Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJanne Karhu <jhkarh@gmail.com>2009-07-21 03:52:53 +0400
committerJanne Karhu <jhkarh@gmail.com>2009-07-21 03:52:53 +0400
commitb4353a84439085ac7d4bb7da2daed983637a75cc (patch)
tree01e560f80b4c190cddae071c7ca41cd5840fe1ec /source/blender/blenkernel/intern/boids.c
parent01b787636b468a1d37a27bb7601de5b0dea9c4b0 (diff)
Initial code for boids v2
Too many new features to list! But here are the biggies: - Boids can move on air and/or land, or climb a goal object. - Proper interaction with collision objects. * Closest collision object in negative z direction is considered as ground. * Other collision objects are obstacles and boids collide with them. - Boid behavior rules are now added to a dynamic list. * Many new rules and many still not implemented. * Different rule evaluation modes (fuzzy, random, average). - Only particle systems defined by per system "boid relations" are considered for simulation of that system. * This is in addition to the boids own system of course. * Relations define other systems as "neutral", "friend" or "enemy". - All effectors now effect boid physics, not boid brains. * This allows forcing boids somewhere. * Exception to this is new "boid" effector, which defines boid predators (positive strength) and goals (negative strength). Known issue: - Boid health isn't yet stored in pointcache so simulations with "fight" rule are not be read from cache properly. - Object/Group visualization object's animation is not played in "particle time". This is definately the wanted behavior, but isn't possible with the current state of dupliobject code. Other new features: - Particle systems can now be named separately from particle settings. * Default name for particle settings is now "ParticleSettings" instead of "PSys" - Per particle system list of particle effector weights. * Enables different effection strengths for particles from different particle systems with without messing around with effector group setting. Other code changes: - KDTree now supports range search as it's needed for new boids. - "Keyed particle targets" renamed as general "particle targets", as they're needed for boids too. (this might break some files saved with new keyed particles) Bug fixes: - Object & group visualizations didn't work. - Interpolating pointcache didn't do rotation.
Diffstat (limited to 'source/blender/blenkernel/intern/boids.c')
-rw-r--r--source/blender/blenkernel/intern/boids.c1526
1 files changed, 1526 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/boids.c b/source/blender/blenkernel/intern/boids.c
new file mode 100644
index 00000000000..931ad0b3043
--- /dev/null
+++ b/source/blender/blenkernel/intern/boids.c
@@ -0,0 +1,1526 @@
+/* boids.c
+ *
+ *
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2009 by Janne Karhu.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include <string.h>
+#include <math.h>
+
+#include "MEM_guardedalloc.h"
+
+#include "DNA_particle_types.h"
+#include "DNA_modifier_types.h"
+#include "DNA_object_force.h"
+#include "DNA_object_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_boid_types.h"
+#include "DNA_listBase.h"
+
+#include "BLI_rand.h"
+#include "BLI_arithb.h"
+#include "BLI_blenlib.h"
+#include "BLI_kdtree.h"
+#include "BLI_kdopbvh.h"
+#include "BKE_effect.h"
+#include "BKE_boids.h"
+#include "BKE_particle.h"
+#include "BKE_utildefines.h"
+#include "BKE_modifier.h"
+
+#include "RNA_enum_types.h"
+
+typedef struct BoidValues {
+ float max_speed, max_acc;
+ float max_ave, min_speed;
+ float personal_space, jump_speed;
+} BoidValues;
+
+static int apply_boid_rule(BoidBrainData *bbd, BoidRule *rule, BoidValues *val, ParticleData *pa, float fuzziness);
+
+static int rule_none(BoidRule *rule, BoidBrainData *data, BoidValues *val, ParticleData *pa)
+{
+ return 0;
+}
+
+static int rule_goal_avoid(BoidRule *rule, BoidBrainData *bbd, BoidValues *val, ParticleData *pa)
+{
+ BoidRuleGoalAvoid *gabr = (BoidRuleGoalAvoid*) rule;
+ BoidSettings *boids = bbd->part->boids;
+ ParticleEffectorCache *ec;
+ Object *priority_ob = NULL;
+ float vec[3] = {0.0f, 0.0f, 0.0f}, loc[3] = {0.0f, 0.0f, 0.0f};
+ float mul = (rule->type == eBoidRuleType_Avoid ? 1.0 : -1.0);
+ float priority = 0.0f, len;
+ int ret = 0;
+
+ /* first find out goal/predator with highest priority */
+ /* if rule->ob specified use it */
+ if(gabr->ob && (rule->type != eBoidRuleType_Goal || gabr->ob != pa->stick_ob)) {
+ PartDeflect *pd = gabr->ob->pd;
+ float vec_to_part[3];
+
+ if(pd && pd->forcefield == PFIELD_BOID) {
+ effector_find_co(bbd->scene, pa->prev_state.co, NULL, gabr->ob, pd, loc, vec, NULL, NULL);
+
+ VecSubf(vec_to_part, pa->prev_state.co, loc);
+
+ priority = mul * pd->f_strength * effector_falloff(pd, vec, vec_to_part);
+ }
+ else
+ priority = 1.0;
+
+ priority = 1.0;
+ priority_ob = gabr->ob;
+ }
+ else for(ec=bbd->psys->effectors.first; ec; ec=ec->next) {
+ if(ec->type & PSYS_EC_EFFECTOR) {
+ Object *eob = ec->ob;
+ PartDeflect *pd = eob->pd;
+
+ /* skip current object */
+ if(rule->type == eBoidRuleType_Goal && eob == pa->stick_ob)
+ continue;
+
+ if(pd->forcefield == PFIELD_BOID && mul * pd->f_strength > 0.0f) {
+ float vec_to_part[3], temp;
+
+ effector_find_co(bbd->scene, pa->prev_state.co, NULL, eob, pd, loc, vec, NULL, NULL);
+
+ VecSubf(vec_to_part, pa->prev_state.co, loc);
+
+ temp = mul * pd->f_strength * effector_falloff(pd, vec, vec_to_part);
+
+ if(temp == 0.0f)
+ ; /* do nothing */
+ else if(temp > priority) {
+ priority = temp;
+ priority_ob = eob;
+ len = VecLength(vec_to_part);
+ }
+ /* choose closest object with same priority */
+ else if(temp == priority) {
+ float len2 = VecLength(vec_to_part);
+
+ if(len2 < len) {
