Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJoshua Leung <aligorith@gmail.com>2007-10-22 03:00:29 +0400
committerJoshua Leung <aligorith@gmail.com>2007-10-22 03:00:29 +0400
commit6422a740c25d33c7e7dcc008d215ae983be00a30 (patch)
treedddeca774208da69659dfbc6f75616dcc6deadd7 /source/blender/blenkernel/intern/constraint.c
parenta4e8e87983829e05d33b2c5aa39f88ca24d48cdd (diff)
== Constraints System - Recode 2 ==
Once again, I've recoded the constraints system. This time, the goals were: * To make it more future-proof by 'modernising' the coding style. The long functions filled with switch statements, have given way to function-pointers with smaller functions for specific purposes. * To make it support constraints which use multiple targets more readily that it did. In the past, it was assumed that constraints could only have at most one target. As a result, a lot of code has been shuffled around, and modified. Also, the subversion number has been bumped up. Known issues: * PyConstraints, which were the main motivation for supporting multiple-targets, are currently broken. There are some bimport() error that keeps causing problems. I've also temporarily removed the doDriver support, although it may return in another form soon. * Constraints BPy-API is currently has a few features which currently don't work yet * Outliner currently only displays the names of the constraints instead of the fancy subtarget/target/constraint-name display it used to do. What gets displayed here needs further investigation, as the old way was certainly not that great (and is not compatible with the new system too)
Diffstat (limited to 'source/blender/blenkernel/intern/constraint.c')
-rw-r--r--source/blender/blenkernel/intern/constraint.c4573
1 files changed, 2525 insertions, 2048 deletions
diff --git a/source/blender/blenkernel/intern/constraint.c b/source/blender/blenkernel/intern/constraint.c
index 020350d9e6f..b46504b0e6d 100644
--- a/source/blender/blenkernel/intern/constraint.c
+++ b/source/blender/blenkernel/intern/constraint.c
@@ -48,6 +48,7 @@
#include "DNA_meshdata_types.h"
#include "DNA_lattice_types.h"
#include "DNA_scene_types.h"
+#include "DNA_text_types.h"
#include "BKE_utildefines.h"
#include "BKE_action.h"
@@ -79,39 +80,18 @@
#endif
-/* ********************* Data level ****************** */
-
-void free_constraint_data (bConstraint *con)
-{
- if (con->data) {
- /* any constraint-type specific stuff here */
- switch (con->type) {
- case CONSTRAINT_TYPE_PYTHON:
- {
- bPythonConstraint *data= con->data;
- IDP_FreeProperty(data->prop);
- MEM_freeN(data->prop);
- }
- break;
- }
-
- MEM_freeN(con->data);
- }
-}
-
-void free_constraints (ListBase *conlist)
-{
- bConstraint *con;
-
- /* Do any specific freeing */
- for (con=conlist->first; con; con=con->next) {
- free_constraint_data(con);
- }
-
- /* Free the whole list */
- BLI_freelistN(conlist);
-}
+/* ******************* Constraint Channels ********************** */
+/* Constraint Channels exist in one of two places:
+ * - Under Action Channels in an Action (act->chanbase->achan->constraintChannels)
+ * - Under Object without object-level action yet (ob->constraintChannels)
+ *
+ * The main purpose that constraint channels serve is to act as a link
+ * between an IPO-block which
+ */
+/* ------------ Data Management ----------- */
+
+/* Free constraint channels, and reduce the number of users of the related ipo-blocks */
void free_constraint_channels (ListBase *chanbase)
{
bConstraintChannel *chan;
@@ -125,27 +105,14 @@ void free_constraint_channels (ListBase *chanbase)
BLI_freelistN(chanbase);
}
-void relink_constraints (struct ListBase *list)
-{
- bConstraint *con;
-
- for (con = list->first; con; con=con->next) {
- /* check if constraint has a target that needs relinking */
- if (constraint_has_target(con)) {
- Object *tar;
- char *subtarget;
-
- tar = get_constraint_target(con, &subtarget);
- ID_NEW(tar);
- }
- }
-}
-
+/* Make a copy of the constraint channels from dst to src, and also give the
+ * new constraint channels their own copy of the original's IPO.
+ */
void copy_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
- dst->first=dst->last=NULL;
+ dst->first = dst->last = NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
@@ -153,11 +120,14 @@ void copy_constraint_channels (ListBase *dst, ListBase *src)
}
}
+/* Make a copy of the constraint channels from dst to src, but make the
+ * new constraint channels use the same IPO-data as their twin.
+ */
void clone_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
- dst->first=dst->last=NULL;
+ dst->first = dst->last = NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
@@ -165,354 +135,81 @@ void clone_constraint_channels (ListBase *dst, ListBase *src)
}
}
-void copy_constraints (ListBase *dst, ListBase *src)
-{
- bConstraint *con, *srccon;
-
- dst->first= dst->last= NULL;
- duplicatelist (dst, src);
-
- for (con = dst->first, srccon=src->first; con; srccon=srccon->next, con=con->next) {
- con->data = MEM_dupallocN (con->data);
-
- /* only do specific constraints if required */
- if (con->type == CONSTRAINT_TYPE_PYTHON) {
- bPythonConstraint *pycon = (bPythonConstraint *)con->data;
- bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
-
- pycon->prop = IDP_CopyProperty(opycon->prop);
- }
- }
-}
-
-/* **************** Editor Functions **************** */
+/* ------------- Constraint Channel Tools ------------ */
-char constraint_has_target (bConstraint *con)
+/* Find the constraint channel with a given name */
+bConstraintChannel *get_constraint_channel (ListBase *list, const char name[])
{
- switch (con->type) {
- case CONSTRAINT_TYPE_PYTHON:
- {
- bPythonConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_TRACKTO:
- {
- bTrackToConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_KINEMATIC:
- {
- bKinematicConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_FOLLOWPATH:
- {
- bFollowPathConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_ROTLIKE:
- {
- bRotateLikeConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_LOCLIKE:
- {
- bLocateLikeConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_SIZELIKE:
- {
- bSizeLikeConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_MINMAX:
- {
- bMinMaxConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_ACTION:
- {
- bActionConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_LOCKTRACK:
- {
- bLockTrackConstraint *data = con->data;
- if (data->tar) return 1;
- }
- case CONSTRAINT_TYPE_STRETCHTO:
- {
- bStretchToConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_RIGIDBODYJOINT:
- {
- bRigidBodyJointConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_CLAMPTO:
- {
- bClampToConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_CHILDOF:
- {
- bChildOfConstraint *data = con->data;
- if (data->tar) return 1;
- }
- break;
- case CONSTRAINT_TYPE_TRANSFORM:
- {
- bTransformConstraint *data = con->data;
- if (data->tar) return 1;
+ bConstraintChannel *chan;
+
+ for (chan = list->first; chan; chan=chan->next) {
+ if (!strcmp(name, chan->name)) {
+ return chan;
}
- break;
}
- /* Unknown types or CONSTRAINT_TYPE_NULL or no target */
- return 0;
+ return NULL;
}
-Object *get_constraint_target(bConstraint *con, char **subtarget)
+/* Find or create a new constraint channel */
+bConstraintChannel *verify_constraint_channel (ListBase *list, const char name[])
{
- /* If the target for this constraint is target, return a pointer
- * to the name for this constraints subtarget ... NULL otherwise
- */
- switch (con->type) {
- case CONSTRAINT_TYPE_PYTHON:
- {
- bPythonConstraint *data=con->data;
- *subtarget = data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_ACTION:
- {
- bActionConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_LOCLIKE:
- {
- bLocateLikeConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_ROTLIKE:
- {
- bRotateLikeConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_SIZELIKE:
- {
- bSizeLikeConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_KINEMATIC:
- {
- bKinematicConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_TRACKTO:
- {
- bTrackToConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_MINMAX:
- {
- bMinMaxConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_LOCKTRACK:
- {
- bLockTrackConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_FOLLOWPATH:
- {
- bFollowPathConstraint *data = con->data;
- *subtarget= NULL;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_STRETCHTO:
- {
- bStretchToConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_RIGIDBODYJOINT:
- {
- bRigidBodyJointConstraint *data = con->data;
- *subtarget= NULL;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_CLAMPTO:
- {
- bClampToConstraint *data = con->data;
- *subtarget= NULL;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_CHILDOF:
- {
- bChildOfConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- case CONSTRAINT_TYPE_TRANSFORM:
- {
- bTransformConstraint *data = con->data;
- *subtarget= data->subtarget;
- return data->tar;
- }
- break;
- default:
- *subtarget= NULL;
- break;
+ bConstraintChannel *chan;
+
+ chan= get_constraint_channel(list, name);
+
+ if (chan == NULL) {
+ chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint channel");
+ BLI_addtail(list, chan);
+ strcpy(chan->name, name);
}
- return NULL;
+ return chan;
}
-void set_constraint_target(bConstraint *con, Object *ob, char *subtarget)
+/* --------- Constraint Channel Evaluation/Execution --------- */
+
+/* IPO-system call: calculate IPO-block for constraint channels, and flush that
+ * info onto the corresponding constraint.
+ */
+void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime, short onlydrivers)
{
- /* Set the target for this constraint */
- switch (con->type) {
- case CONSTRAINT_TYPE_PYTHON:
- {
- bPythonConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_ACTION:
- {
- bActionConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_LOCLIKE:
- {
- bLocateLikeConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_ROTLIKE:
- {
- bRotateLikeConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_SIZELIKE:
- {
- bSizeLikeConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_KINEMATIC:
- {
- bKinematicConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_TRACKTO:
- {
- bTrackToConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_LOCKTRACK:
- {
- bLockTrackConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_FOLLOWPATH:
- {
- bFollowPathConstraint *data = con->data;
- data->tar= ob;
- }
- break;
- case CONSTRAINT_TYPE_STRETCHTO:
- {
- bStretchToConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_RIGIDBODYJOINT:
- {
- bRigidBodyJointConstraint *data = con->data;
- data->tar= ob;
- }
- break;
- case CONSTRAINT_TYPE_MINMAX:
- {
- bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_CLAMPTO:
- {
- bClampToConstraint *data = con->data;
- data->tar= ob;
- }
- break;
- case CONSTRAINT_TYPE_CHILDOF:
- {
- bChildOfConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
- }
- break;
- case CONSTRAINT_TYPE_TRANSFORM:
- {
- bTransformConstraint *data = con->data;
- data->tar= ob;
- if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
+ bConstraint *con;
+ bConstraintChannel *chan;
+ IpoCurve *icu= NULL;
+
+ /* for each Constraint, calculate its Influence from the corresponding ConstraintChannel */
+ for (con=conbase->first; con; con=con->next) {
+ chan = get_constraint_channel(chanbase, con->name);
+
+ if (chan && chan->ipo) {
+ calc_ipo(chan->ipo, ctime);
+
+ for (icu=chan->ipo->curve.first; icu; icu=icu->next) {
+ if (!onlydrivers || icu->driver) {
+ switch (icu->adrcode) {
+ case CO_ENFORCE:
+ {
+ /* Influence is clamped to 0.0f -> 1.0f range */
+ con->enforce = CLAMPIS(icu->curval, 0.0f, 1.0f);
+ }
+ break;
+ }
+ }
+ }
}
- break;
}
}
+/* ************************ Constraints - General Utilities *************************** */
+/* These functions here don't act on any specific constraints, and are therefore should/will
+ * not require any of the special function-pointers afforded by the relevant constraint
+ * type-info structs.
+ */
+
+/* -------------- Naming -------------- */
+
+/* Find the first available, non-duplicate name for a given constraint */
void unique_constraint_name (bConstraint *con, ListBase *list)
{
bConstraint *curcon;
@@ -536,11 +233,11 @@ void unique_constraint_name (bConstraint *con, ListBase *list)
}
}
- if (!exists)
+ if (exists == 0)
return;
/* Strip off the suffix */
- dot=strchr(con->name, '.');
+ dot = strchr(con->name, '.');
if (dot)
*dot=0;
@@ -549,248 +246,21 @@ void unique_constraint_name (bConstraint *con, ListBase *list)
exists = 0;
for (curcon=list->first; curcon; curcon=curcon->next) {
- if (con!=curcon) {
- if (!strcmp(curcon->name, tempname)) {
+ if (con != curcon) {
+ if (strcmp(curcon->name, tempname)==0) {
exists = 1;
break;
}
}
}
- if (!exists) {
+ if (exists == 0) {
strcpy(con->name, tempname);
return;
}
}
}
-void *new_constraint_data (short type)
-{
- void *result;
-
- switch (type) {
- case CONSTRAINT_TYPE_PYTHON:
- {
- bPythonConstraint *data;
- data = MEM_callocN(sizeof(bPythonConstraint), "pythonConstraint");
-
- /* everything should be set correctly by calloc, except for the prop->type constant.*/
- data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
- data->prop->type = IDP_GROUP;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_KINEMATIC:
- {
- bKinematicConstraint *data;
- data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint");
-
- data->weight= (float)1.0;
- data->orientweight= (float)1.0;
- data->iterations = 500;
- data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_TRACKTO:
- {
- bTrackToConstraint *data;
- data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint");
-
- data->reserved1 = TRACK_Y;
- data->reserved2 = UP_Z;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_MINMAX:
- {
- bMinMaxConstraint *data;
- data = MEM_callocN(sizeof(bMinMaxConstraint), "minmaxConstraint");
-
- data->minmaxflag = TRACK_Z;
- data->offset = 0.0f;
- data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
- data->flag = 0;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_LOCLIKE:
- {
- bLocateLikeConstraint *data;
- data = MEM_callocN(sizeof(bLocateLikeConstraint), "LocLikeConstraint");
- data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_ROTLIKE:
- {
- bRotateLikeConstraint *data;
- data = MEM_callocN(sizeof(bRotateLikeConstraint), "RotLikeConstraint");
- data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_SIZELIKE:
- {
- bSizeLikeConstraint *data;
- data = MEM_callocN(sizeof(bLocateLikeConstraint), "SizeLikeConstraint");
- data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_ACTION:
- {
- bActionConstraint *data;
- data = MEM_callocN(sizeof(bActionConstraint), "ActionConstraint");
-
- /* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
- data->type = 20;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_LOCKTRACK:
- {
- bLockTrackConstraint *data;
- data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint");
-
- data->trackflag = TRACK_Y;
- data->lockflag = LOCK_Z;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_FOLLOWPATH:
- {
- bFollowPathConstraint *data;
- data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint");
-
- data->trackflag = TRACK_Y;
- data->upflag = UP_Z;
- data->offset = 0;
- data->followflag = 0;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_STRETCHTO:
- {
- bStretchToConstraint *data;
- data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint");
-
- data->volmode = 0;
- data->plane = 0;
- data->orglength = 0.0;
- data->bulge = 1.0;
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_LOCLIMIT:
- {
- bLocLimitConstraint *data;
- data = MEM_callocN(sizeof(bLocLimitConstraint), "LocLimitConstraint");
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_ROTLIMIT:
- {
- bRotLimitConstraint *data;
- data = MEM_callocN(sizeof(bRotLimitConstraint), "RotLimitConstraint");
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_SIZELIMIT:
- {
- bSizeLimitConstraint *data;
- data = MEM_callocN(sizeof(bSizeLimitConstraint), "SizeLimitConstraint");
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_RIGIDBODYJOINT:
- {
- bRigidBodyJointConstraint *data;
- data = MEM_callocN(sizeof(bRigidBodyJointConstraint), "RigidBodyToConstraint");
-
- // removed code which set target of this constraint
- data->type=1;
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_CLAMPTO:
- {
- bClampToConstraint *data;
- data = MEM_callocN(sizeof(bClampToConstraint), "ClampToConstraint");
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_CHILDOF:
- {
- bChildOfConstraint *data;
- data = MEM_callocN(sizeof(bChildOfConstraint), "ChildOfConstraint");
-
- data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
- CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
- CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
- Mat4One(data->invmat);
-
- result = data;
- }
- break;
- case CONSTRAINT_TYPE_TRANSFORM:
- {
- bTransformConstraint *data;
- data = MEM_callocN(sizeof(bTransformConstraint), "TransformationConstraint");
-
- data->map[0]= 0;
- data->map[1]= 1;
- data->map[2]= 2;
-
- result = data;
- }
- break;
-
- default:
- result = NULL;
- break;
- }
-
- return result;
-}
-
-bConstraintChannel *get_constraint_channel (ListBase *list, const char *name)
-{
- bConstraintChannel *chan;
-
- for (chan = list->first; chan; chan=chan->next) {
- if (!strcmp(name, chan->name)) {
- return chan;
- }
- }
- return NULL;
-}
-
-/* finds or creates new constraint channel */
-bConstraintChannel *verify_constraint_channel (ListBase *list, const char *name)
-{
- bConstraintChannel *chan;
-
- chan= get_constraint_channel(list, name);
-
- if(chan == NULL) {
- chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint chan");
- BLI_addtail(list, chan);
- strcpy(chan->name, name);
- }
-
- return chan;
-}
-
-
-/* ***************** Evaluating ********************* */
+/* ----------------- Evaluation Loop Preparation --------------- */
/* package an object/bone for use in constraint evaluation */
/* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
@@ -803,7 +273,7 @@ bConstraintOb *constraints_make_evalob (Object *ob, void *subdata, short datatyp
/* based on type of available data */
switch (datatype) {
- case TARGET_OBJECT:
+ case CONSTRAINT_OBTYPE_OBJECT:
{
/* disregard subdata... calloc should set other values right */
if (ob) {
@@ -817,7 +287,7 @@ bConstraintOb *constraints_make_evalob (Object *ob, void *subdata, short datatyp
Mat4CpyMat4(cob->startmat, cob->matrix);
}
break;
- case TARGET_BONE:
+ case CONSTRAINT_OBTYPE_BONE:
{
/* only set if we have valid bone, otherwise default */
if (ob && subdata) {
@@ -835,7 +305,7 @@ bConstraintOb *constraints_make_evalob (Object *ob, void *subdata, short datatyp
}
break;
- default: // other types not yet handled
+ default: /* other types not yet handled */
Mat4One(cob->matrix);
Mat4One(cob->startmat);
break;
@@ -859,22 +329,28 @@ void constraints_clear_evalob (bConstraintOb *cob)
/* copy matrices back to source */
switch (cob->type) {
- case TARGET_OBJECT:
+ case CONSTRAINT_OBTYPE_OBJECT:
{
- /* copy new ob-matrix back to owner */
- Mat4CpyMat4(cob->ob->obmat, cob->matrix);
-
- /* copy inverse of delta back to owner */
- Mat4Invert(cob->ob->constinv, delta);
+ /* cob->ob might not exist! */
+ if (cob->ob) {
+ /* copy new ob-matrix back to owner */
+ Mat4CpyMat4(cob->ob->obmat, cob->matrix);
+
+ /* copy inverse of delta back to owner */
+ Mat4Invert(cob->ob->constinv, delta);
+ }
}
break;
- case TARGET_BONE:
+ case CONSTRAINT_OBTYPE_BONE:
{
- /* copy new pose-matrix back to owner */
- Mat4MulMat4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
-
- /* copy inverse of delta back to owner */
- Mat4Invert(cob->pchan->constinv, delta);
+ /* cob->ob or cob->pchan might not exist */
+ if (cob->ob && cob->pchan) {
+ /* copy new pose-matrix back to owner */
+ Mat4MulMat4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
+
+ /* copy inverse of delta back to owner */
+ Mat4Invert(cob->pchan->constinv, delta);
+ }
}
break;
}
@@ -883,40 +359,7 @@ void constraints_clear_evalob (bConstraintOb *cob)
MEM_freeN(cob);
}
-/* -------------------------------- Constraint Channels ---------------------------- */
-
-/* does IPO's of constraint channels only */
-void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime, int onlydrivers)
-{
- bConstraint *con;
- bConstraintChannel *chan;
- IpoCurve *icu= NULL;
-
- /* for each Constraint, calculate its Influence from the corresponding ConstraintChannel */
- for (con=conbase->first; con; con=con->next) {
-
- chan = get_constraint_channel(chanbase, con->name);
-
- if (chan && chan->ipo) {
- calc_ipo(chan->ipo, ctime);
-
- for (icu=chan->ipo->curve.first; icu; icu=icu->next) {
- if(!onlydrivers || icu->driver) {
- switch (icu->adrcode) {
- case CO_ENFORCE:
- {
- /* Influence is clamped to 0.0f -> 1.0f range */
- con->enforce = CLAMPIS(icu->curval, 0.0f, 1.0f);
- }
- break;
- }
- }
- }
- }
- }
-}
-
-/* ------------------------------- Space-Conversion API ---------------------------- */
+/* -------------- Space-Conversion API -------------- */
/* This function is responsible for the correct transformations/conversions
* of a matrix from one space to another for constraint evaluation.
