Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLukas Tönne <lukas.toenne@gmail.com>2016-12-28 19:30:58 +0300
committerLukas Tönne <lukas.toenne@gmail.com>2016-12-28 19:30:58 +0300
commit6ecab6dd8e48d564a2b43e0e81e79d079e8b4c77 (patch)
tree618e2d24eb34a05a81f726dd52eb2b7468e9296d /source/blender/blenkernel/intern/particle_distribute.c
parent605263177b8eea24c1449e4dbf0138175ec3dddf (diff)
Revert particle system and point cache removal in blender2.8 branch.
This reverts commit 5aa19be91263a249ffae75573e3b32f24269d890 and b4a721af694817fa921b119df83d33ede7d7fed0. Due to postponement of particle system rewrite it was decided to put particle code back into the 2.8 branch for the time being.
Diffstat (limited to 'source/blender/blenkernel/intern/particle_distribute.c')
-rw-r--r--source/blender/blenkernel/intern/particle_distribute.c1476
1 files changed, 1476 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/particle_distribute.c b/source/blender/blenkernel/intern/particle_distribute.c
new file mode 100644
index 00000000000..44cf5b119c1
--- /dev/null
+++ b/source/blender/blenkernel/intern/particle_distribute.c
@@ -0,0 +1,1476 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2007 by Janne Karhu.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Raul Fernandez Hernandez (Farsthary),
+ * Stephen Swhitehorn,
+ * Lukas Toenne
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/particle_distribute.c
+ * \ingroup bke
+ */
+
+#include <string.h>
+
+#include "MEM_guardedalloc.h"
+
+#include "BLI_utildefines.h"
+#include "BLI_jitter.h"
+#include "BLI_kdtree.h"
+#include "BLI_math.h"
+#include "BLI_rand.h"
+#include "BLI_sort.h"
+#include "BLI_task.h"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_modifier_types.h"
+#include "DNA_particle_types.h"
+#include "DNA_scene_types.h"
+
+#include "BKE_cdderivedmesh.h"
+#include "BKE_DerivedMesh.h"
+#include "BKE_global.h"
+#include "BKE_mesh.h"
+#include "BKE_object.h"
+#include "BKE_particle.h"
+
+static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot);
+
+static void alloc_child_particles(ParticleSystem *psys, int tot)
+{
+ if (psys->child) {
+ /* only re-allocate if we have to */
+ if (psys->part->childtype && psys->totchild == tot) {
+ memset(psys->child, 0, tot*sizeof(ChildParticle));
+ return;
+ }
+
+ MEM_freeN(psys->child);
+ psys->child=NULL;
+ psys->totchild=0;
+ }
+
+ if (psys->part->childtype) {
+ psys->totchild= tot;
+ if (psys->totchild)
+ psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
+ }
+}
+
+static void distribute_simple_children(Scene *scene, Object *ob, DerivedMesh *finaldm, DerivedMesh *deformdm, ParticleSystem *psys)
+{
+ ChildParticle *cpa = NULL;
+ int i, p;
+ int child_nbr= psys_get_child_number(scene, psys);
+ int totpart= psys_get_tot_child(scene, psys);
+
+ alloc_child_particles(psys, totpart);
+
+ cpa = psys->child;
+ for (i=0; i<child_nbr; i++) {
+ for (p=0; p<psys->totpart; p++,cpa++) {
+ float length=2.0;
+ cpa->parent=p;
+
+ /* create even spherical distribution inside unit sphere */
+ while (length>=1.0f) {
+ cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
+ cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
+ cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
+ length=len_v3(cpa->fuv);
+ }
+
+ cpa->num=-1;
+ }
+ }
+ /* dmcache must be updated for parent particles if children from faces is used */
+ psys_calc_dmcache(ob, finaldm, deformdm, psys);
+}
+static void distribute_grid(DerivedMesh *dm, ParticleSystem *psys)
+{
+ ParticleData *pa=NULL;
