Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJanne Karhu <jhkarh@gmail.com>2009-10-01 02:10:14 +0400
committerJanne Karhu <jhkarh@gmail.com>2009-10-01 02:10:14 +0400
commitbff893a42047cfc92671f878109c1ff17ce5f8a2 (patch)
treef18bfc386773e1878fc4805a57618af481bc876e /source/blender/blenkernel/intern/effect.c
parent7d9bfdc31ab179b4dd4a626bc8f9a873c59402b4 (diff)
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
Diffstat (limited to 'source/blender/blenkernel/intern/effect.c')
-rw-r--r--source/blender/blenkernel/intern/effect.c855
1 files changed, 641 insertions, 214 deletions
diff --git a/source/blender/blenkernel/intern/effect.c b/source/blender/blenkernel/intern/effect.c
index acf906e3163..7cc65de827a 100644
--- a/source/blender/blenkernel/intern/effect.c
+++ b/source/blender/blenkernel/intern/effect.c
@@ -48,12 +48,15 @@
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
+#include "DNA_particle_types.h"
#include "DNA_texture_types.h"
#include "DNA_scene_types.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_jitter.h"
+#include "BLI_listbase.h"
+#include "BLI_noise.h"
#include "BLI_rand.h"
#include "PIL_time.h"
@@ -68,6 +71,7 @@
#include "BKE_depsgraph.h"
#include "BKE_displist.h"
#include "BKE_DerivedMesh.h"
+#include "BKE_cdderivedmesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
@@ -79,11 +83,13 @@
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
+#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_screen.h"
#include "BKE_utildefines.h"
#include "RE_render_ext.h"
+#include "RE_shader_ext.h"
/* fluid sim particle import */
#ifndef DISABLE_ELBEEM
@@ -95,17 +101,46 @@
//XXX #include "BIF_screen.h"
-PartDeflect *object_add_collision_fields(void)
+EffectorWeights *BKE_add_effector_weights(Group *group)
+{
+ EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
+ int i;
+
+ for(i=0; i<NUM_PFIELD_TYPES; i++)
+ weights->weight[i] = 1.0f;
+
+ weights->global_gravity = 1.0f;
+
+ weights->group = group;
+
+ return weights;
+}
+PartDeflect *object_add_collision_fields(int type)
{
PartDeflect *pd;
pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
+ pd->forcefield = type;
pd->pdef_sbdamp = 0.1f;
pd->pdef_sbift = 0.2f;
pd->pdef_sboft = 0.02f;
pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128;
pd->f_strength = 1.0f;
+ pd->f_damp = 1.0f;
+ pd->f_size = 1.0f;
+
+ /* set sensible defaults based on type */
+ switch(type) {
+ case PFIELD_VORTEX:
+ pd->shape = PFIELD_SHAPE_PLANE;
+ break;
+ case PFIELD_WIND:
+ pd->shape = PFIELD_SHAPE_PLANE;
+ pd->f_flow = 1.0f; /* realistic wind behavior */
+ break;
+ }
+ pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION;
return pd;
}
@@ -156,93 +191,216 @@ void free_effects(ListBase *lb)
}
/* -------------------------- Effectors ------------------ */
+void free_partdeflect(PartDeflect *pd)
+{
+ if(!pd)
+ return;
+
+ if(pd->tex)
+ pd->tex->id.us--;
-static void add_to_effectorcache(ListBase *lb, Scene *scene, Object *ob, Object *obsrc)
+ if(pd->rng)
+ rng_free(pd->rng);
+
+ MEM_freeN(pd);
+}
+
+static void precalculate_effector(EffectorCache *eff)
{
- pEffectorCache *ec;
- PartDeflect *pd= ob->pd;
-
- if(pd->forcefield == PFIELD_GUIDE) {
- if(ob->type==OB_CURVE && obsrc->type==OB_MESH) { /* guides only do mesh particles */
- Curve *cu= ob->data;
- if(cu->flag & CU_PATH) {
- if(cu->path==NULL || cu->path->data==NULL)
- makeDispListCurveTypes(scene, ob, 0);
- if(cu->path && cu->path->data) {
- ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
- ec->ob= ob;
- BLI_addtail(lb, ec);
- }
+ unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra);
+ if(!eff->pd->rng)
