Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChris Want <cwant@ualberta.ca>2006-05-11 01:37:03 +0400
committerChris Want <cwant@ualberta.ca>2006-05-11 01:37:03 +0400
commit2358e85b6d250b3e4597ec8bd23890bf95f41ebb (patch)
treed8d72a799a490565e2d50d85cfd1c3a1f2ea9273 /release/scripts
parent1fc1d769fbaf67e6083e0f7f918b5b4237f9b06f (diff)
Converting spaces to tabs in this script (this is standard!)
Diffstat (limited to 'release/scripts')
-rw-r--r--release/scripts/vrml97_export.py1801
1 files changed, 901 insertions, 900 deletions
diff --git a/release/scripts/vrml97_export.py b/release/scripts/vrml97_export.py
index 41201d45315..7dcdddb5889 100644
--- a/release/scripts/vrml97_export.py
+++ b/release/scripts/vrml97_export.py
@@ -63,11 +63,11 @@ import Blender
from Blender import Object, NMesh, Lamp, Draw, BGL, Image, Text, sys, Mathutils
from Blender.Scene import Render
try:
- from os.path import exists, join
- pytinst = 1
+ from os.path import exists, join
+ pytinst = 1
except:
- print "No Python installed, for full features install Python (http://www.python.org/)."
- pytinst = 0
+ print "No Python installed, for full features install Python (http://www.python.org/)."
+ pytinst = 0
import math
####################################
@@ -83,20 +83,20 @@ extension = ''
ARG=''
class DrawTypes:
- """Object DrawTypes enum values
+ """Object DrawTypes enum values
BOUNDS - draw only the bounding box of the object
WIRE - draw object as a wire frame
SOLID - draw object with flat shading
SHADED - draw object with OpenGL shading
"""
- BOUNDBOX = 1
- WIRE = 2
- SOLID = 3
- SHADED = 4
- TEXTURE = 5
+ BOUNDBOX = 1
+ WIRE = 2
+ SOLID = 3
+ SHADED = 4
+ TEXTURE = 5
if not hasattr(Blender.Object,'DrawTypes'):
- Blender.Object.DrawTypes = DrawTypes()
+ Blender.Object.DrawTypes = DrawTypes()
##########################################################
# Functions for writing output file
@@ -104,930 +104,931 @@ if not hasattr(Blender.Object,'DrawTypes'):
class VRML2Export:
- def __init__(self, filename):
- #--- public you can change these ---
- self.wire = 0
- self.proto = 1
- self.matonly = 0
- self.share = 0
- self.billnode = 0
- self.halonode = 0
- self.collnode = 0
- self.tilenode = 0
- self.verbose=2 # level of verbosity in console 0-none, 1-some, 2-most
- self.cp=3 # decimals for material color values 0.000 - 1.000
- self.vp=3 # decimals for vertex coordinate values 0.000 - n.000
- self.tp=3 # decimals for texture coordinate values 0.000 - 1.000
- self.it=3
-
- #--- class private don't touch ---
- self.texNames={} # dictionary of textureNames
- self.matNames={} # dictionary of materialNames
- self.meshNames={} # dictionary of meshNames
- self.indentLevel=0 # keeps track of current indenting
- self.filename=filename
- self.file = open(filename, "w")
- self.bNav=0
- self.nodeID=0
- self.namesReserved=[ "Anchor", "Appearance", "AudioClip",
- "Background","Billboard", "Box",
- "Collision", "Color", "ColorInterpolator", "Cone", "Coordinate", "CoordinateInterpolator", "Cylinder", "CylinderSensor",
- "DirectionalLight",
- "ElevationGrid", "Extrustion",
- "Fog", "FontStyle", "Group",
- "ImageTexture", "IndexedFaceSet", "IndexedLineSet", "Inline",
- "LOD", "Material", "MovieTexture",
- "NavigationInfo", "Normal", "NormalInterpolator","OrientationInterpolator",
- "PixelTexture", "PlaneSensor", "PointLight", "PointSet", "PositionInterpolator", "ProxmimitySensor",
- "ScalarInterpolator", "Script", "Shape", "Sound", "Sphere", "SphereSensor", "SpotLight", "Switch",
- "Text", "TextureCoordinate", "TextureTransform", "TimeSensor", "TouchSensor", "Transform",
- "Viewpoint", "VisibilitySensor", "WorldInfo" ]
- self.namesStandard=[ "Empty","Empty.000","Empty.001","Empty.002","Empty.003","Empty.004","Empty.005",
- "Empty.006","Empty.007","Empty.008","Empty.009","Empty.010","Empty.011","Empty.012",
- "Scene.001","Scene.002","Scene.003","Scene.004","Scene.005","Scene.06","Scene.013",
- "Scene.006","Scene.007","Scene.008","Scene.009","Scene.010","Scene.011","Scene.012",
- "World","World.000","World.001","World.002","World.003","World.004","World.005" ]
- self.namesFog=[ "","LINEAR","EXPONENTIAL","" ]
+ def __init__(self, filename):
+ #--- public you can change these ---
+ self.wire = 0
+ self.proto = 1
+ self.matonly = 0
+ self.share = 0
+ self.billnode = 0
+ self.halonode = 0
+ self.collnode = 0
+ self.tilenode = 0
+ self.verbose=2 # level of verbosity in console 0-none, 1-some, 2-most
+ self.cp=3 # decimals for material color values 0.000 - 1.000
+ self.vp=3 # decimals for vertex coordinate values 0.000 - n.000
+ self.tp=3 # decimals for texture coordinate values 0.000 - 1.000
+ self.it=3
+
+ #--- class private don't touch ---
+ self.texNames={} # dictionary of textureNames
+ self.matNames={} # dictionary of materialNames
+ self.meshNames={} # dictionary of meshNames
+ self.indentLevel=0 # keeps track of current indenting
+ self.filename=filename
+ self.file = open(filename, "w")
+ self.bNav=0
+ self.nodeID=0
+ self.namesReserved=[ "Anchor", "Appearance", "AudioClip",
+ "Background","Billboard", "Box",
+ "Collision", "Color", "ColorInterpolator", "Cone", "Coordinate", "CoordinateInterpolator", "Cylinder", "CylinderSensor",
+ "DirectionalLight",
+ "ElevationGrid", "Extrustion",
+ "Fog", "FontStyle", "Group",
+ "ImageTexture", "IndexedFaceSet", "IndexedLineSet", "Inline",
+ "LOD", "Material", "MovieTexture",
+ "NavigationInfo", "Normal", "NormalInterpolator","OrientationInterpolator",
+ "PixelTexture", "PlaneSensor", "PointLight", "PointSet", "PositionInterpolator", "ProxmimitySensor",
+ "ScalarInterpolator", "Script", "Shape", "Sound", "Sphere", "SphereSensor", "SpotLight", "Switch",
+ "Text", "TextureCoordinate", "TextureTransform", "TimeSensor", "TouchSensor", "Transform",
+ "Viewpoint", "VisibilitySensor", "WorldInfo" ]
+ self.namesStandard=[ "Empty","Empty.000","Empty.001","Empty.002","Empty.003","Empty.004","Empty.005",
+ "Empty.006","Empty.007","Empty.008","Empty.009","Empty.010","Empty.011","Empty.012",
+ "Scene.001","Scene.002","Scene.003","Scene.004","Scene.005","Scene.06","Scene.013",
+ "Scene.006","Scene.007","Scene.008","Scene.009","Scene.010","Scene.011","Scene.012",
+ "World","World.000","World.001","World.002","World.003","World.004","World.005" ]
+ self.namesFog=[ "","LINEAR","EXPONENTIAL","" ]
##########################################################
# Writing nodes routines
##########################################################
- def writeHeader(self):
- bfile = sys.expandpath(Blender.Get('filename'))
- self.file.write("#VRML V2.0 utf8\n\n")
- self.file.write("# This file was authored with Blender (http://www.blender.org/)\n")
- self.file.write("# Blender version %s\n" % Blender.Get('version'))
- self.file.write("# Blender file %s\n" % sys.basename(bfile))
- self.file.write("# Exported using VRML97 exporter v1.55 (2006/01/17)\n\n")
-
- def writeInline(self):
- inlines = Blender.Scene.Get()
- allinlines = len(inlines)
- if scene != inlines[0]:
- return
- else:
- for i in range(allinlines):
- nameinline=inlines[i].getName()
- if (nameinline not in self.namesStandard) and (i > 0):
- self.writeIndented("DEF %s Inline {\n" % (self.cleanStr(nameinline)), 1)
- nameinline = nameinline+".wrl"
- self.writeIndented("url \"%s\" \n" % nameinline)
- self.writeIndented("}\n", -1)
- self.writeIndented("\n")
-
- def writeScript(self):
- textEditor = Blender.Text.Get()
- alltext = len(textEditor)
- for i in range(alltext):
- nametext = textEditor[i].getName()
- nlines = textEditor[i].getNLines()
- if (self.proto == 1):
- if (nametext == "proto" or nametext == "proto.js" or nametext == "proto.txt") and (nlines != None):
- nalllines = len(textEditor[i].asLines())
- alllines = textEditor[i].asLines()
- for j in range(nalllines):
- self.writeIndented(alllines[j] + "\n")
- elif (self.proto == 0):
- if (nametext == "route" or nametext == "route.js" or nametext == "route.txt") and (nlines != None):
- nalllines = len(textEditor[i].asLines())
- alllines = textEditor[i].asLines()
- for j in range(nalllines):
- self.writeIndented(alllines[j] + "\n")
- self.writeIndented("\n")
-
- def writeViewpoint(self, thisObj):