+ float min[3], max[3], delta[3], d;
+ MVert *mv, *mvert = dm->getVertDataArray(dm,0);
+ int totvert=dm->getNumVerts(dm), from=psys->part->from;
+ int i, j, k, p, res=psys->part->grid_res, size[3], axis;
+
+ /* find bounding box of dm */
+ if (totvert > 0) {
+ mv=mvert;
+ copy_v3_v3(min, mv->co);
+ copy_v3_v3(max, mv->co);
+ mv++;
+ for (i = 1; i < totvert; i++, mv++) {
+ minmax_v3v3_v3(min, max, mv->co);
+ }
+ }
+ else {
+ zero_v3(min);
+ zero_v3(max);
+ }
+
+ sub_v3_v3v3(delta, max, min);
+
+ /* determine major axis */
+ axis = axis_dominant_v3_single(delta);
+
+ d = delta[axis]/(float)res;
+
+ size[axis] = res;
+ size[(axis+1)%3] = (int)ceil(delta[(axis+1)%3]/d);
+ size[(axis+2)%3] = (int)ceil(delta[(axis+2)%3]/d);
+
+ /* float errors grrr.. */
+ size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
+ size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
+
+ size[0] = MAX2(size[0], 1);
+ size[1] = MAX2(size[1], 1);
+ size[2] = MAX2(size[2], 1);
+
+ /* no full offset for flat/thin objects */
+ min[0]+= d < delta[0] ? d/2.f : delta[0]/2.f;
+ min[1]+= d < delta[1] ? d/2.f : delta[1]/2.f;
+ min[2]+= d < delta[2] ? d/2.f : delta[2]/2.f;
+
+ for (i=0,p=0,pa=psys->particles; i<res; i++) {
+ for (j=0; j<res; j++) {
+ for (k=0; k<res; k++,p++,pa++) {
+ pa->fuv[0] = min[0] + (float)i*d;
+ pa->fuv[1] = min[1] + (float)j*d;
+ pa->fuv[2] = min[2] + (float)k*d;
+ pa->flag |= PARS_UNEXIST;
+ pa->hair_index = 0; /* abused in volume calculation */
+ }
+ }
+ }
+
+ /* enable particles near verts/edges/faces/inside surface */
+ if (from==PART_FROM_VERT) {
+ float vec[3];
+
+ pa=psys->particles;
+
+ min[0] -= d/2.0f;
+ min[1] -= d/2.0f;
+ min[2] -= d/2.0f;
+
+ for (i=0,mv=mvert; i<totvert; i++,mv++) {
+ sub_v3_v3v3(vec,mv->co,min);
+ vec[0]/=delta[0];
+ vec[1]/=delta[1];
+ vec[2]/=delta[2];
+ pa[((int)(vec[0] * (size[0] - 1)) * res +
+ (int)(vec[1] * (size[1] - 1))) * res +
+ (int)(vec[2] * (size[2] - 1))].flag &= ~PARS_UNEXIST;
+ }
+ }
+ else if (ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
+ float co1[3], co2[3];
+
+ MFace *mface= NULL, *mface_array;
+ float v1[3], v2[3], v3[3], v4[4], lambda;
+ int a, a1, a2, a0mul, a1mul, a2mul, totface;
+ int amax= from==PART_FROM_FACE ? 3 : 1;
+
+ totface=dm->getNumTessFaces(dm);
+ mface=mface_array=dm->getTessFaceDataArray(dm,CD_MFACE);
+
+ for (a=0; a<amax; a++) {
+ if (a==0) { a0mul=res*res; a1mul=res; a2mul=1; }
+ else if (a==1) { a0mul=res; a1mul=1; a2mul=res*res; }
+ else { a0mul=1; a1mul=res*res; a2mul=res; }
+
+ for (a1=0; a1<size[(a+1)%3]; a1++) {
+ for (a2=0; a2<size[(a+2)%3]; a2++) {
+ mface= mface_array;
+
+ pa = psys->particles + a1*a1mul + a2*a2mul;
+ copy_v3_v3(co1, pa->fuv);
+ co1[a] -= d < delta[a] ? d/2.f : delta[a]/2.f;
+ copy_v3_v3(co2, co1);
+ co2[a] += delta[a] + 0.001f*d;
+ co1[a] -= 0.001f*d;
+
+ /* lets intersect the faces */
+ for (i=0; i<totface; i++,mface++) {
+ copy_v3_v3(v1, mvert[mface->v1].co);
+ copy_v3_v3(v2, mvert[mface->v2].co);
+ copy_v3_v3(v3, mvert[mface->v3].co);
+
+ bool intersects_tri = isect_axial_line_segment_tri_v3(a, co1, co2, v2, v3, v1, &lambda);
+ if (intersects_tri) {
+ if (from==PART_FROM_FACE)
+ (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ else /* store number of intersections */
+ (pa+(int)(lambda*size[a])*a0mul)->hair_index++;
+ }
+
+ if (mface->v4 && (!intersects_tri || from==PART_FROM_VOLUME)) {
+ copy_v3_v3(v4, mvert[mface->v4].co);
+
+ if (isect_axial_line_segment_tri_v3(a, co1, co2, v4, v1, v3, &lambda)) {
+ if (from==PART_FROM_FACE)