+ eff->pd->rng = rng_new(eff->pd->seed + cfra);
+ else
+ rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
+
+ if(eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) {
+ Curve *cu= eff->ob->data;
+ if(cu->flag & CU_PATH) {
+ if(cu->path==NULL || cu->path->data==NULL)
+ makeDispListCurveTypes(eff->scene, eff->ob, 0);
+
+ if(cu->path && cu->path->data) {
+ where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius);
+ Mat4MulVecfl(eff->ob->obmat, eff->guide_loc);
+ Mat4Mul3Vecfl(eff->ob->obmat, eff->guide_dir);
}
}
}
- else if(pd->forcefield) {
-
- if(pd->forcefield == PFIELD_WIND)
- {
- pd->rng = rng_new(pd->seed);
- }
-
- ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
- ec->ob= ob;
- BLI_addtail(lb, ec);
+ else if(eff->pd->shape == PFIELD_SHAPE_SURFACE) {
+ eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface );
+ }
+ else if(eff->psys)
+ psys_update_particle_tree(eff->psys, eff->scene->r.cfra);
+}
+static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd)
+{
+ EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
+ eff->scene = scene;
+ eff->ob = ob;
+ eff->psys = psys;
+ eff->pd = pd;
+ eff->frame = -1;
+
+ precalculate_effector(eff);
+
+ return eff;
+}
+static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src)
+{
+ EffectorCache *eff = NULL;
+
+ if( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f )
+ return;
+
+ if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal )
+ return;
+
+ if(*effectors == NULL)
+ *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+ eff = new_effector_cache(scene, ob, NULL, ob->pd);
+
+ BLI_addtail(*effectors, eff);
+}
+static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src)
+{
+ ParticleSettings *part= psys->part;
+
+ if( !psys_check_enabled(ob, psys) )
+ return;
+
+ if( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0)
+ return;
+
+ if( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) {
+ if(*effectors == NULL)
+ *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+ BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd));
+ }
+
+ if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) {
+ if(*effectors == NULL)
+ *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+ BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2));
}
}
/* returns ListBase handle with objects taking part in the effecting */
-ListBase *pdInitEffectors(Scene *scene, Object *obsrc, Group *group)
+ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights)
{
- static ListBase listb={NULL, NULL};
- pEffectorCache *ec;
Base *base;
- unsigned int layer= obsrc->lay;
+ unsigned int layer= ob_src->lay;
+ ListBase *effectors = NULL;
- if(group) {
+ if(weights->group) {
GroupObject *go;
- for(go= group->gobject.first; go; go= go->next) {
- if( (go->ob->lay & layer) && go->ob->pd && go->ob!=obsrc) {
- add_to_effectorcache(&listb, scene, go->ob, obsrc);
+ for(go= weights->group->gobject.first; go; go= go->next) {
+ if( (go->ob->lay & layer) ) {
+ if( go->ob->pd && go->ob->pd->forcefield )
+ add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src);
+
+ if( go->ob->particlesystem.first ) {
+ ParticleSystem *psys= go->ob->particlesystem.first;
+
+ for( ; psys; psys=psys->next )
+ add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src);
+ }
}
}
}
else {
for(base = scene->base.first; base; base= base->next) {
- if( (base->lay & layer) && base->object->pd && base->object!=obsrc) {
- add_to_effectorcache(&listb, scene, base->object, obsrc);
+ if( (base->lay & layer) ) {
+ if( base->object->pd && base->object->pd->forcefield )
+ add_object_to_effectors(&effectors, scene, weights, base->object, ob_src);