- context = scene.getRenderingContext()
- ratio = float(context.imageSizeY())/float(context.imageSizeX())
- lens = (360* (math.atan(ratio *16 / thisObj.data.getLens()) / math.pi))*(math.pi/180)
- lens = min(lens, math.pi)
- # get the camera location, subtract 90 degress from X to orient like VRML does
- loc = self.rotatePointForVRML(thisObj.loc)
- rot = [thisObj.RotX - 1.57, thisObj.RotY, thisObj.RotZ]
- nRot = self.rotatePointForVRML(rot)
- # convert to Quaternion and to Angle Axis
- Q = self.eulerToQuaternions(nRot[0], nRot[1], nRot[2])
- Q1 = self.multiplyQuaternions(Q[0], Q[1])
- Qf = self.multiplyQuaternions(Q1, Q[2])
- angleAxis = self.quaternionToAngleAxis(Qf)
- self.writeIndented("DEF %s Viewpoint {\n" % (self.cleanStr(thisObj.name)), 1)
- self.writeIndented("description \"%s\" \n" % (thisObj.name))
- self.writeIndented("position %3.2f %3.2f %3.2f\n" % (loc[0], loc[1], loc[2]))
- self.writeIndented("orientation %3.2f %3.2f %3.2f %3.2f\n" % (angleAxis[0], angleAxis[1], -angleAxis[2], angleAxis[3]))
- self.writeIndented("fieldOfView %.3f\n" % (lens))
- self.writeIndented("}\n", -1)
- self.writeIndented("\n")
-
- def writeFog(self):
- if len(world) > 0:
- mtype = world[0].getMistype()
- mparam = world[0].getMist()
- grd = world[0].getHor()
- grd0, grd1, grd2 = grd[0], grd[1], grd[2]
- else:
- return
- if (mtype == 1 or mtype == 2):
- self.writeIndented("Fog {\n",1)
- self.writeIndented("fogType \"%s\"\n" % self.namesFog[mtype])
- self.writeIndented("color %s %s %s" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)) + "\n")
- self.writeIndented("visibilityRange %s\n" % round(mparam[2],self.cp))
- self.writeIndented("}\n",-1)
- self.writeIndented("\n")
- else:
- return
-
- def writeNavigationInfo(self, scene):
- allObj = []
- allObj = scene.getChildren()
- headlight = "TRUE"
- vislimit = 0.0
- for thisObj in allObj:
- objType=thisObj.getType()
- if objType == "Camera":
- vislimit = thisObj.data.getClipEnd()
- elif objType == "Lamp":
- headlight = "FALSE"
- self.writeIndented("NavigationInfo {\n",1)
- self.writeIndented("headlight %s" % headlight + "\n")
- self.writeIndented("visibilityLimit %s\n" % (round(vislimit,self.cp)))
- self.writeIndented("type [\"EXAMINE\", \"ANY\"]\n")
- self.writeIndented("avatarSize [0.25, 1.75, 0.75]\n")
- self.writeIndented("} \n",-1)
- self.writeIndented(" \n")
-
- def writeSpotLight(self, object, lamp):
- if len(world) > 0:
- ambi = world[0].getAmb()
- ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
- else:
- ambi = 0
- ambientIntensity = 0
-
- # compute cutoff and beamwidth
- intensity=min(lamp.energy/1.75,1.0)
- beamWidth=((lamp.spotSize*math.pi)/180.0)*.37;
- cutOffAngle=beamWidth*1.3
-
- (dx,dy,dz)=self.computeDirection(object)
- # note -dx seems to equal om[3][0]
- # note -dz seems to equal om[3][1]
- # note dy seems to equal om[3][2]
- om = object.getMatrix()
-
- location=self.rotVertex(om, (0,0,0));
- radius = lamp.dist*math.cos(beamWidth)
- self.writeIndented("DEF %s SpotLight {\n" % self.cleanStr(object.name),1)
- self.writeIndented("radius %s\n" % (round(radius,self.cp)))
- self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
- self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
- self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
- self.writeIndented("beamWidth %s\n" % (round(beamWidth,self.cp)))
- self.writeIndented("cutOffAngle %s\n" % (round(cutOffAngle,self.cp)))
- self.writeIndented("direction %s %s %s\n" % (round(dx,3),round(dy,3),round(dz,3)))
- self.writeIndented("location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
- self.writeIndented("}\n",-1)
- self.writeIndented("\n")
-
- def writeDirectionalLight(self, object, lamp):
- if len(world) > 0:
- ambi = world[0].getAmb()
- ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
- else:
- ambi = 0
- ambientIntensity = 0
-
- intensity=min(lamp.energy/1.75,1.0)
- (dx,dy,dz)=self.computeDirection(object)
- self.writeIndented("DEF %s DirectionalLight {\n" % self.cleanStr(object.name),1)
- self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
- self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
- self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
- self.writeIndented("direction %s %s %s\n" % (round(dx,4),round(dy,4),round(dz,4)))
- self.writeIndented("}\n",-1)
- self.writeIndented("\n")
-
- def writePointLight(self, object, lamp):
- if len(world) > 0:
- ambi = world[0].getAmb()
- ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
- else:
- ambi = 0
- ambientIntensity = 0
- om = object.getMatrix()
- location=self.rotVertex(om, (0,0,0));
- intensity=min(lamp.energy/1.75,1.0)
- radius = lamp.dist
- self.writeIndented("DEF %s PointLight {\n" % self.cleanStr(object.name),1)
- self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
- self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
- self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
- self.writeIndented("location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
- self.writeIndented("radius %s\n" % radius )
- self.writeIndented("}\n",-1)
- self.writeIndented("\n")
-
- def writeNode(self, thisObj):
- objectname=str(thisObj.getName())
- if objectname in self.namesStandard:
- return
- else:
- (dx,dy,dz)=self.computeDirection(thisObj)
- om = thisObj.getMatrix()
- location=self.rotVertex(om, (0,0,0));
- self.writeIndented("%s {\n" % objectname,1)
- self.writeIndented("# direction %s %s %s\n" % (round(dx,3),round(dy,3),round(dz,3)))
- self.writeIndented("# location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
- self.writeIndented("}\n",-1)
- self.writeIndented("\n")
-
- def secureName(self, name):
- name = name + str(self.nodeID)
- self.nodeID += 1
- if len(name) <= 3:
- newname = "_" + str(self.nodeID)
- return "%s" % (newname)
- else:
- for bad in ['"','#',"'",',','.','[','\\',']','{','}']:
- name=name.replace(bad,'_')
- if name in self.namesReserved:
- newname = name[0:3] + "_" + str(self.nodeID)
- return "%s" % (newname)
- elif name[0].isdigit():
- newname = "_" + name + str(self.nodeID)
- return "%s" % (newname)
- else:
- newname = name
- return "%s" % (newname)
-
- def writeIndexedFaceSet(self, object, normals = 0):
- imageMap={} # set of used images
- sided={} # 'one':cnt , 'two':cnt
- vColors={} # 'multi':1
- meshName = self.cleanStr(object.name)
- mesh=object.getData()
- meshME = self.cleanStr(mesh.name)
- if len(mesh.faces) == 0:
+ def writeHeader(self):
+ bfile = sys.expandpath(Blender.Get('filename'))
+ self.file.write("#VRML V2.0 utf8\n\n")
+ self.file.write("# This file was authored with Blender (http://www.blender.org/)\n")
+ self.file.write("# Blender version %s\n" % Blender.Get('version'))
+ self.file.write("# Blender file %s\n" % sys.basename(bfile))
+ self.file.write("# Exported using VRML97 exporter v1.55 (2006/01/17)\n\n")
+
+ def writeInline(self):
+ inlines = Blender.Scene.Get()
+ allinlines = len(inlines)
+ if scene != inlines[0]:
+ return
+ else:
+ for i in range(allinlines):
+ nameinline=inlines[i].getName()
+ if (nameinline not in self.namesStandard) and (i > 0):
+ self.writeIndented("DEF %s Inline {\n" % (self.cleanStr(nameinline)), 1)
+ nameinline = nameinline+".wrl"
+ self.writeIndented("url \"%s\" \n" % nameinline)
+ self.writeIndented("}\n", -1)
+ self.writeIndented("\n")
+
+ def writeScript(self):
+ textEditor = Blender.Text.Get()
+ alltext = len(textEditor)
+ for i in range(alltext):
+ nametext = textEditor[i].getName()
+ nlines = textEditor[i].getNLines()
+ if (self.proto == 1):
+ if (nametext == "proto" or nametext == "proto.js" or nametext == "proto.txt") and (nlines != None):
+ nalllines = len(textEditor[i].asLines())
+ alllines = textEditor[i].asLines()
+ for j in range(nalllines):
+ self.writeIndented(alllines[j] + "\n")
+ elif (self.proto == 0):
+ if (nametext == "route" or nametext == "route.js" or nametext == "route.txt") and (nlines != None):
+ nalllines = len(textEditor[i].asLines())
+ alllines = textEditor[i].asLines()
+ for j in range(nalllines):
+ self.writeIndented(alllines[j] + "\n")
+ self.writeIndented("\n")
+
+ def writeViewpoint(self, thisObj):
+ context = scene.getRenderingContext()