+ (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
+ else
+ (pa+(int)(lambda*size[a])*a0mul)->hair_index++;
+ }
+ }
+ }
+
+ if (from==PART_FROM_VOLUME) {
+ int in=pa->hair_index%2;
+ if (in) pa->hair_index++;
+ for (i=0; i<size[0]; i++) {
+ if (in || (pa+i*a0mul)->hair_index%2)
+ (pa+i*a0mul)->flag &= ~PARS_UNEXIST;
+ /* odd intersections == in->out / out->in */
+ /* even intersections -> in stays same */
+ in=(in + (pa+i*a0mul)->hair_index) % 2;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (psys->part->flag & PART_GRID_HEXAGONAL) {
+ for (i=0,p=0,pa=psys->particles; i<res; i++) {
+ for (j=0; j<res; j++) {
+ for (k=0; k<res; k++,p++,pa++) {
+ if (j%2)
+ pa->fuv[0] += d/2.f;
+
+ if (k%2) {
+ pa->fuv[0] += d/2.f;
+ pa->fuv[1] += d/2.f;
+ }
+ }
+ }
+ }
+ }
+
+ if (psys->part->flag & PART_GRID_INVERT) {
+ for (i=0; i<size[0]; i++) {
+ for (j=0; j<size[1]; j++) {
+ pa=psys->particles + res*(i*res + j);
+ for (k=0; k<size[2]; k++, pa++) {
+ pa->flag ^= PARS_UNEXIST;
+ }
+ }
+ }
+ }
+
+ if (psys->part->grid_rand > 0.f) {
+ float rfac = d * psys->part->grid_rand;
+ for (p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
+ if (pa->flag & PARS_UNEXIST)
+ continue;
+
+ pa->fuv[0] += rfac * (psys_frand(psys, p + 31) - 0.5f);
+ pa->fuv[1] += rfac * (psys_frand(psys, p + 32) - 0.5f);
+ pa->fuv[2] += rfac * (psys_frand(psys, p + 33) - 0.5f);
+ }
+ }
+}
+
+/* modified copy from rayshade.c */
+static void hammersley_create(float *out, int n, int seed, float amount)
+{
+ RNG *rng;
+ double p, t, offs[2];
+ int k, kk;
+
+ rng = BLI_rng_new(31415926 + n + seed);
+ offs[0] = BLI_rng_get_double(rng) + (double)amount;
+ offs[1] = BLI_rng_get_double(rng) + (double)amount;
+ BLI_rng_free(rng);
+
+ for (k = 0; k < n; k++) {
+ t = 0;
+ for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
+ if (kk & 1) /* kk mod 2 = 1 */
+ t += p;
+
+ out[2*k + 0] = fmod((double)k/(double)n + offs[0], 1.0);
+ out[2*k + 1] = fmod(t + offs[1], 1.0);
+ }
+}
+
+/* almost exact copy of BLI_jitter_init */
+static void init_mv_jit(float *jit, int num, int seed2, float amount)
+{
+ RNG *rng;
+ float *jit2, x, rad1, rad2, rad3;
+ int i, num2;
+
+ if (num==0) return;
+
+ rad1= (float)(1.0f/sqrtf((float)num));
+ rad2= (float)(1.0f/((float)num));
+ rad3= (float)sqrtf((float)num)/((float)num);
+
+ rng = BLI_rng_new(31415926 + num + seed2);
+ x= 0;
+ num2 = 2 * num;
+ for (i=0; i<num2; i+=2) {
+
+ jit[i] = x + amount*rad1*(0.5f - BLI_rng_get_float(rng));
+ jit[i+1] = i/(2.0f*num) + amount*rad1*(0.5f - BLI_rng_get_float(rng));
+
+ jit[i]-= (float)floor(jit[i]);
+ jit[i+1]-= (float)floor(jit[i+1]);
+
+ x+= rad3;
+ x -= (float)floor(x);
+ }
+
+ jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
+
+ for (i=0 ; i<4 ; i++) {
+ BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
+ BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
+ BLI_jitterate2((float (*)[2])jit, (float (*)[2])jit2, num, rad2);
+ }
+ MEM_freeN(jit2);
+ BLI_rng_free(rng);
+}
+
+static void psys_uv_to_w(float u, float v, int quad, float *w)
+{
+ float vert[4][3], co[3];
+
+ if (!quad) {
+ if (u+v > 1.0f)
+ v= 1.0f-v;
+ else
+ u= 1.0f-u;
+ }
+
+ vert[0][0] = 0.0f; vert[0][1] = 0.0f; vert[0][2] = 0.0f;
+ vert[1][0] = 1.0f; vert[1][1] = 0.0f; vert[1][2] = 0.0f;
+ vert[2][0] = 1.0f; vert[2][1] = 1.0f; vert[2][2] = 0.0f;
+
+ co[0] = u;
+ co[1] = v;
+ co[2] = 0.0f;
+
+ if (quad) {
+ vert[3][0] = 0.0f; vert[3][1] = 1.0f; vert[3][2] = 0.0f;
+ interp_weights_poly_v3( w,vert, 4, co);
+ }
+ else {
+ interp_weights_poly_v3( w,vert, 3, co);