+
+ if( base->object->particlesystem.first ) {
+ ParticleSystem *psys= base->object->particlesystem.first;
+
+ for( ; psys; psys=psys->next )
+ add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src);
+ }
}
}
}
-
- /* make a full copy */
- for(ec= listb.first; ec; ec= ec->next) {
- ec->obcopy= *(ec->ob);
- }
-
- if(listb.first)
- return &listb;
-
- return NULL;
+ return effectors;
}
-void pdEndEffectors(ListBase *lb)
+void pdEndEffectors(ListBase **effectors)
{
- if(lb) {
- pEffectorCache *ec;
- /* restore full copy */
- for(ec= lb->first; ec; ec= ec->next)
- {
- if(ec->ob->pd && (ec->ob->pd->forcefield == PFIELD_WIND))
- rng_free(ec->ob->pd->rng);
-
- *(ec->ob)= ec->obcopy;
+ if(*effectors) {
+ EffectorCache *eff = (*effectors)->first;
+
+ for(; eff; eff=eff->next) {
+ if(eff->guide_data)
+ MEM_freeN(eff->guide_data);
}
- BLI_freelistN(lb);
+ BLI_freelistN(*effectors);
+ MEM_freeN(*effectors);
+ *effectors = NULL;
}
}
+void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point)
+{
+ point->loc = state->co;
+ point->vel = state->vel;
+ point->index = pa - sim->psys->particles;
+ point->size = pa->size;
+ /* TODO: point->charge */
+ point->charge = 1.0f;
+
+ point->vel_to_sec = 1.0f;
+ point->vel_to_frame = psys_get_timestep(sim);
+
+ point->flag = 0;
+
+ if(sim->psys->part->flag & PART_ROT_DYN) {
+ point->ave = state->ave;
+ point->rot = state->rot;
+ }
+ else
+ point->ave = point->rot = NULL;
+
+ point->psys = sim->psys;
+}
+
+void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
+{
+ point->loc = loc;
+ point->vel = vel;
+ point->index = index;
+ point->size = 0.0f;
+
+ point->vel_to_sec = (float)scene->r.frs_sec;
+ point->vel_to_frame = 1.0f;
+
+ point->flag = 0;
+
+ point->ave = point->rot = NULL;
+ point->psys = NULL;
+}
+void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
+{
+ point->loc = loc;
+ point->vel = vel;
+ point->index = index;
+ point->size = 0.0f;
+
+ point->vel_to_sec = (float)scene->r.frs_sec;
+ point->vel_to_frame = 1.0f;
+
+ point->flag = PE_WIND_AS_SPEED;
+
+ point->ave = point->rot = NULL;
+
+ point->psys = NULL;
+}
/************************************************/
/* Effectors */
/************************************************/
@@ -256,27 +414,33 @@ static void eff_tri_ray_hit(void *userdata, int index, const BVHTreeRay *ray, BV
}
// get visibility of a wind ray
-static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir)
+static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point)
{
- Object **collobjs = NULL;
- int numcollobj = 0, i;
+ ListBase *colls = colliders;
+ ColliderCache *col;
float norm[3], len = 0.0;
float visibility = 1.0, absorption = 0.0;
- collobjs = get_collisionobjects(scene, ob, &numcollobj);
-
- if(!collobjs)
- return 0;
+ if(!(eff->pd->flag & PFIELD_VISIBILITY))
+ return visibility;
+
+ if(!colls)
+ colls = get_collider_cache(eff->scene, NULL);
+
+ if(!colls)
+ return visibility;
- VECCOPY(norm, dir);
+ VECCOPY(norm, efd->vec_to_point);
VecNegf(norm);
len = Normalize(norm);
// check all collision objects
- for(i = 0; i < numcollobj; i++)
+ for(col = colls->first; col; col = col->next)
{
- Object *collob= collobjs[i];
- CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
+ CollisionModifierData *collmd = col->collmd;
+
+ if(col->ob == eff->ob)
+ continue;
if(collmd->bvhtree)
{
@@ -286,9 +450,9 @@ static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir
hit.dist = len + FLT_EPSILON;
// check if the way is blocked
- if(BLI_bvhtree_ray_cast(collmd->bvhtree, co, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