+ ratio = float(context.imageSizeY())/float(context.imageSizeX())
+ lens = (360* (math.atan(ratio *16 / thisObj.data.getLens()) / math.pi))*(math.pi/180)
+ lens = min(lens, math.pi)
+ # get the camera location, subtract 90 degress from X to orient like VRML does
+ loc = self.rotatePointForVRML(thisObj.loc)
+ rot = [thisObj.RotX - 1.57, thisObj.RotY, thisObj.RotZ]
+ nRot = self.rotatePointForVRML(rot)
+ # convert to Quaternion and to Angle Axis
+ Q = self.eulerToQuaternions(nRot[0], nRot[1], nRot[2])
+ Q1 = self.multiplyQuaternions(Q[0], Q[1])
+ Qf = self.multiplyQuaternions(Q1, Q[2])
+ angleAxis = self.quaternionToAngleAxis(Qf)
+ self.writeIndented("DEF %s Viewpoint {\n" % (self.cleanStr(thisObj.name)), 1)
+ self.writeIndented("description \"%s\" \n" % (thisObj.name))
+ self.writeIndented("position %3.2f %3.2f %3.2f\n" % (loc[0], loc[1], loc[2]))
+ self.writeIndented("orientation %3.2f %3.2f %3.2f %3.2f\n" % (angleAxis[0], angleAxis[1], -angleAxis[2], angleAxis[3]))
+ self.writeIndented("fieldOfView %.3f\n" % (lens))
+ self.writeIndented("}\n", -1)
+ self.writeIndented("\n")
+
+ def writeFog(self):
+ if len(world) > 0:
+ mtype = world[0].getMistype()
+ mparam = world[0].getMist()
+ grd = world[0].getHor()
+ grd0, grd1, grd2 = grd[0], grd[1], grd[2]
+ else:
+ return
+ if (mtype == 1 or mtype == 2):
+ self.writeIndented("Fog {\n",1)
+ self.writeIndented("fogType \"%s\"\n" % self.namesFog[mtype])
+ self.writeIndented("color %s %s %s" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)) + "\n")
+ self.writeIndented("visibilityRange %s\n" % round(mparam[2],self.cp))
+ self.writeIndented("}\n",-1)
+ self.writeIndented("\n")
+ else:
+ return
+
+ def writeNavigationInfo(self, scene):
+ allObj = []
+ allObj = scene.getChildren()
+ headlight = "TRUE"
+ vislimit = 0.0
+ for thisObj in allObj:
+ objType=thisObj.getType()
+ if objType == "Camera":
+ vislimit = thisObj.data.getClipEnd()
+ elif objType == "Lamp":
+ headlight = "FALSE"
+ self.writeIndented("NavigationInfo {\n",1)
+ self.writeIndented("headlight %s" % headlight + "\n")
+ self.writeIndented("visibilityLimit %s\n" % (round(vislimit,self.cp)))
+ self.writeIndented("type [\"EXAMINE\", \"ANY\"]\n")
+ self.writeIndented("avatarSize [0.25, 1.75, 0.75]\n")
+ self.writeIndented("} \n",-1)
+ self.writeIndented(" \n")
+
+ def writeSpotLight(self, object, lamp):
+ if len(world) > 0:
+ ambi = world[0].getAmb()
+ ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
+ else:
+ ambi = 0
+ ambientIntensity = 0
+
+ # compute cutoff and beamwidth
+ intensity=min(lamp.energy/1.75,1.0)
+ beamWidth=((lamp.spotSize*math.pi)/180.0)*.37;
+ cutOffAngle=beamWidth*1.3
+
+ (dx,dy,dz)=self.computeDirection(object)
+ # note -dx seems to equal om[3][0]
+ # note -dz seems to equal om[3][1]
+ # note dy seems to equal om[3][2]
+ om = object.getMatrix()
+
+ location=self.rotVertex(om, (0,0,0));
+ radius = lamp.dist*math.cos(beamWidth)
+ self.writeIndented("DEF %s SpotLight {\n" % self.cleanStr(object.name),1)
+ self.writeIndented("radius %s\n" % (round(radius,self.cp)))
+ self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
+ self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
+ self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
+ self.writeIndented("beamWidth %s\n" % (round(beamWidth,self.cp)))
+ self.writeIndented("cutOffAngle %s\n" % (round(cutOffAngle,self.cp)))
+ self.writeIndented("direction %s %s %s\n" % (round(dx,3),round(dy,3),round(dz,3)))
+ self.writeIndented("location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
+ self.writeIndented("}\n",-1)
+ self.writeIndented("\n")
+
+ def writeDirectionalLight(self, object, lamp):
+ if len(world) > 0:
+ ambi = world[0].getAmb()
+ ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
+ else:
+ ambi = 0
+ ambientIntensity = 0
+
+ intensity=min(lamp.energy/1.75,1.0)
+ (dx,dy,dz)=self.computeDirection(object)
+ self.writeIndented("DEF %s DirectionalLight {\n" % self.cleanStr(object.name),1)
+ self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
+ self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
+ self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
+ self.writeIndented("direction %s %s %s\n" % (round(dx,4),round(dy,4),round(dz,4)))
+ self.writeIndented("}\n",-1)
+ self.writeIndented("\n")
+
+ def writePointLight(self, object, lamp):
+ if len(world) > 0:
+ ambi = world[0].getAmb()
+ ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
+ else:
+ ambi = 0
+ ambientIntensity = 0
+ om = object.getMatrix()
+ location=self.rotVertex(om, (0,0,0));
+ intensity=min(lamp.energy/1.75,1.0)
+ radius = lamp.dist
+ self.writeIndented("DEF %s PointLight {\n" % self.cleanStr(object.name),1)
+ self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
+ self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
+ self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
+ self.writeIndented("location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
+ self.writeIndented("radius %s\n" % radius )
+ self.writeIndented("}\n",-1)
+ self.writeIndented("\n")
+
+ def writeNode(self, thisObj):
+ objectname=str(thisObj.getName())
+ if objectname in self.namesStandard:
+ return
+ else:
+ (dx,dy,dz)=self.computeDirection(thisObj)
+ om = thisObj.getMatrix()
+ location=self.rotVertex(om, (0,0,0));
+ self.writeIndented("%s {\n" % objectname,1)
+ self.writeIndented("# direction %s %s %s\n" % (round(dx,3),round(dy,3),round(dz,3)))
+ self.writeIndented("# location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
+ self.writeIndented("}\n",-1)
+ self.writeIndented("\n")
+
+ def secureName(self, name):
+ name = name + str(self.nodeID)
+ self.nodeID += 1
+ if len(name) <= 3:
+ newname = "_" + str(self.nodeID)
+ return "%s" % (newname)
+ else:
+ for bad in ['"','#',"'",',','.','[','\\',']','{','}']:
+ name=name.replace(bad,'_')
+ if name in self.namesReserved:
+ newname = name[0:3] + "_" + str(self.nodeID)
+ return "%s" % (newname)
+ elif name[0].isdigit():
+ newname = "_" + name + str(self.nodeID)
+ return "%s" % (newname)
+ else:
+ newname = name
+ return "%s" % (newname)
+
+ def writeIndexedFaceSet(self, object, normals = 0):
+ imageMap={} # set of used images
+ sided={} # 'one':cnt , 'two':cnt
+ vColors={} # 'multi':1
+ meshName = self.cleanStr(object.name)
+ mesh=object.getData()
+ meshME = self.cleanStr(mesh.name)
+ if len(mesh.faces) == 0:
return
- for face in mesh.faces:
- if face.mode & Blender.NMesh.FaceModes['HALO'] and self.halonode == 0:
- self.writeIndented("Billboard {\n",1)
- self.writeIndented("axisOfRotation 0 0 0\n")
- self.writeIndented("children [\n")
- self.halonode = 1
- elif face.mode & Blender.NMesh.FaceModes['BILLBOARD'] and self.billnode == 0:
- self.writeIndented("Billboard {\n",1)
- self.writeIndented("axisOfRotation 0 1 0\n")
- self.writeIndented("children [\n")
- self.billnode = 1
- elif face.mode & Blender.NMesh.FaceModes['OBCOL'] and self.matonly == 0:
- self.matonly = 1
- elif face.mode & Blender.NMesh.FaceModes['SHAREDCOL'] and self.share == 0:
- self.share = 1
- elif face.mode & Blender.NMesh.FaceModes['TILES'] and self.tilenode == 0:
- self.tilenode = 1
- elif not face.mode & Blender.NMesh.FaceModes['DYNAMIC'] and self.collnode == 0:
- self.writeIndented("Collision {\n",1)
- self.writeIndented("collide FALSE\n")
- self.writeIndented("children [\n")
- self.collnode = 1
-
- nIFSCnt=self.countIFSSetsNeeded(mesh, imageMap, sided, vColors)
-
- if nIFSCnt > 1:
- self.writeIndented("DEF %s%s Group {\n" % ("G_", meshName),1)
- self.writeIndented("children [\n",1)
-
- if sided.has_key('two') and sided['two'] > 0:
- bTwoSided=1
- else:
- bTwoSided=0
- om = object.getMatrix();
- location=self.rotVertex(om, (0,0,0));
- self.writeIndented("DEF %s Transform {\n" % meshName,1)
- self.writeIndented("translation %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)),1)
- self.writeIndented("children [\n")
- self.writeIndented("Shape {\n",1)
-
- maters=mesh.materials
- hasImageTexture=0
- issmooth=0
-
- if len(maters) > 0 or mesh.hasFaceUV():
- self.writeIndented("appearance Appearance {\n", 1)
- # right now this script can only handle a single material per mesh.