@@ -1112,7 +555,7 @@ void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4
}
}
-/* ------------------------------- Target ---------------------------- */
+/* ------------ General Target Matrix Tools ---------- */
/* function that sets the given matrix based on given vertex group in mesh */
static void contarget_get_mesh_mat (Object *ob, char *substring, float mat[][4])
@@ -1311,18 +754,277 @@ static void constraint_target_to_mat4 (Object *ob, char *substring, float mat[][
}
}
+/* ************************* Specific Constraints ***************************** */
+/* Each constraint defines a set of functions, which will be called at the appropriate
+ * times. In addition to this, each constraint should have a type-info struct, where
+ * its functions are attached for use.
+ */
+
+/* Template for type-info data:
+ * - make a copy of this when creating new constraints, and just change the functions
+ * pointed to as necessary
+ * - although the naming of functions doesn't matter, it would help for code
+ * readability, to follow the same naming convention as is presented here
+ * - any functions that a constraint doesn't need to define, don't define
+ * for such cases, just use NULL
+ * - these should be defined after all the functions have been defined, so that
+ * forward-definitions/prototypes don't need to be used!
+ * - keep this copy #if-def'd so that future constraints can get based off this
+ */
+#if 0
+static bConstraintTypeInfo CTI_CONSTRNAME = {
+ CONSTRAINT_TYPE_CONSTRNAME, /* type */
+ sizeof(bConstrNameConstraint), /* size */
+ "ConstrName", /* name */
+ "bConstrNameConstraint", /* struct name */
+ constrname_free, /* free data */
+ constrname_relink, /* relink data */
+ constrname_copy, /* copy data */
+ constrname_new_data, /* new data */
+ constrname_get_tars, /* get constraint targets */
+ constrname_flush_tars, /* flush constraint targets */
+ constrname_get_tarmat, /* get target matrix */
+ constrname_evaluate /* evaluate */
+};
+#endif
-/* stupid little cross product function, 0:x, 1:y, 2:z axes */
-static int basis_cross(int n, int m)
+/* This function should be used for the get_target_matrix member of all
+ * constraints that are not picky about what happens to their target matrix.
+ */
+static void default_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
{
- if(n-m == 1) return 1;
- if(n-m == -1) return -1;
- if(n-m == 2) return -1;
- if(n-m == -2) return 1;
- else return 0;
+ if (VALID_CONS_TARGET(ct))
+ constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space);
+ else if (ct)
+ Mat4One(ct->matrix);
}
-static void vectomat(float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
+/* This following macro should be used for all standard single-target *_get_tars functions
+ * to save typing and reduce maintainance woes.
+ * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
+ * really just to help this code easier to read)
+ */
+#define SINGLETARGET_GET_TARS(con, data, ct, list) \
+ { \
+ ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
+ \
+ ct->tar= data->tar; \
+ strcpy(ct->subtarget, data->subtarget); \
+ ct->space= con->tarspace; \
+ ct->flag= CONSTRAINT_TAR_TEMP; \
+ \
+ if (ct->tar) { \
+ if ((ct->tar->type==OB_ARMATURE) && (ct->subtarget[0])) ct->type = CONSTRAINT_OBTYPE_BONE; \
+ else if (ELEM(ct->tar->type, OB_MESH, OB_LATTICE) && (ct->subtarget[0])) ct->type = CONSTRAINT_OBTYPE_VERT; \
+ else ct->type = CONSTRAINT_OBTYPE_OBJECT; \
+ } \
+ \
+ BLI_addtail(list, ct); \
+ }
+
+/* This following macro should be used for all standard single-target *_get_tars functions
+ * to save typing and reduce maintainance woes. It does not do the subtarget related operations
+ * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
+ * really just to help this code easier to read)
+ */
+#define SINGLETARGETNS_GET_TARS(con, data, ct, list) \
+ { \
+ ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
+ \
+ ct->tar= data->tar; \
+ ct->space= con->tarspace; \
+ ct->flag= CONSTRAINT_TAR_TEMP; \
+ \
+ if (ct->tar) ct->type = CONSTRAINT_OBTYPE_OBJECT; \
+ \
+ BLI_addtail(list, ct); \
+ }
+
+/* This following macro should be used for all standard single-target *_flush_tars functions
+ * to save typing and reduce maintainance woes.
+ * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
+ * really just to help this code easier to read)
+ */
+#define SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy) \
+ { \
+ if (ct) { \
+ if (nocopy == 0) { \
+ data->tar= ct->tar; \
+ strcpy(data->subtarget, ct->subtarget); \
+ con->tarspace= ct->space; \
+ } \
+ \
+ BLI_freelistN(list); \
+ } \
+ }
+
+/* This following macro should be used for all standard single-target *_flush_tars functions
+ * to save typing and reduce maintainance woes. It does not do the subtarget related operations
+ * (Hopefully all compilers will be happy with the lines with just a space on them. Those are
+ * really just to help this code easier to read)
+ */
+#define SINGLETARGETNS_FLUSH_TARS(con, data, ct, list, nocopy) \
+ { \
+ if (ct) { \
+ if (nocopy == 0) { \
+ data->tar= ct->tar; \
+ con->tarspace= ct->space; \
+ } \
+ \
+ BLI_freelistN(list); \
+ } \
+ }
+
+/* --------- ChildOf Constraint ------------ */
+
+static void childof_new_data (void *cdata)
+{
+ bChildOfConstraint *data= (bChildOfConstraint *)cdata;
+
+ data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
+ CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
+ CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
+ Mat4One(data->invmat);
+}
+
+static void childof_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bChildOfConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void childof_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bChildOfConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void childof_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bChildOfConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ /* only evaluate if there is a target */
+ if (VALID_CONS_TARGET(ct)) {
+ float parmat[4][4], invmat[4][4], tempmat[4][4];
+ float loc[3], eul[3], size[3];
+ float loco[3], eulo[3], sizo[3];
+
+ /* get offset (parent-inverse) matrix */
+ Mat4CpyMat4(invmat, data->invmat);
+
+ /* extract components of both matrices */
+ VECCOPY(loc, ct->matrix[3]);
+ Mat4ToEul(ct->matrix, eul);
+ Mat4ToSize(ct->matrix, size);
+
+ VECCOPY(loco, invmat[3]);
+ Mat4ToEul(invmat, eulo);
+ Mat4ToSize(invmat, sizo);
+
+ /* disable channels not enabled */
+ if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
+ if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
+ if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
+ if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
+ if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
+ if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
+ if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
+ if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
+ if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
+
+ /* make new target mat and offset mat */
+ LocEulSizeToMat4(ct->matrix, loc, eul, size);
+ LocEulSizeToMat4(invmat, loco, eulo, sizo);
+
+ /* multiply target (parent matrix) by offset (parent inverse) to get
+ * the effect of the parent that will be exherted on the owner
+ */
+ Mat4MulMat4(parmat, invmat, ct->matrix);
+
+ /* now multiply the parent matrix by the owner matrix to get the
+ * the effect of this constraint (i.e. owner is 'parented' to parent)
+ */
+ Mat4CpyMat4(tempmat, cob->matrix);
+ Mat4MulMat4(cob->matrix, tempmat, parmat);
+ }
+}
+
+static bConstraintTypeInfo CTI_CHILDOF = {
+ CONSTRAINT_TYPE_CHILDOF, /* type */
+ sizeof(bChildOfConstraint), /* size */
+ "ChildOf", /* name */
+ "bChildOfConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ childof_new_data, /* new data */
+ childof_get_tars, /* get constraint targets */
+ childof_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get a target matrix */
+ childof_evaluate /* evaluate */
+};
+
+/* -------- TrackTo Constraint ------- */
+
+static void trackto_new_data (void *cdata)
+{
+ bTrackToConstraint *data= (bTrackToConstraint *)cdata;
+
+ data->reserved1 = TRACK_Y;
+ data->reserved2 = UP_Z;
+}
+
+static void trackto_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bTrackToConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void trackto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bTrackToConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+
+static int basis_cross (int n, int m)
+{
+ switch (n-m) {
+ case 1:
+ case -2:
+ return 1;
+
+ case -1:
+ case 2:
+ return -1;
+
+ default:
+ return 0;
+ }
+}
+
+static void vectomat (float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
{
float n[3];
float u[3]; /* vector specifying the up axis */
@@ -1332,17 +1034,16 @@ static void vectomat(float *vec, float *target_up, short axis, short upflag, sho
int right_index;
VecCopyf(n, vec);
- if(Normalize(n) == 0.0) {
+ if (Normalize(n) == 0.0) {
n[0] = 0.0;
n[1] = 0.0;
n[2] = 1.0;
}
- if(axis > 2) axis -= 3;
+ if (axis > 2) axis -= 3;
else VecMulf(n,-1);
/* n specifies the transformation of the track axis */
-
- if(flags & TARGET_Z_UP) {
+ if (flags & TARGET_Z_UP) {
/* target Z axis is the global up axis */
u[0] = target_up[0];
u[1] = target_up[1];
@@ -1360,7 +1061,7 @@ static void vectomat(float *vec, float *target_up, short axis, short upflag, sho
VecSubf(proj, u, proj); /* then onto the plane */
/* proj specifies the transformation of the up axis */
- if(Normalize(proj) == 0.0) { /* degenerate projection */
+ if (Normalize(proj) == 0.0) { /* degenerate projection */
proj[0] = 0.0;
proj[1] = 1.0;
proj[2] = 0.0;
@@ -1370,19 +1071,19 @@ static void vectomat(float *vec, float *target_up, short axis, short upflag, sho
Crossf(right, proj, n);
Normalize(right);
- if(axis != upflag) {
+ if (axis != upflag) {
right_index = 3 - axis - upflag;
- neg = (float) basis_cross(axis, upflag);
-
+ neg = (float)basis_cross(axis, upflag);
+
/* account for up direction, track direction */
m[right_index][0] = neg * right[0];
m[right_index][1] = neg * right[1];
m[right_index][2] = neg * right[2];
-
+
m[upflag][0] = proj[0];
m[upflag][1] = proj[1];
m[upflag][2] = proj[2];
-
+
m[axis][0] = n[0];
m[axis][1] = n[1];
m[axis][2] = n[2];
@@ -1397,1449 +1098,2209 @@ static void vectomat(float *vec, float *target_up, short axis, short upflag, sho
}
-/* called during solve_constraints */
-/* also for make_parent, to find correct inverse of "follow path" */
-/* warning: ownerdata is PoseChannel or Object */
-/* ctime is global time, uncorrected for local bsystem_time */
-short get_constraint_target_matrix (bConstraint *con, short ownertype, void *ownerdata, float mat[][4], float ctime)
+static void trackto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
- short valid=0;
+ bTrackToConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ if (VALID_CONS_TARGET(ct)) {
+ float size[3], vec[3];
+ float totmat[3][3];
+ float tmat[4][4];
+
+ /* Get size property, since ob->size is only the object's own relative size, not its global one */
+ Mat4ToSize(cob->matrix, size);
+
+ /* Clear the object's rotation */
+ cob->matrix[0][0]=size[0];
+ cob->matrix[0][1]=0;
+ cob->matrix[0][2]=0;
+ cob->matrix[1][0]=0;
+ cob->matrix[1][1]=size[1];
+ cob->matrix[1][2]=0;
+ cob->matrix[2][0]=0;
+ cob->matrix[2][1]=0;
+ cob->matrix[2][2]=size[2];
+
+ /* targetmat[2] instead of ownermat[2] is passed to vectomat
+ * for backwards compatability it seems... (Aligorith)
+ */
+ VecSubf(vec, cob->matrix[3], ct->matrix[3]);
+ vectomat(vec, ct->matrix[2],
+ (short)data->reserved1, (short)data->reserved2,
+ data->flags, totmat);
+
+ Mat4CpyMat4(tmat, cob->matrix);
+ Mat4MulMat34(cob->matrix, totmat, tmat);
+ }
+}
- switch (con->type) {
- case CONSTRAINT_TYPE_NULL:
- {
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_ACTION:
- {
- if (ownertype == TARGET_BONE) {
- extern void chan_calc_mat(bPoseChannel *chan);
- bActionConstraint *data = (bActionConstraint*)con->data;
- bPose *pose;
- bPoseChannel *pchan, *tchan;
- float tempmat[4][4], vec[3];
- float s, t;
- short axis;
-
- /* initialise return matrix */
- Mat4One(mat);
-
- /* only continue if there is a target */
- if (data->tar==NULL) return 0;
-
- /* get the transform matrix of the target */
- constraint_target_to_mat4(data->tar, data->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, con->tarspace); // FIXME: change these spaces
-
- /* determine where in transform range target is */
- /* data->type is mapped as follows for backwards compatability:
- * 00,01,02 - rotation (it used to be like this)
- * 10,11,12 - scaling
- * 20,21,22 - location
- */
- if (data->type < 10) {
- /* extract rotation (is in whatever space target should be in) */
- Mat4ToEul(tempmat, vec);
- vec[0] *= (float)(180.0/M_PI);
- vec[1] *= (float)(180.0/M_PI);
- vec[2] *= (float)(180.0/M_PI);
- axis= data->type;
- }
- else if (data->type < 20) {
- /* extract scaling (is in whatever space target should be in) */
- Mat4ToSize(tempmat, vec);
- axis= data->type - 10;
- }
- else {
- /* extract location */
- VECCOPY(vec, tempmat[3]);
- axis= data->type - 20;
- }
-
- /* Target defines the animation */
- s = (vec[axis]-data->min) / (data->max-data->min);
- CLAMP(s, 0, 1);
- t = ( s * (data->end-data->start)) + data->start;
-
- /* Get the appropriate information from the action, we make temp pose */
- pose = MEM_callocN(sizeof(bPose), "pose");
-
- pchan = ownerdata;
- tchan= verify_pose_channel(pose, pchan->name);
- extract_pose_from_action(pose, data->act, t);
-
- chan_calc_mat(tchan);
-
- Mat4CpyMat4(mat, tchan->chan_mat);
-
- /* Clean up */
- free_pose_channels(pose);
- MEM_freeN(pose);
- }
- }
- break;
- case CONSTRAINT_TYPE_LOCLIKE:
- {
- bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data;
- Object *ob= data->tar;
-
- if (data->tar) {
- if (data->tar->type==OB_ARMATURE && strlen(data->subtarget)) {
- /* Pose-Channels for the CopyLoc target are handled specially, so that
- * we can support using the bone-tip as an option.