+ w[3] = 0.0f;
+ }
+}
+
+/* Find the index in "sum" array before "value" is crossed. */
+static int distribute_binary_search(float *sum, int n, float value)
+{
+ int mid, low = 0, high = n - 1;
+
+ if (high == low)
+ return low;
+
+ if (sum[low] >= value)
+ return low;
+
+ if (sum[high - 1] < value)
+ return high;
+
+ while (low < high) {
+ mid = (low + high) / 2;
+
+ if ((sum[mid] >= value) && (sum[mid - 1] < value))
+ return mid;
+
+ if (sum[mid] > value) {
+ high = mid - 1;
+ }
+ else {
+ low = mid + 1;
+ }
+ }
+
+ return low;
+}
+
+/* the max number if calls to rng_* funcs within psys_thread_distribute_particle
+ * be sure to keep up to date if this changes */
+#define PSYS_RND_DIST_SKIP 2
+
+/* note: this function must be thread safe, for from == PART_FROM_CHILD */
+#define ONLY_WORKING_WITH_PA_VERTS 0
+static void distribute_from_verts_exec(ParticleTask *thread, ParticleData *pa, int p)
+{
+ ParticleThreadContext *ctx= thread->ctx;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ /* TODO_PARTICLE - use original index */
+ pa->num= ctx->index[p];
+ pa->fuv[0] = 1.0f;
+ pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
+
+#if ONLY_WORKING_WITH_PA_VERTS
+ if (ctx->tree) {
+ KDTreeNearest ptn[3];
+ int w, maxw;
+
+ psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
+ maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
+
+ for (w=0; w<maxw; w++) {
+ pa->verts[w]=ptn->num;
+ }
+ }
+#endif
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void distribute_from_faces_exec(ParticleTask *thread, ParticleData *pa, int p) {
+ ParticleThreadContext *ctx= thread->ctx;
+ DerivedMesh *dm= ctx->dm;
+ float randu, randv;
+ int distr= ctx->distr;
+ int i;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ MFace *mface;
+
+ pa->num = i = ctx->index[p];
+ mface = dm->getTessFaceData(dm,i,CD_MFACE);
+
+ switch (distr) {
+ case PART_DISTR_JIT:
+ if (ctx->jitlevel == 1) {
+ if (mface->v4)
+ psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
+ else
+ psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
+ }
+ else {
+ float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
+ if (!isnan(offset)) {
+ psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
+ }
+ }
+ break;
+ case PART_DISTR_RAND:
+ randu= BLI_rng_get_float(thread->rng);
+ randv= BLI_rng_get_float(thread->rng);
+ rng_skip_tot -= 2;
+
+ psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
+ break;
+ }
+ pa->foffset= 0.0f;
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void distribute_from_volume_exec(ParticleTask *thread, ParticleData *pa, int p) {
+ ParticleThreadContext *ctx= thread->ctx;
+ DerivedMesh *dm= ctx->dm;
+ float *v1, *v2, *v3, *v4, nor[3], co[3];
+ float cur_d, min_d, randu, randv;
+ int distr= ctx->distr;
+ int i, intersect, tot;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ MFace *mface;
+ MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
+
+ pa->num = i = ctx->index[p];
+ mface = dm->getTessFaceData(dm,i,CD_MFACE);
+
+ switch (distr) {
+ case PART_DISTR_JIT:
+ if (ctx->jitlevel == 1) {
+ if (mface->v4)
+ psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
+ else
+ psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
+ }
+ else {
+ float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
+ if (!isnan(offset)) {
+ psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
+ }
+ }
+ break;
+ case PART_DISTR_RAND:
+ randu= BLI_rng_get_float(thread->rng);
+ randv= BLI_rng_get_float(thread->rng);
+ rng_skip_tot -= 2;
+
+ psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
+ break;
+ }
+ pa->foffset= 0.0f;
+
+ /* experimental */
+ tot=dm->getNumTessFaces(dm);
+
+ psys_interpolate_face(mvert,mface,0,0,pa->fuv,co,nor,0,0,0,0);
+
+ normalize_v3(nor);
+ negate_v3(nor);
+
+ min_d=FLT_MAX;
+ intersect=0;
+
+ for (i=0,mface=dm->getTessFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++) {
+ if (i==pa->num) continue;
+
+ v1=mvert[mface->v1].co;
+ v2=mvert[mface->v2].co;
+ v3=mvert[mface->v3].co;
+
+ if (isect_ray_tri_v3(co, nor, v2, v3, v1, &cur_d, NULL)) {
+ if (cur_d<min_d) {
+ min_d=cur_d;
+ pa->foffset=cur_d*0.5f; /* to the middle of volume */
+ intersect=1;
+ }
+ }
+ if (mface->v4) {
+ v4=mvert[mface->v4].co;
+
+ if (isect_ray_tri_v3(co, nor, v4, v1, v3, &cur_d, NULL)) {
+ if (cur_d<min_d) {
+ min_d=cur_d;
+ pa->foffset=cur_d*0.5f; /* to the middle of volume */
+ intersect=1;
+ }
+ }
+ }
+ }
+ if (intersect==0)
+ pa->foffset=0.0;
+ else {
+ switch (distr) {
+ case PART_DISTR_JIT:
+ pa->foffset *= ctx->jit[p % (2 * ctx->jitlevel)];
+ break;
+ case PART_DISTR_RAND:
+ pa->foffset *= BLI_frand();
+ break;
+ }
+ }
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void distribute_children_exec(ParticleTask *thread, ChildParticle *cpa, int p) {
+ ParticleThreadContext *ctx= thread->ctx;
+ Object *ob= ctx->sim.ob;
+ DerivedMesh *dm= ctx->dm;
+ float orco1[3], co1[3], nor1[3];
+ float randu, randv;
+ int cfrom= ctx->cfrom;
+ int i;
+ int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
+
+ MFace *mf;
+
+ if (ctx->index[p] < 0) {
+ cpa->num=0;
+ cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
+ cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
+ return;
+ }
+
+ mf= dm->getTessFaceData(dm, ctx->index[p], CD_MFACE);
+
+ randu= BLI_rng_get_float(thread->rng);
+ randv= BLI_rng_get_float(thread->rng);
+ rng_skip_tot -= 2;
+
+ psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
+
+ cpa->num = ctx->index[p];
+
+ if (ctx->tree) {
+ KDTreeNearest ptn[10];
+ int w,maxw;//, do_seams;
+ float maxd /*, mind,dd */, totw= 0.0f;
+ int parent[10];
+ float pweight[10];
+
+ psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,NULL,NULL,orco1,NULL);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
+ maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
+
+ maxd=ptn[maxw-1].dist;
+ /* mind=ptn[0].dist; */ /* UNUSED */
+
+ /* the weights here could be done better */
+ for (w=0; w<maxw; w++) {
+ parent[w]=ptn[w].index;
+ pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
+ }
+ for (;w<10; w++) {
+ parent[w]=-1;
+ pweight[w]=0.0f;
+ }
+
+ for (w=0,i=0; w<maxw && i<4; w++) {
+ if (parent[w]>=0) {
+ cpa->pa[i]=parent[w];
+ cpa->w[i]=pweight[w];
+ totw+=pweight[w];
+ i++;
+ }
+ }
+ for (;i<4; i++) {
+ cpa->pa[i]=-1;
+ cpa->w[i]=0.0f;
+ }
+
+ if (totw > 0.0f) {
+ for (w = 0; w < 4; w++) {
+ cpa->w[w] /= totw;
+ }
+ }
+
+ cpa->parent=cpa->pa[0];
+ }
+
+ if (rng_skip_tot > 0) /* should never be below zero */
+ BLI_rng_skip(thread->rng, rng_skip_tot);
+}
+
+static void exec_distribute_parent(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
+{
+ ParticleTask *task = taskdata;
+ ParticleSystem *psys= task->ctx->sim.psys;
+ ParticleData *pa;
+ int p;
+
+ BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->begin);
+
+ pa= psys->particles + task->begin;
+ switch (psys->part->from) {
+ case PART_FROM_FACE:
+ for (p = task->begin; p < task->end; ++p, ++pa)
+ distribute_from_faces_exec(task, pa, p);
+ break;
+ case PART_FROM_VOLUME:
+ for (p = task->begin; p < task->end; ++p, ++pa)
