Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2009-07-28 09:51:38 +0400
committerCampbell Barton <ideasman42@gmail.com>2009-07-28 09:51:38 +0400
commit37b49492a8064e135770862a11374e7aa9683047 (patch)
tree5887f82434e01679e9d8078292b6cf8e5099b05f /release
parente52dbadcff81d5346619c5a4b6c87dd94c950d7a (diff)
simple povray render integration.
Supports... - camera/lamp/mesh object types - meshes with modifiers applied, normals/uv/vertex colors - materials, reflection, transparency - spot/area/point lamps, samples, raytrace options - scene render size, AA setting Details... - Doesn't need any 3rd party modules. - Runs povray from the subprocess module, updating the image from a TARGA. - Currently no UI panels or support for custom settings. This could be used as an example for other scripts.
Diffstat (limited to 'release')
-rw-r--r--release/io/engine_render_pov.py564
1 files changed, 564 insertions, 0 deletions
diff --git a/release/io/engine_render_pov.py b/release/io/engine_render_pov.py
new file mode 100644
index 00000000000..550f9889f6b
--- /dev/null
+++ b/release/io/engine_render_pov.py
@@ -0,0 +1,564 @@
+import bpy
+
+from math import atan, pi, degrees
+import subprocess
+import os
+import sys
+import time
+
+def write_pov(filename, scene=None, info_callback = None):
+ file = open(filename, 'w')
+
+ # Only for testing
+ if not scene:
+ scene = bpy.data.scenes[0]
+
+ render = scene.render_data
+ materialTable = {}
+
+ def saneName(name):
+ name = name.lower()
+ for ch in ' /\\+=-[]{}().,<>\'":;~!@#$%^&*|?':
+ name = name.replace(ch, '_')
+ return name
+
+ def writeMatrix(matrix):
+ file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\
+ (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]) )
+
+ def exportCamera():
+ camera = scene.camera
+ matrix = camera.matrix
+
+ # compute resolution
+ Qsize=float(render.resolution_x)/float(render.resolution_y)
+
+ file.write('camera {\n')
+ file.write('\tlocation <0, 0, 0>\n')
+ file.write('\tlook_at <0, 0, -1>\n')
+ file.write('\tright <%s, 0, 0>\n' % -Qsize)
+ file.write('\tup <0, 1, 0>\n')
+ file.write('\tangle %f \n' % (360.0*atan(16.0/camera.data.lens)/pi))
+
+ file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotationPart().toEuler()]))
+ file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
+ file.write('}\n')
+
+
+
+ def exportLamps(lamps):
+ # Get all lamps
+ for ob in lamps:
+ lamp = ob.data
+
+ matrix = ob.matrix
+
+ color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
+
+ file.write('light_source')
+ file.write('{\n')
+ file.write('\t< 0,0,0 >\n')
+ file.write('\tcolor red %.6f green %.6f blue %.6f\n' % color)
+
+ if lamp.type == 'POINT': # Point Lamp
+ pass
+ elif lamp.type == 'SPOT': # Spot
+ file.write('\tspotlight\n')
+
+ # Falloff is the main radius from the centre line
+ file.write('\tfalloff %.2f\n' % (lamp.spot_size/2.0) ) # 1 TO 179 FOR BOTH
+ file.write('\tradius %.6f\n' % ((lamp.spot_size/2.0) * (1-lamp.spot_blend)) )
+
+ # Blender does not have a tightness equivilent, 0 is most like blender default.