+ priority_ob = eob;
+ len = len2;
+ }
+ }
+ }
+ }
+ }
+
+ /* then use that effector */
+ if(priority > (rule->type==eBoidRuleType_Avoid ? gabr->fear_factor : 0.0f)) { /* with avoid, factor is "fear factor" */
+ Object *eob = priority_ob;
+ PartDeflect *pd = eob->pd;
+ float vec_to_part[3];
+ float surface = 0.0f;
+ float nor[3];
+
+ if(gabr->options & BRULE_GOAL_AVOID_PREDICT) {
+ /* estimate future location of target */
+ surface = (float)effector_find_co(bbd->scene, pa->prev_state.co, NULL, eob, pd, loc, nor, vec, NULL);
+
+ VecSubf(vec_to_part, pa->prev_state.co, loc);
+ len = Normalize(vec_to_part);
+
+ VecMulf(vec, len / (val->max_speed * bbd->timestep));
+ VecAddf(loc, loc, vec);
+ VecSubf(vec_to_part, pa->prev_state.co, loc);
+ }
+ else {
+ surface = (float)effector_find_co(bbd->scene, pa->prev_state.co, NULL, eob, pd, loc, nor, NULL, NULL);
+
+ VecSubf(vec_to_part, pa->prev_state.co, loc);
+ len = VecLength(vec_to_part);
+ }
+
+ if(rule->type == eBoidRuleType_Goal && boids->options & BOID_ALLOW_CLIMB && surface!=0.0f) {
+ if(!bbd->goal_ob || bbd->goal_priority < priority) {
+ bbd->goal_ob = eob;
+ VECCOPY(bbd->goal_co, loc);
+ VECCOPY(bbd->goal_nor, nor);
+ }
+ }
+ else if(rule->type == eBoidRuleType_Avoid && pa->boid->mode == eBoidMode_Climbing &&
+ priority > 2.0f * gabr->fear_factor) {
+ /* detach from surface and try to fly away from danger */
+ VECCOPY(vec_to_part, pa->r_ve);
+ VecMulf(vec_to_part, -1.0f);
+ }
+
+ VECCOPY(bbd->wanted_co, vec_to_part);
+ VecMulf(bbd->wanted_co, mul);
+
+ bbd->wanted_speed = val->max_speed * priority;
+
+ /* with goals factor is approach velocity factor */
+ if(rule->type == eBoidRuleType_Goal && boids->landing_smoothness > 0.0f) {
+ float len2 = 2.0f*VecLength(pa->prev_state.vel);
+
+ surface *= pa->size * boids->height;
+
+ if(len2 > 0.0f && len - surface < len2) {
+ len2 = (len - surface)/len2;
+ bbd->wanted_speed *= pow(len2, boids->landing_smoothness);
+ }
+ }
+
+ ret = 1;
+ }
+
+ return ret;
+}
+
+static int rule_avoid_collision(BoidRule *rule, BoidBrainData *bbd, BoidValues *val, ParticleData *pa)
+{
+ BoidRuleAvoidCollision *acbr = (BoidRuleAvoidCollision*) rule;
+ KDTreeNearest *ptn = NULL;
+ ParticleEffectorCache *ec;
+ ParticleTarget *pt;
+ float vec[3] = {0.0f, 0.0f, 0.0f}, loc[3] = {0.0f, 0.0f, 0.0f};
+ float co1[3], vel1[3], co2[3], vel2[3];
+ float len, t, inp, t_min = 2.0f;
+ int n, neighbors = 0, nearest = 0;
+ int ret = 0;
+
+ //check deflector objects first
+ if(acbr->options & BRULE_ACOLL_WITH_DEFLECTORS) {
+ ParticleCollision col;
+ BVHTreeRayHit hit;
+ float radius = val->personal_space * pa->size, ray_dir[3];
+
+ VECCOPY(col.co1, pa->prev_state.co);
+ VecAddf(col.co2, pa->prev_state.co, pa->prev_state.vel);
+ VecSubf(ray_dir, col.co2, col.co1);
+ VecMulf(ray_dir, acbr->look_ahead);
+ col.t = 0.0f;
+ hit.index = -1;
+ hit.dist = col.ray_len = VecLength(ray_dir);
+
+ /* find out closest deflector object */
+ for(ec=bbd->psys->effectors.first; ec; ec=ec->next) {
+ if(ec->type & PSYS_EC_DEFLECT) {
+ Object *eob = ec->ob;
+
+ /* don't check with current ground object */
+ if(eob == pa->stick_ob)
+ continue;
+
+ col.md = ( CollisionModifierData * ) ( modifiers_findByType ( eob, eModifierType_Collision ) );
+ col.ob_t = eob;
+
+ if(col.md && col.md->bvhtree)
+ BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col);
+ }
+ }
+ /* then avoid that object */
+ if(hit.index>=0) {
+ /* TODO: not totally happy with this part */
+ t = hit.dist/col.ray_len;
+
+ VECCOPY(bbd->wanted_co, col.nor);
+
+ VecMulf(bbd->wanted_co, (1.0f - t) * val->personal_space * pa->size);
+
+ bbd->wanted_speed = sqrt(t) * VecLength(pa->prev_state.vel);
+
+ return 1;
+ }
+ }
+
+ //check boids in own system
+ if(acbr->options & BRULE_ACOLL_WITH_BOIDS)
+ {
+ neighbors = BLI_kdtree_range_search(bbd->psys->tree, acbr->look_ahead * VecLength(pa->prev_state.vel), pa->prev_state.co, pa->prev_state.ave, &ptn);
+ if(neighbors > 1) for(n=1; n<neighbors; n++) {
+ VECCOPY(co1, pa->prev_state.co);
+ VECCOPY(vel1, pa->prev_state.vel);
+ VECCOPY(co2, (bbd->psys->particles + ptn[n].index)->prev_state.co);
+ VECCOPY(vel2, (bbd->psys->particles + ptn[n].index)->prev_state.vel);
+
+ VecSubf(loc, co1, co2);
+
+ VecSubf(vec, vel1, vel2);
+
+ inp = Inpf(vec,vec);
+
+ /* velocities not parallel */
+ if(inp != 0.0f) {
+ t = -Inpf(loc, vec)/inp;
+ /* cpa is not too far in the future so investigate further */
+ if(t > 0.0f && t < t_min) {
+ VECADDFAC(co1, co1, vel1, t);
+ VECADDFAC(co2, co2, vel2, t);
+
+ VecSubf(vec, co2, co1);
+
+ len = Normalize(vec);
+
+ /* distance of cpa is close enough */
+ if(len < 2.0f * val->personal_space * pa->size) {
+ t_min = t;
+
+ VecMulf(vec, VecLength(vel1));
+ VecMulf(vec, (2.0f - t)/2.0f);
+ VecSubf(bbd->wanted_co, vel1, vec);
+ bbd->wanted_speed = VecLength(bbd->wanted_co);
+ ret = 1;
+ }
+ }
+ }
+ }
+ }
+ if(ptn){ MEM_freeN(ptn); ptn=NULL; }
+
+ /* check boids in other systems */
+ for(pt=bbd->psys->targets.first; pt; pt=pt->next) {
+ ParticleSystem *epsys = psys_get_target_system(bbd->ob, pt);
+
+ if(epsys) {
+ neighbors = BLI_kdtree_range_search(epsys->tree, acbr->look_ahead * VecLength(pa->prev_state.vel), pa->prev_state.co, pa->prev_state.ave, &ptn);
+ if(neighbors > 0) for(n=0; n<neighbors; n++) {
+ VECCOPY(co1, pa->prev_state.co);
+ VECCOPY(vel1, pa->prev_state.vel);
+ VECCOPY(co2, (epsys->particles + ptn[n].index)->prev_state.co);
+ VECCOPY(vel2, (epsys->particles + ptn[n].index)->prev_state.vel);
+
+ VecSubf(loc, co1, co2);
+
+ VecSubf(vec, vel1, vel2);
+
+ inp = Inpf(vec,vec);
+
+ /* velocities not parallel */
+ if(inp != 0.0f) {
+ t = -Inpf(loc, vec)/inp;
+ /* cpa is not too far in the future so investigate further */
+ if(t > 0.0f && t < t_min) {