+ distribute_from_volume_exec(task, pa, p);
+ break;
+ case PART_FROM_VERT:
+ for (p = task->begin; p < task->end; ++p, ++pa)
+ distribute_from_verts_exec(task, pa, p);
+ break;
+ }
+}
+
+static void exec_distribute_child(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
+{
+ ParticleTask *task = taskdata;
+ ParticleSystem *psys = task->ctx->sim.psys;
+ ChildParticle *cpa;
+ int p;
+
+ /* RNG skipping at the beginning */
+ cpa = psys->child;
+ for (p = 0; p < task->begin; ++p, ++cpa) {
+ if (task->ctx->skip) /* simplification skip */
+ BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
+
+ BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP);
+ }
+
+ for (; p < task->end; ++p, ++cpa) {
+ if (task->ctx->skip) /* simplification skip */
+ BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
+
+ distribute_children_exec(task, cpa, p);
+ }
+}
+
+static int distribute_compare_orig_index(const void *p1, const void *p2, void *user_data)
+{
+ int *orig_index = (int *) user_data;
+ int index1 = orig_index[*(const int *)p1];
+ int index2 = orig_index[*(const int *)p2];
+
+ if (index1 < index2)
+ return -1;
+ else if (index1 == index2) {
+ /* this pointer comparison appears to make qsort stable for glibc,
+ * and apparently on solaris too, makes the renders reproducible */
+ if (p1 < p2)
+ return -1;
+ else if (p1 == p2)
+ return 0;
+ else
+ return 1;
+ }
+ else
+ return 1;
+}
+
+static void distribute_invalid(Scene *scene, ParticleSystem *psys, int from)
+{
+ if (from == PART_FROM_CHILD) {
+ ChildParticle *cpa;
+ int p, totchild = psys_get_tot_child(scene, psys);
+
+ if (psys->child && totchild) {
+ for (p=0,cpa=psys->child; p<totchild; p++,cpa++) {
+ cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3] = 0.0;
+ cpa->foffset= 0.0f;
+ cpa->parent=0;
+ cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
+ cpa->num= -1;
+ }
+ }
+ }
+ else {
+ PARTICLE_P;
+ LOOP_PARTICLES {
+ pa->fuv[0] = pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
+ pa->foffset= 0.0f;
+ pa->num= -1;
+ }
+ }
+}
+
+/* Creates a distribution of coordinates on a DerivedMesh */
+/* This is to denote functionality that does not yet work with mesh - only derived mesh */
+static int psys_thread_context_init_distribute(ParticleThreadContext *ctx, ParticleSimulationData *sim, int from)
+{
+ Scene *scene = sim->scene;
+ DerivedMesh *finaldm = sim->psmd->dm_final;
+ Object *ob = sim->ob;
+ ParticleSystem *psys= sim->psys;
+ ParticleData *pa=0, *tpars= 0;
+ ParticleSettings *part;
+ ParticleSeam *seams= 0;
+ KDTree *tree=0;
+ DerivedMesh *dm= NULL;
+ float *jit= NULL;
+ int i, p=0;
+ int cfrom=0;
+ int totelem=0, totpart, *particle_element=0, children=0, totseam=0;
+ int jitlevel= 1, distr;
+ float *element_weight=NULL,*jitter_offset=NULL, *vweight=NULL;
+ float cur, maxweight=0.0, tweight, totweight, inv_totweight, co[3], nor[3], orco[3];
+
+ if (ELEM(NULL, ob, psys, psys->part))
+ return 0;
+
+ part=psys->part;
+ totpart=psys->totpart;
+ if (totpart==0)
+ return 0;
+
+ if (!finaldm->deformedOnly && !finaldm->getTessFaceDataArray(finaldm, CD_ORIGINDEX)) {
+ printf("Can't create particles with the current modifier stack, disable destructive modifiers\n");
+// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
+ return 0;
+ }
+
+ /* XXX This distribution code is totally broken in case from == PART_FROM_CHILD, it's always using finaldm
+ * even if use_modifier_stack is unset... But making things consistent here break all existing edited
+ * hair systems, so better wait for complete rewrite.