- */
- bPoseChannel *pchan;
- float tmat[4][4];
-
- pchan = get_pose_channel(ob->pose, data->subtarget);
- if (pchan) {
- Mat4CpyMat4(tmat, pchan->pose_mat);
-
- if (data->flag & LOCLIKE_TIP) {
- VECCOPY(tmat[3], pchan->pose_tail);
- }
-
- Mat4MulMat4(mat, tmat, ob->obmat);
- }
- else
- Mat4CpyMat4(mat, ob->obmat);
-
- /* convert matrix space as required */
- constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- }
- else {
- /* get target matrix as is done normally for other constraints */
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- }
- valid=1;
- }
- else
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_ROTLIKE:
- {
- bRotateLikeConstraint *data;
- data = (bRotateLikeConstraint*)con->data;
-
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid=1;
- }
- else
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_SIZELIKE:
- {
- bSizeLikeConstraint *data;
- data = (bSizeLikeConstraint*)con->data;
-
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid=1;
- }
- else
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_MINMAX:
- {
- bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
-
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid=1;
+static bConstraintTypeInfo CTI_TRACKTO = {
+ CONSTRAINT_TYPE_TRACKTO, /* type */
+ sizeof(bTrackToConstraint), /* size */
+ "TrackTo", /* name */
+ "bTrackToConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ trackto_new_data, /* new data */
+ trackto_get_tars, /* get constraint targets */
+ trackto_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get target matrix */
+ trackto_evaluate /* evaluate */
+};
+
+/* --------- Inverse-Kinemetics --------- */
+
+static void kinematic_new_data (void *cdata)
+{
+ bKinematicConstraint *data= (bKinematicConstraint *)cdata;
+
+ data->weight= (float)1.0;
+ data->orientweight= (float)1.0;
+ data->iterations = 500;
+ data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
+}
+
+static void kinematic_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bKinematicConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void kinematic_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bKinematicConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void kinematic_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
+{
+ bKinematicConstraint *data= con->data;
+
+ if (VALID_CONS_TARGET(ct))
+ constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space);
+ else if (ct) {
+ if (data->flag & CONSTRAINT_IK_AUTO) {
+ Object *ob= cob->ob;
+
+ if (ob == NULL) {
+ Mat4One(ct->matrix);
}
- else
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_TRACKTO:
- {
- bTrackToConstraint *data;
- data = (bTrackToConstraint*)con->data;
-
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid=1;
+ else {
+ float vec[3];
+ /* move grabtarget into world space */
+ VECCOPY(vec, data->grabtarget);
+ Mat4MulVecfl(ob->obmat, vec);
+ Mat4CpyMat4(ct->matrix, ob->obmat);
+ VECCOPY(ct->matrix[3], vec);
}
- else
- Mat4One (mat);
}
- break;
- case CONSTRAINT_TYPE_KINEMATIC:
- {
- bKinematicConstraint *data;
- data = (bKinematicConstraint*)con->data;
-
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid=1;
- }
- else if (data->flag & CONSTRAINT_IK_AUTO) {
- Object *ob= (Object *)ownerdata;
-
- if (ob==NULL)
- Mat4One(mat);
- else {
- float vec[3];
- /* move grabtarget into world space */
- VECCOPY(vec, data->grabtarget);
- Mat4MulVecfl(ob->obmat, vec);
- Mat4CpyMat4(mat, ob->obmat);
- VECCOPY(mat[3], vec);
- }
- }
- else
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_LOCKTRACK:
- {
- bLockTrackConstraint *data;
- data = (bLockTrackConstraint*)con->data;
+ else
+ Mat4One(ct->matrix);
+ }
+}
+
+static bConstraintTypeInfo CTI_KINEMATIC = {
+ CONSTRAINT_TYPE_KINEMATIC, /* type */
+ sizeof(bKinematicConstraint), /* size */
+ "IK", /* name */
+ "bKinematicConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ kinematic_new_data, /* new data */
+ kinematic_get_tars, /* get constraint targets */
+ kinematic_flush_tars, /* flush constraint targets */
+ kinematic_get_tarmat, /* get target matrix */
+ NULL /* evaluate - solved as separate loop */
+};
+
+/* -------- Follow-Path Constraint ---------- */
+
+static void followpath_new_data (void *cdata)
+{
+ bFollowPathConstraint *data= (bFollowPathConstraint *)cdata;
+
+ data->trackflag = TRACK_Y;
+ data->upflag = UP_Z;
+ data->offset = 0;
+ data->followflag = 0;
+}
+
+static void followpath_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bFollowPathConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints without subtargets */
+ SINGLETARGETNS_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void followpath_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bFollowPathConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGETNS_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void followpath_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
+{
+ bFollowPathConstraint *data= con->data;
+
+ if (VALID_CONS_TARGET(ct)) {
+ Curve *cu= ct->tar->data;
+ float q[4], vec[4], dir[3], *quat, x1;
+ float totmat[4][4];
+ float curvetime;
+
+ Mat4One(totmat);
+ Mat4One(ct->matrix);
+
+ /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
+ * currently for paths to work it needs to go through the bevlist/displist system (ton)
+ */
+
+ /* only happens on reload file, but violates depsgraph still... fix! */
+ if (cu->path==NULL || cu->path->data==NULL)
+ makeDispListCurveTypes(ct->tar, 0);
+
+ if (cu->path && cu->path->data) {
+ curvetime= bsystem_time(ct->tar, (float)ctime, 0.0) - data->offset;
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid=1;
+ if (calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
+ curvetime /= cu->pathlen;
+ CLAMP(curvetime, 0.0, 1.0);
}
- else
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_FOLLOWPATH:
- {
- bFollowPathConstraint *data;
- data = (bFollowPathConstraint*)con->data;
- if (data->tar) {
- Curve *cu;
- float q[4], vec[4], dir[3], *quat, x1;
- float totmat[4][4];
- float curvetime;
-
- Mat4One(totmat);
- Mat4One(mat);
-
- cu= data->tar->data;
-
- /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
- currently for paths to work it needs to go through the bevlist/displist system (ton) */
-
- if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
- makeDispListCurveTypes(data->tar, 0);
- if (cu->path && cu->path->data) {
- curvetime= bsystem_time(data->tar, (float)ctime, 0.0) - data->offset;
+ if ( where_on_path(ct->tar, curvetime, vec, dir) ) {
+ if (data->followflag) {
+ quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
- if (calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
- curvetime /= cu->pathlen;
- CLAMP(curvetime, 0.0, 1.0);
- }
+ Normalize(dir);
+ q[0]= (float)cos(0.5*vec[3]);
+ x1= (float)sin(0.5*vec[3]);
+ q[1]= -x1*dir[0];
+ q[2]= -x1*dir[1];
+ q[3]= -x1*dir[2];
+ QuatMul(quat, q, quat);
- if (where_on_path(data->tar, curvetime, vec, dir) ) {
- if (data->followflag) {
- quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
-
- Normalize(dir);
- q[0]= (float)cos(0.5*vec[3]);
- x1= (float)sin(0.5*vec[3]);
- q[1]= -x1*dir[0];
- q[2]= -x1*dir[1];
- q[3]= -x1*dir[2];
- QuatMul(quat, q, quat);
-
- QuatToMat4(quat, totmat);
- }
- VECCOPY(totmat[3], vec);
-
- Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
- }
+ QuatToMat4(quat, totmat);
}
- valid=1;
+ VECCOPY(totmat[3], vec);
+
+ Mat4MulSerie(ct->matrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
- else
- Mat4One(mat);
}
- break;
- case CONSTRAINT_TYPE_STRETCHTO:
- {
- bStretchToConstraint *data;
- data = (bStretchToConstraint*)con->data;
+ }
+ else if (ct)
+ Mat4One(ct->matrix);
+}
+
+static void followpath_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bConstraintTarget *ct= targets->first;
+
+ /* only evaluate if there is a target */
+ if (VALID_CONS_TARGET(ct)) {
+ float obmat[4][4];
+ float size[3], obsize[3];
+
+ /* get Object local transform (loc/rot/size) to determine transformation from path */
+ //object_to_mat4(ob, obmat);
+ Mat4CpyMat4(obmat, cob->matrix); // FIXME!!!
+
+ /* get scaling of object before applying constraint */
+ Mat4ToSize(cob->matrix, size);
+
+ /* apply targetmat - containing location on path, and rotation */
+ Mat4MulSerie(cob->matrix, ct->matrix, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
+
+ /* un-apply scaling caused by path */
+ Mat4ToSize(cob->matrix, obsize);
+ if (obsize[0])
+ VecMulf(cob->matrix[0], size[0] / obsize[0]);
+ if (obsize[1])
+ VecMulf(cob->matrix[1], size[1] / obsize[1]);
+ if (obsize[2])
+ VecMulf(cob->matrix[2], size[2] / obsize[2]);
+ }
+}
+
+static bConstraintTypeInfo CTI_FOLLOWPATH = {
+ CONSTRAINT_TYPE_FOLLOWPATH, /* type */
+ sizeof(bFollowPathConstraint), /* size */
+ "Follow Path", /* name */
+ "bFollowPathConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ followpath_new_data, /* new data */
+ followpath_get_tars, /* get constraint targets */
+ followpath_flush_tars, /* flush constraint targets */
+ followpath_get_tarmat, /* get target matrix */
+ followpath_evaluate /* evaluate */
+};
+
+/* --------- Limit Location --------- */
+
+
+static void loclimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bLocLimitConstraint *data = con->data;
+
+ if (data->flag & LIMIT_XMIN) {
+ if (cob->matrix[3][0] < data->xmin)
+ cob->matrix[3][0] = data->xmin;
+ }
+ if (data->flag & LIMIT_XMAX) {
+ if (cob->matrix[3][0] > data->xmax)
+ cob->matrix[3][0] = data->xmax;
+ }
+ if (data->flag & LIMIT_YMIN) {
+ if (cob->matrix[3][1] < data->ymin)
+ cob->matrix[3][1] = data->ymin;
+ }
+ if (data->flag & LIMIT_YMAX) {
+ if (cob->matrix[3][1] > data->ymax)
+ cob->matrix[3][1] = data->ymax;
+ }
+ if (data->flag & LIMIT_ZMIN) {
+ if (cob->matrix[3][2] < data->zmin)
+ cob->matrix[3][2] = data->zmin;
+ }
+ if (data->flag & LIMIT_ZMAX) {
+ if (cob->matrix[3][2] > data->zmax)
+ cob->matrix[3][2] = data->zmax;
+ }
+}
+
+static bConstraintTypeInfo CTI_LOCLIMIT = {
+ CONSTRAINT_TYPE_LOCLIMIT, /* type */
+ sizeof(bLocLimitConstraint), /* size */
+ "Limit Location", /* name */
+ "bLocLimitConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ NULL, /* new data */
+ NULL, /* get constraint targets */
+ NULL, /* flush constraint targets */
+ NULL, /* get target matrix */
+ loclimit_evaluate /* evaluate */
+};
+
+/* -------- Limit Rotation --------- */
+
+static void rotlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bRotLimitConstraint *data = con->data;
+ float loc[3];
+ float eul[3];
+ float size[3];
+
+ VECCOPY(loc, cob->matrix[3]);
+ Mat4ToSize(cob->matrix, size);
+
+ Mat4ToEul(cob->matrix, eul);
+
+ /* eulers: radians to degrees! */
+ eul[0] = (eul[0] / M_PI * 180);
+ eul[1] = (eul[1] / M_PI * 180);
+ eul[2] = (eul[2] / M_PI * 180);
+
+ /* limiting of euler values... */
+ if (data->flag & LIMIT_XROT) {
+ if (eul[0] < data->xmin)
+ eul[0] = data->xmin;
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid = 1;
- }
- else
- Mat4One(mat);
- }
- break;
- case CONSTRAINT_TYPE_PYTHON:
- {
- bPythonConstraint *data;
- data = (bPythonConstraint*)con->data;
+ if (eul[0] > data->xmax)
+ eul[0] = data->xmax;
+ }
+ if (data->flag & LIMIT_YROT) {
+ if (eul[1] < data->ymin)
+ eul[1] = data->ymin;
- /* special exception for curves - depsgraph issues */
- if (data->tar && data->tar->type == OB_CURVE) {
- Curve *cu= data->tar->data;
-
- /* this check is to make sure curve objects get updated on file load correctly.*/
- if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
- makeDispListCurveTypes(data->tar, 0);
- }
+ if (eul[1] > data->ymax)
+ eul[1] = data->ymax;
+ }
+ if (data->flag & LIMIT_ZROT) {
+ if (eul[2] < data->zmin)
+ eul[2] = data->zmin;
+
+ if (eul[2] > data->zmax)
+ eul[2] = data->zmax;
+ }
+
+ /* eulers: degrees to radians ! */
+ eul[0] = (eul[0] / 180 * M_PI);
+ eul[1] = (eul[1] / 180 * M_PI);
+ eul[2] = (eul[2] / 180 * M_PI);
+
+ LocEulSizeToMat4(cob->matrix, loc, eul, size);
+}
+
+static bConstraintTypeInfo CTI_ROTLIMIT = {
+ CONSTRAINT_TYPE_ROTLIMIT, /* type */
+ sizeof(bRotLimitConstraint), /* size */
+ "Limit Rotation", /* name */
+ "bRotLimitConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ NULL, /* new data */
+ NULL, /* get constraint targets */
+ NULL, /* flush constraint targets */
+ NULL, /* get target matrix */
+ rotlimit_evaluate /* evaluate */
+};
+
+/* --------- Limit Scaling --------- */
+
+
+static void sizelimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bSizeLimitConstraint *data = con->data;
+ float obsize[3], size[3];
+
+ Mat4ToSize(cob->matrix, size);
+ Mat4ToSize(cob->matrix, obsize);
+
+ if (data->flag & LIMIT_XMIN) {
+ if (size[0] < data->xmin)
+ size[0] = data->xmin;
+ }
+ if (data->flag & LIMIT_XMAX) {
+ if (size[0] > data->xmax)
+ size[0] = data->xmax;
+ }
+ if (data->flag & LIMIT_YMIN) {
+ if (size[1] < data->ymin)
+ size[1] = data->ymin;
+ }
+ if (data->flag & LIMIT_YMAX) {
+ if (size[1] > data->ymax)
+ size[1] = data->ymax;
+ }
+ if (data->flag & LIMIT_ZMIN) {
+ if (size[2] < data->zmin)
+ size[2] = data->zmin;
+ }
+ if (data->flag & LIMIT_ZMAX) {
+ if (size[2] > data->zmax)
+ size[2] = data->zmax;
+ }
+
+ if (obsize[0])
+ VecMulf(cob->matrix[0], size[0]/obsize[0]);
+ if (obsize[1])
+ VecMulf(cob->matrix[1], size[1]/obsize[1]);
+ if (obsize[2])
+ VecMulf(cob->matrix[2], size[2]/obsize[2]);
+}
+
+static bConstraintTypeInfo CTI_SIZELIMIT = {
+ CONSTRAINT_TYPE_SIZELIMIT, /* type */
+ sizeof(bSizeLimitConstraint), /* size */
+ "Limit Scaling", /* name */
+ "bSizeLimitConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ NULL, /* new data */
+ NULL, /* get constraint targets */
+ NULL, /* flush constraint targets */
+ NULL, /* get target matrix */
+ sizelimit_evaluate /* evaluate */
+};
+
+/* ----------- Copy Location ------------- */
+
+static void loclike_new_data (void *cdata)
+{
+ bLocateLikeConstraint *data= (bLocateLikeConstraint *)cdata;
+
+ data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
+}
+
+static void loclike_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bLocateLikeConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void loclike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bLocateLikeConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void loclike_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
+{
+ bLocateLikeConstraint *data = con->data;
+
+ if (VALID_CONS_TARGET(ct)) {
+ if (ct->tar->type==OB_ARMATURE && strlen(ct->subtarget)) {
+ /* Pose-Channels for the CopyLoc target are handled specially, so that
+ * we can support using the bone-tip as an option.