+ if(BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
{
- absorption= (collob->pd)? collob->pd->absorption: 0.0f;
+ absorption= col->ob->pd->absorption;
// visibility is only between 0 and 1, calculated from 1-absorption
visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f);
@@ -298,8 +462,9 @@ static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir
}
}
}
-
- MEM_freeN(collobjs);
+
+ if(!colliders)
+ free_collider_cache(&colls);
return visibility;
}
@@ -347,43 +512,39 @@ static float falloff_func_rad(PartDeflect *pd, float fac)
return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
}
-float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
+float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, EffectorWeights *weights)
{
- float eff_dir[3], temp[3];
- float falloff=1.0, fac, r_fac;
-
- if(pd->forcefield==PFIELD_LENNARDJ)
- return falloff; /* Lennard-Jones field has it's own falloff built in */
+ float temp[3];
+ float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
+ float fac, r_fac;
- VecCopyf(eff_dir,eff_velocity);
- Normalize(eff_dir);
+ fac = Inpf(efd->nor, efd->vec_to_point);
- if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
+ if(eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f)
falloff=0.0f;
- else switch(pd->falloff){
+ else if(eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f)
+ falloff=0.0f;
+ else switch(eff->pd->falloff){
case PFIELD_FALL_SPHERE:
- fac=VecLength(vec_to_part);
- falloff= falloff_func_dist(pd, fac);
+ falloff*= falloff_func_dist(eff->pd, efd->distance);
break;
case PFIELD_FALL_TUBE:
- fac=Inpf(vec_to_part,eff_dir);
- falloff= falloff_func_dist(pd, ABS(fac));
+ falloff*= falloff_func_dist(eff->pd, ABS(fac));
if(falloff == 0.0f)
break;
- VECADDFAC(temp,vec_to_part,eff_dir,-fac);
- r_fac=VecLength(temp);
- falloff*= falloff_func_rad(pd, r_fac);
+ VECADDFAC(temp, efd->vec_to_point, efd->nor, -fac);
+ r_fac= VecLength(temp);
+ falloff*= falloff_func_rad(eff->pd, r_fac);
break;
case PFIELD_FALL_CONE:
- fac=Inpf(vec_to_part,eff_dir);
- falloff= falloff_func_dist(pd, ABS(fac));
+ falloff*= falloff_func_dist(eff->pd, ABS(fac));
if(falloff == 0.0f)
break;
- r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
- falloff*= falloff_func_rad(pd, r_fac);
+ r_fac=saacos(fac/VecLength(efd->vec_to_point))*180.0f/(float)M_PI;
+ falloff*= falloff_func_rad(eff->pd, r_fac);
break;
}
@@ -391,127 +552,391 @@ float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
return falloff;
}
-void do_physical_effector(Scene *scene, Object *ob, float *opco, short type, float force_val, float distance, float falloff, float size, float damp, float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar, struct RNG *rng, float noise_factor, float charge, float pa_size)
+int closest_point_on_surface(SurfaceModifierData *surmd, float *co, float *surface_co, float *surface_nor, float *surface_vel)
{
- float mag_vec[3]={0,0,0};
- float temp[3], temp2[3];
- float eff_vel[3];
- float noise = 0, visibility;
-
- // calculate visibility
- visibility = eff_calc_visibility(scene, ob, opco, vec_to_part);
- if(visibility <= 0.0)
- return;
- falloff *= visibility;
+ BVHTreeNearest nearest;
- VecCopyf(eff_vel,eff_velocity);
- Normalize(eff_vel);
+ nearest.index = -1;
+ nearest.dist = FLT_MAX;
- switch(type){
- case PFIELD_WIND:
- VECCOPY(mag_vec,eff_vel);
-
- // add wind noise here, only if we have wind
- if((noise_factor > 0.0f) && (force_val > FLT_EPSILON))
- noise = wind_func(rng, noise_factor);
+ BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
+
+ if(nearest.index != -1) {
+ VECCOPY(surface_co, nearest.co);