- if len(maters) >= 1:
- mat=Blender.Material.Get(maters[0].name)
- matFlags = mat.getMode()
- if not matFlags & Blender.Material.Modes['TEXFACE']:
- self.writeMaterial(mat, self.cleanStr(maters[0].name,''))
- if len(maters) > 1:
- print "Warning: mesh named %s has multiple materials" % meshName
- print "Warning: only one material per object handled"
-
- #-- textures
- if mesh.hasFaceUV():
- for face in mesh.faces:
- if (hasImageTexture == 0) and (face.image):
- self.writeImageTexture(face.image.name, face.image.filename)
- hasImageTexture=1 # keep track of face texture
- if self.tilenode == 1:
- self.writeIndented("textureTransform TextureTransform { scale %s %s }\n" % (face.image.xrep, face.image.yrep))
- self.tilenode = 0
- self.writeIndented("}\n", -1)
-
- #-- IndexedFaceSet or IndexedLineSet
-
- # check if object is wireframe only
- if object.drawType == Blender.Object.DrawTypes.WIRE:
- # user selected WIRE=2 on the Drawtype=Wire on (F9) Edit page
- ifStyle="IndexedLineSet"
- self.wire = 1
- else:
- # user selected BOUNDS=1, SOLID=3, SHARED=4, or TEXTURE=5
- ifStyle="IndexedFaceSet"
- # look up mesh name, use it if available
- if self.meshNames.has_key(meshME):
- self.writeIndented("geometry USE ME_%s\n" % meshME)
- self.meshNames[meshME]+=1
- else:
- if int(mesh.users) > 1:
- self.writeIndented("geometry DEF ME_%s %s {\n" % (meshME, ifStyle), 1)
- self.meshNames[meshME]=1
- else:
- self.writeIndented("geometry %s {\n" % ifStyle, 1)
- if object.drawType != Blender.Object.DrawTypes.WIRE:
- if bTwoSided == 1:
- self.writeIndented("solid FALSE\n")
- else:
- self.writeIndented("solid TRUE\n")
-
- #--- output coordinates
- self.writeCoordinates(object, mesh, meshName)
-
- if object.drawType != Blender.Object.DrawTypes.WIRE:
- #--- output textureCoordinates if UV texture used
- if mesh.hasFaceUV():
- if hasImageTexture == 1:
- self.writeTextureCoordinates(mesh)
- elif self.matonly == 1 and self.share == 1:
- self.writeFaceColors(mesh)
-
- for face in mesh.faces:
- if face.smooth:
- issmooth=1
- if issmooth==1 and self.wire == 0:
- creaseAngle=(mesh.getMaxSmoothAngle())*(math.pi/180.0)
- self.writeIndented("creaseAngle %s\n" % (round(creaseAngle,self.cp)))
-
- #--- output vertexColors
- if self.share == 1 and self.matonly == 0:
- self.writeVertexColors(mesh)
- #--- output closing braces
- self.writeIndented("}\n", -1)
- self.writeIndented("}\n", -1)
- self.writeIndented("]\n", -1)
- self.matonly = 0
- self.share = 0
- self.wire = 0
- self.writeIndented("}\n", -1)
-
- if self.halonode == 1:
- self.writeIndented("]\n", -1)
- self.writeIndented("}\n", -1)
- self.halonode = 0
-
- if self.billnode == 1:
- self.writeIndented("]\n", -1)
- self.writeIndented("}\n", -1)
- self.billnode = 0
-
- if self.collnode == 1:
- self.writeIndented("]\n", -1)
- self.writeIndented("}\n", -1)
- self.collnode = 0
-
- if nIFSCnt > 1:
- self.writeIndented("]\n", -1)
- self.writeIndented("}\n", -1)
-
- self.writeIndented("\n")
-
- def writeCoordinates(self, object, mesh, meshName):
- #-- vertices
- self.writeIndented("coord DEF %s%s Coordinate {\n" % ("coord_",meshName), 1)
- self.writeIndented("point [\n\t\t\t\t\t\t", 1)
- meshVertexList = mesh.verts
-
- # create vertex list and pre rotate -90 degrees X for VRML
- mm=object.getMatrix()
- location=self.rotVertex(mm, (0,0,0));
- for vertex in meshVertexList:
- v=self.rotVertex(mm, vertex);
- self.file.write("%s %s %s, " % (round((v[0]-location[0]),self.vp), round((v[1]-location[1]),self.vp), round((v[2]-location[2]),self.vp) ))
- self.writeIndented("\n", 0)
- self.writeIndented("]\n", -1)
- self.writeIndented("}\n", -1)
-
- self.writeIndented("coordIndex [\n\t\t\t\t\t", 1)
- coordIndexList=[]
- for face in mesh.faces:
- cordStr=""
- for i in range(len(face)):
- indx=meshVertexList.index(face[i])
- cordStr = cordStr + "%s " % indx
- self.file.write(cordStr + "-1, ")
- self.writeIndented("\n", 0)
- self.writeIndented("]\n", -1)
-
- def writeTextureCoordinates(self, mesh):
- texCoordList=[]
- texIndexList=[]
- j=0
-
- for face in mesh.faces:
- for i in range(len(face)):
- texIndexList.append(j)
- texCoordList.append(face.uv[i])
- j=j+1
- texIndexList.append(-1)
-
- self.writeIndented("texCoord TextureCoordinate {\n", 1)
- self.writeIndented("point [\n\t\t\t\t\t\t", 1)
- for i in range(len(texCoordList)):
- self.file.write("%s %s, " % (round(texCoordList[i][0],self.tp), round(texCoordList[i][1],self.tp)))
- self.writeIndented("\n", 0)
- self.writeIndented("]\n", -1)
- self.writeIndented("}\n", -1)
-
- self.writeIndented("texCoordIndex [\n\t\t\t\t\t\t", 1)
- texIndxStr=""
- for i in range(len(texIndexList)):
- texIndxStr = texIndxStr + "%d, " % texIndexList[i]
- if texIndexList[i]==-1:
- self.file.write(texIndxStr)
- texIndxStr=""
- self.writeIndented("\n", 0)
- self.writeIndented("]\n", -1)
-
- def writeFaceColors(self, mesh):
- self.writeIndented("colorPerVertex FALSE\n")
- self.writeIndented("color Color {\n",1)
- self.writeIndented("color [\n\t\t\t\t\t\t", 1)
-
- for face in mesh.faces:
- if face.col:
- c=face.col[0]
- if self.verbose > 2:
- print "Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b)
-
- aColor = self.rgbToFS(c)
- self.file.write("%s, " % aColor)
- self.writeIndented("\n", 0)
- self.writeIndented("]\n",-1)
- self.writeIndented("}\n",-1)
-
- def writeVertexColors(self, mesh):
- self.writeIndented("colorPerVertex TRUE\n")
- self.writeIndented("color Color {\n",1)
- self.writeIndented("color [\n\t\t\t\t\t\t", 1)
-
- for i in range(len(mesh.verts)):
- c=self.getVertexColorByIndx(mesh,i)
- if self.verbose > 2:
- print "Debug: vertex[%d].col r=%d g=%d b=%d" % (i, c.r, c.g, c.b)
-
- aColor = self.rgbToFS(c)
- self.file.write("%s, " % aColor)
- self.writeIndented("\n", 0)
- self.writeIndented("]\n",-1)
- self.writeIndented("}\n",-1)
-
- def writeMaterial(self, mat, matName):
- # look up material name, use it if available
- if self.matNames.has_key(matName):
- self.writeIndented("material USE MA_%s\n" % matName)
- self.matNames[matName]+=1
- return;
+ for face in mesh.faces:
+ if face.mode & Blender.NMesh.FaceModes['HALO'] and self.halonode == 0:
+ self.writeIndented("Billboard {\n",1)
+ self.writeIndented("axisOfRotation 0 0 0\n")
+ self.writeIndented("children [\n")
+ self.halonode = 1
+ elif face.mode & Blender.NMesh.FaceModes['BILLBOARD'] and self.billnode == 0:
+ self.writeIndented("Billboard {\n",1)
+ self.writeIndented("axisOfRotation 0 1 0\n")
+ self.writeIndented("children [\n")
+ self.billnode = 1
+ elif face.mode & Blender.NMesh.FaceModes['OBCOL'] and self.matonly == 0:
+ self.matonly = 1
+ elif face.mode & Blender.NMesh.FaceModes['SHAREDCOL'] and self.share == 0:
+ self.share = 1
+ elif face.mode & Blender.NMesh.FaceModes['TILES'] and self.tilenode == 0:
+ self.tilenode = 1
+ elif not face.mode & Blender.NMesh.FaceModes['DYNAMIC'] and self.collnode == 0:
+ self.writeIndented("Collision {\n",1)
+ self.writeIndented("collide FALSE\n")
+ self.writeIndented("children [\n")
+ self.collnode = 1
+
+ nIFSCnt=self.countIFSSetsNeeded(mesh, imageMap, sided, vColors)
+
+ if nIFSCnt > 1:
+ self.writeIndented("DEF %s%s Group {\n" % ("G_", meshName),1)
+ self.writeIndented("children [\n",1)
+
+ if sided.has_key('two') and sided['two'] > 0:
+ bTwoSided=1
+ else:
+ bTwoSided=0
+ om = object.getMatrix();
+ location=self.rotVertex(om, (0,0,0));
+ self.writeIndented("DEF %s Transform {\n" % meshName,1)
+ self.writeIndented("translation %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)),1)
+ self.writeIndented("children [\n")
+ self.writeIndented("Shape {\n",1)
+
+ maters=mesh.materials
+ hasImageTexture=0
+ issmooth=0
+
+ if len(maters) > 0 or mesh.hasFaceUV():
+ self.writeIndented("appearance Appearance {\n", 1)
+ # right now this script can only handle a single material per mesh.