+ */
+ bPoseChannel *pchan;
+ float tmat[4][4];
- /* if the script doesn't set the target matrix for any reason, fall back to standard methods */
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- if (BPY_pyconstraint_targets(data, mat) >= 1) {
- valid = 1;
+ pchan = get_pose_channel(ct->tar->pose, ct->subtarget);
+ if (pchan) {
+ Mat4CpyMat4(tmat, pchan->pose_mat);
+
+ if (data->flag & LOCLIKE_TIP) {
+ VECCOPY(tmat[3], pchan->pose_tail);
}
+
+ Mat4MulMat4(ct->matrix, tmat, ct->tar->obmat);
}
- if (!valid)
- Mat4One(mat);
+ else
+ Mat4CpyMat4(ct->matrix, ct->tar->obmat);
+
+ /* convert matrix space as required */
+ constraint_mat_convertspace(ct->tar, pchan, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space);
}
- break;
- case CONSTRAINT_TYPE_CLAMPTO:
- {
- bClampToConstraint *data;
- data = (bClampToConstraint*)con->data;
+ else {
+ /* get target matrix as is done normally for other constraints */
+ constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space);
+ }
+ }
+ else if (ct)
+ Mat4One(ct->matrix);
+}
+
+static void loclike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bLocateLikeConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ if (VALID_CONS_TARGET(ct)) {
+ float offset[3] = {0.0f, 0.0f, 0.0f};
+
+ if (data->flag & LOCLIKE_OFFSET)
+ VECCOPY(offset, cob->matrix[3]);
- if (data->tar) {
- Curve *cu= data->tar->data;
-
- /* note; when creating constraints that follow path, the curve gets the CU_PATH set now,
- currently for paths to work it needs to go through the bevlist/displist system (ton) */
-
- if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
- makeDispListCurveTypes(data->tar, 0);
-
- valid = 1;
- }
+ if (data->flag & LOCLIKE_X) {
+ cob->matrix[3][0] = ct->matrix[3][0];
- Mat4One(mat);
+ if (data->flag & LOCLIKE_X_INVERT) cob->matrix[3][0] *= -1;
+ cob->matrix[3][0] += offset[0];
}
- break;
- case CONSTRAINT_TYPE_CHILDOF:
- {
- bChildOfConstraint *data;
- data= (bChildOfConstraint *)con->data;
+ if (data->flag & LOCLIKE_Y) {
+ cob->matrix[3][1] = ct->matrix[3][1];
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid = 1;
- }
- else
- Mat4One(mat);
+ if (data->flag & LOCLIKE_Y_INVERT) cob->matrix[3][1] *= -1;
+ cob->matrix[3][1] += offset[1];
}
- break;
- case CONSTRAINT_TYPE_TRANSFORM:
- {
- bTransformConstraint *data;
- data= (bTransformConstraint *)con->data;
+ if (data->flag & LOCLIKE_Z) {
+ cob->matrix[3][2] = ct->matrix[3][2];
- if (data->tar) {
- constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
- valid = 1;
- }
- else
- Mat4One(mat);
+ if (data->flag & LOCLIKE_Z_INVERT) cob->matrix[3][2] *= -1;
+ cob->matrix[3][2] += offset[2];
}
- break;
-
- default:
- Mat4One(mat);
- break;
}
+}
- return valid;
+static bConstraintTypeInfo CTI_LOCLIKE = {
+ CONSTRAINT_TYPE_LOCLIKE, /* type */
+ sizeof(bLocateLikeConstraint), /* size */
+ "Copy Location", /* name */
+ "bLocateLikeConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ loclike_new_data, /* new data */
+ loclike_get_tars, /* get constraint targets */
+ loclike_flush_tars, /* flush constraint targets */
+ loclike_get_tarmat, /* get target matrix */
+ loclike_evaluate /* evaluate */
+};
+
+/* ----------- Copy Rotation ------------- */
+
+static void rotlike_new_data (void *cdata)
+{
+ bRotateLikeConstraint *data= (bRotateLikeConstraint *)cdata;
+
+ data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
}
-/* ---------------------------------------------- Constraint Evaluation ------------------------------------------------- */
+static void rotlike_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bRotateLikeConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
-/* This is only called during solve_constraints to solve a particular constraint.
- * It works on ownermat, and uses targetmat to help accomplish its tasks.
- */
-static void evaluate_constraint (bConstraint *constraint, float ownermat[][4], float targetmat[][4])
+static void rotlike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
- if (constraint == NULL || constraint->data == NULL)
- return;
+ if (con && list) {
+ bRotateLikeConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
- switch (constraint->type) {
- case CONSTRAINT_TYPE_NULL:
- case CONSTRAINT_TYPE_KINEMATIC: /* removed */
- break;
- case CONSTRAINT_TYPE_PYTHON:
- {
- bPythonConstraint *data;
-
- data = constraint->data;
- BPY_pyconstraint_eval(data, ownermat, targetmat);
- }
- break;
- case CONSTRAINT_TYPE_ACTION:
- {
- bActionConstraint *data;
- float temp[4][4];
-
- data = constraint->data;
- Mat4CpyMat4(temp, ownermat);
-
- Mat4MulMat4(ownermat, targetmat, temp);
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void rotlike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bRotateLikeConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ if (VALID_CONS_TARGET(ct)) {
+ float loc[3];
+ float eul[3], obeul[3];
+ float size[3];
+
+ VECCOPY(loc, cob->matrix[3]);
+ Mat4ToSize(cob->matrix, size);
+
+ Mat4ToEul(ct->matrix, eul);
+ Mat4ToEul(cob->matrix, obeul);
+
+ if ((data->flag & ROTLIKE_X)==0) {
+ eul[0] = obeul[0];
}
- break;
- case CONSTRAINT_TYPE_LOCLIKE:
- {
- bLocateLikeConstraint *data;
- float offset[3] = {0.0f, 0.0f, 0.0f};
+ else if (data->flag & ROTLIKE_X_INVERT) {
+ eul[0] *= -1;
+ }
+
+ if ((data->flag & ROTLIKE_Y)==0) {
+ eul[1] = obeul[1];
+ }
+ else if (data->flag & ROTLIKE_Y_INVERT) {
+ eul[1] *= -1;
+ }
+
+ if ((data->flag & ROTLIKE_Z)==0) {
+ eul[2] = obeul[2];
+ }
+ else if (data->flag & ROTLIKE_Z_INVERT) {
+ eul[2] *= -1;
+ }
+
+ compatible_eul(eul, obeul);
+ LocEulSizeToMat4(cob->matrix, loc, eul, size);
+ }
+}
- data = constraint->data;
-
- if (data->flag & LOCLIKE_OFFSET)
- VECCOPY(offset, ownermat[3]);
+static bConstraintTypeInfo CTI_ROTLIKE = {
+ CONSTRAINT_TYPE_ROTLIKE, /* type */
+ sizeof(bRotateLikeConstraint), /* size */
+ "Copy Rotation", /* name */
+ "bRotateLikeConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ rotlike_new_data, /* new data */
+ rotlike_get_tars, /* get constraint targets */
+ rotlike_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get target matrix */
+ rotlike_evaluate /* evaluate */
+};
+
+/* ---------- Copy Scaling ---------- */
+
+static void sizelike_new_data (void *cdata)
+{
+ bSizeLikeConstraint *data= (bSizeLikeConstraint *)cdata;
+
+ data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
+}
+
+static void sizelike_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bSizeLikeConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void sizelike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bSizeLikeConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void sizelike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bSizeLikeConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ if (VALID_CONS_TARGET(ct)) {
+ float obsize[3], size[3];
+
+ Mat4ToSize(ct->matrix, size);
+ Mat4ToSize(cob->matrix, obsize);
+
+ if ((data->flag & SIZELIKE_X) && obsize[0] != 0)
+ VecMulf(cob->matrix[0], size[0] / obsize[0]);
+ if ((data->flag & SIZELIKE_Y) && obsize[1] != 0)
+ VecMulf(cob->matrix[1], size[1] / obsize[1]);
+ if ((data->flag & SIZELIKE_Z) && obsize[2] != 0)
+ VecMulf(cob->matrix[2], size[2] / obsize[2]);
+ }
+}
+
+static bConstraintTypeInfo CTI_SIZELIKE = {
+ CONSTRAINT_TYPE_SIZELIKE, /* type */
+ sizeof(bSizeLikeConstraint), /* size */
+ "Copy Scale", /* name */
+ "bSizeLikeConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ sizelike_new_data, /* new data */
+ sizelike_get_tars, /* get constraint targets */
+ sizelike_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get target matrix */
+ sizelike_evaluate /* evaluate */
+};
+
+/* ----------- Python Constraint -------------- */
+
+static void pycon_free (bConstraint *con)
+{
+ bPythonConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* id-properties */
+ IDP_FreeProperty(data->prop);
+ MEM_freeN(data->prop);
+
+ /* multiple targets */
+ while ( (ct = data->targets.first) )
+ MEM_freeN(ct);
+}
+
+static void pycon_relink (bConstraint *con)
+{
+ bPythonConstraint *data= con->data;
+
+ ID_NEW(data->text);
+}
+
+static void pycon_copy (bConstraint *con, bConstraint *srccon)
+{
+ bPythonConstraint *pycon = (bPythonConstraint *)con->data;
+ bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
+
+ pycon->prop = IDP_CopyProperty(opycon->prop);
+ duplicatelist(&pycon->targets, &opycon->targets);
+}
+
+static void pycon_new_data (void *cdata)
+{
+ bPythonConstraint *data= (bPythonConstraint *)cdata;
+
+ /* everything should be set correctly by calloc, except for the prop->type constant.*/
+ data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
+ data->prop->type = IDP_GROUP;
+}
+
+static void pycon_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bPythonConstraint *data= con->data;
+
+ list->first = data->targets.first;
+ list->last = data->targets.last;
+ }
+}
+
+/* Whether this approach is maintained remains to be seen (aligorith) */
+static void pycon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
+{
+ bPythonConstraint *data= con->data;
+
+ if (VALID_CONS_TARGET(ct)) {
+ /* special exception for curves - depsgraph issues */
+ if (ct->tar->type == OB_CURVE) {
+ Curve *cu= ct->tar->data;
- if (data->flag & LOCLIKE_X) {
- ownermat[3][0] = targetmat[3][0];
-
- if(data->flag & LOCLIKE_X_INVERT) ownermat[3][0] *= -1;
- ownermat[3][0] += offset[0];
- }
- if (data->flag & LOCLIKE_Y) {
- ownermat[3][1] = targetmat[3][1];
-
- if(data->flag & LOCLIKE_Y_INVERT) ownermat[3][1] *= -1;
- ownermat[3][1] += offset[1];
- }
- if (data->flag & LOCLIKE_Z) {
- ownermat[3][2] = targetmat[3][2];
-
- if(data->flag & LOCLIKE_Z_INVERT) ownermat[3][2] *= -1;
- ownermat[3][2] += offset[2];
- }
+ /* this check is to make sure curve objects get updated on file load correctly.*/
+ if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
+ makeDispListCurveTypes(ct->tar, 0);
}
- break;
- case CONSTRAINT_TYPE_ROTLIKE:
- {
- bRotateLikeConstraint *data;
- float loc[3];
- float eul[3], obeul[3];
- float size[3];
-
- data = constraint->data;
-
- VECCOPY(loc, ownermat[3]);
- Mat4ToSize(ownermat, size);
-
- Mat4ToEul(targetmat, eul);
- Mat4ToEul(ownermat, obeul);
-
- if ((data->flag & ROTLIKE_X)==0) {
- eul[0] = obeul[0];
- }
- else if (data->flag & ROTLIKE_X_INVERT) {
- eul[0] *= -1;
- }
-
- if ((data->flag & ROTLIKE_Y)==0) {
- eul[1] = obeul[1];
- }
- else if (data->flag & ROTLIKE_Y_INVERT) {
- eul[1] *= -1;
- }
-
- if ((data->flag & ROTLIKE_Z)==0) {
- eul[2] = obeul[2];
- }
- else if (data->flag & ROTLIKE_Z_INVERT) {
- eul[2] *= -1;
- }
-
- compatible_eul(eul, obeul);
- LocEulSizeToMat4(ownermat, loc, eul, size);
+
+ /* firstly calculate the matrix the normal way, then let the py-function override
+ * this matrix if it needs to do so
+ */
+ constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space);
+ BPY_pyconstraint_target(data, ct);
+ }
+ else if (ct)
+ Mat4One(ct->matrix);
+}
+
+static void pycon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bPythonConstraint *data= con->data;
+
+/* currently removed, until I this can be re-implemented for multiple targets */
+#if 0
+ /* Firstly, run the 'driver' function which has direct access to the objects involved
+ * Technically, this is potentially dangerous as users may abuse this and cause dependency-problems,
+ * but it also allows certain 'clever' rigging hacks to work.
+ */
+ BPY_pyconstraint_driver(data, cob, targets);
+#endif
+
+ /* Now, run the actual 'constraint' function, which should only access the matrices */
+ BPY_pyconstraint_eval(data, cob, targets);
+}
+
+static bConstraintTypeInfo CTI_PYTHON = {
+ CONSTRAINT_TYPE_PYTHON, /* type */
+ sizeof(bPythonConstraint), /* size */
+ "Script", /* name */
+ "bPythonConstraint", /* struct name */
+ pycon_free, /* free data */
+ pycon_relink, /* relink data */
+ pycon_copy, /* copy data */
+ pycon_new_data, /* new data */
+ pycon_get_tars, /* get constraint targets */
+ NULL, /* flush constraint targets */
+ pycon_get_tarmat, /* get target matrix */
+ pycon_evaluate /* evaluate */
+};
+
+/* -------- Action Constraint ----------- */
+
+static void actcon_relink (bConstraint *con)
+{
+ bActionConstraint *data= con->data;
+ ID_NEW(data->act);
+}
+
+static void actcon_new_data (void *cdata)
+{
+ bActionConstraint *data= (bActionConstraint *)cdata;
+
+ /* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
+ data->type = 20;
+}
+
+static void actcon_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bActionConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void actcon_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bActionConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void actcon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
+{
+ extern void chan_calc_mat(bPoseChannel *chan);
+ bActionConstraint *data = con->data;
+
+ if (VALID_CONS_TARGET(ct)) {
+ bPose *pose;
+ bPoseChannel *pchan, *tchan;
+ float tempmat[4][4], vec[3];
+ float s, t;
+ short axis;
+
+ /* initialise return matrix */
+ Mat4One(ct->matrix);
+
+ /* currently, only pose-channels are supported owners for action constraints, as
+ * the method for extracting the pose from the actions is currently hardcoded for
+ * poses... this may change in the future
+ */
+ if (cob->type != CONSTRAINT_OBTYPE_BONE)
+ return;
+
+ /* get the transform matrix of the target */
+ constraint_target_to_mat4(ct->tar, ct->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, ct->space);
+
+ /* determine where in transform range target is */
+ /* data->type is mapped as follows for backwards compatability:
+ * 00,01,02 - rotation (it used to be like this)
+ * 10,11,12 - scaling
+ * 20,21,22 - location
+ */
+ if (data->type < 10) {
+ /* extract rotation (is in whatever space target should be in) */
+ Mat4ToEul(tempmat, vec);
+ vec[0] *= (float)(180.0/M_PI);
+ vec[1] *= (float)(180.0/M_PI);
+ vec[2] *= (float)(180.0/M_PI);
+ axis= data->type;
+ }
+ else if (data->type < 20) {
+ /* extract scaling (is in whatever space target should be in) */
+ Mat4ToSize(tempmat, vec);
+ axis= data->type - 10;
+ }
+ else {
+ /* extract location */
+ VECCOPY(vec, tempmat[3]);
+ axis= data->type - 20;
}
- break;
- case CONSTRAINT_TYPE_SIZELIKE:
- {
- bSizeLikeConstraint *data;
- float obsize[3], size[3];
-
- data = constraint->data;
-
- Mat4ToSize(targetmat, size);
- Mat4ToSize(ownermat, obsize);
-
- if ((data->flag & SIZELIKE_X) && obsize[0] != 0)
- VecMulf(ownermat[0], size[0] / obsize[0]);
- if ((data->flag & SIZELIKE_Y) && obsize[1] != 0)
- VecMulf(ownermat[1], size[1] / obsize[1]);
- if ((data->flag & SIZELIKE_Z) && obsize[2] != 0)
- VecMulf(ownermat[2], size[2] / obsize[2]);
- }
- break;
- case CONSTRAINT_TYPE_MINMAX:
+
+ /* Target defines the animation */
+ s = (vec[axis]-data->min) / (data->max-data->min);
+ CLAMP(s, 0, 1);
+ t = ( s * (data->end-data->start)) + data->start;
+
+ /* Get the appropriate information from the action */
+ /* a temporary pose is made for this...
+ * TODO: extend this to objects too
+ */
+ pose = MEM_callocN(sizeof(bPose), "pose");
+
+ pchan = cob->pchan;
+ tchan= verify_pose_channel(pose, pchan->name);
+ extract_pose_from_action(pose, data->act, t);
+
+ chan_calc_mat(tchan);
+
+ Mat4CpyMat4(ct->matrix, tchan->chan_mat);
+
+ /* Clean up */
+ free_pose_channels(pose);
+ MEM_freeN(pose);
+ }
+}
+
+static void actcon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bConstraintTarget *ct= targets->first;
+
+ if (VALID_CONS_TARGET(ct)) {
+ float temp[4][4];
+
+ /* Nice and simple... we just need to multiply the matrices, as the get_target_matrix
+ * function has already taken care of everything else.