+ file.write('\ttightness 0\n') # 0:10f
+
+ file.write('\tpoint_at <0, 0, -1>\n')
+ elif lamp.type == 'AREA':
+
+ size_x = lamp.size
+ samples_x = lamp.shadow_ray_samples_x
+ if lamp.shape == 'SQUARE':
+ size_y = size_x
+ samples_y = samples_x
+ else:
+ size_y = lamp.size_y
+ samples_y = lamp.shadow_ray_samples_y
+
+
+
+ file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
+ if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
+ if lamp.jitter:
+ file.write('\tjitter\n')
+ else:
+ file.write('\tadaptive 1\n')
+ file.write('\tjitter\n')
+
+ if lamp.shadow_method == 'NOSHADOW':
+ file.write('\tshadowless\n')
+
+ file.write('\tfade_distance %.6f\n' % lamp.distance)
+ file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
+ writeMatrix(matrix)
+
+ file.write('}\n')
+
+ def exportMeshs(sel):
+ def bMat2PovString(material):
+ povstring = 'finish {'
+ if world != None:
+ povstring += 'ambient <%.6f, %.6f, %.6f> ' % tuple([c*material.ambient for c in world.ambient_color])
+
+ povstring += 'diffuse %.6f ' % material.diffuse_reflection
+ povstring += 'specular %.6f ' % material.specular_reflection
+
+
+ if material.raytrace_mirror.enabled:
+ #povstring += 'interior { ior %.6f } ' % material.IOR
+ raytrace_mirror= material.raytrace_mirror
+ if raytrace_mirror.reflect:
+ povstring += 'reflection {'
+ povstring += '<%.6f, %.6f, %.6f>' % tuple(material.mirror_color) # Should ask for ray mirror flag
+ povstring += 'fresnel 1 falloff %.6f exponent %.6f metallic %.6f} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_fac, raytrace_mirror.reflect)
+
+
+
+ if material.raytrace_transparency.enabled:
+ #povstring += 'interior { ior %.6f } ' % material.IOR
+ pass
+
+ #file.write('\t\troughness %.6f\n' % (material.hard*0.5))
+ #file.write('\t\t\tcrand 0.0\n') # Sand granyness
+ #file.write('\t\t\tmetallic %.6f\n' % material.spec)
+ #file.write('\t\t\tphong %.6f\n' % material.spec)
+ #file.write('\t\t\tphong_size %.6f\n' % material.spec)
+ povstring += 'brilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
+ povstring += '}'
+ #file.write('\t}\n')
+ return povstring
+
+
+ world = scene.world
+
+ # Convert all materials to strings we can access directly per vertex.
+ for material in bpy.data.materials:
+ materialTable[material.name] = bMat2PovString(material)
+
+
+ ob_num = 0
+
+ for ob in sel:
+ ob_num+= 1
+
+ if ob.type in ('LAMP', 'CAMERA', 'EMPTY'):
+ continue
+
+ me = ob.data
+ me_materials= me.materials
+
+ me = ob.create_render_mesh(scene)
+
+ if not me:
+ continue
+
+ if info_callback:
+ info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
+
+ #if ob.type!='MESH':
+ # continue
+ # me = ob.data
+
+ matrix = ob.matrix
+ try: uv_layer = me.active_uv_texture.data
+ except:uv_layer = None
+
+ try: vcol_layer = me.active_vertex_color.data
+ except:vcol_layer = None
+
+
+ def regular_face(f):
+ fv = f.verts
+ if fv[3]== 0:
+ return fv[0], fv[1], fv[2]
+ return fv[0], fv[1], fv[2], fv[3]
+
+ faces_verts = [regular_face(f) for f in me.faces]
+ faces_normals = [tuple(f.normal) for f in me.faces]
+ verts_normals = [tuple(v.normal) for v in me.verts]
+
+ # quads incur an extra face
+ quadCount = len([f for f in faces_verts if len(f)==4])
+
+ file.write('mesh2 {\n')
+ file.write('\tvertex_vectors {\n')
+ file.write('\t\t%s' % (len(me.verts))) # vert count
+ for v in me.verts:
+ file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
+ file.write('\n }\n')
+
+
+ # Build unique Normal list
+ uniqueNormals = {}
+ for fi, f in enumerate(me.faces):
+ fv = faces_verts[fi]
+ # [-1] is a dummy index, use a list so we can modify in place
+ if f.smooth: # Use vertex normals
+ for v in fv:
+ key = verts_normals[v]
+ uniqueNormals[key] = [-1]
+ else: # Use face normal
+ key = faces_normals[fi]
+ uniqueNormals[key] = [-1]
+
+ file.write('\tnormal_vectors {\n')
+ file.write('\t\t%d' % len(uniqueNormals)) # vert count
+ idx = 0
+ for no, index in uniqueNormals.items():
+ file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
+ index[0] = idx
+ idx +=1
+ file.write('\n }\n')
+
+
+ # Vertex colours
+ vertCols = {} # Use for material colours also.
+
+ if uv_layer:
+ # Generate unique UV's
+ uniqueUVs = {}
+
+ for fi, uv in enumerate(uv_layer):
+
+ if len(faces_verts[fi])==4:
+ uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
+ else:
+ uvs = uv.uv1, uv.uv2, uv.uv3
+
+ for uv in uvs:
+ uniqueUVs[tuple(uv)] = [-1]
+
+ file.write('\tuv_vectors {\n')
+ #print unique_uvs
+ file.write('\t\t%s' % (len(uniqueUVs))) # vert count
+ idx = 0
+ for uv, index in uniqueUVs.items():
+ file.write(',\n\t\t<%.6f, %.6f>' % uv)
+ index[0] = idx
+ idx +=1
+ '''
+ else:
+ # Just add 1 dummy vector, no real UV's
+ file.write('\t\t1') # vert count
+ file.write(',\n\t\t<0.0, 0.0>')
+ '''
+ file.write('\n }\n')
+
+
+ if me.vertex_colors:
+
+ for fi, f in enumerate(me.faces):
+ material_index = f.material_index
+ material = me_materials[material_index]
+
+ if material and material.vertex_color_paint:
+
+ col = vcol_layer[fi]
+
+ if len(faces_verts[fi])==4:
+ cols = col.color1, col.color2, col.color3, col.color4
+ else:
+ cols = col.color1, col.color2, col.color3
+
+ for col in cols:
+ key = col[0], col[1], col[2], material_index # Material index!