+ VECADDFAC(co1, co1, vel1, t);
+ VECADDFAC(co2, co2, vel2, t);
+
+ VecSubf(vec, co2, co1);
+
+ len = Normalize(vec);
+
+ /* distance of cpa is close enough */
+ if(len < 2.0f * val->personal_space * pa->size) {
+ t_min = t;
+
+ VecMulf(vec, VecLength(vel1));
+ VecMulf(vec, (2.0f - t)/2.0f);
+ VecSubf(bbd->wanted_co, vel1, vec);
+ bbd->wanted_speed = VecLength(bbd->wanted_co);
+ ret = 1;
+ }
+ }
+ }
+ }
+
+ if(ptn){ MEM_freeN(ptn); ptn=NULL; }
+ }
+ }
+
+
+ if(ptn && nearest==0)
+ MEM_freeN(ptn);
+
+ return ret;
+}
+static int rule_separate(BoidRule *rule, BoidBrainData *bbd, BoidValues *val, ParticleData *pa)
+{
+ KDTreeNearest *ptn = NULL;
+ ParticleTarget *pt;
+ float len = 2.0f * val->personal_space * pa->size + 1.0f;
+ float vec[3] = {0.0f, 0.0f, 0.0f};
+ int neighbors = BLI_kdtree_range_search(bbd->psys->tree, 2.0f * val->personal_space * pa->size, pa->prev_state.co, NULL, &ptn);
+ int ret = 0;
+
+ if(neighbors > 1 && ptn[1].dist!=0.0f) {
+ VecSubf(vec, pa->prev_state.co, bbd->psys->particles[ptn[1].index].state.co);
+ VecMulf(vec, (2.0f * val->personal_space * pa->size - ptn[1].dist) / ptn[1].dist);
+ VecAddf(bbd->wanted_co, bbd->wanted_co, vec);
+ bbd->wanted_speed = val->max_speed;
+ len = ptn[1].dist;
+ ret = 1;
+ }
+ if(ptn){ MEM_freeN(ptn); ptn=NULL; }
+
+ /* check other boid systems */
+ for(pt=bbd->psys->targets.first; pt; pt=pt->next) {
+ ParticleSystem *epsys = psys_get_target_system(bbd->ob, pt);
+
+ if(epsys) {
+ neighbors = BLI_kdtree_range_search(epsys->tree, 2.0f * val->personal_space * pa->size, pa->prev_state.co, NULL, &ptn);
+
+ if(neighbors > 0 && ptn[0].dist < len) {
+ VecSubf(vec, pa->prev_state.co, ptn[0].co);
+ VecMulf(vec, (2.0f * val->personal_space * pa->size - ptn[0].dist) / ptn[1].dist);
+ VecAddf(bbd->wanted_co, bbd->wanted_co, vec);
+ bbd->wanted_speed = val->max_speed;
+ len = ptn[0].dist;
+ ret = 1;
+ }
+
+ if(ptn){ MEM_freeN(ptn); ptn=NULL; }
+ }
+ }
+ return ret;
+}
+static int rule_flock(BoidRule *rule, BoidBrainData *bbd, BoidValues *val, ParticleData *pa)
+{
+ KDTreeNearest ptn[11];
+ float vec[3] = {0.0f, 0.0f, 0.0f}, loc[3] = {0.0f, 0.0f, 0.0f};
+ int neighbors = BLI_kdtree_find_n_nearest(bbd->psys->tree, 11, pa->state.co, pa->prev_state.ave, ptn);
+ int n, nearest = 1;
+ int ret = 0;
+
+ if(neighbors > 1) {
+ for(n=1; n<neighbors; n++) {
+ VecAddf(loc, loc, bbd->psys->particles[ptn[n].index].prev_state.co);
+ VecAddf(vec, vec, bbd->psys->particles[ptn[n].index].prev_state.vel);
+ }
+
+ VecMulf(loc, 1.0f/((float)neighbors - 1.0f));
+ VecMulf(vec, 1.0f/((float)neighbors - 1.0f));
+
+ VecSubf(loc, loc, pa->prev_state.co);
+ VecSubf(vec, vec, pa->prev_state.vel);
+
+ VecAddf(bbd->wanted_co, bbd->wanted_co, vec);
+ VecAddf(bbd->wanted_co, bbd->wanted_co, loc);
+ bbd->wanted_speed = VecLength(bbd->wanted_co);
+
+ ret = 1;
+ }
+ return ret;
+}
+static int rule_follow_leader(BoidRule *rule, BoidBrainData *bbd, BoidValues *val, ParticleData *pa)
+{
+ BoidRuleFollowLeader *flbr = (BoidRuleFollowLeader*) rule;
+ float vec[3] = {0.0f, 0.0f, 0.0f}, loc[3] = {0.0f, 0.0f, 0.0f};
+ float mul, len;
+ int n = (flbr->queue_size <= 1) ? bbd->psys->totpart : flbr->queue_size;
+ int i, ret = 0, p = pa - bbd->psys->particles;
+
+ if(flbr->ob) {
+ float vec2[3], t;
+
+ /* first check we're not blocking the leader*/
+ VecSubf(vec, flbr->loc, flbr->oloc);
+ VecMulf(vec, 1.0f/bbd->timestep);
+
+ VecSubf(loc, pa->prev_state.co, flbr->oloc);
+
+ mul = Inpf(vec, vec);
+
+ /* leader is not moving */
+ if(mul < 0.01) {
+ len = VecLength(loc);
+ /* too close to leader */
+ if(len < 2.0f * val->personal_space * pa->size) {
+ VECCOPY(bbd->wanted_co, loc);
+ bbd->wanted_speed = val->max_speed;
+ return 1;
+ }
+ }
+ else {
+ t = Inpf(loc, vec)/mul;
+
+ /* possible blocking of leader in near future */
+ if(t > 0.0f && t < 3.0f) {
+ VECCOPY(vec2, vec);
+ VecMulf(vec2, t);
+
+ VecSubf(vec2, loc, vec2);
+
+ len = VecLength(vec2);
+
+ if(len < 2.0f * val->personal_space * pa->size) {
+ VECCOPY(bbd->wanted_co, vec2);
+ bbd->wanted_speed = val->max_speed * (3.0f - t)/3.0f;
+ return 1;
+ }
+ }
+ }
+
+ /* not blocking so try to follow leader */
+ if(p && flbr->options & BRULE_LEADER_IN_LINE) {
+ VECCOPY(vec, bbd->psys->particles[p-1].prev_state.vel);
+ VECCOPY(loc, bbd->psys->particles[p-1].prev_state.co);
+ }
+ else {
+ VECCOPY(loc, flbr->oloc);
+ VecSubf(vec, flbr->loc, flbr->oloc);
+ VecMulf(vec, 1.0/bbd->timestep);
+ }
+
+ /* fac is seconds behind leader */
+ VECADDFAC(loc, loc, vec, -flbr->distance);
+
+ VecSubf(bbd->wanted_co, loc, pa->prev_state.co);
+ bbd->wanted_speed = VecLength(bbd->wanted_co);
+
+ ret = 1;
+ }
+ else if(p % n) {
+ float vec2[3], t, t_min = 3.0f;
+
+ /* first check we're not blocking any leaders */
+ for(i = 0; i< bbd->psys->totpart; i+=n){
+ VECCOPY(vec, bbd->psys->particles[i].prev_state.vel);
+
+ VecSubf(loc, pa->prev_state.co, bbd->psys->particles[i].prev_state.co);
+
+ mul = Inpf(vec, vec);
+
+ /* leader is not moving */
+ if(mul < 0.01) {
+ len = VecLength(loc);
+ /* too close to leader */
+ if(len < 2.0f * val->personal_space * pa->size) {
+ VECCOPY(bbd->wanted_co, loc);
+ bbd->wanted_speed = val->max_speed;
+ return 1;
+ }
+ }
+ else {
+ t = Inpf(loc, vec)/mul;
+
+ /* possible blocking of leader in near future */
+ if(t > 0.0f && t < t_min) {
+ VECCOPY(vec2, vec);
+ VecMulf(vec2, t);
+
+ VecSubf(vec2, loc, vec2);
+
+ len = VecLength(vec2);
+
+ if(len < 2.0f * val->personal_space * pa->size) {
+ t_min = t;
+ VECCOPY(bbd->wanted_co, loc);
+ bbd->wanted_speed = val->max_speed * (3.0f - t)/3.0f;
+ ret = 1;
+ }
+ }
+ }
+ }
+
+ if(ret) return 1;
+
+ /* not blocking so try to follow leader */
+ if(flbr->options & BRULE_LEADER_IN_LINE) {