+ */
+ Mat4CpyMat4(temp, cob->matrix);
+ Mat4MulMat4(cob->matrix, ct->matrix, temp);
+ }
+}
+
+static bConstraintTypeInfo CTI_ACTION = {
+ CONSTRAINT_TYPE_ACTION, /* type */
+ sizeof(bActionConstraint), /* size */
+ "Action", /* name */
+ "bActionConstraint", /* struct name */
+ NULL, /* free data */
+ actcon_relink, /* relink data */
+ NULL, /* copy data */
+ actcon_new_data, /* new data */
+ actcon_get_tars, /* get constraint targets */
+ actcon_flush_tars, /* flush constraint targets */
+ actcon_get_tarmat, /* get target matrix */
+ actcon_evaluate /* evaluate */
+};
+
+/* --------- Locked Track ---------- */
+
+static void locktrack_new_data (void *cdata)
+{
+ bLockTrackConstraint *data= (bLockTrackConstraint *)cdata;
+
+ data->trackflag = TRACK_Y;
+ data->lockflag = LOCK_Z;
+}
+
+static void locktrack_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bLockTrackConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void locktrack_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bLockTrackConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void locktrack_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bLockTrackConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ if (VALID_CONS_TARGET(ct)) {
+ float vec[3],vec2[3];
+ float totmat[3][3];
+ float tmpmat[3][3];
+ float invmat[3][3];
+ float tmat[4][4];
+ float mdet;
+
+ /* Vector object -> target */
+ VecSubf(vec, ct->matrix[3], cob->matrix[3]);
+ switch (data->lockflag){
+ case LOCK_X: /* LOCK X */
{
- bMinMaxConstraint *data;
- float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
- float val1, val2;
- int index;
-
- data = constraint->data;
-
- Mat4CpyMat4(obmat, ownermat);
- Mat4CpyMat4(tarmat, targetmat);
-
- if (data->flag & MINMAX_USEROT) {
- /* take rotation of target into account by doing the transaction in target's localspace */
- Mat4Invert(imat, tarmat);
- Mat4MulMat4(tmat, obmat, imat);
- Mat4CpyMat4(obmat, tmat);
- Mat4One(tarmat);
- }
-
- switch (data->minmaxflag) {
- case TRACK_Z:
- val1 = tarmat[3][2];
- val2 = obmat[3][2]-data->offset;
- index = 2;
- break;
- case TRACK_Y:
- val1 = tarmat[3][1];
- val2 = obmat[3][1]-data->offset;
- index = 1;
- break;
- case TRACK_X:
- val1 = tarmat[3][0];
- val2 = obmat[3][0]-data->offset;
- index = 0;
- break;
- case TRACK_nZ:
- val2 = tarmat[3][2];
- val1 = obmat[3][2]-data->offset;
- index = 2;
- break;
- case TRACK_nY:
- val2 = tarmat[3][1];
- val1 = obmat[3][1]-data->offset;
- index = 1;
- break;
- case TRACK_nX:
- val2 = tarmat[3][0];
- val1 = obmat[3][0]-data->offset;
- index = 0;
- break;
- default:
- return;
- }
-
- if (val1 > val2) {
- obmat[3][index] = tarmat[3][index] + data->offset;
- if (data->flag & MINMAX_STICKY) {
- if (data->flag & MINMAX_STUCK) {
- VECCOPY(obmat[3], data->cache);
- }
- else {
- VECCOPY(data->cache, obmat[3]);
- data->flag |= MINMAX_STUCK;
- }
+ switch (data->trackflag) {
+ case TRACK_Y: /* LOCK X TRACK Y */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[0]);
+ VecSubf(totmat[1], vec, vec2);
+ Normalize(totmat[1]);
+
+ /* the x axis is fixed */
+ totmat[0][0] = cob->matrix[0][0];
+ totmat[0][1] = cob->matrix[0][1];
+ totmat[0][2] = cob->matrix[0][2];
+ Normalize(totmat[0]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[2], totmat[0], totmat[1]);
}
- if (data->flag & MINMAX_USEROT) {
- /* get out of localspace */
- Mat4MulMat4(tmat, obmat, targetmat);
- Mat4CpyMat4(ownermat, tmat);
- }
- else {
- VECCOPY(ownermat[3], obmat[3]);
+ break;
+ case TRACK_Z: /* LOCK X TRACK Z */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[0]);
+ VecSubf(totmat[2], vec, vec2);
+ Normalize(totmat[2]);
+
+ /* the x axis is fixed */
+ totmat[0][0] = cob->matrix[0][0];
+ totmat[0][1] = cob->matrix[0][1];
+ totmat[0][2] = cob->matrix[0][2];
+ Normalize(totmat[0]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[1], totmat[2], totmat[0]);
}
- }
- else {
- data->flag &= ~MINMAX_STUCK;
+ break;
+ case TRACK_nY: /* LOCK X TRACK -Y */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[0]);
+ VecSubf(totmat[1], vec, vec2);
+ Normalize(totmat[1]);
+ VecMulf(totmat[1],-1);
+
+ /* the x axis is fixed */
+ totmat[0][0] = cob->matrix[0][0];
+ totmat[0][1] = cob->matrix[0][1];
+ totmat[0][2] = cob->matrix[0][2];
+ Normalize(totmat[0]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[2], totmat[0], totmat[1]);
+ }
+ break;
+ case TRACK_nZ: /* LOCK X TRACK -Z */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[0]);
+ VecSubf(totmat[2], vec, vec2);
+ Normalize(totmat[2]);
+ VecMulf(totmat[2],-1);
+
+ /* the x axis is fixed */
+ totmat[0][0] = cob->matrix[0][0];
+ totmat[0][1] = cob->matrix[0][1];
+ totmat[0][2] = cob->matrix[0][2];
+ Normalize(totmat[0]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[1], totmat[2], totmat[0]);
+ }
+ break;
+ default:
+ {
+ totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
+ totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
+ totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
+ }
+ break;
}
}
- break;
- case CONSTRAINT_TYPE_TRACKTO:
+ break;
+ case LOCK_Y: /* LOCK Y */
{
- bTrackToConstraint *data;
- float size[3], vec[3];
- float totmat[3][3];
- float tmat[4][4];
-
- data = constraint->data;
-
- if (data->tar) {
- /* Get size property, since ob->size is only the object's own relative size, not its global one */
- Mat4ToSize(ownermat, size);
-
- /* Clear the object's rotation */
- ownermat[0][0]=size[0];
- ownermat[0][1]=0;
- ownermat[0][2]=0;
- ownermat[1][0]=0;
- ownermat[1][1]=size[1];
- ownermat[1][2]=0;
- ownermat[2][0]=0;
- ownermat[2][1]=0;
- ownermat[2][2]=size[2];
-
- /* targetmat[2] instead of ownermat[2] is passed to vectomat
- * for backwards compatability it seems... (Aligorith)
- */
- VecSubf(vec, ownermat[3], targetmat[3]);
- vectomat(vec, targetmat[2],
- (short)data->reserved1, (short)data->reserved2,
- data->flags, totmat);
-
- Mat4CpyMat4(tmat, ownermat);
- Mat4MulMat34(ownermat, totmat, tmat);
+ switch (data->trackflag) {
+ case TRACK_X: /* LOCK Y TRACK X */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[1]);
+ VecSubf(totmat[0], vec, vec2);
+ Normalize(totmat[0]);
+
+ /* the y axis is fixed */
+ totmat[1][0] = cob->matrix[1][0];
+ totmat[1][1] = cob->matrix[1][1];
+ totmat[1][2] = cob->matrix[1][2];
+ Normalize(totmat[1]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[2], totmat[0], totmat[1]);
+ }
+ break;
+ case TRACK_Z: /* LOCK Y TRACK Z */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[1]);
+ VecSubf(totmat[2], vec, vec2);
+ Normalize(totmat[2]);
+
+ /* the y axis is fixed */
+ totmat[1][0] = cob->matrix[1][0];
+ totmat[1][1] = cob->matrix[1][1];
+ totmat[1][2] = cob->matrix[1][2];
+ Normalize(totmat[1]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[0], totmat[1], totmat[2]);
+ }
+ break;
+ case TRACK_nX: /* LOCK Y TRACK -X */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[1]);
+ VecSubf(totmat[0], vec, vec2);
+ Normalize(totmat[0]);
+ VecMulf(totmat[0],-1);
+
+ /* the y axis is fixed */
+ totmat[1][0] = cob->matrix[1][0];
+ totmat[1][1] = cob->matrix[1][1];
+ totmat[1][2] = cob->matrix[1][2];
+ Normalize(totmat[1]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[2], totmat[0], totmat[1]);
+ }
+ break;
+ case TRACK_nZ: /* LOCK Y TRACK -Z */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[1]);
+ VecSubf(totmat[2], vec, vec2);
+ Normalize(totmat[2]);
+ VecMulf(totmat[2],-1);
+
+ /* the y axis is fixed */
+ totmat[1][0] = cob->matrix[1][0];
+ totmat[1][1] = cob->matrix[1][1];
+ totmat[1][2] = cob->matrix[1][2];
+ Normalize(totmat[1]);
+
+ /* the z axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[0], totmat[1], totmat[2]);
+ }
+ break;
+ default:
+ {
+ totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
+ totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
+ totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
+ }
+ break;
}
}
- break;
- case CONSTRAINT_TYPE_LOCKTRACK:
+ break;
+ case LOCK_Z: /* LOCK Z */
{
- bLockTrackConstraint *data;
- float vec[3],vec2[3];
- float totmat[3][3];
- float tmpmat[3][3];
- float invmat[3][3];
- float tmat[4][4];
- float mdet;
-
- data = constraint->data;
-
- if (data->tar) {
- /* Vector object -> target */
- VecSubf(vec, targetmat[3], ownermat[3]);
- switch (data->lockflag){
- case LOCK_X: /* LOCK X */
+ switch (data->trackflag) {
+ case TRACK_X: /* LOCK Z TRACK X */
{
- switch (data->trackflag) {
- case TRACK_Y: /* LOCK X TRACK Y */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[0]);
- VecSubf(totmat[1], vec, vec2);
- Normalize(totmat[1]);
-
- /* the x axis is fixed */
- totmat[0][0] = ownermat[0][0];
- totmat[0][1] = ownermat[0][1];
- totmat[0][2] = ownermat[0][2];
- Normalize(totmat[0]);
-
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[2], totmat[0], totmat[1]);
- }
- break;
- case TRACK_Z: /* LOCK X TRACK Z */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[0]);
- VecSubf(totmat[2], vec, vec2);
- Normalize(totmat[2]);
-
- /* the x axis is fixed */
- totmat[0][0] = ownermat[0][0];
- totmat[0][1] = ownermat[0][1];
- totmat[0][2] = ownermat[0][2];
- Normalize(totmat[0]);
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[2]);
+ VecSubf(totmat[0], vec, vec2);
+ Normalize(totmat[0]);
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[1], totmat[2], totmat[0]);
- }
- break;
- case TRACK_nY: /* LOCK X TRACK -Y */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[0]);
- VecSubf(totmat[1], vec, vec2);
- Normalize(totmat[1]);
- VecMulf(totmat[1],-1);
-
- /* the x axis is fixed */
- totmat[0][0] = ownermat[0][0];
- totmat[0][1] = ownermat[0][1];
- totmat[0][2] = ownermat[0][2];
- Normalize(totmat[0]);
-
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[2], totmat[0], totmat[1]);
- }
- break;
- case TRACK_nZ: /* LOCK X TRACK -Z */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[0]);
- VecSubf(totmat[2], vec, vec2);
- Normalize(totmat[2]);
- VecMulf(totmat[2],-1);
-
- /* the x axis is fixed */
- totmat[0][0] = ownermat[0][0];
- totmat[0][1] = ownermat[0][1];
- totmat[0][2] = ownermat[0][2];
- Normalize(totmat[0]);
-
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[1], totmat[2], totmat[0]);
- }
- break;
- default:
- {
- totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
- totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
- totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
- }
- break;
- }
+ /* the z axis is fixed */
+ totmat[2][0] = cob->matrix[2][0];
+ totmat[2][1] = cob->matrix[2][1];
+ totmat[2][2] = cob->matrix[2][2];
+ Normalize(totmat[2]);
+
+ /* the x axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
- case LOCK_Y: /* LOCK Y */
+ case TRACK_Y: /* LOCK Z TRACK Y */
{
- switch (data->trackflag) {
- case TRACK_X: /* LOCK Y TRACK X */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[1]);
- VecSubf(totmat[0], vec, vec2);
- Normalize(totmat[0]);
-
- /* the y axis is fixed */
- totmat[1][0] = ownermat[1][0];
- totmat[1][1] = ownermat[1][1];
- totmat[1][2] = ownermat[1][2];
- Normalize(totmat[1]);
-
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[2], totmat[0], totmat[1]);
- }
- break;
- case TRACK_Z: /* LOCK Y TRACK Z */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[1]);
- VecSubf(totmat[2], vec, vec2);
- Normalize(totmat[2]);
-
- /* the y axis is fixed */
- totmat[1][0] = ownermat[1][0];
- totmat[1][1] = ownermat[1][1];
- totmat[1][2] = ownermat[1][2];
- Normalize(totmat[1]);
-
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[0], totmat[1], totmat[2]);
- }
- break;
- case TRACK_nX: /* LOCK Y TRACK -X */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[1]);
- VecSubf(totmat[0], vec, vec2);
- Normalize(totmat[0]);
- VecMulf(totmat[0],-1);
-
- /* the y axis is fixed */
- totmat[1][0] = ownermat[1][0];
- totmat[1][1] = ownermat[1][1];
- totmat[1][2] = ownermat[1][2];
- Normalize(totmat[1]);
-
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[2], totmat[0], totmat[1]);
- }
- break;
- case TRACK_nZ: /* LOCK Y TRACK -Z */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[1]);
- VecSubf(totmat[2], vec, vec2);
- Normalize(totmat[2]);
- VecMulf(totmat[2],-1);
-
- /* the y axis is fixed */
- totmat[1][0] = ownermat[1][0];
- totmat[1][1] = ownermat[1][1];
- totmat[1][2] = ownermat[1][2];
- Normalize(totmat[1]);
-
- /* the z axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[0], totmat[1], totmat[2]);
- }
- break;
- default:
- {
- totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
- totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
- totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
- }
- break;
- }
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[2]);
+ VecSubf(totmat[1], vec, vec2);
+ Normalize(totmat[1]);
+
+ /* the z axis is fixed */
+ totmat[2][0] = cob->matrix[2][0];
+ totmat[2][1] = cob->matrix[2][1];
+ totmat[2][2] = cob->matrix[2][2];
+ Normalize(totmat[2]);
+
+ /* the x axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
- case LOCK_Z: /* LOCK Z */
+ case TRACK_nX: /* LOCK Z TRACK -X */
{
- switch (data->trackflag) {
- case TRACK_X: /* LOCK Z TRACK X */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[2]);
- VecSubf(totmat[0], vec, vec2);
- Normalize(totmat[0]);
-
- /* the z axis is fixed */
- totmat[2][0] = ownermat[2][0];
- totmat[2][1] = ownermat[2][1];
- totmat[2][2] = ownermat[2][2];
- Normalize(totmat[2]);
-
- /* the x axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[1], totmat[2], totmat[0]);
- }
- break;
- case TRACK_Y: /* LOCK Z TRACK Y */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[2]);
- VecSubf(totmat[1], vec, vec2);
- Normalize(totmat[1]);
-
- /* the z axis is fixed */
- totmat[2][0] = ownermat[2][0];
- totmat[2][1] = ownermat[2][1];
- totmat[2][2] = ownermat[2][2];
- Normalize(totmat[2]);
-
- /* the x axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[0], totmat[1], totmat[2]);
- }
- break;
- case TRACK_nX: /* LOCK Z TRACK -X */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[2]);
- VecSubf(totmat[0], vec, vec2);
- Normalize(totmat[0]);
- VecMulf(totmat[0],-1);
-
- /* the z axis is fixed */
- totmat[2][0] = ownermat[2][0];
- totmat[2][1] = ownermat[2][1];
- totmat[2][2] = ownermat[2][2];
- Normalize(totmat[2]);
-
- /* the x axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[1], totmat[2], totmat[0]);
- }
- break;
- case TRACK_nY: /* LOCK Z TRACK -Y */
- {
- /* Projection of Vector on the plane */
- Projf(vec2, vec, ownermat[2]);
- VecSubf(totmat[1], vec, vec2);
- Normalize(totmat[1]);
- VecMulf(totmat[1],-1);
-
- /* the z axis is fixed */
- totmat[2][0] = ownermat[2][0];
- totmat[2][1] = ownermat[2][1];
- totmat[2][2] = ownermat[2][2];
- Normalize(totmat[2]);
-
- /* the x axis gets mapped onto a third orthogonal vector */
- Crossf(totmat[0], totmat[1], totmat[2]);
- }
- break;
- default:
- {
- totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
- totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
- totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
- }
- break;
- }
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[2]);
+ VecSubf(totmat[0], vec, vec2);
+ Normalize(totmat[0]);
+ VecMulf(totmat[0],-1);
+
+ /* the z axis is fixed */
+ totmat[2][0] = cob->matrix[2][0];
+ totmat[2][1] = cob->matrix[2][1];
+ totmat[2][2] = cob->matrix[2][2];
+ Normalize(totmat[2]);
+
+ /* the x axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[1], totmat[2], totmat[0]);
+ }
+ break;
+ case TRACK_nY: /* LOCK Z TRACK -Y */
+ {
+ /* Projection of Vector on the plane */
+ Projf(vec2, vec, cob->matrix[2]);
+ VecSubf(totmat[1], vec, vec2);
+ Normalize(totmat[1]);
+ VecMulf(totmat[1],-1);
+
+ /* the z axis is fixed */
+ totmat[2][0] = cob->matrix[2][0];
+ totmat[2][1] = cob->matrix[2][1];
+ totmat[2][2] = cob->matrix[2][2];
+ Normalize(totmat[2]);
+
+ /* the x axis gets mapped onto a third orthogonal vector */
+ Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
- {
+ {
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
- }
- break;
}
- /* Block to keep matrix heading */
- tmpmat[0][0] = ownermat[0][0];tmpmat[0][1] = ownermat[0][1];tmpmat[0][2] = ownermat[0][2];
- tmpmat[1][0] = ownermat[1][0];tmpmat[1][1] = ownermat[1][1];tmpmat[1][2] = ownermat[1][2];
- tmpmat[2][0] = ownermat[2][0];tmpmat[2][1] = ownermat[2][1];tmpmat[2][2] = ownermat[2][2];
- Normalize(tmpmat[0]);
- Normalize(tmpmat[1]);
- Normalize(tmpmat[2]);
- Mat3Inv(invmat,tmpmat);
- Mat3MulMat3(tmpmat, totmat, invmat);
- totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
- totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
- totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
-
- Mat4CpyMat4(tmat, ownermat);
-
- mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
- totmat[1][0],totmat[1][1],totmat[1][2],
- totmat[2][0],totmat[2][1],totmat[2][2]);
- if (mdet==0) {
- totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
- totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
- totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
- }
-
- /* apply out transformaton to the object */
- Mat4MulMat34(ownermat, totmat, tmat);
+ break;
}
}
- break;
- case CONSTRAINT_TYPE_FOLLOWPATH:
- {
- bFollowPathConstraint *data;
- float obmat[4][4];
- float size[3], obsize[3];
-
- data = constraint->data;
-
- if (data->tar) {
- /* get Object local transform (loc/rot/size) to determine transformation from path */
- //object_to_mat4(ob, obmat);
- Mat4CpyMat4(obmat, ownermat); // FIXME!!!