+
+ if(surface_nor) {
+ VECCOPY(surface_nor, nearest.no);
+ }
+
+ if(surface_vel) {
+ MFace *mface = CDDM_get_face(surmd->dm, nearest.index);
- VecMulf(mag_vec,(force_val+noise)*falloff);
- VecAddf(field,field,mag_vec);
- break;
+ VECCOPY(surface_vel, surmd->v[mface->v1].co);
+ VecAddf(surface_vel, surface_vel, surmd->v[mface->v2].co);
+ VecAddf(surface_vel, surface_vel, surmd->v[mface->v3].co);
+ if(mface->v4)
+ VecAddf(surface_vel, surface_vel, surmd->v[mface->v4].co);
- case PFIELD_FORCE:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
+ VecMulf(surface_vel, mface->v4 ? 0.25f : 0.333f);
+ }
+ return 1;
+ }
- Normalize(mag_vec);
+ return 0;
+}
+int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
+{
+ float cfra = eff->scene->r.cfra;
+ int ret = 0;
- VecMulf(mag_vec,force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
+ if(eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
+ /* closest point in the object surface is an effector */
+ float vec[3];
- case PFIELD_VORTEX:
- Crossf(mag_vec,eff_vel,vec_to_part);
+ /* using velocity corrected location allows for easier sliding over effector surface */
+ VecCopyf(vec, point->vel);
+ VecMulf(vec, point->vel_to_frame);
+ VecAddf(vec, vec, point->loc);
- Normalize(mag_vec);
+ ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
- VecMulf(mag_vec,force_val*distance*falloff);
- VecAddf(field,field,mag_vec);
+ efd->size = 0.0f;
+ }
+ else if(eff->pd->shape==PFIELD_SHAPE_POINTS) {
- break;
- case PFIELD_MAGNET:
- if(planar)
- VecCopyf(temp,eff_vel);
- else
- /* magnetic field of a moving charge */
- Crossf(temp,eff_vel,vec_to_part);
+ if(eff->ob->derivedFinal) {
+ DerivedMesh *dm = eff->ob->derivedFinal;
- Normalize(temp);
+ dm->getVertCo(dm, *efd->index, efd->loc);
+ dm->getVertNo(dm, *efd->index, efd->nor);
- Crossf(temp2,velocity,temp);
- VecAddf(mag_vec,mag_vec,temp2);
+ Mat4MulVecfl(eff->ob->obmat, efd->loc);
+ Mat4Mul3Vecfl(eff->ob->obmat, efd->nor);
- VecMulf(mag_vec,force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
- case PFIELD_HARMONIC:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
+ Normalize(efd->nor);
- VecMulf(mag_vec,force_val*falloff);
- VecSubf(field,field,mag_vec);
+ efd->size = 0.0f;
- VecCopyf(mag_vec,velocity);
- VecMulf(mag_vec,damp*2.0f*(float)sqrt(force_val));
- VecSubf(field,field,mag_vec);
- break;
- case PFIELD_CHARGE:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
+ /**/
+ ret = 1;
+ }
+ }
+ else if(eff->psys) {
+ ParticleSimulationData sim = {eff->scene, eff->ob, eff->psys, NULL, NULL};
+ ParticleData *pa = eff->psys->particles + *efd->index;
+ ParticleKey state;
+
+ /* exclude the particle itself for self effecting particles */
+ if(eff->psys == point->psys && *efd->index == point->index)
+ ;
+ else {
+ /* TODO: time from actual previous calculated frame (step might not be 1) */
+ state.time = cfra - 1.0;
+ ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
+
+ /* TODO */
+ //if(eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
+ // if(pa->dietime < eff->psys->cfra)
+ // eff->flag |= PE_VELOCITY_TO_IMPULSE;
+ //}
+
+ VECCOPY(efd->loc, state.co);
+ VECCOPY(efd->nor, state.vel);
+ if(real_velocity) {
+ VECCOPY(efd->vel, state.vel);
+ }
- Normalize(mag_vec);
+ efd->size = pa->size;
+ }
+ }
+ else {
+ /* use center of object for distance calculus */
+ Object *ob = eff->ob;
+ Object obcopy = *ob;
+
+ where_is_object_time(eff->scene, ob, cfra);
+
+ /* use z-axis as normal*/
+ VECCOPY(efd->nor, ob->obmat[2]);
+ Normalize(efd->nor);
+
+ /* for vortex the shape chooses between old / new force */
+ if(eff->pd->shape == PFIELD_SHAPE_PLANE) {