+ VECCOPY(vec, bbd->psys->particles[p-1].prev_state.vel);
+ VECCOPY(loc, bbd->psys->particles[p-1].prev_state.co);
+ }
+ else {
+ VECCOPY(vec, bbd->psys->particles[p - p%n].prev_state.vel);
+ VECCOPY(loc, bbd->psys->particles[p - p%n].prev_state.co);
+ }
+
+ /* fac is seconds behind leader */
+ VECADDFAC(loc, loc, vec, -flbr->distance);
+
+ VecSubf(bbd->wanted_co, loc, pa->prev_state.co);
+ bbd->wanted_speed = VecLength(bbd->wanted_co);
+
+ ret = 1;
+ }
+
+ return ret;
+}
+static int rule_average_speed(BoidRule *rule, BoidBrainData *bbd, BoidValues *val, ParticleData *pa)
+{
+ BoidRuleAverageSpeed *asbr = (BoidRuleAverageSpeed*)rule;
+ float vec[3] = {0.0f, 0.0f, 0.0f};
+
+ if(asbr->wander > 0.0f) {
+ /* abuse pa->r_ave for wandering */
+ pa->r_ave[0] += asbr->wander * (-1.0f + 2.0f * BLI_frand());
+ pa->r_ave[1] += asbr->wander * (-1.0f + 2.0f * BLI_frand());
+ pa->r_ave[2] += asbr->wander * (-1.0f + 2.0f * BLI_frand());
+
+ Normalize(pa->r_ave);
+
+ VECCOPY(vec, pa->r_ave);
+
+ QuatMulVecf(pa->prev_state.rot, vec);
+
+ VECCOPY(bbd->wanted_co, pa->prev_state.ave);
+
+ VecMulf(bbd->wanted_co, 1.1f);
+
+ VecAddf(bbd->wanted_co, bbd->wanted_co, vec);
+
+ /* leveling */
+ if(asbr->level > 0.0f) {
+ Projf(vec, bbd->wanted_co, bbd->psys->part->acc);
+ VecMulf(vec, asbr->level);
+ VecSubf(bbd->wanted_co, bbd->wanted_co, vec);
+ }
+ }
+ else {
+ VECCOPY(bbd->wanted_co, pa->prev_state.ave);
+
+ /* may happen at birth */
+ if(Inp2f(bbd->wanted_co,bbd->wanted_co)==0.0f) {
+ bbd->wanted_co[0] = 2.0f*(0.5f - BLI_frand());
+ bbd->wanted_co[1] = 2.0f*(0.5f - BLI_frand());
+ bbd->wanted_co[2] = 2.0f*(0.5f - BLI_frand());
+ }
+
+ /* leveling */
+ if(asbr->level > 0.0f) {
+ Projf(vec, bbd->wanted_co, bbd->psys->part->acc);
+ VecMulf(vec, asbr->level);
+ VecSubf(bbd->wanted_co, bbd->wanted_co, vec);
+ }
+
+ }
+ bbd->wanted_speed = asbr->speed * val->max_speed;
+
+ return 1;
+}
+static int rule_fight(BoidRule *rule, BoidBrainData *bbd, BoidValues *val, ParticleData *pa)
+{
+ BoidRuleFight *fbr = (BoidRuleFight*)rule;
+ KDTreeNearest *ptn = NULL;
+ ParticleTarget *pt;
+ ParticleData *epars;
+ ParticleData *enemy_pa;
+ /* friends & enemies */
+ float closest_enemy[3] = {0.0f,0.0f,0.0f};
+ float closest_dist = fbr->distance + 1.0f;
+ float f_strength = 0.0f, e_strength = 0.0f;
+ float health = 0.0f;
+ int n, ret = 0;
+
+ /* calculate own group strength */
+ int neighbors = BLI_kdtree_range_search(bbd->psys->tree, fbr->distance, pa->prev_state.co, NULL, &ptn);
+ for(n=0; n<neighbors; n++)
+ health += bbd->psys->particles[ptn[n].index].boid->health;
+
+ f_strength += bbd->part->boids->strength * health;
+
+ if(ptn){ MEM_freeN(ptn); ptn=NULL; }
+
+ /* add other friendlies and calculate enemy strength and find closest enemy */
+ for(pt=bbd->psys->targets.first; pt; pt=pt->next) {
+ ParticleSystem *epsys = psys_get_target_system(bbd->ob, pt);
+ if(epsys) {
+ epars = epsys->particles;
+
+ neighbors = BLI_kdtree_range_search(epsys->tree, fbr->distance, pa->prev_state.co, NULL, &ptn);
+
+ health = 0.0f;
+
+ for(n=0; n<neighbors; n++) {
+ health += epars[ptn[n].index].boid->health;
+
+ if(n==0 && pt->mode==PTARGET_MODE_ENEMY && ptn[n].dist < closest_dist) {
+ VECCOPY(closest_enemy, ptn[n].co);
+ closest_dist = ptn[n].dist;
+ enemy_pa = epars + ptn[n].index;
+ }
+ }
+ if(pt->mode==PTARGET_MODE_ENEMY)
+ e_strength += epsys->part->boids->strength * health;
+ else if(pt->mode==PTARGET_MODE_FRIEND)
+ f_strength += epsys->part->boids->strength * health;
+
+ if(ptn){ MEM_freeN(ptn); ptn=NULL; }
+ }
+ }
+ /* decide action if enemy presence found */
+ if(e_strength > 0.0f) {
+ VecSubf(bbd->wanted_co, closest_enemy, pa->prev_state.co);
+
+ /* attack if in range */
+ if(closest_dist <= bbd->part->boids->range + pa->size + enemy_pa->size) {
+ float damage = BLI_frand();
+ float enemy_dir[3] = {bbd->wanted_co[0],bbd->wanted_co[1],bbd->wanted_co[2]};
+
+ Normalize(enemy_dir);
+
+ /* fight mode */
+ bbd->wanted_speed = 0.0f;
+
+ /* must face enemy to fight */
+ if(Inpf(pa->prev_state.ave, enemy_dir)>0.5f) {
+ enemy_pa->boid->health -= bbd->part->boids->strength * bbd->timestep * ((1.0f-bbd->part->boids->accuracy)*damage + bbd->part->boids->accuracy);
+ }
+ }
+ else {
+ /* approach mode */
+ bbd->wanted_speed = val->max_speed;
+ }
+
+ /* check if boid doesn't want to fight */
+ if(pa->boid->health/bbd->part->boids->health * bbd->part->boids->aggression < e_strength / f_strength) {
+ /* decide to flee */
+ if(closest_dist < fbr->flee_distance * fbr->distance) {
+ VecMulf(bbd->wanted_co, -1.0f);
+ bbd->wanted_speed = val->max_speed;
+ }
+ else { /* wait for better odds */
+ bbd->wanted_speed = 0.0f;
+ }
+ }
+
+ ret = 1;
+ }
+
+ return ret;
+}
+
+typedef int (*boid_rule_cb)(BoidRule *rule, BoidBrainData *data, BoidValues *val, ParticleData *pa);
+
+static boid_rule_cb boid_rules[] = {
+ rule_none,
+ rule_goal_avoid,
+ rule_goal_avoid,
+ rule_avoid_collision,
+ rule_separate,
+ rule_flock,
+ rule_follow_leader,
+ rule_average_speed,
+ rule_fight,
+ //rule_help,
+ //rule_protect,
+ //rule_hide,
+ //rule_follow_path,
+ //rule_follow_wall
+};
+
+static void set_boid_values(BoidValues *val, BoidSettings *boids, ParticleData *pa)
+{
+ if(ELEM(pa->boid->mode, eBoidMode_OnLand, eBoidMode_Climbing)) {
+ val->max_speed = boids->land_max_speed * pa->boid->health/boids->health;
+ val->max_acc = boids->land_max_acc * val->max_speed;
+ val->max_ave = boids->land_max_ave * M_PI * pa->boid->health/boids->health;
+ val->min_speed = 0.0f; /* no minimum speed on land */
+ val->personal_space = boids->land_personal_space;
+ val->jump_speed = boids->land_jump_speed * pa->boid->health/boids->health;
+ }
+ else {
+ val->max_speed = boids->air_max_speed * pa->boid->health/boids->health;