-
- /* get scaling of object before applying constraint */
- Mat4ToSize(ownermat, size);
-
- /* apply targetmat - containing location on path, and rotation */
- Mat4MulSerie(ownermat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
-
- /* un-apply scaling caused by path */
- Mat4ToSize(ownermat, obsize);
- if (obsize[0] != 0)
- VecMulf(ownermat[0], size[0] / obsize[0]);
- if (obsize[1] != 0)
- VecMulf(ownermat[1], size[1] / obsize[1]);
- if (obsize[2] != 0)
- VecMulf(ownermat[2], size[2] / obsize[2]);
+ break;
+ default:
+ {
+ totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
+ totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
+ totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
+ break;
}
- break;
- case CONSTRAINT_TYPE_STRETCHTO:
- {
- bStretchToConstraint *data;
- float size[3],scale[3],vec[3],xx[3],zz[3],orth[3];
- float totmat[3][3];
- float tmat[4][4];
- float dist;
-
- data = constraint->data;
- Mat4ToSize (ownermat, size);
-
- if (data->tar) {
- /* store X orientation before destroying obmat */
- xx[0] = ownermat[0][0];
- xx[1] = ownermat[0][1];
- xx[2] = ownermat[0][2];
- Normalize(xx);
-
- /* store Z orientation before destroying obmat */
- zz[0] = ownermat[2][0];
- zz[1] = ownermat[2][1];
- zz[2] = ownermat[2][2];
- Normalize(zz);
-
- VecSubf(vec, ownermat[3], targetmat[3]);
- vec[0] /= size[0];
- vec[1] /= size[1];
- vec[2] /= size[2];
-
- dist = Normalize(vec);
- //dist = VecLenf( ob->obmat[3], targetmat[3]);
-
- if (data->orglength == 0) data->orglength = dist;
- if (data->bulge == 0) data->bulge = 1.0;
-
- scale[1] = dist/data->orglength;
- switch (data->volmode) {
- /* volume preserving scaling */
- case VOLUME_XZ :
- scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
- scale[2] = scale[0];
- break;
- case VOLUME_X:
- scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
- scale[2] = 1.0;
- break;
- case VOLUME_Z:
- scale[0] = 1.0;
- scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
- break;
- /* don't care for volume */
- case NO_VOLUME:
- scale[0] = 1.0;
- scale[2] = 1.0;
- break;
- default: /* should not happen, but in case*/
- return;
- } /* switch (data->volmode) */
-
- /* Clear the object's rotation and scale */
- ownermat[0][0]=size[0]*scale[0];
- ownermat[0][1]=0;
- ownermat[0][2]=0;
- ownermat[1][0]=0;
- ownermat[1][1]=size[1]*scale[1];
- ownermat[1][2]=0;
- ownermat[2][0]=0;
- ownermat[2][1]=0;
- ownermat[2][2]=size[2]*scale[2];
-
- VecSubf(vec, ownermat[3], targetmat[3]);
- Normalize(vec);
-
- /* new Y aligns object target connection*/
- totmat[1][0] = -vec[0];
- totmat[1][1] = -vec[1];
- totmat[1][2] = -vec[2];
- switch (data->plane) {
- case PLANE_X:
- /* build new Z vector */
- /* othogonal to "new Y" "old X! plane */
- Crossf(orth, vec, xx);
- Normalize(orth);
-
- /* new Z*/
- totmat[2][0] = orth[0];
- totmat[2][1] = orth[1];
- totmat[2][2] = orth[2];
-
- /* we decided to keep X plane*/
- Crossf(xx, orth, vec);
- Normalize(xx);
- totmat[0][0] = xx[0];
- totmat[0][1] = xx[1];
- totmat[0][2] = xx[2];
- break;
- case PLANE_Z:
- /* build new X vector */
- /* othogonal to "new Y" "old Z! plane */
- Crossf(orth, vec, zz);
- Normalize(orth);
-
- /* new X */
- totmat[0][0] = -orth[0];
- totmat[0][1] = -orth[1];
- totmat[0][2] = -orth[2];
-
- /* we decided to keep Z */
- Crossf(zz, orth, vec);
- Normalize(zz);
- totmat[2][0] = zz[0];
- totmat[2][1] = zz[1];
- totmat[2][2] = zz[2];
- break;
- } /* switch (data->plane) */
-
- Mat4CpyMat4(tmat, ownermat);
-
- Mat4MulMat34(ownermat, totmat, tmat);
- }
- }
- break;
- case CONSTRAINT_TYPE_LOCLIMIT:
- {
- bLocLimitConstraint *data;
+ /* Block to keep matrix heading */
+ tmpmat[0][0] = cob->matrix[0][0];tmpmat[0][1] = cob->matrix[0][1];tmpmat[0][2] = cob->matrix[0][2];
+ tmpmat[1][0] = cob->matrix[1][0];tmpmat[1][1] = cob->matrix[1][1];tmpmat[1][2] = cob->matrix[1][2];
+ tmpmat[2][0] = cob->matrix[2][0];tmpmat[2][1] = cob->matrix[2][1];tmpmat[2][2] = cob->matrix[2][2];
+ Normalize(tmpmat[0]);
+ Normalize(tmpmat[1]);
+ Normalize(tmpmat[2]);
+ Mat3Inv(invmat, tmpmat);
+ Mat3MulMat3(tmpmat, totmat, invmat);
+ totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
+ totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
+ totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
+
+ Mat4CpyMat4(tmat, cob->matrix);
+
+ mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
+ totmat[1][0],totmat[1][1],totmat[1][2],
+ totmat[2][0],totmat[2][1],totmat[2][2]);
+ if (mdet==0) {
+ totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
+ totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
+ totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
+ }
+
+ /* apply out transformaton to the object */
+ Mat4MulMat34(cob->matrix, totmat, tmat);
+ }
+}
- data = constraint->data;
-
- if (data->flag & LIMIT_XMIN) {
- if(ownermat[3][0] < data->xmin)
- ownermat[3][0] = data->xmin;
- }
- if (data->flag & LIMIT_XMAX) {
- if (ownermat[3][0] > data->xmax)
- ownermat[3][0] = data->xmax;
- }
- if (data->flag & LIMIT_YMIN) {
- if(ownermat[3][1] < data->ymin)
- ownermat[3][1] = data->ymin;
- }
- if (data->flag & LIMIT_YMAX) {
- if (ownermat[3][1] > data->ymax)
- ownermat[3][1] = data->ymax;
- }
- if (data->flag & LIMIT_ZMIN) {
- if(ownermat[3][2] < data->zmin)
- ownermat[3][2] = data->zmin;
- }
- if (data->flag & LIMIT_ZMAX) {
- if (ownermat[3][2] > data->zmax)
- ownermat[3][2] = data->zmax;
- }
+static bConstraintTypeInfo CTI_LOCKTRACK = {
+ CONSTRAINT_TYPE_LOCKTRACK, /* type */
+ sizeof(bLockTrackConstraint), /* size */
+ "Locked Track", /* name */
+ "bLockTrackConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ locktrack_new_data, /* new data */
+ locktrack_get_tars, /* get constraint targets */
+ locktrack_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get target matrix */
+ locktrack_evaluate /* evaluate */
+};
+
+/* ---------- Stretch To ------------ */
+
+static void stretchto_new_data (void *cdata)
+{
+ bStretchToConstraint *data= (bStretchToConstraint *)cdata;
+
+ data->volmode = 0;
+ data->plane = 0;
+ data->orglength = 0.0;
+ data->bulge = 1.0;
+}
+
+static void stretchto_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bStretchToConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void stretchto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bStretchToConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void stretchto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bStretchToConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ /* only evaluate if there is a target */
+ if (VALID_CONS_TARGET(ct)) {
+ float size[3], scale[3], vec[3], xx[3], zz[3], orth[3];
+ float totmat[3][3];
+ float tmat[4][4];
+ float dist;
+
+ /* store scaling before destroying obmat */
+ Mat4ToSize(cob->matrix, size);
+
+ /* store X orientation before destroying obmat */
+ xx[0] = cob->matrix[0][0];
+ xx[1] = cob->matrix[0][1];
+ xx[2] = cob->matrix[0][2];
+ Normalize(xx);
+
+ /* store Z orientation before destroying obmat */
+ zz[0] = cob->matrix[2][0];
+ zz[1] = cob->matrix[2][1];
+ zz[2] = cob->matrix[2][2];
+ Normalize(zz);
+
+ VecSubf(vec, cob->matrix[3], ct->matrix[3]);
+ vec[0] /= size[0];
+ vec[1] /= size[1];
+ vec[2] /= size[2];
+
+ dist = Normalize(vec);
+ //dist = VecLenf( ob->obmat[3], targetmat[3]);
+
+ /* data->orglength==0 occurs on first run, and after 'R' button is clicked */
+ if (data->orglength == 0)
+ data->orglength = dist;
+ if (data->bulge == 0)
+ data->bulge = 1.0;
+
+ scale[1] = dist/data->orglength;
+ switch (data->volmode) {
+ /* volume preserving scaling */
+ case VOLUME_XZ :
+ scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
+ scale[2] = scale[0];
+ break;
+ case VOLUME_X:
+ scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
+ scale[2] = 1.0;
+ break;
+ case VOLUME_Z:
+ scale[0] = 1.0;
+ scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
+ break;
+ /* don't care for volume */
+ case NO_VOLUME:
+ scale[0] = 1.0;
+ scale[2] = 1.0;
+ break;
+ default: /* should not happen, but in case*/
+ return;
+ } /* switch (data->volmode) */
+
+ /* Clear the object's rotation and scale */
+ cob->matrix[0][0]=size[0]*scale[0];
+ cob->matrix[0][1]=0;
+ cob->matrix[0][2]=0;
+ cob->matrix[1][0]=0;
+ cob->matrix[1][1]=size[1]*scale[1];
+ cob->matrix[1][2]=0;
+ cob->matrix[2][0]=0;
+ cob->matrix[2][1]=0;
+ cob->matrix[2][2]=size[2]*scale[2];
+
+ VecSubf(vec, cob->matrix[3], ct->matrix[3]);
+ Normalize(vec);
+
+ /* new Y aligns object target connection*/
+ totmat[1][0] = -vec[0];
+ totmat[1][1] = -vec[1];
+ totmat[1][2] = -vec[2];
+ switch (data->plane) {
+ case PLANE_X:
+ /* build new Z vector */
+ /* othogonal to "new Y" "old X! plane */
+ Crossf(orth, vec, xx);
+ Normalize(orth);
+
+ /* new Z*/
+ totmat[2][0] = orth[0];
+ totmat[2][1] = orth[1];
+ totmat[2][2] = orth[2];
+
+ /* we decided to keep X plane*/
+ Crossf(xx, orth, vec);
+ Normalize(xx);
+ totmat[0][0] = xx[0];
+ totmat[0][1] = xx[1];
+ totmat[0][2] = xx[2];
+ break;
+ case PLANE_Z:
+ /* build new X vector */
+ /* othogonal to "new Y" "old Z! plane */
+ Crossf(orth, vec, zz);
+ Normalize(orth);
+
+ /* new X */
+ totmat[0][0] = -orth[0];
+ totmat[0][1] = -orth[1];
+ totmat[0][2] = -orth[2];
+
+ /* we decided to keep Z */
+ Crossf(zz, orth, vec);
+ Normalize(zz);
+ totmat[2][0] = zz[0];
+ totmat[2][1] = zz[1];
+ totmat[2][2] = zz[2];
+ break;
+ } /* switch (data->plane) */
+
+ Mat4CpyMat4(tmat, cob->matrix);
+ Mat4MulMat34(cob->matrix, totmat, tmat);
+ }
+}
+
+static bConstraintTypeInfo CTI_STRETCHTO = {
+ CONSTRAINT_TYPE_STRETCHTO, /* type */
+ sizeof(bStretchToConstraint), /* size */
+ "Stretch To", /* name */
+ "bStretchToConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ stretchto_new_data, /* new data */
+ stretchto_get_tars, /* get constraint targets */
+ stretchto_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get target matrix */
+ stretchto_evaluate /* evaluate */
+};
+
+/* ---------- Floor ------------ */
+
+static void minmax_new_data (void *cdata)
+{
+ bMinMaxConstraint *data= (bMinMaxConstraint *)cdata;
+
+ data->minmaxflag = TRACK_Z;
+ data->offset = 0.0f;
+ data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
+ data->flag = 0;
+}
+
+static void minmax_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bMinMaxConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void minmax_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bMinMaxConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void minmax_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bMinMaxConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ /* only evaluate if there is a target */
+ if (VALID_CONS_TARGET(ct)) {
+ float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
+ float val1, val2;
+ int index;
+
+ Mat4CpyMat4(obmat, cob->matrix);
+ Mat4CpyMat4(tarmat, ct->matrix);
+
+ if (data->flag & MINMAX_USEROT) {
+ /* take rotation of target into account by doing the transaction in target's localspace */
+ Mat4Invert(imat, tarmat);
+ Mat4MulMat4(tmat, obmat, imat);
+ Mat4CpyMat4(obmat, tmat);
+ Mat4One(tarmat);
}
- break;
- case CONSTRAINT_TYPE_ROTLIMIT:
- {
- bRotLimitConstraint *data;
- float loc[3];
- float eul[3];
- float size[3];
-
- data = constraint->data;
-
- VECCOPY(loc, ownermat[3]);
- Mat4ToSize(ownermat, size);
-
- Mat4ToEul(ownermat, eul);
-
- /* eulers: radians to degrees! */
- eul[0] = (eul[0] / M_PI * 180);
- eul[1] = (eul[1] / M_PI * 180);
- eul[2] = (eul[2] / M_PI * 180);
-
- /* limiting of euler values... */
- if (data->flag & LIMIT_XROT) {
- if (eul[0] < data->xmin)
- eul[0] = data->xmin;
-
- if (eul[0] > data->xmax)
- eul[0] = data->xmax;
- }
- if (data->flag & LIMIT_YROT) {
- if (eul[1] < data->ymin)
- eul[1] = data->ymin;
-
- if (eul[1] > data->ymax)
- eul[1] = data->ymax;
- }
- if (data->flag & LIMIT_ZROT) {
- if (eul[2] < data->zmin)
- eul[2] = data->zmin;
-
- if (eul[2] > data->zmax)
- eul[2] = data->zmax;
- }
-
- /* eulers: degrees to radians ! */
- eul[0] = (eul[0] / 180 * M_PI);
- eul[1] = (eul[1] / 180 * M_PI);
- eul[2] = (eul[2] / 180 * M_PI);
-
- LocEulSizeToMat4(ownermat, loc, eul, size);
+
+ switch (data->minmaxflag) {
+ case TRACK_Z:
+ val1 = tarmat[3][2];
+ val2 = obmat[3][2]-data->offset;
+ index = 2;
+ break;
+ case TRACK_Y:
+ val1 = tarmat[3][1];
+ val2 = obmat[3][1]-data->offset;
+ index = 1;
+ break;
+ case TRACK_X:
+ val1 = tarmat[3][0];
+ val2 = obmat[3][0]-data->offset;
+ index = 0;
+ break;
+ case TRACK_nZ:
+ val2 = tarmat[3][2];
+ val1 = obmat[3][2]-data->offset;
+ index = 2;
+ break;
+ case TRACK_nY:
+ val2 = tarmat[3][1];
+ val1 = obmat[3][1]-data->offset;
+ index = 1;
+ break;
+ case TRACK_nX:
+ val2 = tarmat[3][0];
+ val1 = obmat[3][0]-data->offset;
+ index = 0;
+ break;
+ default:
+ return;
}
- break;
- case CONSTRAINT_TYPE_SIZELIMIT:
- {
- bSizeLimitConstraint *data;
- float obsize[3], size[3];
-
- data = constraint->data;
-
- Mat4ToSize(ownermat, size);
- Mat4ToSize(ownermat, obsize);
-
- if (data->flag & LIMIT_XMIN) {
- if (size[0] < data->xmin)
- size[0] = data->xmin;
- }
- if (data->flag & LIMIT_XMAX) {
- if (size[0] > data->xmax)
- size[0] = data->xmax;
- }
- if (data->flag & LIMIT_YMIN) {
- if (size[1] < data->ymin)
- size[1] = data->ymin;
- }
- if (data->flag & LIMIT_YMAX) {
- if (size[1] > data->ymax)
- size[1] = data->ymax;
- }
- if (data->flag & LIMIT_ZMIN) {
- if (size[2] < data->zmin)
- size[2] = data->zmin;
+
+ if (val1 > val2) {
+ obmat[3][index] = tarmat[3][index] + data->offset;
+ if (data->flag & MINMAX_STICKY) {
+ if (data->flag & MINMAX_STUCK) {
+ VECCOPY(obmat[3], data->cache);
+ }
+ else {
+ VECCOPY(data->cache, obmat[3]);
+ data->flag |= MINMAX_STUCK;
+ }
}
- if (data->flag & LIMIT_ZMAX) {
- if (size[2] > data->zmax)
- size[2] = data->zmax;
+ if (data->flag & MINMAX_USEROT) {
+ /* get out of localspace */
+ Mat4MulMat4(tmat, obmat, ct->matrix);
+ Mat4CpyMat4(cob->matrix, tmat);
+ }
+ else {
+ VECCOPY(cob->matrix[3], obmat[3]);
}
-
- VecMulf(ownermat[0], size[0]/obsize[0]);
- VecMulf(ownermat[1], size[1]/obsize[1]);
- VecMulf(ownermat[2], size[2]/obsize[2]);
+ }
+ else {
+ data->flag &= ~MINMAX_STUCK;
}
- break;
- case CONSTRAINT_TYPE_RIGIDBODYJOINT:
- {
- /* Do nothing. The GameEngine will take care of this.*/
- }
- break;
- case CONSTRAINT_TYPE_CLAMPTO:
- {
- bClampToConstraint *data;
- Curve *cu;
- float obmat[4][4], targetMatrix[4][4], ownLoc[3];
- float curveMin[3], curveMax[3];
-
- data = constraint->data;
-
- /* prevent crash if user deletes curve */
- if ((data->tar == NULL) || (data->tar->type != OB_CURVE) )
- return;
- else
- cu= data->tar->data;
-
- Mat4CpyMat4(obmat, ownermat);
- Mat4One(targetMatrix);
- VECCOPY(ownLoc, obmat[3]);
-
- INIT_MINMAX(curveMin, curveMax)
- minmax_object(data->tar, curveMin, curveMax);
-
- /* get targetmatrix */