+ vertCols[key] = [-1]
+
+ else:
+ if material:
+ diffuse_color = tuple(material.diffuse_color)
+ key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
+ vertCols[key] = [-1]
+
+
+ else:
+ # No vertex colours, so write material colours as vertex colours
+ for i, material in enumerate(me_materials):
+
+ if material:
+ diffuse_color = tuple(material.diffuse_color)
+ key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
+ vertCols[key] = [-1]
+
+
+ # Vert Colours
+ file.write('\ttexture_list {\n')
+ file.write('\t\t%s' % (len(vertCols))) # vert count
+ idx=0
+ for col, index in vertCols.items():
+
+ if me_materials:
+ material = me_materials[col[3]]
+ materialString = materialTable[material.name]
+ else:
+ materialString = '' # Dont write anything
+
+ float_col = col[0], col[1], col[2], 1-material.alpha, materialString
+ #print material.apl
+ file.write(',\n\t\ttexture { pigment {rgbf<%.6f, %.6f, %.6f, %.6f>}%s}' % float_col)
+ index[0] = idx
+ idx+=1
+
+ file.write( '\n }\n' )
+
+ # Face indicies
+ file.write('\tface_indices {\n')
+ file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+ for fi, f in enumerate(me.faces):
+ fv = faces_verts[fi]
+ material_index= f.material_index
+ if len(fv) == 4: indicies = (0,1,2), (0,2,3)
+ else: indicies = ((0,1,2),)
+
+ if vcol_layer:
+ col = vcol_layer[fi]
+
+ if len(fv) == 4:
+ cols = col.color1, col.color2, col.color3, col.color4
+ else:
+ cols = col.color1, col.color2, col.color3
+
+
+ if not me_materials or me_materials[material_index] == None: # No materials
+ for i1, i2, i3 in indicies:
+ file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
+ else:
+ material = me_materials[material_index]
+ for i1, i2, i3 in indicies:
+ if me.vertex_colors and material.vertex_color_paint:
+ # Colour per vertex - vertex colour
+
+ col1 = cols[i1]
+ col2 = cols[i2]
+ col3 = cols[i3]
+
+ ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
+ ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
+ ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
+ else:
+ # Colour per material - flat material colour
+ diffuse_color= material.diffuse_color
+ ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
+
+ file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
+
+
+
+ file.write('\n }\n')
+
+ # normal_indices indicies
+ file.write('\tnormal_indices {\n')
+ file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+ for fi, f in enumerate(me.faces):
+ fv = faces_verts[fi]
+ if len(fv) == 4: indicies = (0,1,2), (0,2,3)
+ else: indicies = ((0,1,2),)
+
+ for i1, i2, i3 in indicies:
+ if f.smooth:
+ file.write(',\n\t\t<%d,%d,%d>' %\
+ (uniqueNormals[verts_normals[fv[i1]]][0],\
+ uniqueNormals[verts_normals[fv[i2]]][0],\
+ uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
+ else:
+ idx = uniqueNormals[faces_normals[fi]][0]
+ file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
+
+
+ file.write('\n }\n')
+
+
+ # normal_indices indicies
+
+ if uv_layer:
+ file.write('\tuv_indices {\n')
+ file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+ for f in me.faces:
+ fv = faces_verts[fi]
+
+ if len(fv) == 4: indicies = (0,1,2), (0,2,3)
+ else: indicies = ((0,1,2),)
+
+ uv = uv_layer[fi]
+ if len(faces_verts[fi])==4:
+ uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
+ else:
+ uvs = uv.uv1, uv.uv2, uv.uv3
+
+ for i1, i2, i3 in indicies:
+ file.write(',\n\t\t<%d,%d,%d>' %\
+ (uniqueUVs[tuple(uvs[i1][0:2])][0],\
+ uniqueUVs[tuple(uvs[i2][0:2])][0],\
+ uniqueUVs[tuple(uvs[i2][0:2])][0])) # vert count
+ file.write('\n }\n')
+
+ if me.materials:
+ material = me.materials[0] # dodgy
+ if material and material.raytrace_transparency.enabled:
+ file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
+
+ writeMatrix(matrix)
+ file.write('}\n')
+
+ bpy.data.remove_mesh(me)
+
+
+ exportCamera()
+ #exportMaterials()
+ sel = scene.objects
+ lamps = [l for l in sel if l.type == 'LAMP']
+ exportLamps(lamps)
+ exportMeshs(sel)
+
+ file.close()
+
+
+def write_pov_ini(filename_ini, filename_pov, filename_image):
+ scene = bpy.data.scenes[0]
+ render = scene.render_data
+
+ x= int(render.resolution_x*render.resolution_percentage*0.01)
+ y= int(render.resolution_y*render.resolution_percentage*0.01)
+
+ file = open(filename_ini, 'w')
+
+ file.write('Input_File_Name="%s"\n' % filename_pov)
+ file.write('Output_File_Name="%s"\n' % filename_image)
+
+ file.write('Width=%d\n' % x)
+ file.write('Height=%d\n' % y)
+
+ # Needed for border render.