+ val->max_acc = boids->air_max_acc * val->max_speed;
+ val->max_ave = boids->air_max_ave * M_PI * pa->boid->health/boids->health;
+ val->min_speed = boids->air_min_speed * boids->air_max_speed;
+ val->personal_space = boids->air_personal_space;
+ val->jump_speed = 0.0f; /* no jumping in air */
+ }
+}
+static Object *boid_find_ground(BoidBrainData *bbd, ParticleData *pa, float *ground_co, float *ground_nor)
+{
+ if(pa->boid->mode == eBoidMode_Climbing) {
+ SurfaceModifierData *surmd = NULL;
+ float x[3], v[3];
+
+ surmd = (SurfaceModifierData *)modifiers_findByType ( pa->stick_ob, eModifierType_Surface );
+
+ /* take surface velocity into account */
+ effector_find_co(bbd->scene, pa->state.co, surmd, NULL, NULL, x, NULL, v, NULL);
+ VecAddf(x, x, v);
+
+ /* get actual position on surface */
+ effector_find_co(bbd->scene, x, surmd, NULL, NULL, ground_co, ground_nor, NULL, NULL);
+
+ return pa->stick_ob;
+ }
+ else {
+ float zvec[3] = {0.0f, 0.0f, 2000.0f};
+ ParticleCollision col;
+ BVHTreeRayHit hit;
+ ParticleEffectorCache *ec;
+ float radius = 0.0f, t, ray_dir[3];
+
+ VECCOPY(col.co1, pa->state.co);
+ VECCOPY(col.co2, pa->state.co);
+ VecAddf(col.co1, col.co1, zvec);
+ VecSubf(col.co2, col.co2, zvec);
+ VecSubf(ray_dir, col.co2, col.co1);
+ col.t = 0.0f;
+ hit.index = -1;
+ hit.dist = col.ray_len = VecLength(ray_dir);
+
+ /* find out upmost deflector object */
+ for(ec=bbd->psys->effectors.first; ec; ec=ec->next) {
+ if(ec->type & PSYS_EC_DEFLECT) {
+ Object *eob = ec->ob;
+
+ col.md = ( CollisionModifierData * ) ( modifiers_findByType ( eob, eModifierType_Collision ) );
+ col.ob_t = eob;
+
+ if(col.md && col.md->bvhtree)
+ BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col);
+ }
+ }
+ /* then use that object */
+ if(hit.index>=0) {
+ t = hit.dist/col.ray_len;
+ VecLerpf(ground_co, col.co1, col.co2, t);
+ VECCOPY(ground_nor, col.nor);
+ Normalize(ground_nor);
+ return col.ob;
+ }
+ else {
+ /* default to z=0 */
+ VECCOPY(ground_co, pa->state.co);
+ ground_co[2] = 0;
+ ground_nor[0] = ground_nor[1] = 0.0f;
+ ground_nor[2] = 1.0f;
+ return NULL;
+ }
+ }
+}
+static int boid_rule_applies(ParticleData *pa, BoidSettings *boids, BoidRule *rule)
+{
+ if(rule==NULL)
+ return 0;
+
+ if(ELEM(pa->boid->mode, eBoidMode_OnLand, eBoidMode_Climbing) && rule->flag & BOIDRULE_ON_LAND)
+ return 1;
+
+ if(pa->boid->mode==eBoidMode_InAir && rule->flag & BOIDRULE_IN_AIR)
+ return 1;
+
+ return 0;
+}
+void boids_precalc_rules(ParticleSettings *part, float cfra)
+{
+ BoidState *state = part->boids->states.first;
+ BoidRule *rule;
+ for(; state; state=state->next) {
+ for(rule = state->rules.first; rule; rule=rule->next) {
+ if(rule->type==eBoidRuleType_FollowLeader) {
+ BoidRuleFollowLeader *flbr = (BoidRuleFollowLeader*) rule;
+
+ if(flbr->ob && flbr->cfra != cfra) {
+ /* save object locations for velocity calculations */
+ VECCOPY(flbr->oloc, flbr->loc);
+ VECCOPY(flbr->loc, flbr->ob->obmat[3]);
+ flbr->cfra = cfra;
+ }
+ }
+ }
+ }
+}
+static void boid_climb(BoidSettings *boids, ParticleData *pa, float *surface_co, float *surface_nor)
+{
+ float nor[3], vel[3];
+ VECCOPY(nor, surface_nor);
+
+ /* gather apparent gravity to r_ve */
+ VECADDFAC(pa->r_ve, pa->r_ve, surface_nor, -1.0);
+ Normalize(pa->r_ve);
+
+ /* raise boid it's size from surface */
+ VecMulf(nor, pa->size * boids->height);
+ VecAddf(pa->state.co, surface_co, nor);
+
+ /* remove normal component from velocity */
+ Projf(vel, pa->state.vel, surface_nor);
+ VecSubf(pa->state.vel, pa->state.vel, vel);
+}
+static float boid_goal_signed_dist(float *boid_co, float *goal_co, float *goal_nor)
+{
+ float vec[3];
+
+ VecSubf(vec, boid_co, goal_co);
+
+ return Inpf(vec, goal_nor);
+}
+/* wanted_co is relative to boid location */
+static int apply_boid_rule(BoidBrainData *bbd, BoidRule *rule, BoidValues *val, ParticleData *pa, float fuzziness)
+{
+ if(rule==NULL)
+ return 0;
+
+ if(boid_rule_applies(pa, bbd->part->boids, rule)==0)
+ return 0;
+
+ if(boid_rules[rule->type](rule, bbd, val, pa)==0)
+ return 0;
+
+ if(fuzziness < 0.0f || VecLenCompare(bbd->wanted_co, pa->prev_state.vel, fuzziness * VecLength(pa->prev_state.vel))==0)
+ return 1;
+ else
+ return 0;
+}
+static BoidState *get_boid_state(BoidSettings *boids, ParticleData *pa) {
+ BoidState *state = boids->states.first;
+
+ for(; state; state=state->next) {
+ if(state->id==pa->boid->state_id)
+ return state;
+ }
+
+ /* for some reason particle isn't at a valid state */
+ state = boids->states.first;
+ if(state)
+ pa->boid->state_id = state->id;
+
+ return state;
+}
+//static int boid_condition_is_true(BoidCondition *cond) {
+// /* TODO */
+// return 0;
+//}
+
+/* determines the velocity the boid wants to have */
+void boid_brain(BoidBrainData *bbd, int p, ParticleData *pa)
+{
+ ParticleData *pars=bbd->psys->particles;
+ ParticleEffectorCache *ec=0;
+ BoidRule *rule;
+ BoidSettings *boids = bbd->part->boids;
+ BoidValues val;
+ BoidState *state = get_boid_state(boids, pa);
+ //BoidCondition *cond;
+
+ if(pa->boid->health <= 0.0f) {
+ pa->alive = PARS_DYING;
+ return;
+ }
+
+ //planned for near future
+ //cond = state->conditions.first;
+ //for(; cond; cond=cond->next) {
+ // if(boid_condition_is_true(cond)) {
+ // pa->boid->state_id = cond->state_id;
+ // state = get_boid_state(boids, pa);
+ // break; /* only first true condition is used */
+ // }
+ //}
+
+ bbd->wanted_co[0]=bbd->wanted_co[1]=bbd->wanted_co[2]=bbd->wanted_speed=0.0f;
+
+ /* create random seed for every particle & frame */
+ BLI_srandom(bbd->psys->seed + p + (int)bbd->cfra + (int)(1000*pa->r_rot[0]));
+
+ set_boid_values(&val, bbd->part->boids, pa);
+
+ /* go through rules */
+ switch(state->ruleset_type) {
+ case eBoidRulesetType_Fuzzy:
+ {