+ /* efd->loc is closes point on effector xy-plane */
+ float temp[3];
+ VecSubf(temp, point->loc, ob->obmat[3]);
+ Projf(efd->loc, temp, efd->nor);
+ VecSubf(efd->loc, point->loc, efd->loc);
+ }
+ else {
+ VECCOPY(efd->loc, ob->obmat[3]);
+ }
- VecMulf(mag_vec,charge*force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
- case PFIELD_LENNARDJ:
- {
- float fac;
+ if(real_velocity) {
+ VECCOPY(efd->vel, ob->obmat[3]);
+
+ where_is_object_time(eff->scene, ob, cfra - 1.0);
+
+ VecSubf(efd->vel, efd->vel, ob->obmat[3]);
+ }
+
+ *eff->ob = obcopy;
+
+ efd->size = 0.0f;
+
+ ret = 1;
+ }
+
+ if(ret) {
+ VecSubf(efd->vec_to_point, point->loc, efd->loc);
+ efd->distance = VecLength(efd->vec_to_point);
+
+ /* for some effectors we need the object center every time */
+ VecSubf(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
+ VECCOPY(efd->nor2, eff->ob->obmat[2]);
+ Normalize(efd->nor2);
+ }
+
+ return ret;
+}
+static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p)
+{
+ if(eff->pd->shape == PFIELD_SHAPE_POINTS) {
+ efd->index = p;
+
+ *p = 0;
+ *tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1;
+
+ if(*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
+ *p = point->index % *tot;
+ *tot = *p+1;
+ }
+ }
+ else if(eff->psys) {
+ efd->index = p;
+
+ *p = 0;
+ *tot = eff->psys->totpart;
+
+ if(eff->pd->forcefield == PFIELD_CHARGE) {
+ /* Only the charge of the effected particle is used for
+ interaction, not fall-offs. If the fall-offs aren't the
+ same this will be unphysical, but for animation this
+ could be the wanted behavior. If you want physical
+ correctness the fall-off should be spherical 2.0 anyways.
+ */
+ efd->charge = eff->pd->f_strength;
+ }
+ else if(eff->pd->forcefield == PFIELD_HARMONIC) {
+ /* every particle is mapped to only one harmonic effector particle */
+ *p= point->index % eff->psys->totpart;
+ *tot= *p + 1;
+ }
+ }
+ else {
+ *p = 0;
+ *tot = 1;
+ }
+}
+static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
+{
+ TexResult result[4];
+ float tex_co[3], strength, force[3];
+ float nabla = eff->pd->tex_nabla;
+ int hasrgb;
+ short mode = eff->pd->tex_mode;
+
+ if(!eff->pd->tex)
+ return;
+
+ result[0].nor = result[1].nor = result[2].nor = result[3].nor = 0;
+
+ strength= eff->pd->f_strength * efd->falloff;
+
+ VECCOPY(tex_co,point->loc);
+
+ if(eff->pd->flag & PFIELD_TEX_2D) {
+ float fac=-Inpf(tex_co, efd->nor);
+ VECADDFAC(tex_co, tex_co, efd->nor, fac);
+ }
+
+ if(eff->pd->flag & PFIELD_TEX_OBJECT) {
+ Mat4Mul3Vecfl(eff->ob->obmat, tex_co);
+ }
+
+ hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL,NULL, 1, result);
+
+ if(hasrgb && mode==PFIELD_TEX_RGB) {
+ force[0] = (0.5f - result->tr) * strength;
+ force[1] = (0.5f - result->tg) * strength;
+ force[2] = (0.5f - result->tb) * strength;
+ }
+ else {
+ strength/=nabla;
+
+ tex_co[0] += nabla;
+ multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 1, result+1);
+
+ tex_co[0] -= nabla;
+ tex_co[1] += nabla;
+ multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 1, result+2);
- if(planar) {
- Projf(mag_vec,vec_to_part,eff_vel);
- distance = VecLength(mag_vec);
+ tex_co[1] -= nabla;
+ tex_co[2] += nabla;
+ multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 1, result+3);
+
+ if(mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we dont have rgb fall back to grad */
+ force[0] = (result[0].tin - result[1].tin) * strength;
+ force[1] = (result[0].tin - result[2].tin) * strength;
+ force[2] = (result[0].tin - result[3].tin) * strength;
+ }
+ else { /*PFIELD_TEX_CURL*/
+ float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