+ '''
+ file.write('Start_Column=%d\n' % part.x)
+ file.write('End_Column=%d\n' % (part.x+part.w))
+
+ file.write('Start_Row=%d\n' % (part.y))
+ file.write('End_Row=%d\n' % (part.y+part.h))
+ '''
+
+ file.write('Display=0\n')
+ file.write('Pause_When_Done=0\n')
+ file.write('Output_File_Type=C\n') # TGA, best progressive loading
+ file.write('Output_Alpha=1\n')
+
+ if render.antialiasing:
+ aa_mapping = {'OVERSAMPLE_5':2, 'OVERSAMPLE_8':3, 'OVERSAMPLE_11':4, 'OVERSAMPLE_16':5} # method 1 assumed
+ file.write('Antialias=1\n')
+ file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
+ else:
+ file.write('Antialias=0\n')
+
+ file.close()
+
+
+class PovrayRenderEngine(bpy.types.RenderEngine):
+ __label__ = "Povray"
+ DELAY = 0.02
+ def _export(self, scene):
+ import tempfile
+
+ self.temp_file_in = tempfile.mktemp(suffix='.pov')
+ self.temp_file_out = tempfile.mktemp(suffix='.ppm')
+ self.temp_file_ini = tempfile.mktemp(suffix='.ini')
+
+ def info_callback(txt):
+ self.update_stats("", "POVRAY: " + txt)
+
+ write_pov(self.temp_file_in, scene, info_callback)
+
+ def _render(self):
+
+ try: os.remove(self.temp_file_out) # so as not to load the old file
+ except: pass
+
+ write_pov_ini(self.temp_file_ini, self.temp_file_in, self.temp_file_out)
+
+ print ("***-STARTING-***")
+ # This works too but means we have to wait until its done
+ # os.system('povray %s' % self.temp_file_ini)
+
+ self.process = subprocess.Popen(["povray", self.temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
+ print ("***-DONE-***")
+
+ def _cleanup(self):
+ for f in (self.temp_file_in, self.temp_file_ini, self.temp_file_out):
+ try: os.remove(f)
+ except: pass
+
+ self.update_stats("", "")
+
+ def render(self, scene):
+
+ self.update_stats("", "POVRAY: Exporting data from Blender")
+ self._export(scene)
+ self.update_stats("", "POVRAY: Parsing File")
+ self._render()
+
+ r = scene.render_data
+
+ # compute resolution
+ x= int(r.resolution_x*r.resolution_percentage*0.01)
+ y= int(r.resolution_y*r.resolution_percentage*0.01)
+
+
+
+ # Wait for the file to be created
+ while not os.path.exists(self.temp_file_out):
+ time.sleep(self.DELAY)
+
+ self.update_stats("", "POVRAY: Rendering")
+
+ prev_size = -1
+
+ def update_image():
+ result = self.begin_result(0, 0, x, y)
+ lay = result.layers[0]
+ # possible the image wont load early on.
+ try: lay.rect_from_file(self.temp_file_out, 0, 0)
+ except: pass
+ self.end_result(result)
+
+ # Update while povray renders
+ while True:
+
+ # test if povray exists
+ if self.process.poll() != None:
+ update_image();
+ break
+
+ # user exit
+ if self.test_break():
+ try: # It might not be running
+ self.process.terminate()
+ except:
+ pass
+
+ break
+
+ # Would be nice to redirect the output
+ # stdout_value, stderr_value = self.process.communicate() # locks
+
+
+ # check if the file updated
+ new_size = os.path.getsize(self.temp_file_out)
+
+ if new_size != prev_size:
+ update_image()
+ prev_size = new_size
+
+ time.sleep(self.DELAY)
+
+ self._cleanup()
+
+
+bpy.types.register(PovrayRenderEngine)