-/***********************************************************************
- * Constants
- ***********************************************************************/
-#define EMPTY (-1)
-/*#define NO (-1)*/
-#define FALSE 0
-#define TRUE 1
-
-/***********************************************************************
- * Enumerate types
- ***********************************************************************/
-typedef enum {NO, YES} yes_no_t;
-typedef enum {DOFACT, SamePattern, SamePattern_SameRowPerm, FACTORED} fact_t;
-typedef enum {NOROWPERM, LargeDiag, MY_PERMR} rowperm_t;
-typedef enum {NATURAL, MMD_ATA, MMD_AT_PLUS_A, COLAMD, MY_PERMC}colperm_t;
-typedef enum {NOTRANS, TRANS, CONJ} trans_t;
-typedef enum {NOEQUIL, ROW, COL, BOTH} DiagScale_t;
-typedef enum {NOREFINE, SINGLE=1, SLU_DOUBLE, EXTRA} IterRefine_t;
-typedef enum {LUSUP, UCOL, LSUB, USUB} MemType;
-typedef enum {HEAD, TAIL} stack_end_t;
-typedef enum {SYSTEM, USER} LU_space_t;
-
-/*
- * The following enumerate type is used by the statistics variable
- * to keep track of flop count and time spent at various stages.
- *
- * Note that not all of the fields are disjoint.
- */
-typedef enum {
- COLPERM, /* find a column ordering that minimizes fills */
- RELAX, /* find artificial supernodes */
- ETREE, /* compute column etree */
- EQUIL, /* equilibrate the original matrix */
- FACT, /* perform LU factorization */
- RCOND, /* estimate reciprocal condition number */
- SOLVE, /* forward and back solves */
- REFINE, /* perform iterative refinement */
- SLU_FLOAT, /* time spent in doubleing-point operations */
- TRSV, /* fraction of FACT spent in xTRSV */
- GEMV, /* fraction of FACT spent in xGEMV */
- FERR, /* estimate error bounds after iterative refinement */
- NPHASES /* total number of phases */
-} PhaseType;
-
-
-/***********************************************************************
- * Type definitions
- ***********************************************************************/
-typedef double flops_t;
-typedef unsigned char Logical;
-
-/*
- *-- This contains the options used to control the solve process.
- *
- * Fact (fact_t)
- * Specifies whether or not the factored form of the matrix
- * A is supplied on entry, and if not, how the matrix A should
- * be factorizaed.
- * = DOFACT: The matrix A will be factorized from scratch, and the
- * factors will be stored in L and U.
- * = SamePattern: The matrix A will be factorized assuming
- * that a factorization of a matrix with the same sparsity
- * pattern was performed prior to this one. Therefore, this
- * factorization will reuse column permutation vector
- * ScalePermstruct->perm_c and the column elimination tree
- * LUstruct->etree.
- * = SamePattern_SameRowPerm: The matrix A will be factorized
- * assuming that a factorization of a matrix with the same
- * sparsity pattern and similar numerical values was performed
- * prior to this one. Therefore, this factorization will reuse
- * both row and column scaling factors R and C, and the
- * both row and column permutation vectors perm_r and perm_c,
- * distributed data structure set up from the previous symbolic
- * factorization.
- * = FACTORED: On entry, L, U, perm_r and perm_c contain the
- * factored form of A. If DiagScale is not NOEQUIL, the matrix
- * A has been equilibrated with scaling factors R and C.
- *
- * Equil (yes_no_t)
- * Specifies whether to equilibrate the system (scale A's row and
- * columns to have unit norm).
- *
- * ColPerm (colperm_t)
- * Specifies what type of column permutation to use to reduce fill.
- * = NATURAL: use the natural ordering
- * = MMD_ATA: use minimum degree ordering on structure of A'*A
- * = MMD_AT_PLUS_A: use minimum degree ordering on structure of A'+A
- * = COLAMD: use approximate minimum degree column ordering
- * = MY_PERMC: use the ordering specified in ScalePermstruct->perm_c[]
- *
- * Trans (trans_t)
- * Specifies the form of the system of equations:
- * = NOTRANS: A * X = B (No transpose)
- * = TRANS: A**T * X = B (Transpose)
- * = CONJ: A**H * X = B (Transpose)
- *
- * IterRefine (IterRefine_t)
- * Specifies whether to perform iterative refinement.
- * = NO: no iterative refinement
- * = WorkingPrec: perform iterative refinement in working precision
- * = ExtraPrec: perform iterative refinement in extra precision
- *
- * PrintStat (yes_no_t)
- * Specifies whether to print the solver's statistics.
- *
- * DiagPivotThresh (double, in [0.0, 1.0]) (only for sequential SuperLU)
- * Specifies the threshold used for a diagonal entry to be an
- * acceptable pivot.
- *
- * PivotGrowth (yes_no_t)
- * Specifies whether to compute the reciprocal pivot growth.
- *
- * ConditionNumber (ues_no_t)
- * Specifies whether to compute the reciprocal condition number.
- *
- * RowPerm (rowperm_t) (only for SuperLU_DIST)
- * Specifies whether to permute rows of the original matrix.