- if (cu->path && cu->path->data) {
- float vec[4], dir[3], totmat[4][4];
- float curvetime;
- short clamp_axis;
+ }
+}
+
+static bConstraintTypeInfo CTI_MINMAX = {
+ CONSTRAINT_TYPE_MINMAX, /* type */
+ sizeof(bMinMaxConstraint), /* size */
+ "Floor", /* name */
+ "bMinMaxConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ minmax_new_data, /* new data */
+ minmax_get_tars, /* get constraint targets */
+ minmax_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get target matrix */
+ minmax_evaluate /* evaluate */
+};
+
+/* ------- RigidBody Joint ---------- */
+
+static void rbj_new_data (void *cdata)
+{
+ bRigidBodyJointConstraint *data= (bRigidBodyJointConstraint *)cdata;
+
+ // removed code which set target of this constraint
+ data->type=1;
+}
+
+static void rbj_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bRigidBodyJointConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints without subtargets */
+ SINGLETARGETNS_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void rbj_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bRigidBodyJointConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGETNS_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static bConstraintTypeInfo CTI_RIGIDBODYJOINT = {
+ CONSTRAINT_TYPE_RIGIDBODYJOINT, /* type */
+ sizeof(bRigidBodyJointConstraint), /* size */
+ "RigidBody Joint", /* name */
+ "bRigidBodyJointConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ rbj_new_data, /* new data */
+ rbj_get_tars, /* get constraint targets */
+ rbj_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get target matrix */
+ NULL /* evaluate - this is not solved here... is just an interface for game-engine */
+};
+
+/* -------- Clamp To ---------- */
+
+static void clampto_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bClampToConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints without subtargets */
+ SINGLETARGETNS_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void clampto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bClampToConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGETNS_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void clampto_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
+{
+ if (VALID_CONS_TARGET(ct)) {
+ Curve *cu= ct->tar->data;
+
+ /* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
+ * currently for paths to work it needs to go through the bevlist/displist system (ton)
+ */
+
+ /* only happens on reload file, but violates depsgraph still... fix! */
+ if (cu->path==NULL || cu->path->data==NULL)
+ makeDispListCurveTypes(ct->tar, 0);
+ }
+
+ /* technically, this isn't really needed for evaluation, but we don't know what else
+ * might end up calling this...
+ */
+ if (ct)
+ Mat4One(ct->matrix);
+}
+
+static void clampto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bClampToConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ /* only evaluate if there is a target and it is a curve */
+ if (VALID_CONS_TARGET(ct) && (ct->tar->type == OB_CURVE)) {
+ Curve *cu= data->tar->data;
+ float obmat[4][4], targetMatrix[4][4], ownLoc[3];
+ float curveMin[3], curveMax[3];
+
+ Mat4CpyMat4(obmat, cob->matrix);
+ Mat4One(targetMatrix);
+ VECCOPY(ownLoc, obmat[3]);
+
+ INIT_MINMAX(curveMin, curveMax)
+ minmax_object(ct->tar, curveMin, curveMax);
+
+ /* get targetmatrix */
+ if (cu->path && cu->path->data) {
+ float vec[4], dir[3], totmat[4][4];
+ float curvetime;
+ short clamp_axis;
+
+ /* find best position on curve */
+ /* 1. determine which axis to sample on? */
+ if (data->flag == CLAMPTO_AUTO) {
+ float size[3];
+ VecSubf(size, curveMax, curveMin);
- /* find best position on curve */
- /* 1. determine which axis to sample on? */
- if (data->flag == CLAMPTO_AUTO) {
- float size[3];
- VecSubf(size, curveMax, curveMin);
+ /* find axis along which the bounding box has the greatest
+ * extent. Otherwise, default to the x-axis, as that is quite
+ * frequently used.
+ */
+ if ((size[2]>size[0]) && (size[2]>size[1]))
+ clamp_axis= CLAMPTO_Z - 1;
+ else if ((size[1]>size[0]) && (size[1]>size[2]))
+ clamp_axis= CLAMPTO_Y - 1;
+ else
+ clamp_axis = CLAMPTO_X - 1;
+ }
+ else
+ clamp_axis= data->flag - 1;
+
+ /* 2. determine position relative to curve on a 0-1 scale based on bounding box */
+ if (data->flag2 & CLAMPTO_CYCLIC) {
+ /* cyclic, so offset within relative bounding box is used */
+ float len= (curveMax[clamp_axis] - curveMin[clamp_axis]);
+ float offset;
+
+ /* find bounding-box range where target is located */
+ if (ownLoc[clamp_axis] < curveMin[clamp_axis]) {
+ /* bounding-box range is before */
+ offset= curveMin[clamp_axis];
- /* find axis along which the bounding box has the greatest
- * extent. Otherwise, default to the x-axis, as that is quite
- * frequently used.
- */
- if ((size[2]>size[0]) && (size[2]>size[1]))
- clamp_axis= CLAMPTO_Z - 1;
- else if ((size[1]>size[0]) && (size[1]>size[2]))
- clamp_axis= CLAMPTO_Y - 1;
- else
- clamp_axis = CLAMPTO_X - 1;
- }
- else
- clamp_axis= data->flag - 1;
+ while (ownLoc[clamp_axis] < offset)
+ offset -= len;
- /* 2. determine position relative to curve on a 0-1 scale based on bounding box */
- if (data->flag2 & CLAMPTO_CYCLIC) {
- /* cyclic, so offset within relative bounding box is used */
- float len= (curveMax[clamp_axis] - curveMin[clamp_axis]);
- float offset;
+ /* now, we calculate as per normal, except using offset instead of curveMin[clamp_axis] */
+ curvetime = (ownLoc[clamp_axis] - offset) / (len);
+ }
+ else if (ownLoc[clamp_axis] > curveMax[clamp_axis]) {
+ /* bounding-box range is after */
+ offset= curveMax[clamp_axis];
- /* find bounding-box range where target is located */
- if (ownLoc[clamp_axis] < curveMin[clamp_axis]) {
- /* bounding-box range is before */
- offset= curveMin[clamp_axis];
-
- while (ownLoc[clamp_axis] < offset)
- offset -= len;
-
- /* now, we calculate as per normal, except using offset instead of curveMin[clamp_axis] */
- curvetime = (ownLoc[clamp_axis] - offset) / (len);
- }
- else if (ownLoc[clamp_axis] > curveMax[clamp_axis]) {
- /* bounding-box range is after */
- offset= curveMax[clamp_axis];
-
- while (ownLoc[clamp_axis] > offset) {
- if ((offset + len) > ownLoc[clamp_axis])
- break;
- else
- offset += len;
- }
-
- /* now, we calculate as per normal, except using offset instead of curveMax[clamp_axis] */
- curvetime = (ownLoc[clamp_axis] - offset) / (len);
- }
- else {
- /* as the location falls within bounds, just calculate */
- curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (len);
+ while (ownLoc[clamp_axis] > offset) {
+ if ((offset + len) > ownLoc[clamp_axis])
+ break;
+ else
+ offset += len;
}
+
+ /* now, we calculate as per normal, except using offset instead of curveMax[clamp_axis] */
+ curvetime = (ownLoc[clamp_axis] - offset) / (len);
}
else {
- /* no cyclic, so position is clamped to within the bounding box */
- if (ownLoc[clamp_axis] <= curveMin[clamp_axis])
- curvetime = 0.0;
- else if (ownLoc[clamp_axis] >= curveMax[clamp_axis])
- curvetime = 1.0;
- else
- curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (curveMax[clamp_axis] - curveMin[clamp_axis]);
- }
-
- /* 3. position on curve */
- if(where_on_path(data->tar, curvetime, vec, dir) ) {
- Mat4One(totmat);
- VECCOPY(totmat[3], vec);
-
- Mat4MulSerie(targetMatrix, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
+ /* as the location falls within bounds, just calculate */
+ curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (len);
}
}
+ else {
+ /* no cyclic, so position is clamped to within the bounding box */
+ if (ownLoc[clamp_axis] <= curveMin[clamp_axis])
+ curvetime = 0.0;
+ else if (ownLoc[clamp_axis] >= curveMax[clamp_axis])
+ curvetime = 1.0;
+ else
+ curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (curveMax[clamp_axis] - curveMin[clamp_axis]);
+ }
- /* obtain final object position */
- VECCOPY(ownermat[3], targetMatrix[3]);
- }
- break;
- case CONSTRAINT_TYPE_CHILDOF:
- {
- bChildOfConstraint *data;
-
- data = constraint->data;
-
- /* only evaluate if there is a target */
- if (data->tar) {
- float parmat[4][4], invmat[4][4], tempmat[4][4];
- float loc[3], eul[3], size[3];
- float loco[3], eulo[3], sizo[3];
-
- /* get offset (parent-inverse) matrix */
- Mat4CpyMat4(invmat, data->invmat);
-
- /* extract components of both matrices */
- VECCOPY(loc, targetmat[3]);
- Mat4ToEul(targetmat, eul);
- Mat4ToSize(targetmat, size);
-
- VECCOPY(loco, invmat[3]);
- Mat4ToEul(invmat, eulo);
- Mat4ToSize(invmat, sizo);
-
- /* disable channels not enabled */
- if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
- if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
- if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
- if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
- if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
- if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
- if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
- if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
- if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
-
- /* make new target mat and offset mat */
- LocEulSizeToMat4(targetmat, loc, eul, size);
- LocEulSizeToMat4(invmat, loco, eulo, sizo);
-
- /* multiply target (parent matrix) by offset (parent inverse) to get
- * the effect of the parent that will be exherted on the owner
- */
- Mat4MulMat4(parmat, invmat, targetmat);
+ /* 3. position on curve */
+ if (where_on_path(ct->tar, curvetime, vec, dir) ) {
+ Mat4One(totmat);
+ VECCOPY(totmat[3], vec);
- /* now multiply the parent matrix by the owner matrix to get the
- * the effect of this constraint (i.e. owner is 'parented' to parent)
- */
- Mat4CpyMat4(tempmat, ownermat);
- Mat4MulMat4(ownermat, tempmat, parmat);
+ Mat4MulSerie(targetMatrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
- break;
- case CONSTRAINT_TYPE_TRANSFORM:
- {
- bTransformConstraint *data;
-
- data = constraint->data;
-
- /* only work if there is a target */
- if (data->tar) {
- float loc[3], eul[3], size[3];
- float dvec[3], sval[3];
- short i;
-
- /* obtain target effect */
- switch (data->from) {
- case 2: /* scale */
- Mat4ToSize(targetmat, dvec);
- break;
- case 1: /* rotation */
- Mat4ToEul(targetmat, dvec);
- break;
- default: /* location */
- VecCopyf(dvec, targetmat[3]);
- break;
+
+ /* obtain final object position */
+ VECCOPY(cob->matrix[3], targetMatrix[3]);
+ }
+}
+
+static bConstraintTypeInfo CTI_CLAMPTO = {
+ CONSTRAINT_TYPE_CLAMPTO, /* type */
+ sizeof(bClampToConstraint), /* size */
+ "Clamp To", /* name */
+ "bClampToConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ NULL, /* new data */
+ clampto_get_tars, /* get constraint targets */
+ clampto_flush_tars, /* flush constraint targets */
+ clampto_get_tarmat, /* get target matrix */
+ clampto_evaluate /* evaluate */
+};
+
+/* ---------- Transform Constraint ----------- */
+
+static void transform_new_data (void *cdata)
+{
+ bTransformConstraint *data= (bTransformConstraint *)cdata;
+
+ data->map[0]= 0;
+ data->map[1]= 1;
+ data->map[2]= 2;
+}
+
+static void transform_get_tars (bConstraint *con, ListBase *list)
+{
+ if (con && list) {
+ bTransformConstraint *data= con->data;
+ bConstraintTarget *ct;
+
+ /* standard target-getting macro for single-target constraints */
+ SINGLETARGET_GET_TARS(con, data, ct, list)
+ }
+}
+
+static void transform_flush_tars (bConstraint *con, ListBase *list, short nocopy)
+{
+ if (con && list) {
+ bTransformConstraint *data= con->data;
+ bConstraintTarget *ct= list->first;
+
+ /* the following macro is used for all standard single-target constraints */
+ SINGLETARGET_FLUSH_TARS(con, data, ct, list, nocopy)
+ }
+}
+
+static void transform_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
+{
+ bTransformConstraint *data= con->data;
+ bConstraintTarget *ct= targets->first;
+
+ /* only evaluate if there is a target */
+ if (VALID_CONS_TARGET(ct)) {
+ float loc[3], eul[3], size[3];
+ float dvec[3], sval[3];
+ short i;
+
+ /* obtain target effect */
+ switch (data->from) {
+ case 2: /* scale */
+ Mat4ToSize(ct->matrix, dvec);
+ break;
+ case 1: /* rotation */
+ Mat4ToEul(ct->matrix, dvec);
+ break;
+ default: /* location */
+ VecCopyf(dvec, ct->matrix[3]);
+ break;
+ }
+
+ /* extract components of owner's matrix */
+ VECCOPY(loc, cob->matrix[3]);
+ Mat4ToEul(cob->matrix, eul);
+ Mat4ToSize(cob->matrix, size);
+
+ /* determine where in range current transforms lie */
+ if (data->expo) {
+ for (i=0; i<3; i++) {
+ if (data->from_max[i] - data->from_min[i])
+ sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
+ else
+ sval[i]= 0.0f;
+ }
+ }
+ else {
+ /* clamp transforms out of range */
+ for (i=0; i<3; i++) {
+ CLAMP(dvec[i], data->from_min[i], data->from_max[i]);
+ if (data->from_max[i] - data->from_min[i])
+ sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
+ else
+ sval[i]= 0.0f;
+ }
+ }
+
+ /* convert radian<->degree */
+ if (data->from==1 && data->to==0) {
+ /* from radians to degrees */
+ for (i=0; i<3; i++)
+ sval[i] = sval[i] / M_PI * 180;
+ }
+ else if (data->from==0 && data->to==1) {
+ /* from degrees to radians */
+ for (i=0; i<3; i++)
+ sval[i] = sval[i] / 180 * M_PI;
+ }
+
+ /* apply transforms */
+ switch (data->to) {
+ case 2: /* scaling */
+ for (i=0; i<3; i++)
+ size[i]= data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i]));
+ break;
+ case 1: /* rotation */
+ for (i=0; i<3; i++) {
+ float tmin, tmax;
+
+ /* convert destination min/max ranges from degrees to radians */
+ tmin= data->to_min[i] / M_PI * 180;
+ tmax= data->to_max[i] / M_PI * 180;
+
+ eul[i]= tmin + (sval[data->map[i]] * (tmax - tmin));
}
+ break;
+ default: /* location */
+ /* get new location */
+ for (i=0; i<3; i++)
+ loc[i]= (data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i])));
+
+ /* add original location back on (so that it can still be moved) */
+ VecAddf(loc, cob->matrix[3], loc);
+ break;
+ }
+
+ /* apply to matrix */
+ LocEulSizeToMat4(cob->matrix, loc, eul, size);
+ }
+}
+
+static bConstraintTypeInfo CTI_TRANSFORM = {
+ CONSTRAINT_TYPE_TRANSFORM, /* type */
+ sizeof(bTransformConstraint), /* size */
+ "Transform", /* name */
+ "bTransformConstraint", /* struct name */
+ NULL, /* free data */
+ NULL, /* relink data */
+ NULL, /* copy data */
+ transform_new_data, /* new data */
+ transform_get_tars, /* get constraint targets */
+ transform_flush_tars, /* flush constraint targets */
+ default_get_tarmat, /* get a target matrix */
+ transform_evaluate /* evaluate */
+};
+
+/* ************************* Constraints Type-Info *************************** */
+/* All of the constraints api functions use bConstraintTypeInfo structs to carry out
+ * and operations that involve constraint specifc code.