+ if len(maters) >= 1:
+ mat=Blender.Material.Get(maters[0].name)
+ matFlags = mat.getMode()
+ if not matFlags & Blender.Material.Modes['TEXFACE']:
+ self.writeMaterial(mat, self.cleanStr(maters[0].name,''))
+ if len(maters) > 1:
+ print "Warning: mesh named %s has multiple materials" % meshName
+ print "Warning: only one material per object handled"
+
+ #-- textures
+ if mesh.hasFaceUV():
+ for face in mesh.faces:
+ if (hasImageTexture == 0) and (face.image):
+ self.writeImageTexture(face.image.name, face.image.filename)
+ hasImageTexture=1 # keep track of face texture
+ if self.tilenode == 1:
+ self.writeIndented("textureTransform TextureTransform { scale %s %s }\n" % (face.image.xrep, face.image.yrep))
+ self.tilenode = 0
+ self.writeIndented("}\n", -1)
+
+ #-- IndexedFaceSet or IndexedLineSet
+
+ # check if object is wireframe only
+ if object.drawType == Blender.Object.DrawTypes.WIRE:
+ # user selected WIRE=2 on the Drawtype=Wire on (F9) Edit page
+ ifStyle="IndexedLineSet"
+ self.wire = 1
+ else:
+ # user selected BOUNDS=1, SOLID=3, SHARED=4, or TEXTURE=5
+ ifStyle="IndexedFaceSet"
+ # look up mesh name, use it if available
+ if self.meshNames.has_key(meshME):
+ self.writeIndented("geometry USE ME_%s\n" % meshME)
+ self.meshNames[meshME]+=1
+ else:
+ if int(mesh.users) > 1:
+ self.writeIndented("geometry DEF ME_%s %s {\n" % (meshME, ifStyle), 1)
+ self.meshNames[meshME]=1
+ else:
+ self.writeIndented("geometry %s {\n" % ifStyle, 1)
+ if object.drawType != Blender.Object.DrawTypes.WIRE:
+ if bTwoSided == 1:
+ self.writeIndented("solid FALSE\n")
+ else:
+ self.writeIndented("solid TRUE\n")
+
+ #--- output coordinates
+ self.writeCoordinates(object, mesh, meshName)
+
+ if object.drawType != Blender.Object.DrawTypes.WIRE:
+ #--- output textureCoordinates if UV texture used
+ if mesh.hasFaceUV():
+ if hasImageTexture == 1:
+ self.writeTextureCoordinates(mesh)
+ elif self.matonly == 1 and self.share == 1:
+ self.writeFaceColors(mesh)
+
+ for face in mesh.faces:
+ if face.smooth:
+ issmooth=1
+ if issmooth==1 and self.wire == 0:
+ creaseAngle=(mesh.getMaxSmoothAngle())*(math.pi/180.0)
+ self.writeIndented("creaseAngle %s\n" % (round(creaseAngle,self.cp)))
+
+ #--- output vertexColors
+ if self.share == 1 and self.matonly == 0:
+ self.writeVertexColors(mesh)
+ #--- output closing braces
+ self.writeIndented("}\n", -1)
+ self.writeIndented("}\n", -1)
+ self.writeIndented("]\n", -1)
+ self.matonly = 0
+ self.share = 0
+ self.wire = 0
+ self.writeIndented("}\n", -1)
+
+ if self.halonode == 1:
+ self.writeIndented("]\n", -1)
+ self.writeIndented("}\n", -1)
+ self.halonode = 0
+
+ if self.billnode == 1:
+ self.writeIndented("]\n", -1)
+ self.writeIndented("}\n", -1)
+ self.billnode = 0
+
+ if self.collnode == 1:
+ self.writeIndented("]\n", -1)
+ self.writeIndented("}\n", -1)
+ self.collnode = 0
+
+ if nIFSCnt > 1:
+ self.writeIndented("]\n", -1)
+ self.writeIndented("}\n", -1)
+
+ self.writeIndented("\n")
+
+ def writeCoordinates(self, object, mesh, meshName):
+ #-- vertices
+ self.writeIndented("coord DEF %s%s Coordinate {\n" % ("coord_",meshName), 1)
+ self.writeIndented("point [\n\t\t\t\t\t\t", 1)
+ meshVertexList = mesh.verts
+
+ # create vertex list and pre rotate -90 degrees X for VRML
+ mm=object.getMatrix()
+ location=self.rotVertex(mm, (0,0,0));
+ for vertex in meshVertexList:
+ v=self.rotVertex(mm, vertex);
+ self.file.write("%s %s %s, " % (round((v[0]-location[0]),self.vp), round((v[1]-location[1]),self.vp), round((v[2]-location[2]),self.vp) ))
+ self.writeIndented("\n", 0)
+ self.writeIndented("]\n", -1)
+ self.writeIndented("}\n", -1)
+
+ self.writeIndented("coordIndex [\n\t\t\t\t\t", 1)
+ coordIndexList=[]
+ for face in mesh.faces:
+ cordStr=""
+ for i in range(len(face)):
+ indx=meshVertexList.index(face[i])
+ cordStr = cordStr + "%s " % indx
+ self.file.write(cordStr + "-1, ")
+ self.writeIndented("\n", 0)
+ self.writeIndented("]\n", -1)
+
+ def writeTextureCoordinates(self, mesh):
+ texCoordList=[]
+ texIndexList=[]
+ j=0
+
+ for face in mesh.faces:
+ for i in range(len(face)):
+ texIndexList.append(j)
+ texCoordList.append(face.uv[i])
+ j=j+1
+ texIndexList.append(-1)
+
+ self.writeIndented("texCoord TextureCoordinate {\n", 1)
+ self.writeIndented("point [\n\t\t\t\t\t\t", 1)
+ for i in range(len(texCoordList)):
+ self.file.write("%s %s, " % (round(texCoordList[i][0],self.tp), round(texCoordList[i][1],self.tp)))
+ self.writeIndented("\n", 0)
+ self.writeIndented("]\n", -1)
+ self.writeIndented("}\n", -1)
+
+ self.writeIndented("texCoordIndex [\n\t\t\t\t\t\t", 1)
+ texIndxStr=""
+ for i in range(len(texIndexList)):
+ texIndxStr = texIndxStr + "%d, " % texIndexList[i]
+ if texIndexList[i]==-1:
+ self.file.write(texIndxStr)
+ texIndxStr=""
+ self.writeIndented("\n", 0)
+ self.writeIndented("]\n", -1)
+
+ def writeFaceColors(self, mesh):
+ self.writeIndented("colorPerVertex FALSE\n")
+ self.writeIndented("color Color {\n",1)
+ self.writeIndented("color [\n\t\t\t\t\t\t", 1)
+
+ for face in mesh.faces:
+ if face.col:
+ c=face.col[0]
+ if self.verbose > 2:
+ print "Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b)
+
+ aColor = self.rgbToFS(c)
+ self.file.write("%s, " % aColor)
+ self.writeIndented("\n", 0)
+ self.writeIndented("]\n",-1)
+ self.writeIndented("}\n",-1)
+
+ def writeVertexColors(self, mesh):
+ self.writeIndented("colorPerVertex TRUE\n")
+ self.writeIndented("color Color {\n",1)
+ self.writeIndented("color [\n\t\t\t\t\t\t", 1)
+
+ for i in range(len(mesh.verts)):
+ c=self.getVertexColorByIndx(mesh,i)
+ if self.verbose > 2:
+ print "Debug: vertex[%d].col r=%d g=%d b=%d" % (i, c.r, c.g, c.b)
+
+ aColor = self.rgbToFS(c)
+ self.file.write("%s, " % aColor)
+ self.writeIndented("\n", 0)
+ self.writeIndented("]\n",-1)
+ self.writeIndented("}\n",-1)
+
+ def writeMaterial(self, mat, matName):
+ # look up material name, use it if available
+ if self.matNames.has_key(matName):
+ self.writeIndented("material USE MA_%s\n" % matName)
+ self.matNames[matName]+=1
+ return;
- self.matNames[matName]=1
-
- ambient = mat.amb/3
- diffuseR, diffuseG, diffuseB = mat.rgbCol[0], mat.rgbCol[1],mat.rgbCol[2]
- if len(world) > 0:
- ambi = world[0].getAmb()
- ambi0, ambi1, ambi2 = (ambi[0]*mat.amb)*2, (ambi[1]*mat.amb)*2, (ambi[2]*mat.amb)*2
- else:
- ambi0, ambi1, ambi2 = 0, 0, 0
- emisR, emisG, emisB = (diffuseR*mat.emit+ambi0)/2, (diffuseG*mat.emit+ambi1)/2, (diffuseB*mat.emit+ambi2)/2
-
- shininess = mat.hard/512.0
- specR = (mat.specCol[0]+0.001)/(1.25/(mat.getSpec()+0.001))
- specG = (mat.specCol[1]+0.001)/(1.25/(mat.getSpec()+0.001))
- specB = (mat.specCol[2]+0.001)/(1.25/(mat.getSpec()+0.001))
- transp = 1-mat.alpha
- matFlags = mat.getMode()
- if matFlags & Blender.Material.Modes['SHADELESS']:
- ambient = 1
- shine = 1
- specR = emitR = diffuseR
- specG = emitG = diffuseG
- specB = emitB = diffuseB
- self.writeIndented("material DEF MA_%s Material {\n" % matName, 1)
- self.writeIndented("diffuseColor %s %s %s\n" % (round(diffuseR,self.cp), round(diffuseG,self.cp), round(diffuseB,self.cp)))
- self.writeIndented("ambientIntensity %s\n" % (round(ambient,self.cp)))
- self.writeIndented("specularColor %s %s %s\n" % (round(specR,self.cp), round(specG,self.cp), round(specB,self.cp)))
- self.writeIndented("emissiveColor %s %s %s\n" % (round(emisR,self.cp), round(emisG,self.cp), round(emisB,self.cp)))
- self.writeIndented("shininess %s\n" % (round(shininess,self.cp)))
- self.writeIndented("transparency %s\n" % (round(transp,self.cp)))
- self.writeIndented("}\n",-1)
-
- def writeImageTexture(self, name, filename):
- if self.texNames.has_key(name):
- self.writeIndented("texture USE %s\n" % self.cleanStr(name))
- self.texNames[name] += 1
- return
- else:
- self.writeIndented("texture DEF %s ImageTexture {\n" % self.cleanStr(name), 1)
- self.writeIndented("url \"%s\"\n" % name.split("\\")[-1].split("/")[-1])
- self.writeIndented("}\n",-1)
- self.texNames[name] = 1
-
- def writeBackground(self):
- if len(world) > 0:
- worldname = world[0].getName()
- else:
- return
- blending = world[0].getSkytype()
- grd = world[0].getHor()
- grd0, grd1, grd2 = grd[0], grd[1], grd[2]
- sky = world[0].getZen()
- sky0, sky1, sky2 = sky[0], sky[1], sky[2]
- mix0, mix1, mix2 = grd[0]+sky[0], grd[1]+sky[1], grd[2]+sky[2]
- mix0, mix1, mix2 = mix0/2, mix1/2, mix2/2
- if worldname in self.namesStandard:
- self.writeIndented("Background {\n",1)
- else:
- self.writeIndented("DEF %s Background {\n" % self.secureName(worldname),1)
- # No Skytype - just Hor color
- if blending == 0:
- self.writeIndented("groundColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
- self.writeIndented("skyColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
- # Blend Gradient
- elif blending == 1:
- self.writeIndented("groundColor [ %s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
- self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
- self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
- self.writeIndented("skyColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
- self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
- self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
- # Blend+Real Gradient Inverse