+ for(rule = state->rules.first; rule; rule = rule->next) {
+ if(apply_boid_rule(bbd, rule, &val, pa, state->rule_fuzziness))
+ break; /* only first nonzero rule that comes through fuzzy rule is applied */
+ }
+ break;
+ }
+ case eBoidRulesetType_Random:
+ {
+ /* use random rule for each particle (allways same for same particle though) */
+ rule = BLI_findlink(&state->rules, (int)(1000.0f * pa->r_rot[1]) % BLI_countlist(&state->rules));
+
+ apply_boid_rule(bbd, rule, &val, pa, -1.0);
+ }
+ case eBoidRulesetType_Average:
+ {
+ float wanted_co[3] = {0.0f, 0.0f, 0.0f}, wanted_speed = 0.0f;
+ int n = 0;
+ for(rule = state->rules.first; rule; rule=rule->next) {
+ if(apply_boid_rule(bbd, rule, &val, pa, -1.0f)) {
+ VecAddf(wanted_co, wanted_co, bbd->wanted_co);
+ wanted_speed += bbd->wanted_speed;
+ n++;
+ bbd->wanted_co[0]=bbd->wanted_co[1]=bbd->wanted_co[2]=bbd->wanted_speed=0.0f;
+ }
+ }
+
+ if(n > 1) {
+ VecMulf(wanted_co, 1.0f/(float)n);
+ wanted_speed /= (float)n;
+ }
+
+ VECCOPY(bbd->wanted_co, wanted_co);
+ bbd->wanted_speed = wanted_speed;
+ break;
+ }
+
+ }
+
+ /* decide on jumping & liftoff */
+ if(pa->boid->mode == eBoidMode_OnLand) {
+ /* fuzziness makes boids capable of misjudgement */
+ float mul = 1.0 + state->rule_fuzziness;
+
+ if(boids->options & BOID_ALLOW_FLIGHT && bbd->wanted_co[2] > 0.0f) {
+ float cvel[3], dir[3];
+
+ VECCOPY(dir, pa->prev_state.ave);
+ Normalize2(dir);
+
+ VECCOPY(cvel, bbd->wanted_co);
+ Normalize2(cvel);
+
+ if(Inp2f(cvel, dir) > 0.95 / mul)
+ pa->boid->mode = eBoidMode_Liftoff;
+ }
+ else if(val.jump_speed > 0.0f) {
+ float jump_v[3];
+ int jump = 0;
+
+ /* jump to get to a location */
+ if(bbd->wanted_co[2] > 0.0f) {
+ float cvel[3], dir[3];
+ float z_v, ground_v, cur_v;
+ float len;
+
+ VECCOPY(dir, pa->prev_state.ave);
+ Normalize2(dir);
+
+ VECCOPY(cvel, bbd->wanted_co);
+ Normalize2(cvel);
+
+ len = Vec2Length(pa->prev_state.vel);
+
+ /* first of all, are we going in a suitable direction? */
+ /* or at a suitably slow speed */
+ if(Inp2f(cvel, dir) > 0.95f / mul || len <= state->rule_fuzziness) {
+ /* try to reach goal at highest point of the parabolic path */
+ cur_v = Vec2Length(pa->prev_state.vel);
+ z_v = sasqrt(-2.0f * bbd->part->acc[2] * bbd->wanted_co[2]);
+ ground_v = Vec2Length(bbd->wanted_co)*sasqrt(-0.5f * bbd->part->acc[2] / bbd->wanted_co[2]);
+
+ len = sasqrt((ground_v-cur_v)*(ground_v-cur_v) + z_v*z_v);
+
+ if(len < val.jump_speed * mul || bbd->part->boids->options & BOID_ALLOW_FLIGHT) {
+ jump = 1;
+
+ len = MIN2(len, val.jump_speed);
+
+ VECCOPY(jump_v, dir);
+ jump_v[2] = z_v;
+ VecMulf(jump_v, ground_v);
+
+ Normalize(jump_v);
+ VecMulf(jump_v, len);
+ Vec2Addf(jump_v, jump_v, pa->prev_state.vel);
+ }
+ }
+ }
+
+ /* jump to go faster */
+ if(jump == 0 && val.jump_speed > val.max_speed && bbd->wanted_speed > val.max_speed) {
+
+ }
+
+ if(jump) {
+ VECCOPY(pa->prev_state.vel, jump_v);
+ pa->boid->mode = eBoidMode_Falling;
+ }
+ }
+ }
+}
+/* tries to realize the wanted velocity taking all constraints into account */
+void boid_body(BoidBrainData *bbd, ParticleData *pa)
+{
+ BoidSettings *boids = bbd->part->boids;
+ BoidValues val;
+ float acc[3] = {0.0f, 0.0f, 0.0f}, tan_acc[3], nor_acc[3];
+ float dvec[3], bvec[3];
+ float new_dir[3], new_speed;
+ float old_dir[3], old_speed;
+ float wanted_dir[3];
+ float q[4], mat[3][3]; /* rotation */
+ float ground_co[3] = {0.0f, 0.0f, 0.0f}, ground_nor[3] = {0.0f, 0.0f, 1.0f};
+ float force[3] = {0.0f, 0.0f, 0.0f}, tvel[3] = {0.0f, 0.0f, 1.0f};
+ float pa_mass=bbd->part->mass, dtime=bbd->dfra*bbd->timestep;
+ int p = pa - bbd->psys->particles;
+
+ set_boid_values(&val, boids, pa);
+
+ /* make sure there's something in new velocity, location & rotation */
+ copy_particle_key(&pa->state,&pa->prev_state,0);
+
+ if(bbd->part->flag & PART_SIZEMASS)
+ pa_mass*=pa->size;
+
+ /* if boids can't fly they fall to the ground */
+ if((boids->options & BOID_ALLOW_FLIGHT)==0 && ELEM(pa->boid->mode, eBoidMode_OnLand, eBoidMode_Climbing)==0 && bbd->part->acc[2] != 0.0f)
+ pa->boid->mode = eBoidMode_Falling;
+
+ if(pa->boid->mode == eBoidMode_Falling) {
+ /* Falling boids are only effected by gravity. */
+ acc[2] = bbd->part->acc[2];
+ }
+ else {
+ /* figure out acceleration */
+ float landing_level = 2.0f;
+ float level = landing_level + 1.0f;
+ float new_vel[3];
+
+ if(pa->boid->mode == eBoidMode_Liftoff) {
+ pa->boid->mode = eBoidMode_InAir;
+ pa->stick_ob = boid_find_ground(bbd, pa, ground_co, ground_nor);
+ }
+ else if(pa->boid->mode == eBoidMode_InAir && boids->options & BOID_ALLOW_LAND) {
+ /* auto-leveling & landing if close to ground */
+
+ pa->stick_ob = boid_find_ground(bbd, pa, ground_co, ground_nor);
+
+ /* level = how many particle sizes above ground */
+ level = (pa->prev_state.co[2] - ground_co[2])/(2.0f * pa->size) - 0.5;
+
+ landing_level = - boids->landing_smoothness * pa->prev_state.vel[2] * pa_mass;
+
+ if(pa->prev_state.vel[2] < 0.0f) {
+ if(level < 1.0f) {
+ bbd->wanted_co[0] = bbd->wanted_co[1] = bbd->wanted_co[2] = 0.0f;
+ bbd->wanted_speed = 0.0f;
+ pa->boid->mode = eBoidMode_Falling;
+ }
+ else if(level < landing_level) {
+ bbd->wanted_speed *= (level - 1.0f)/landing_level;
+ bbd->wanted_co[2] *= (level - 1.0f)/landing_level;
+ }
+ }
+ }
+
+ VECCOPY(old_dir, pa->prev_state.ave);
+ VECCOPY(wanted_dir, bbd->wanted_co);
+ new_speed = Normalize(wanted_dir);
+
+ /* first check if we have valid direction we want to go towards */
+ if(new_speed == 0.0f) {
+ VECCOPY(new_dir, old_dir);
+ }
+ else {
+ float old_dir2[2], wanted_dir2[2], nor[3], angle;
+ Vec2Copyf(old_dir2, old_dir);
+ Normalize2(old_dir2);
+ Vec2Copyf(wanted_dir2, wanted_dir);
+ Normalize2(wanted_dir2);
+
+ /* choose random direction to turn if wanted velocity */