+ */
+
+/* These globals only ever get directly accessed in this file */
+static bConstraintTypeInfo *constraintsTypeInfo[NUM_CONSTRAINT_TYPES];
+static short CTI_INIT= 1; /* when non-zero, the list needs to be updated */
+
+/* This function only gets called when CTI_INIT is non-zero */
+static void constraints_init_typeinfo () {
+ constraintsTypeInfo[0]= NULL; /* 'Null' Constraint */
+ constraintsTypeInfo[1]= &CTI_CHILDOF; /* ChildOf Constraint */
+ constraintsTypeInfo[2]= &CTI_TRACKTO; /* TrackTo Constraint */
+ constraintsTypeInfo[3]= &CTI_KINEMATIC; /* IK Constraint */
+ constraintsTypeInfo[4]= &CTI_FOLLOWPATH; /* Follow-Path Constraint */
+ constraintsTypeInfo[5]= &CTI_ROTLIMIT; /* Limit Rotation Constraint */
+ constraintsTypeInfo[6]= &CTI_LOCLIMIT; /* Limit Location Constraint */
+ constraintsTypeInfo[7]= &CTI_SIZELIMIT; /* Limit Scaling Constraint */
+ constraintsTypeInfo[8]= &CTI_ROTLIKE; /* Copy Rotation Constraint */
+ constraintsTypeInfo[9]= &CTI_LOCLIKE; /* Copy Location Constraint */
+ constraintsTypeInfo[10]= &CTI_SIZELIKE; /* Copy Scaling Constraint */
+ constraintsTypeInfo[11]= &CTI_PYTHON; /* Python/Script Constraint */
+ constraintsTypeInfo[12]= &CTI_ACTION; /* Action Constraint */
+ constraintsTypeInfo[13]= &CTI_LOCKTRACK; /* Locked-Track Constraint */
+ constraintsTypeInfo[14]= NULL; /* 'Distance Limit' Constraint */
+ constraintsTypeInfo[15]= &CTI_STRETCHTO; /* StretchTo Constaint */
+ constraintsTypeInfo[16]= &CTI_MINMAX; /* Floor Constraint */
+ constraintsTypeInfo[17]= &CTI_RIGIDBODYJOINT; /* RigidBody Constraint */
+ constraintsTypeInfo[18]= &CTI_CLAMPTO; /* ClampTo Constraint */
+ constraintsTypeInfo[19]= &CTI_TRANSFORM; /* Transformation Constraint */
+}
+
+/* This function should be used for getting the appropriate type-info when only
+ * a constraint type is known
+ */
+bConstraintTypeInfo *get_constraint_typeinfo (int type)
+{
+ /* initialise the type-info list? */
+ if (CTI_INIT) {
+ constraints_init_typeinfo();
+ CTI_INIT = 0;
+ }
+
+ /* only return for valid types */
+ if ( (type >= CONSTRAINT_TYPE_NULL) &&
+ (type <= NUM_CONSTRAINT_TYPES ) )
+ {
+ /* there shouldn't be any segfaults here... */
+ return constraintsTypeInfo[type];
+ }
+ else {
+ printf("No valid constraint type-info data available. Type = %i \n", type);
+ }
+
+ return NULL;
+}
+
+/* This function should always be used to get the appropriate type-info, as it
+ * has checks which prevent segfaults in some weird cases.
+ */
+bConstraintTypeInfo *constraint_get_typeinfo (bConstraint *con)
+{
+ /* only return typeinfo for valid constraints */
+ if (con)
+ return get_constraint_typeinfo(con->type);
+ else
+ return NULL;
+}
+
+/* ************************* General Constraints API ************************** */
+/* The functions here are called by various parts of Blender. Very few (should be none if possible)
+ * constraint-specific code should occur here.
+ */
+
+/* ---------- Data Management ------- */
+
+/* Free data of a specific constraint if it has any info */
+void free_constraint_data (bConstraint *con)
+{
+ if (con->data) {
+ bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
+
+ /* perform any special freeing constraint may have */
+ if (cti && cti->free_data)
+ cti->free_data(con);
+
+ /* free constraint data now */
+ MEM_freeN(con->data);
+ }
+}
+
+/* Free all constraints from a constraint-stack */
+void free_constraints (ListBase *conlist)
+{
+ bConstraint *con;
+
+ /* Free constraint data and also any extra data */
+ for (con= conlist->first; con; con= con->next) {
+ free_constraint_data(con);
+ }
+
+ /* Free the whole list */
+ BLI_freelistN(conlist);
+}
+
+/* Reassign links that constraints have to other data (called during file loading?) */
+void relink_constraints (ListBase *conlist)
+{
+ bConstraint *con;
+ bConstraintTarget *ct;
+
+ for (con= conlist->first; con; con= con->next) {
+ bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
+
+ if (cti) {
+ /* relink any targets */
+ if (cti->get_constraint_targets) {
+ ListBase targets = {NULL, NULL};
- /* extract components of owner's matrix */
- VECCOPY(loc, ownermat[3]);
- Mat4ToEul(ownermat, eul);
- Mat4ToSize(ownermat, size);
+ cti->get_constraint_targets(con, &targets);
+ for (ct= targets.first; ct; ct= ct->next) {
+ ID_NEW(ct->tar);
+ }
- /* determine where in range current transforms lie */
- if (data->expo) {
- for (i=0; i<3; i++) {
- if (data->from_max[i] - data->from_min[i])
- sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
- else
- sval[i]= 0.0f;
- }
+ if (cti->flush_constraint_targets)
+ cti->flush_constraint_targets(con, &targets, 0);
+ }
+
+ /* relink any other special data */
+ if (cti->relink_data)
+ cti->relink_data(con);
+ }
+ }
+}
+
+/* duplicate all of the constraints in a constraint stack */
+void copy_constraints (ListBase *dst, ListBase *src)
+{
+ bConstraint *con, *srccon;
+
+ dst->first= dst->last= NULL;
+ duplicatelist(dst, src);
+
+ for (con=dst->first, srccon=src->first; con; srccon=srccon->next, con=con->next) {
+ bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
+
+ /* make a new copy of the constraint's data */
+ con->data = MEM_dupallocN(con->data);
+
+ /* only do specific constraints if required */
+ if (cti && cti->copy_data)
+ cti->copy_data(con, srccon);
+ }
+}
+
+/* -------- Target-Matrix Stuff ------- */
+
+/* This function is a relic from the prior implementations of the constraints system, when all
+ * constraints either had one or no targets. It used to be called during the main constraint solving
+ * loop, but is now only used for the remaining cases for a few constraints.
+ *
+ * None of the actual calculations of the matricies should be done here! Also, this function is
+ * not to be used by any new constraints, particularly any that have multiple targets.
+ */
+void get_constraint_target_matrix (bConstraint *con, short ownertype, void *ownerdata, float mat[][4], float ctime)
+{
+ bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
+ ListBase targets = {NULL, NULL};
+ bConstraintOb *cob;
+ bConstraintTarget *ct;
+
+ if (cti && cti->get_constraint_targets) {
+ /* make 'constraint-ob' */
+ cob= MEM_callocN(sizeof(bConstraintOb), "tempConstraintOb");
+ cob->type= ownertype;
+ switch (ownertype) {
+ case CONSTRAINT_OBTYPE_OBJECT: /* it is usually this case */
+ {
+ cob->ob= (Object *)ownerdata;
+ cob->pchan= NULL;
+ if (cob->ob) {
+ Mat4CpyMat4(cob->matrix, cob->ob->obmat);
+ Mat4CpyMat4(cob->startmat, cob->matrix);
}
else {
- /* clamp transforms out of range */
- for (i=0; i<3; i++) {
- CLAMP(dvec[i], data->from_min[i], data->from_max[i]);
- if (data->from_max[i] - data->from_min[i])
- sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
- else
- sval[i]= 0.0f;
- }
- }
-
- /* convert radian<->degree */
- if (data->from==1 && data->to==0) {
- /* from radians to degrees */
- for (i=0; i<3; i++)
- sval[i] = sval[i] / M_PI * 180;
+ Mat4One(cob->matrix);
+ Mat4One(cob->startmat);
}
- else if (data->from==0 && data->to==1) {
- /* from degrees to radians */
- for (i=0; i<3; i++)
- sval[i] = sval[i] / 180 * M_PI;
+ }
+ break;
+ case CONSTRAINT_OBTYPE_BONE: /* this may occur in some cases */
+ {
+ cob->ob= NULL; /* this might not work at all :/ */
+ cob->pchan= (bPoseChannel *)ownerdata;
+ if (cob->pchan) {
+ Mat4CpyMat4(cob->matrix, cob->pchan->pose_mat);
+ Mat4CpyMat4(cob->startmat, cob->matrix);
}
-
- /* apply transforms */
- switch (data->to) {
- case 2: /* scaling */
- for (i=0; i<3; i++)
- size[i]= data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i]));
- break;
- case 1: /* rotation */
- for (i=0; i<3; i++) {
- float tmin, tmax;
-
- /* convert destination min/max ranges from degrees to radians */
- tmin= data->to_min[i] / M_PI * 180;
- tmax= data->to_max[i] / M_PI * 180;
-
- eul[i]= tmin + (sval[data->map[i]] * (tmax - tmin));
- }
- break;
- default: /* location */
- /* get new location */
- for (i=0; i<3; i++)
- loc[i]= (data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i])));
-
- /* add original location back on (so that it can still be moved) */
- VecAddf(loc, ownermat[3], loc);
- break;
+ else {
+ Mat4One(cob->matrix);
+ Mat4One(cob->startmat);
}
-
- /* apply to matrix */
- LocEulSizeToMat4(ownermat, loc, eul, size);
}
+ break;
}
- break;
- default:
- printf("Error: Unknown constraint type\n");
- break;
+
+ /* get targets - we only need the first one though (and there should only be one) */
+ cti->get_constraint_targets(con, &targets);
+
+ /* only calculate the target matrix on the first target */
+ ct= (bConstraintTarget *)targets.first;
+ if (ct) {
+ if (cti->get_target_matrix)
+ cti->get_target_matrix(con, cob, ct, ctime);
+ Mat4CpyMat4(mat, ct->matrix);
+ }
+
+ /* free targets + 'constraint-ob' */
+ if (cti->flush_constraint_targets)
+ cti->flush_constraint_targets(con, &targets, 1);
+ MEM_freeN(cob);
+ }
+ else {
+ /* invalid constraint - perhaps... */
+ Mat4One(mat);
}
}
+
+/* ---------- Evaluation ----------- */
-/* this function is called whenever constraints need to be evaluated */
+/* This function is called whenever constraints need to be evaluated. Currently, all
+ * constraints that can be evaluated are everytime this gets run.
+ *
+ * constraints_make_evalob and constraints_clear_evalob should be called before and
+ * after running this function, to sort out cob
+ */
void solve_constraints (ListBase *conlist, bConstraintOb *cob, float ctime)
{
bConstraint *con;
- void *ownerdata;
- float tarmat[4][4], oldmat[4][4];
- float solution[4][4], delta[4][4], imat[4][4];
+ float solution[4][4], delta[4][4];
+ float oldmat[4][4], imat[4][4];
float enf;
/* check that there is a valid constraint object to evaluate */
@@ -2848,43 +3309,59 @@ void solve_constraints (ListBase *conlist, bConstraintOb *cob, float ctime)
/* loop over available constraints, solving and blending them */
for (con= conlist->first; con; con= con->next) {
- /* this we can skip completely */
+ bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
+ ListBase targets = {NULL, NULL};
+
+ /* these we can skip completely (invalid constraints...) */
+ if (cti == NULL) continue;
if (con->flag & CONSTRAINT_DISABLE) continue;
+ /* these constraints can't be evaluated anyway */
+ if (cti->evaluate_constraint == NULL) continue;
/* influence == 0 should be ignored */
if (con->enforce == 0.0f) continue;
- /* and inverse kinematics is solved seperate */
- if (con->type==CONSTRAINT_TYPE_KINEMATIC) continue;
- /* rigidbody is really a game-engine thing - and is not solved here */
- if (con->type==CONSTRAINT_TYPE_RIGIDBODYJOINT) continue;
- /* influence of constraint */
- /* value should have been set from IPO's/Constraint Channels already */
+ /* influence of constraint
+ * - value should have been set from IPO's/Constraint Channels already
+ */
enf = con->enforce;
/* move owner matrix into right space */
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, CONSTRAINT_SPACE_WORLD, con->ownspace);
Mat4CpyMat4(oldmat, cob->matrix);
- /* get the target matrix - in right space to be used */
- ownerdata= ((cob->pchan)? (void *)cob->pchan : (void *)cob->ob);
- get_constraint_target_matrix(con, cob->type, ownerdata, tarmat, ctime);
-
-
- /* Special Hack for PyConstraints to be able to set settings on the owner and/or
- * target. Technically, this violates the design of constraints (as constraints should
- * only act on matrices to alter the final transform of an owner), but on the other
- * hand, this makes PyConstraints more powerful as it enables certain setups to be created
- * and work reliably.
- */
- if (con->type == CONSTRAINT_TYPE_PYTHON) {
- bPythonConstraint *pycon= (bPythonConstraint *)con->data;
+ /* prepare targets for constraint solving */
+ if (cti->get_constraint_targets) {
+ bConstraintTarget *ct;
+
+ /* get targets
+ * - constraints should use ct->matrix, not directly accessing values
+ * - ct->matrix members have not yet been calculated here!
+ */
+ cti->get_constraint_targets(con, &targets);
- /* as usual, the function for this is defined in BPY_interface.c */
- BPY_pyconstraint_driver(pycon, cob, pycon->tar, pycon->subtarget);
+ /* set matrices
+ * - calculate if possible, otherwise just initialise as identity matrix
+ */
+ if (cti->get_target_matrix) {
+ for (ct= targets.first; ct; ct= ct->next)
+ cti->get_target_matrix(con, cob, ct, ctime);
+ }
+ else {
+ for (ct= targets.first; ct; ct= ct->next)
+ Mat4One(ct->matrix);
+ }
}
/* Solve the constraint */
- evaluate_constraint(con, cob->matrix, tarmat);
+ cti->evaluate_constraint(con, cob, &targets);
+
+ /* clear targets after use
+ * - this should free temp targets but no data should be copied back
+ * as constraints may have done some nasty things to it...
+ */
+ if (cti->flush_constraint_targets) {
+ cti->flush_constraint_targets(con, &targets, 1);
+ }
/* Interpolate the enforcement, to blend result of constraint into final owner transform */
/* 1. Remove effects of original matrix from constraint solution ==> delta */
@@ -2904,7 +3381,7 @@ void solve_constraints (ListBase *conlist, bConstraintOb *cob, float ctime)
/* 3. Now multiply the delta by the matrix in use before the evaluation */
Mat4MulMat4(cob->matrix, delta, oldmat);
- /* move target/owner back into worldspace for next constraint/other business */
+ /* move owner back into worldspace for next constraint/other business */
if ((con->flag & CONSTRAINT_SPACEONCE) == 0)
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, con->ownspace, CONSTRAINT_SPACE_WORLD);
}