+
+ dbdy = result[2].tb - result[0].tb;
+ dgdz = result[3].tg - result[0].tg;
+ drdz = result[3].tr - result[0].tr;
+ dbdx = result[1].tb - result[0].tb;
+ dgdx = result[1].tg - result[0].tg;
+ drdy = result[2].tr - result[0].tr;
+
+ force[0] = (dbdy - dgdz) * strength;
+ force[1] = (drdz - dbdx) * strength;
+ force[2] = (dgdx - drdy) * strength;
+ }
+ }
+
+ if(eff->pd->flag & PFIELD_TEX_2D){
+ float fac = -Inpf(force, efd->nor);
+ VECADDFAC(force, force, efd->nor, fac);
+ }
+
+ VecAddf(total_force, total_force, force);
+}
+void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
+{
+ PartDeflect *pd = eff->pd;
+ RNG *rng = pd->rng;
+ float force[3]={0,0,0};
+ float temp[3];
+ float fac;
+ float strength = pd->f_strength;
+ float damp = pd->f_damp;
+ float noise_factor = pd->f_noise;
+
+ if(noise_factor > 0.0f) {
+ strength += wind_func(rng, noise_factor);
+
+ if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
+ damp += wind_func(rng, noise_factor);
+ }
+
+ VECCOPY(force, efd->vec_to_point);
+
+ switch(pd->forcefield){
+ case PFIELD_WIND:
+ Normalize(force);
+ strength *= (Inpf(force, efd->nor) >= 0.0f ? 1.0f : -1.0f);
+ VecMulf(force, strength * efd->falloff);
+ break;
+ case PFIELD_FORCE:
+ Normalize(force);
+ VecMulf(force, strength * efd->falloff);
+ break;
+ case PFIELD_VORTEX:
+ /* old vortex force */
+ if(pd->shape == PFIELD_SHAPE_POINT) {
+ Crossf(force, efd->nor, efd->vec_to_point);
+ Normalize(force);
+ VecMulf(force, strength * efd->distance * efd->falloff);
}
+ else {
+ /* new vortex force */
+ Crossf(temp, efd->nor2, efd->vec_to_point2);
+ VecMulf(temp, strength * efd->falloff);
+
+ Crossf(force, efd->nor2, temp);
+ VecMulf(force, strength * efd->falloff);
+
+ VECADDFAC(temp, temp, point->vel, -point->vel_to_sec);
+ VecAddf(force, force, temp);
+ }
+ break;
+ case PFIELD_MAGNET:
+ if(eff->pd->shape == PFIELD_SHAPE_POINT)
+ /* magnetic field of a moving charge */
+ Crossf(temp, efd->nor, efd->vec_to_point);
else
- VecCopyf(mag_vec,vec_to_part);
-
- /* at this distance the field is 60 times weaker than maximum */
- if(distance > 2.22 * (size+pa_size))
- break;
+ VecCopyf(temp, efd->nor);
- fac = pow((size+pa_size)/distance,6.0);
+ Normalize(temp);
+ VecMulf(temp, strength * efd->falloff);
+ Crossf(force, point->vel, temp);
+ VecMulf(force, point->vel_to_sec);
+ break;
+ case PFIELD_HARMONIC:
+ VecMulf(force, -strength * efd->falloff);
+ VecCopyf(temp, point->vel);
+ VecMulf(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec);
+ VecAddf(force, force, temp);
+ break;
+ case PFIELD_CHARGE:
+ VecMulf(force, point->charge * strength * efd->falloff);
+ break;
+ case PFIELD_LENNARDJ:
+ fac = pow((efd->size + point->size) / efd->distance, 6.0);
- fac = - fac * (1.0 - fac) / distance;
+ fac = - fac * (1.0 - fac) / efd->distance;
/* limit the repulsive term drastically to avoid huge forces */
fac = ((fac>2.0) ? 2.0 : fac);
- /* 0.003715 is the fac value at 2.22 times (size+pa_size),
- substracted to avoid discontinuity at the border
- */
- VecMulf(mag_vec, force_val * (fac-0.0037315));
- VecAddf(field,field,mag_vec);
+ VecMulf(force, strength * fac);
break;
- }
case PFIELD_BOID:
/* Boid field is handled completely in boids code. */
+ return;
+ case PFIELD_TURBULENCE:
+ if(pd->flag & PFIELD_GLOBAL_CO) {
+ VECCOPY(temp, point->loc);
+ }
+ else {
+ VECADD(temp, efd->vec_to_point2, efd->nor2);
+ }
+ force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2,0,2);
+ force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2,0,2);
+ force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2,0,2);