- * = NO: not to permute the rows
- * = LargeDiag: make the diagonal large relative to the off-diagonal
- * = MY_PERMR: use the permutation given in ScalePermstruct->perm_r[]
- *
- * ReplaceTinyPivot (yes_no_t) (only for SuperLU_DIST)
- * Specifies whether to replace the tiny diagonals by
- * sqrt(epsilon)*||A|| during LU factorization.
- *
- * SolveInitialized (yes_no_t) (only for SuperLU_DIST)
- * Specifies whether the initialization has been performed to the
- * triangular solve.
- *
- * RefineInitialized (yes_no_t) (only for SuperLU_DIST)
- * Specifies whether the initialization has been performed to the
- * sparse matrix-vector multiplication routine needed in iterative
- * refinement.
- */
-typedef struct {
- fact_t Fact;
- yes_no_t Equil;
- colperm_t ColPerm;
- trans_t Trans;
- IterRefine_t IterRefine;
- yes_no_t PrintStat;
- yes_no_t SymmetricMode;
- double DiagPivotThresh;
- yes_no_t PivotGrowth;
- yes_no_t ConditionNumber;
- rowperm_t RowPerm;
- yes_no_t ReplaceTinyPivot;
- yes_no_t SolveInitialized;
- yes_no_t RefineInitialized;
-} superlu_options_t;
-
-typedef struct {
- int *panel_histo; /* histogram of panel size distribution */
- double *utime; /* running time at various phases */
- flops_t *ops; /* operation count at various phases */
- int TinyPivots; /* number of tiny pivots */
- int RefineSteps; /* number of iterative refinement steps */
-} SuperLUStat_t;
-
-
-/***********************************************************************
- * Prototypes
- ***********************************************************************/
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-extern void Destroy_SuperMatrix_Store(SuperMatrix *);
-extern void Destroy_CompCol_Matrix(SuperMatrix *);
-extern void Destroy_CompRow_Matrix(SuperMatrix *);
-extern void Destroy_SuperNode_Matrix(SuperMatrix *);
-extern void Destroy_CompCol_Permuted(SuperMatrix *);
-extern void Destroy_Dense_Matrix(SuperMatrix *);
-extern void get_perm_c(int, SuperMatrix *, int *);
-extern void set_default_options(superlu_options_t *options);
-extern void sp_preorder (superlu_options_t *, SuperMatrix*, int*, int*,
- SuperMatrix*);
-extern void superlu_abort_and_exit(char*);
-extern void *superlu_malloc (size_t);
-extern int *intMalloc (int);
-extern int *intCalloc (int);
-extern void superlu_free (void*);
-extern void SetIWork (int, int, int, int *, int **, int **, int **,
- int **, int **, int **, int **);
-extern int sp_coletree (int *, int *, int *, int, int, int *);
-extern void relax_snode (const int, int *, const int, int *, int *);
-extern void heap_relax_snode (const int, int *, const int, int *, int *);
-extern void resetrep_col (const int, const int *, int *);
-extern int spcoletree (int *, int *, int *, int, int, int *);
-extern int *TreePostorder (int, int *);
-extern double SuperLU_timer_ (void);
-extern int sp_ienv (int);
-extern int lsame_ (char *, char *);
-extern int xerbla_ (char *, int *);
-extern void ifill (int *, int, int);
-extern void snode_profile (int, int *);
-extern void super_stats (int, int *);
-extern void PrintSumm (char *, int, int, int);
-extern void StatInit(SuperLUStat_t *);
-extern void StatPrint (SuperLUStat_t *);
-extern void StatFree(SuperLUStat_t *);
-extern void print_panel_seg(int, int, int, int, int *, int *);
-extern void check_repfnz(int, int, int, int *);
-
-#ifdef __cplusplus
- }
-#endif
-
-#endif /* __SUPERLU_UTIL */
diff --git a/intern/opennl/superlu/xerbla.c b/intern/opennl/superlu/xerbla.c
deleted file mode 100644
index 31baaecf3b0..00000000000
--- a/intern/opennl/superlu/xerbla.c
+++ /dev/null
@@ -1,47 +0,0 @@
-/** \file opennl/superlu/xerbla.c
- * \ingroup opennl
- */
-
-#include <stdio.h>
-int xerbla_(char *, int *);
-
-/* Subroutine */ int xerbla_(char *srname, int *info)
-{
-/* -- LAPACK auxiliary routine (version 2.0) --
- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- Courant Institute, Argonne National Lab, and Rice University
- September 30, 1994
-
-
- Purpose
- =======
-
- XERBLA is an error handler for the LAPACK routines.
- It is called by an LAPACK routine if an input parameter has an
- invalid value. A message is printed and execution stops.
-
- Installers may consider modifying the STOP statement in order to
- call system-specific exception-handling facilities.
-
- Arguments
- =========
-
- SRNAME (input) CHARACTER*6
- The name of the routine which called XERBLA.
-
- INFO (input) INT
- The position of the invalid parameter in the parameter list
-
- of the calling routine.
-
- =====================================================================
-*/
-
- printf("** On entry to %6s, parameter number %2d had an illegal value\n",
- srname, *info);
-
-/* End of XERBLA */
-
- return 0;
-} /* xerbla_ */
-