- elif blending == 3:
- self.writeIndented("groundColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
- self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
- self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
- self.writeIndented("skyColor [ %s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
- self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
- self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
- # Paper - just Zen Color
- elif blending == 4:
- self.writeIndented("groundColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
- self.writeIndented("skyColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
- # Blend+Real+Paper - komplex gradient
- elif blending == 7:
- self.writeIndented("groundColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
- self.writeIndented("%s %s %s ]\n" %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
- self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
- self.writeIndented("skyColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
- self.writeIndented("%s %s %s ]\n" %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
- self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
- # Any Other two colors
- else:
- self.writeIndented("groundColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
- self.writeIndented("skyColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
- alltexture = len(worldmat)
- for i in range(alltexture):
- namemat = worldmat[i].getName()
- pic = worldmat[i].getImage()
- if (namemat == "back") and (pic != None):
- self.writeIndented("backUrl \"%s\"\n" % str(pic.getName()))
- elif (namemat == "bottom") and (pic != None):
- self.writeIndented("bottomUrl \"%s\"\n" % str(pic.getName()))
- elif (namemat == "front") and (pic != None):
- self.writeIndented("frontUrl \"%s\"\n" % str(pic.getName()))
- elif (namemat == "left") and (pic != None):
- self.writeIndented("leftUrl \"%s\"\n" % str(pic.getName()))
- elif (namemat == "right") and (pic != None):
- self.writeIndented("rightUrl \"%s\"\n" % str(pic.getName()))
- elif (namemat == "top") and (pic != None):
- self.writeIndented("topUrl \"%s\"\n" % str(pic.getName()))
- self.writeIndented("}",-1)
- self.writeIndented("\n\n")
+ self.matNames[matName]=1
+
+ ambient = mat.amb/3
+ diffuseR, diffuseG, diffuseB = mat.rgbCol[0], mat.rgbCol[1],mat.rgbCol[2]
+ if len(world) > 0:
+ ambi = world[0].getAmb()
+ ambi0, ambi1, ambi2 = (ambi[0]*mat.amb)*2, (ambi[1]*mat.amb)*2, (ambi[2]*mat.amb)*2
+ else:
+ ambi0, ambi1, ambi2 = 0, 0, 0
+ emisR, emisG, emisB = (diffuseR*mat.emit+ambi0)/2, (diffuseG*mat.emit+ambi1)/2, (diffuseB*mat.emit+ambi2)/2
+
+ shininess = mat.hard/512.0
+ specR = (mat.specCol[0]+0.001)/(1.25/(mat.getSpec()+0.001))
+ specG = (mat.specCol[1]+0.001)/(1.25/(mat.getSpec()+0.001))
+ specB = (mat.specCol[2]+0.001)/(1.25/(mat.getSpec()+0.001))
+ transp = 1-mat.alpha
+ matFlags = mat.getMode()
+ if matFlags & Blender.Material.Modes['SHADELESS']:
+ ambient = 1
+ shine = 1
+ specR = emitR = diffuseR
+ specG = emitG = diffuseG
+ specB = emitB = diffuseB
+ self.writeIndented("material DEF MA_%s Material {\n" % matName, 1)
+ self.writeIndented("diffuseColor %s %s %s\n" % (round(diffuseR,self.cp), round(diffuseG,self.cp), round(diffuseB,self.cp)))
+ self.writeIndented("ambientIntensity %s\n" % (round(ambient,self.cp)))
+ self.writeIndented("specularColor %s %s %s\n" % (round(specR,self.cp), round(specG,self.cp), round(specB,self.cp)))
+ self.writeIndented("emissiveColor %s %s %s\n" % (round(emisR,self.cp), round(emisG,self.cp), round(emisB,self.cp)))
+ self.writeIndented("shininess %s\n" % (round(shininess,self.cp)))
+ self.writeIndented("transparency %s\n" % (round(transp,self.cp)))
+ self.writeIndented("}\n",-1)
+
+ def writeImageTexture(self, name, filename):
+ if self.texNames.has_key(name):
+ self.writeIndented("texture USE %s\n" % self.cleanStr(name))
+ self.texNames[name] += 1
+ return
+ else:
+ self.writeIndented("texture DEF %s ImageTexture {\n" % self.cleanStr(name), 1)
+ self.writeIndented("url \"%s\"\n" % name.split("\\")[-1].split("/")[-1])
+ self.writeIndented("}\n",-1)
+ self.texNames[name] = 1
+
+ def writeBackground(self):
+ if len(world) > 0:
+ worldname = world[0].getName()
+ else:
+ return
+ blending = world[0].getSkytype()
+ grd = world[0].getHor()
+ grd0, grd1, grd2 = grd[0], grd[1], grd[2]
+ sky = world[0].getZen()
+ sky0, sky1, sky2 = sky[0], sky[1], sky[2]
+ mix0, mix1, mix2 = grd[0]+sky[0], grd[1]+sky[1], grd[2]+sky[2]
+ mix0, mix1, mix2 = mix0/2, mix1/2, mix2/2
+ if worldname in self.namesStandard:
+ self.writeIndented("Background {\n",1)
+ else:
+ self.writeIndented("DEF %s Background {\n" % self.secureName(worldname),1)
+ # No Skytype - just Hor color
+ if blending == 0:
+ self.writeIndented("groundColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
+ self.writeIndented("skyColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
+ # Blend Gradient
+ elif blending == 1:
+ self.writeIndented("groundColor [ %s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
+ self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
+ self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
+ self.writeIndented("skyColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
+ self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
+ self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
+ # Blend+Real Gradient Inverse
+ elif blending == 3:
+ self.writeIndented("groundColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
+ self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
+ self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
+ self.writeIndented("skyColor [ %s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
+ self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
+ self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
+ # Paper - just Zen Color
+ elif blending == 4:
+ self.writeIndented("groundColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
+ self.writeIndented("skyColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
+ # Blend+Real+Paper - komplex gradient
+ elif blending == 7:
+ self.writeIndented("groundColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
+ self.writeIndented("%s %s %s ]\n" %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
+ self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
+ self.writeIndented("skyColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
+ self.writeIndented("%s %s %s ]\n" %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
+ self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
+ # Any Other two colors
+ else:
+ self.writeIndented("groundColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
+ self.writeIndented("skyColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
+ alltexture = len(worldmat)
+ for i in range(alltexture):
+ namemat = worldmat[i].getName()
+ pic = worldmat[i].getImage()
+ if (namemat == "back") and (pic != None):
+ self.writeIndented("backUrl \"%s\"\n" % str(pic.getName()))
+ elif (namemat == "bottom") and (pic != None):
+ self.writeIndented("bottomUrl \"%s\"\n" % str(pic.getName()))
+ elif (namemat == "front") and (pic != None):
+ self.writeIndented("frontUrl \"%s\"\n" % str(pic.getName()))
+ elif (namemat == "left") and (pic != None):
+ self.writeIndented("leftUrl \"%s\"\n" % str(pic.getName()))
+ elif (namemat == "right") and (pic != None):
+ self.writeIndented("rightUrl \"%s\"\n" % str(pic.getName()))
+ elif (namemat == "top") and (pic != None):
+ self.writeIndented("topUrl \"%s\"\n" % str(pic.getName()))
+ self.writeIndented("}",-1)
+ self.writeIndented("\n\n")
##########################################################
# export routine
##########################################################
- def export(self, scene, world, worldmat):
- print "Info: starting VRML97 export to " + self.filename + "..."
- self.writeHeader()
- self.writeScript()
- self.writeNavigationInfo(scene)
- self.writeBackground()
- self.writeFog()
- self.proto = 0
- allObj = []
- if ARG == 'selected':
- allObj = Blender.Object.GetSelected()
- else:
- allObj = scene.getChildren()
- self.writeInline()
- for thisObj in allObj:
- try:
- objType=thisObj.getType()
- objName=thisObj.getName()
- self.matonly = 0
- if objType == "Camera":
- self.writeViewpoint(thisObj)
- elif objType == "Mesh":
- self.writeIndexedFaceSet(thisObj, normals = 0)
- elif objType == "Lamp":
- lmpName=Lamp.Get(thisObj.data.getName())
- lmpType=lmpName.getType()
- if lmpType == Lamp.Types.Lamp:
- self.writePointLight(thisObj, lmpName)
- elif lmpType == Lamp.Types.Spot:
- self.writeSpotLight(thisObj, lmpName)
- elif lmpType == Lamp.Types.Sun:
- self.writeDirectionalLight(thisObj, lmpName)
- else:
- self.writeDirectionalLight(thisObj, lmpName)
- elif objType == "Empty" and objName != "Empty":
- self.writeNode(thisObj)
- else:
- #print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType())
- print ""
- except AttributeError:
- print "Error: Unable to get type info for %s" % thisObj.getName()
- if ARG != 'selected':
- self.writeScript()
- self.cleanup()
-
+ def export(self, scene, world, worldmat):
+ print "Info: starting VRML97 export to " + self.filename + "..."