+ VecMulf(force, strength * efd->falloff);
+ break;
+ case PFIELD_DRAG:
+ VECCOPY(force, point->vel);
+ fac = Normalize(force) * point->vel_to_sec;
+
+ strength = MIN2(strength, 2.0f);
+ damp = MIN2(damp, 2.0f);
+
+ VecMulf(force, -efd->falloff * fac * (strength * fac + damp));
break;
}
+
+ if(pd->flag & PFIELD_DO_LOCATION) {
+ VECADDFAC(total_force, total_force, force, 1.0f/point->vel_to_sec);
+
+ if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)==0 && pd->f_flow != 0.0f) {
+ VECADDFAC(total_force, total_force, point->vel, -pd->f_flow * efd->falloff);
+ }
+ }
+
+ if(pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
+ float xvec[3] = {1.0f, 0.0f, 0.0f};
+ float dave[3];
+ QuatMulVecf(point->rot, xvec);
+ Crossf(dave, xvec, force);
+ if(pd->f_flow != 0.0f) {
+ VECADDFAC(dave, dave, point->ave, -pd->f_flow * efd->falloff);
+ }
+ VecAddf(point->ave, point->ave, dave);
+ }
}
/* -------- pdDoEffectors() --------
@@ -528,7 +953,7 @@ void do_physical_effector(Scene *scene, Object *ob, float *opco, short type, flo
guide = old speed of particle
*/
-void pdDoEffectors(Scene *scene, ListBase *lb, float *opco, float *force, float *speed, float cur_time, float loc_time, unsigned int flags)
+void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse)
{
/*
Modifies the force on a particle according to its
@@ -543,43 +968,45 @@ void pdDoEffectors(Scene *scene, ListBase *lb, float *opco, float *force, float
(particles are guided along a curve bezier or old nurbs)
(is independent of other effectors)
*/
- Object *ob;
- pEffectorCache *ec;
- PartDeflect *pd;
-
- float distance, vec_to_part[3];
- float falloff;
+ EffectorCache *eff;
+ EffectorData efd;
+ int p=0, tot = 1;
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? (yes would be cool to add that, ton) */
- for(ec = lb->first; ec; ec= ec->next) {
+ if(effectors) for(eff = effectors->first; eff; eff=eff->next) {
/* object effectors were fully checked to be OK to evaluate! */
- ob= ec->ob;
- pd= ob->pd;
-
- /* Get IPO force strength and fall off values here */
- where_is_object_time(scene, ob, cur_time);
-
- /* use center of object for distance calculus */
- VecSubf(vec_to_part, opco, ob->obmat[3]);
- distance = VecLength(vec_to_part);
- falloff=effector_falloff(pd,ob->obmat[2],vec_to_part);
-
- if(falloff<=0.0f)
- ; /* don't do anything */
- else {
- float field[3]={0,0,0}, tmp[3];
- VECCOPY(field, force);
- do_physical_effector(scene, ob, opco, pd->forcefield,pd->f_strength,distance,
- falloff, pd->f_dist, pd->f_damp, ob->obmat[2], vec_to_part,
- speed,force, pd->flag&PFIELD_PLANAR, pd->rng, pd->f_noise, 0.0f, 0.0f);
-
- // for softbody backward compatibility
- if(flags & PE_WIND_AS_SPEED){
- VECSUB(tmp, force, field);
- VECSUB(speed, speed, tmp);
+ get_effector_tot(eff, &efd, point, &tot, &p);
+
+ for(; p<tot; p++) {
+ if(get_effector_data(eff, &efd, point, 0)) {
+ efd.falloff= effector_falloff(eff, &efd, point, weights);
+
+ if(efd.falloff > 0.0f)
+ efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
+
+ if(efd.falloff <= 0.0f)
+ ; /* don't do anything */
+ else if(eff->pd->forcefield == PFIELD_TEXTURE)
+ do_texture_effector(eff, &efd, point, force);
+ else {
+ float temp1[3]={0,0,0}, temp2[3];
+ VECCOPY(temp1, force);
+
+ do_physical_effector(eff, &efd, point, force);
+
+ // for softbody backward compatibility
+ if(point->flag & PE_WIND_AS_SPEED && impulse){
+ VECSUB(temp2, force, temp1);
+ VECSUB(impulse, impulse, temp2);
+ }
+ }
+ }
+ else if(eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
+ /* special case for harmonic effector */
+ VECADD(impulse, impulse, efd.vel);
}
}
}