+ /* is directly behind regardless of z-coordinate */
+ if(Inp2f(old_dir2, wanted_dir2) < -0.99f) {
+ wanted_dir[0] = 2.0f*(0.5f - BLI_frand());
+ wanted_dir[1] = 2.0f*(0.5f - BLI_frand());
+ wanted_dir[2] = 2.0f*(0.5f - BLI_frand());
+ Normalize(wanted_dir);
+ }
+
+ /* constrain direction with maximum angular velocity */
+ angle = saacos(Inpf(old_dir, wanted_dir));
+ angle = MIN2(angle, val.max_ave);
+
+ Crossf(nor, old_dir, wanted_dir);
+ VecRotToQuat(nor, angle, q);
+ VECCOPY(new_dir, old_dir);
+ QuatMulVecf(q, new_dir);
+ Normalize(new_dir);
+
+ /* save direction in case resulting velocity too small */
+ VecRotToQuat(nor, angle*dtime, q);
+ VECCOPY(pa->state.ave, old_dir);
+ QuatMulVecf(q, pa->state.ave);
+ Normalize(pa->state.ave);
+ }
+
+ /* constrain speed with maximum acceleration */
+ old_speed = VecLength(pa->prev_state.vel);
+
+ if(bbd->wanted_speed < old_speed)
+ new_speed = MAX2(bbd->wanted_speed, old_speed - val.max_acc);
+ else
+ new_speed = MIN2(bbd->wanted_speed, old_speed + val.max_acc);
+
+ /* combine direction and speed */
+ VECCOPY(new_vel, new_dir);
+ VecMulf(new_vel, new_speed);
+
+ /* maintain minimum flying velocity if not landing */
+ if(level >= landing_level) {
+ float len2 = Inp2f(new_vel,new_vel);
+ float root;
+
+ len2 = MAX2(len2, val.min_speed*val.min_speed);
+ root = sasqrt(new_speed*new_speed - len2);
+
+ new_vel[2] = new_vel[2] < 0.0f ? -root : root;
+
+ Normalize2(new_vel);
+ Vec2Mulf(new_vel, sasqrt(len2));
+ }
+
+ /* finally constrain speed to max speed */
+ new_speed = Normalize(new_vel);
+ VecMulf(new_vel, MIN2(new_speed, val.max_speed));
+
+ /* get acceleration from difference of velocities */
+ VecSubf(acc, new_vel, pa->prev_state.vel);
+
+ /* break acceleration to components */
+ Projf(tan_acc, acc, pa->prev_state.ave);
+ VecSubf(nor_acc, acc, tan_acc);
+ }
+
+ /* account for effectors */
+ do_effectors(p, pa, &pa->state, bbd->scene, bbd->ob, bbd->psys, pa->state.co, force, tvel, bbd->dfra, bbd->cfra);
+
+ if(ELEM(pa->boid->mode, eBoidMode_OnLand, eBoidMode_Climbing)) {
+ float length = Normalize(force);
+
+ length = MAX2(0.0f, length - boids->land_stick_force);
+
+ VecMulf(force, length);
+ }
+
+ VecAddf(acc, acc, force);
+
+ /* store smoothed acceleration for nice banking etc. */
+ VECADDFAC(pa->boid->acc, pa->boid->acc, acc, dtime);
+ VecMulf(pa->boid->acc, 1.0f / (1.0f + dtime));
+
+ /* integrate new location & velocity */
+
+ /* by regarding the acceleration as a force at this stage we*/
+ /* can get better control allthough it's a bit unphysical */
+ VecMulf(acc, 1.0f/pa_mass);
+
+ VECCOPY(dvec, acc);
+ VecMulf(dvec, dtime*dtime*0.5f);
+
+ VECCOPY(bvec, pa->prev_state.vel);
+ VecMulf(bvec, dtime);
+ VecAddf(dvec, dvec, bvec);
+ VecAddf(pa->state.co, pa->state.co, dvec);
+
+ VECADDFAC(pa->state.vel, pa->state.vel, acc, dtime);
+
+ if(pa->boid->mode != eBoidMode_InAir)
+ pa->stick_ob = boid_find_ground(bbd, pa, ground_co, ground_nor);
+
+ /* change modes, constrain movement & keep track of down vector */
+ switch(pa->boid->mode) {
+ case eBoidMode_InAir:
+ {
+ float grav[3] = {0.0f, 0.0f, bbd->part->acc[2] < 0.0f ? -1.0f : 0.0f};
+
+ /* don't take forward acceleration into account (better banking) */
+ if(Inpf(pa->boid->acc, pa->state.vel) > 0.0f) {
+ Projf(dvec, pa->boid->acc, pa->state.vel);
+ VecSubf(dvec, pa->boid->acc, dvec);
+ }
+ else {
+ VECCOPY(dvec, pa->boid->acc);
+ }
+
+ /* gather apparent gravity to r_ve */
+ VECADDFAC(pa->r_ve, grav, dvec, -boids->banking);
+ Normalize(pa->r_ve);
+
+ /* stick boid on goal when close enough */
+ if(bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) {
+ pa->boid->mode = eBoidMode_Climbing;
+ pa->stick_ob = bbd->goal_ob;
+ boid_find_ground(bbd, pa, ground_co, ground_nor);
+ boid_climb(boids, pa, ground_co, ground_nor);
+ }
+ /* land boid when belowg ground */
+ else if(boids->options & BOID_ALLOW_LAND && pa->state.co[2] <= ground_co[2] + pa->size * boids->height) {
+ pa->state.co[2] = ground_co[2] + pa->size * boids->height;
+ pa->state.vel[2] = 0.0f;
+ pa->boid->mode = eBoidMode_OnLand;
+ }
+ break;
+ }
+ case eBoidMode_Falling:
+ {
+ float zvec[3] = {0.0f,0.0f,1.0f};
+ float grav[3] = {0.0f, 0.0f, bbd->part->acc[2] < 0.0f ? -1.0f : 0.0f};
+
+ /* gather apparent gravity to r_ve */
+ VECADDFAC(pa->r_ve, pa->r_ve, grav, dtime);
+ Normalize(pa->r_ve);
+
+ if(boids->options & BOID_ALLOW_LAND) {
+ /* stick boid on goal when close enough */
+ if(bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) {
+ pa->boid->mode = eBoidMode_Climbing;
+ pa->stick_ob = bbd->goal_ob;
+ boid_find_ground(bbd, pa, ground_co, ground_nor);
+ boid_climb(boids, pa, ground_co, ground_nor);
+ }
+ /* land boid when really near ground */
+ else if(pa->state.co[2] <= ground_co[2] + 1.01 * pa->size * boids->height){
+ pa->state.co[2] = ground_co[2] + pa->size * boids->height;
+ pa->state.vel[2] = 0.0f;
+ pa->boid->mode = eBoidMode_OnLand;
+ }
+ /* if we're falling, can fly and want to go upwards lets fly */
+ else if(boids->options & BOID_ALLOW_FLIGHT && bbd->wanted_co[2] > 0.0f)
+ pa->boid->mode = eBoidMode_InAir;
+ }
+ else
+ pa->boid->mode = eBoidMode_InAir;
+ break;
+ }
+ case eBoidMode_Climbing:
+ {
+ boid_climb(boids, pa, ground_co, ground_nor);
+ //float nor[3];
+ //VECCOPY(nor, ground_nor);
+
+ ///* gather apparent gravity to r_ve */
+ //VECADDFAC(pa->r_ve, pa->r_ve, ground_nor, -1.0);
+ //Normalize(pa->r_ve);
+
+ ///* raise boid it's size from surface */
+ //VecMulf(nor, pa->size * boids->height);
+ //VecAddf(pa->state.co, ground_co, nor);
+
+ ///* remove normal component from velocity */
+ //Projf(v, pa->state.vel, ground_nor);
+ //VecSubf(pa->state.vel, pa->state.vel, v);
+ break;
+ }