+ self.writeHeader()
+ self.writeScript()
+ self.writeNavigationInfo(scene)
+ self.writeBackground()
+ self.writeFog()
+ self.proto = 0
+ allObj = []
+ if ARG == 'selected':
+ allObj = Blender.Object.GetSelected()
+ else:
+ allObj = scene.getChildren()
+ self.writeInline()
+ for thisObj in allObj:
+ try:
+ objType=thisObj.getType()
+ objName=thisObj.getName()
+ self.matonly = 0
+ if objType == "Camera":
+ self.writeViewpoint(thisObj)
+ elif objType == "Mesh":
+ self.writeIndexedFaceSet(thisObj, normals = 0)
+ elif objType == "Lamp":
+ lmpName=Lamp.Get(thisObj.data.getName())
+ lmpType=lmpName.getType()
+ if lmpType == Lamp.Types.Lamp:
+ self.writePointLight(thisObj, lmpName)
+ elif lmpType == Lamp.Types.Spot:
+ self.writeSpotLight(thisObj, lmpName)
+ elif lmpType == Lamp.Types.Sun:
+ self.writeDirectionalLight(thisObj, lmpName)
+ else:
+ self.writeDirectionalLight(thisObj, lmpName)
+ elif objType == "Empty" and objName != "Empty":
+ self.writeNode(thisObj)
+ else:
+ #print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType())
+ print ""
+ except AttributeError:
+ print "Error: Unable to get type info for %s" % thisObj.getName()
+ if ARG != 'selected':
+ self.writeScript()
+ self.cleanup()
+
##########################################################
# Utility methods
##########################################################
- def cleanup(self):
- self.file.close()
- self.texNames={}
- self.matNames={}
- self.indentLevel=0
- print "Info: finished VRML97 export to %s\n" % self.filename
-
- def cleanStr(self, name, prefix='rsvd_'):
- """cleanStr(name,prefix) - try to create a valid VRML DEF name from object name"""
-
- newName=name[:]
- if len(newName) == 0:
- self.nNodeID+=1
- return "%s%d" % (prefix, self.nNodeID)
-
- if newName in self.namesReserved:
- newName='%s%s' % (prefix,newName)
-
- if newName[0].isdigit():
- newName='%s%s' % ('_',newName)
-
- for bad in [' ','"','#',"'",',','.','[','\\',']','{','}']:
- newName=newName.replace(bad,'_')
- return newName
-
- def countIFSSetsNeeded(self, mesh, imageMap, sided, vColors):
- """
- countIFFSetsNeeded() - should look at a blender mesh to determine
- how many VRML IndexFaceSets or IndexLineSets are needed. A
- new mesh created under the following conditions:
-
- o - split by UV Textures / one per mesh
- o - split by face, one sided and two sided
- o - split by smooth and flat faces
- o - split when faces only have 2 vertices * needs to be an IndexLineSet
- """
-
- imageNameMap={}
- faceMap={}
- nFaceIndx=0
-
- for face in mesh.faces:
- sidename='';
- if (face.mode & NMesh.FaceModes.TWOSIDE) == NMesh.FaceModes.TWOSIDE:
- sidename='two'
- else:
- sidename='one'
-
- if not vColors.has_key('multi'):
- for face in mesh.faces:
- if face.col:
- c=face.col[0]
- if c.r != 255 and c.g != 255 and c.b !=255:
- vColors['multi']=1
-
- if sided.has_key(sidename):
- sided[sidename]+=1
- else:
- sided[sidename]=1
-
- if face.image:
- faceName="%s_%s" % (face.image.name, sidename);
-
- if imageMap.has_key(faceName):
- imageMap[faceName].append(face)
- else:
- imageMap[faceName]=[face.image.name,sidename,face]
-
- if self.verbose > 2:
- for faceName in imageMap.keys():
- ifs=imageMap[faceName]
- print "Debug: faceName=%s image=%s, solid=%s facecnt=%d" % \
- (faceName, ifs[0], ifs[1], len(ifs)-2)
-
- return len(imageMap.keys())
-
- def faceToString(self,face):
-
- print "Debug: face.flag=0x%x (bitflags)" % face.flag
- if face.flag & NMesh.FaceFlags.SELECT == NMesh.FaceFlags.SELECT:
- print "Debug: face.flag.SELECT=true"
-
- print "Debug: face.mode=0x%x (bitflags)" % face.mode
- if (face.mode & NMesh.FaceModes.TWOSIDE) == NMesh.FaceModes.TWOSIDE:
- print "Debug: face.mode twosided"
-
- print "Debug: face.transp=0x%x (enum)" % face.transp
- if face.transp == NMesh.FaceTranspModes.SOLID:
- print "Debug: face.transp.SOLID"
-
- if face.image:
- print "Debug: face.image=%s" % face.image.name
- print "Debug: face.materialIndex=%d" % face.materialIndex
-
- def getVertexColorByIndx(self, mesh, indx):
- for face in mesh.faces:
- j=0
- for vertex in face.v:
- if vertex.index == indx:
- c=face.col[j]
- j=j+1
- return c
-
- def meshToString(self,mesh):
- print "Debug: mesh.hasVertexUV=%d" % mesh.hasVertexUV()
- print "Debug: mesh.hasFaceUV=%d" % mesh.hasFaceUV()
- print "Debug: mesh.hasVertexColours=%d" % mesh.hasVertexColours()
- print "Debug: mesh.verts=%d" % len(mesh.verts)
- print "Debug: mesh.faces=%d" % len(mesh.faces)
- print "Debug: mesh.materials=%d" % len(mesh.materials)
-
- def rgbToFS(self, c):
- s="%s %s %s" % (round(c.r/255.0,self.cp), round(c.g/255.0,self.cp), round(c.b/255.0,self.cp))
- return s
-
- def computeDirection(self, object):
- x,y,z=(0,-1.0,0) # point down
- ax,ay,az = (object.RotX,object.RotZ,object.RotY)
-
- # rot X
- x1=x
- y1=y*math.cos(ax)-z*math.sin(ax)
- z1=y*math.sin(ax)+z*math.cos(ax)
-
- # rot Y
- x2=x1*math.cos(ay)+z1*math.sin(ay)
- y2=y1
- z2=z1*math.cos(ay)-x1*math.sin(ay)
-
- # rot Z
- x3=x2*math.cos(az)-y2*math.sin(az)
- y3=x2*math.sin(az)+y2*math.cos(az)
- z3=z2
-
- return [x3,y3,z3]
-
-
- # swap Y and Z to handle axis difference between Blender and VRML
- #------------------------------------------------------------------------
- def rotatePointForVRML(self, v):
- x = v[0]
- y = v[2]
- z = -v[1]
-
- vrmlPoint=[x, y, z]
- return vrmlPoint
-
- def rotVertex(self, mm, v):
- lx,ly,lz=v[0],v[1],v[2]
- gx=(mm[0][0]*lx + mm[1][0]*ly + mm[2][0]*lz) + mm[3][0]
- gy=((mm[0][2]*lx + mm[1][2]*ly+ mm[2][2]*lz) + mm[3][2])
- gz=-((mm[0][1]*lx + mm[1][1]*ly + mm[2][1]*lz) + mm[3][1])
- rotatedv=[gx,gy,gz]
- return rotatedv
-
- # For writing well formed VRML code
- #------------------------------------------------------------------------
- def writeIndented(self, s, inc=0):
- if inc < 1:
- self.indentLevel = self.indentLevel + inc
-
- self.file.write( self.indentLevel*"\t" + s)
-
- if inc > 0:
- self.indentLevel = self.indentLevel + inc
-
- # Converts a Euler to three new Quaternions
- # Angles of Euler are passed in as radians
- #------------------------------------------------------------------------
- def eulerToQuaternions(self, x, y, z):
- Qx = [math.cos(x/2), math.sin(x/2), 0, 0]
- Qy = [math.cos(y/2), 0, math.sin(y/2), 0]
- Qz = [math.cos(z/2), 0, 0, math.sin(z/2)]
-
- quaternionVec=[Qx,Qy,Qz]
- return quaternionVec
-
- # Multiply two Quaternions together to get a new Quaternion
- #------------------------------------------------------------------------
- def multiplyQuaternions(self, Q1, Q2):
- result = [((Q1[0] * Q2[0]) - (Q1[1] * Q2[1]) - (Q1[2] * Q2[2]) - (Q1[3] * Q2[3])),
- ((Q1[0] * Q2[1]) + (Q1[1] * Q2[0]) + (Q1[2] * Q2[3]) - (Q1[3] * Q2[2])),
- ((Q1[0] * Q2[2]) + (Q1[2] * Q2[0]) + (Q1[3] * Q2[1]) - (Q1[1] * Q2[3])),
- ((Q1[0] * Q2[3]) + (Q1[3] * Q2[0]) + (Q1[1] * Q2[2]) - (Q1[2] * Q2[1]))]
-
- return result
-
- # Convert a Quaternion to an Angle Axis (ax, ay, az, angle)
- # angle is in radians
- #------------------------------------------------------------------------
- def quaternionToAngleAxis(self, Qf):
- scale = math.pow(Qf[1],2) + math.pow(Qf[2],2) + math.pow(Qf[3],2)
- ax = Qf[1]
- ay = Qf[2]
- az = Qf[3]
-
- if scale > .0001:
- ax/=scale
- ay/=scale
- az/=scale
-
- angle = 2 * math.acos(Qf[0])
-
- result = [ax, ay, az, angle]
- return result
+ def cleanup(self):
+ self.file.close()
+ self.texNames={}
+ self.matNames={}
+ self.indentLevel=0
+ print "Info: finished VRML97 export to %s\n" % self.filename
+
+ def cleanStr(self, name, prefix='rsvd_'):
+ """cleanStr(name,prefix) - try to create a valid VRML DEF name from object name"""
+
+ newName=name[:]
+ if len(newName) == 0:
+ self.nNodeID+=1
+ return "%s%d" % (prefix, self.nNodeID)
+
+ if newName in self.namesReserved:
+ newName='%s%s' % (prefix,newName)
+
+ if newName[0].isdigit():
+ newName='%s%s' % ('_',newName)
+
+ for bad in [' ','"','#',"'",',','.','[','\\',']','{','}']:
+ newName=newName.replace(bad,'_')
+ return newName
+
+ def countIFSSetsNeeded(self, mesh, imageMap, sided, vColors):
+ """
+ countIFFSetsNeeded() - should look at a blender mesh to determine
+ how many VRML IndexFaceSets or IndexLineSets are needed. A
+ new mesh created under the following conditions:
+
+ o - split by UV Textures / one per mesh
+ o - split by face, one sided and two sided
+ o - split by smooth and flat faces
+ o - split when faces only have 2 vertices * needs to be an IndexLineSet
+ """
+
+ imageNameMap={}
+ faceMap={}
+ nFaceIndx=0
+
+ for face in mesh.faces:
+ sidename='';
+ if (face.mode & NMesh.FaceModes.TWOSIDE) == NMesh.FaceModes.TWOSIDE:
+ sidename='two'
+ else:
+ sidename='one'
+
+ if not vColors.has_key('multi'):
+ for face in mesh.faces:
+ if face.col:
+ c=face.col[0]
+ if c.r != 255 and c.g != 255 and c.b !=255:
+ vColors['multi']=1
+
+ if sided.has_key(sidename):
+ sided[sidename]+=1
+ else:
+ sided[sidename]=1
+
+ if face.image:
+ faceName="%s_%s" % (face.image.name, sidename);
+
+ if imageMap.has_key(faceName):
+ imageMap[faceName].append(face)
+ else:
+ imageMap[faceName]=[face.image.name,sidename,face]
+
+ if self.verbose > 2:
+ for faceName in imageMap.keys():
+ ifs=imageMap[faceName]
+ print "Debug: faceName=%s image=%s, solid=%s facecnt=%d" % \
+ (faceName, ifs[0], ifs[1], len(ifs)-2)
+
+ return len(imageMap.keys())
+
+ def faceToString(self,face):
+
+ print "Debug: face.flag=0x%x (bitflags)" % face.flag
+ if face.flag & NMesh.FaceFlags.SELECT == NMesh.FaceFlags.SELECT:
+ print "Debug: face.flag.SELECT=true"
+
+ print "Debug: face.mode=0x%x (bitflags)" % face.mode
+ if (face.mode & NMesh.FaceModes.TWOSIDE) == NMesh.FaceModes.TWOSIDE:
+ print "Debug: face.mode twosided"
+
+ print "Debug: face.transp=0x%x (enum)" % face.transp
+ if face.transp == NMesh.FaceTranspModes.SOLID:
+ print "Debug: face.transp.SOLID"
+
+ if face.image:
+ print "Debug: face.image=%s" % face.image.name
+ print "Debug: face.materialIndex=%d" % face.materialIndex
+
+ def getVertexColorByIndx(self, mesh, indx):
+ for face in mesh.faces:
+ j=0
+ for vertex in face.v:
+ if vertex.index == indx:
+ c=face.col[j]
+ j=j+1
+ return c
+
+ def meshToString(self,mesh):
+ print "Debug: mesh.hasVertexUV=%d" % mesh.hasVertexUV()
+ print "Debug: mesh.hasFaceUV=%d" % mesh.hasFaceUV()
+ print "Debug: mesh.hasVertexColours=%d" % mesh.hasVertexColours()
+ print "Debug: mesh.verts=%d" % len(mesh.verts)
+ print "Debug: mesh.faces=%d" % len(mesh.faces)
+ print "Debug: mesh.materials=%d" % len(mesh.materials)
+
+ def rgbToFS(self, c):
+ s="%s %s %s" % (round(c.r/255.0,self.cp), round(c.g/255.0,self.cp), round(c.b/255.0,self.cp))
+ return s
+
+ def computeDirection(self, object):
+ x,y,z=(0,-1.0,0) # point down
+ ax,ay,az = (object.RotX,object.RotZ,object.RotY)
+
+ # rot X
+ x1=x
+ y1=y*math.cos(ax)-z*math.sin(ax)
+ z1=y*math.sin(ax)+z*math.cos(ax)
+
+ # rot Y
+ x2=x1*math.cos(ay)+z1*math.sin(ay)
+ y2=y1
+ z2=z1*math.cos(ay)-x1*math.sin(ay)
+
+ # rot Z
+ x3=x2*math.cos(az)-y2*math.sin(az)
+ y3=x2*math.sin(az)+y2*math.cos(az)
+ z3=z2
+
+ return [x3,y3,z3]
+
+
+ # swap Y and Z to handle axis difference between Blender and VRML
+ #------------------------------------------------------------------------
+ def rotatePointForVRML(self, v):
+ x = v[0]
+ y = v[2]
+ z = -v[1]
+
+ vrmlPoint=[x, y, z]
+ return vrmlPoint
+
+ def rotVertex(self, mm, v):
+ lx,ly,lz=v[0],v[1],v[2]
+ gx=(mm[0][0]*lx + mm[1][0]*ly + mm[2][0]*lz) + mm[3][0]
+ gy=((mm[0][2]*lx + mm[1][2]*ly+ mm[2][2]*lz) + mm[3][2])
+ gz=-((mm[0][1]*lx + mm[1][1]*ly + mm[2][1]*lz) + mm[3][1])
+ rotatedv=[gx,gy,gz]
+ return rotatedv
+
+ # For writing well formed VRML code
+ #------------------------------------------------------------------------
+ def writeIndented(self, s, inc=0):
+ if inc < 1:
+ self.indentLevel = self.indentLevel + inc
+
+ self.file.write( self.indentLevel*"\t" + s)
+
+ if inc > 0:
+ self.indentLevel = self.indentLevel + inc
+
+ # Converts a Euler to three new Quaternions
+ # Angles of Euler are passed in as radians
+ #------------------------------------------------------------------------
+ def eulerToQuaternions(self, x, y, z):
+ Qx = [math.cos(x/2), math.sin(x/2), 0, 0]
+ Qy = [math.cos(y/2), 0, math.sin(y/2), 0]
+ Qz = [math.cos(z/2), 0, 0, math.sin(z/2)]
+
+ quaternionVec=[Qx,Qy,Qz]
+ return quaternionVec
+
+ # Multiply two Quaternions together to get a new Quaternion
+ #------------------------------------------------------------------------
+ def multiplyQuaternions(self, Q1, Q2):
+ result = [((Q1[0] * Q2[0]) - (Q1[1] * Q2[1]) - (Q1[2] * Q2[2]) - (Q1[3] * Q2[3])),
+ ((Q1[0] * Q2[1]) + (Q1[1] * Q2[0]) + (Q1[2] * Q2[3]) - (Q1[3] * Q2[2])),
+ ((Q1[0] * Q2[2]) + (Q1[2] * Q2[0]) + (Q1[3] * Q2[1]) - (Q1[1] * Q2[3])),
+ ((Q1[0] * Q2[3]) + (Q1[3] * Q2[0]) + (Q1[1] * Q2[2]) - (Q1[2] * Q2[1]))]
+
+ return result
+
+ # Convert a Quaternion to an Angle Axis (ax, ay, az, angle)
+ # angle is in radians
+ #------------------------------------------------------------------------
+ def quaternionToAngleAxis(self, Qf):
+ scale = math.pow(Qf[1],2) + math.pow(Qf[2],2) + math.pow(Qf[3],2)
+ ax = Qf[1]
+ ay = Qf[2]
+ az = Qf[3]
+
+ if scale > .0001:
+ ax/=scale
+ ay/=scale
+ az/=scale
+
+ angle = 2 * math.acos(Qf[0])
+
+ result = [ax, ay, az, angle]
+ return result
##########################################################
# Callbacks, needed before Main
##########################################################
def select_file(filename):
- if pytinst == 1:
- if exists(filename) and _safeOverwrite:
- result = Draw.PupMenu("File Already Exists, Overwrite?%t|Yes%x1|No%x0")
- if(result != 1):
- return
+ if pytinst == 1:
+ if exists(filename) and _safeOverwrite:
+ result = \
+ Draw.PupMenu("File Already Exists, Overwrite?%t|Yes%x1|No%x0")
+ if(result != 1):
+ return
- if not filename.endswith(extension):
- filename += extension
+ if not filename.endswith(extension):
+ filename += extension
- wrlexport=VRML2Export(filename)
- wrlexport.export(scene, world, worldmat)
+ wrlexport=VRML2Export(filename)
+ wrlexport.export(scene, world, worldmat)
def createWRLPath():
- filename = Blender.Get('filename')
- print filename
-
- if filename.find('.') != -1:
- filename = filename.split('.')[0]
- filename += extension
- print filename
+ filename = Blender.Get('filename')
+ print filename
+
+ if filename.find('.') != -1:
+ filename = filename.split('.')[0]
+ filename += extension
+ print filename
- return filename
+ return filename
#########################################################
# main routine
#########################################################
try:
- ARG = __script__['arg'] # user selected argument
+ ARG = __script__['arg'] # user selected argument
except:
- print "older version"
+ print "older version"
if Blender.Get('version') < 235:
- print "Warning: VRML97 export failed, wrong blender version!"
- print " You aren't running blender version 2.35 or greater"
- print " download a newer version from http://blender3d.org/"
+ print "Warning: VRML97 export failed, wrong blender version!"
+ print " You aren't running blender version 2.35 or greater"
+ print " download a newer version from http://blender3d.org/"
else:
- if ARG == 'comp':
- extension=".wrz"
- from gzip import *
- else:
- extension=".wrl"
- Blender.Window.FileSelector(select_file,"Export VRML97",createWRLPath())
+ if ARG == 'comp':
+ extension=".wrz"
+ from gzip import *
+ else:
+ extension=".wrl"
+ Blender.Window.FileSelector(select_file,"Export VRML97",createWRLPath())