+ case eBoidMode_OnLand:
+ {
+ /* stick boid on goal when close enough */
+ if(bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) {
+ pa->boid->mode = eBoidMode_Climbing;
+ pa->stick_ob = bbd->goal_ob;
+ boid_find_ground(bbd, pa, ground_co, ground_nor);
+ boid_climb(boids, pa, ground_co, ground_nor);
+ }
+ /* ground is too far away so boid falls */
+ else if(pa->state.co[2]-ground_co[2] > 1.1 * pa->size * boids->height)
+ pa->boid->mode = eBoidMode_Falling;
+ else {
+ /* constrain to surface */
+ pa->state.co[2] = ground_co[2] + pa->size * boids->height;
+ pa->state.vel[2] = 0.0f;
+ }
+
+ if(boids->banking > 0.0f) {
+ float grav[3];
+ /* Don't take gravity's strength in to account, */
+ /* otherwise amount of banking is hard to control. */
+ VECCOPY(grav, ground_nor);
+ VecMulf(grav, -1.0f);
+
+ Projf(dvec, pa->boid->acc, pa->state.vel);
+ VecSubf(dvec, pa->boid->acc, dvec);
+
+ /* gather apparent gravity to r_ve */
+ VECADDFAC(pa->r_ve, grav, dvec, -boids->banking);
+ Normalize(pa->r_ve);
+ }
+ else {
+ /* gather negative surface normal to r_ve */
+ VECADDFAC(pa->r_ve, pa->r_ve, ground_nor, -1.0f);
+ Normalize(pa->r_ve);
+ }
+ break;
+ }
+ }
+
+ /* save direction to state.ave unless the boid is falling */
+ /* (boids can't effect their direction when falling) */
+ if(pa->boid->mode!=eBoidMode_Falling && VecLength(pa->state.vel) > 0.1*pa->size) {
+ VECCOPY(pa->state.ave, pa->state.vel);
+ Normalize(pa->state.ave);
+ }
+
+ /* apply damping */
+ if(ELEM(pa->boid->mode, eBoidMode_OnLand, eBoidMode_Climbing))
+ VecMulf(pa->state.vel, 1.0f - 0.2f*bbd->part->dampfac);
+
+ /* calculate rotation matrix based on forward & down vectors */
+ if(pa->boid->mode == eBoidMode_InAir) {
+ VECCOPY(mat[0], pa->state.ave);
+
+ Projf(dvec, pa->r_ve, pa->state.ave);
+ VecSubf(mat[2], pa->r_ve, dvec);
+ Normalize(mat[2]);
+ }
+ else {
+ Projf(dvec, pa->state.ave, pa->r_ve);
+ VecSubf(mat[0], pa->state.ave, dvec);
+ Normalize(mat[0]);
+
+ VECCOPY(mat[2], pa->r_ve);
+ }
+ VecMulf(mat[2], -1.0f);
+ Crossf(mat[1], mat[2], mat[0]);
+
+ /* apply rotation */
+ Mat3ToQuat_is_ok(mat, q);
+ QuatCopy(pa->state.rot, q);
+}
+
+BoidRule *boid_new_rule(int type)
+{
+ BoidRule *rule = NULL;
+ if(type <= 0)
+ return NULL;
+
+ switch(type) {
+ case eBoidRuleType_Goal:
+ case eBoidRuleType_Avoid:
+ rule = MEM_callocN(sizeof(BoidRuleGoalAvoid), "BoidRuleGoalAvoid");
+ break;
+ case eBoidRuleType_AvoidCollision:
+ rule = MEM_callocN(sizeof(BoidRuleAvoidCollision), "BoidRuleAvoidCollision");
+ ((BoidRuleAvoidCollision*)rule)->look_ahead = 2.0f;
+ break;
+ case eBoidRuleType_FollowLeader:
+ rule = MEM_callocN(sizeof(BoidRuleFollowLeader), "BoidRuleFollowLeader");
+ ((BoidRuleFollowLeader*)rule)->distance = 1.0f;
+ break;
+ case eBoidRuleType_AverageSpeed:
+ rule = MEM_callocN(sizeof(BoidRuleAverageSpeed), "BoidRuleAverageSpeed");
+ ((BoidRuleAverageSpeed*)rule)->speed = 0.5f;
+ break;
+ case eBoidRuleType_Fight:
+ rule = MEM_callocN(sizeof(BoidRuleFight), "BoidRuleFight");
+ ((BoidRuleFight*)rule)->distance = 100.0f;
+ ((BoidRuleFight*)rule)->flee_distance = 100.0f;
+ break;
+ default:
+ rule = MEM_callocN(sizeof(BoidRule), "BoidRule");
+ break;
+ }
+
+ rule->type = type;
+ rule->flag |= BOIDRULE_IN_AIR|BOIDRULE_ON_LAND;
+ strcpy(rule->name, boidrule_type_items[type-1].name);
+
+ return rule;
+}
+void boid_default_settings(BoidSettings *boids)
+{
+ boids->air_max_speed = 10.0f;
+ boids->air_max_acc = 0.5f;
+ boids->air_max_ave = 0.5f;
+ boids->air_personal_space = 1.0f;
+
+ boids->land_max_speed = 5.0f;
+ boids->land_max_acc = 0.5f;
+ boids->land_max_ave = 0.5f;
+ boids->land_personal_space = 1.0f;
+
+ boids->options = BOID_ALLOW_FLIGHT;
+
+ boids->landing_smoothness = 3.0f;
+ boids->banking = 1.0f;
+ boids->height = 1.0f;
+
+ boids->health = 1.0f;
+ boids->accuracy = 1.0f;
+ boids->aggression = 2.0f;
+ boids->range = 1.0f;
+ boids->strength = 0.1f;
+}
+
+BoidState *boid_new_state(BoidSettings *boids)
+{
+ BoidState *state = MEM_callocN(sizeof(BoidState), "BoidState");
+
+ state->id = boids->last_state_id++;
+ if(state->id)
+ sprintf(state->name, "State %i", state->id);
+ else
+ strcpy(state->name, "State");
+
+ state->rule_fuzziness = 0.5;
+ state->volume = 1.0f;
+ state->channels |= ~0;
+
+ return state;
+}
+
+BoidState *boid_duplicate_state(BoidSettings *boids, BoidState *state) {
+ BoidState *staten = MEM_dupallocN(state);
+
+ BLI_duplicatelist(&staten->rules, &state->rules);
+ BLI_duplicatelist(&staten->conditions, &state->conditions);
+ BLI_duplicatelist(&staten->actions, &state->actions);
+
+ staten->id = boids->last_state_id++;
+
+ return staten;
+}
+void boid_free_settings(BoidSettings *boids)
+{
+ if(boids) {
+ BoidState *state = boids->states.first;
+
+ for(; state; state=state->next) {
+ BLI_freelistN(&state->rules);
+ BLI_freelistN(&state->conditions);
+ BLI_freelistN(&state->actions);
+ }
+
+ BLI_freelistN(&boids->states);
+
+ MEM_freeN(boids);
+ }
+}
+BoidSettings *boid_copy_settings(BoidSettings *boids)
+{
+ BoidSettings *nboids = NULL;
+
+ if(boids) {
+ BoidState *state;
+ BoidState *nstate;
+
+ nboids = MEM_dupallocN(boids);
+
+ BLI_duplicatelist(&nboids->states, &boids->states);
+
+ state = boids->states.first;
+ nstate = nboids->states.first;
+ for(; state; state=state->next, nstate=nstate->next) {
+ BLI_duplicatelist(&nstate->rules, &state->rules);
+ BLI_duplicatelist(&nstate->conditions, &state->conditions);
+ BLI_duplicatelist(&nstate->actions, &state->actions);
+ }
+ }
+
+ return nboids;
+}
+BoidState *boid_get_current_state(BoidSettings *boids)
+{
+ BoidState *state = boids->states.first;
+
+ for(; state; state=state->next) {
+ if(state->flag & BOIDSTATE_CURRENT)
+ break;
+ }
+
+ return state;
+} \ No newline at end of file