+ */
+
+ psys_thread_context_init(ctx, sim);
+
+ /* First handle special cases */
+ if (from == PART_FROM_CHILD) {
+ /* Simple children */
+ if (part->childtype != PART_CHILD_FACES) {
+ BLI_srandom(31415926 + psys->seed + psys->child_seed);
+ distribute_simple_children(scene, ob, finaldm, sim->psmd->dm_deformed, psys);
+ return 0;
+ }
+ }
+ else {
+ /* Grid distribution */
+ if (part->distr==PART_DISTR_GRID && from != PART_FROM_VERT) {
+ BLI_srandom(31415926 + psys->seed);
+
+ if (psys->part->use_modifier_stack) {
+ dm = finaldm;
+ }
+ else {
+ dm = CDDM_from_mesh((Mesh*)ob->data);
+ }
+ DM_ensure_tessface(dm);
+
+ distribute_grid(dm,psys);
+
+ if (dm != finaldm) {
+ dm->release(dm);
+ }
+
+ return 0;
+ }
+ }
+
+ /* Create trees and original coordinates if needed */
+ if (from == PART_FROM_CHILD) {
+ distr=PART_DISTR_RAND;
+ BLI_srandom(31415926 + psys->seed + psys->child_seed);
+ dm= finaldm;
+
+ /* BMESH ONLY */
+ DM_ensure_tessface(dm);
+
+ children=1;
+
+ tree=BLI_kdtree_new(totpart);
+
+ for (p=0,pa=psys->particles; p<totpart; p++,pa++) {
+ psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,NULL);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco, 1, 1);
+ BLI_kdtree_insert(tree, p, orco);
+ }
+
+ BLI_kdtree_balance(tree);
+
+ totpart = psys_get_tot_child(scene, psys);
+ cfrom = from = PART_FROM_FACE;
+ }
+ else {
+ distr = part->distr;
+ BLI_srandom(31415926 + psys->seed);
+
+ if (psys->part->use_modifier_stack)
+ dm = finaldm;
+ else
+ dm= CDDM_from_mesh((Mesh*)ob->data);
+
+ /* BMESH ONLY, for verts we don't care about tessfaces */
+ if (from != PART_FROM_VERT) {
+ DM_ensure_tessface(dm);
+ }
+
+ /* we need orco for consistent distributions */
+ if (!CustomData_has_layer(&dm->vertData, CD_ORCO))
+ DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, BKE_mesh_orco_verts_get(ob));
+
+ if (from == PART_FROM_VERT) {
+ MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
+ float (*orcodata)[3] = dm->getVertDataArray(dm, CD_ORCO);
+ int totvert = dm->getNumVerts(dm);
+
+ tree=BLI_kdtree_new(totvert);
+
+ for (p=0; p<totvert; p++) {
+ if (orcodata) {
+ copy_v3_v3(co,orcodata[p]);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co, 1, 1);
+ }
+ else
+ copy_v3_v3(co,mv[p].co);
+ BLI_kdtree_insert(tree, p, co);
+ }
+
+ BLI_kdtree_balance(tree);
+ }
+ }
+
+ /* Get total number of emission elements and allocate needed arrays */
+ totelem = (from == PART_FROM_VERT) ? dm->getNumVerts(dm) : dm->getNumTessFaces(dm);
+
+ if (totelem == 0) {
+ distribute_invalid(scene, psys, children ? PART_FROM_CHILD : 0);
+
+ if (G.debug & G_DEBUG)
+ fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
+
+ if (dm != finaldm) dm->release(dm);
+
+ BLI_kdtree_free(tree);
+
+ return 0;
+ }
+
+ element_weight = MEM_callocN(sizeof(float)*totelem, "particle_distribution_weights");
+ particle_element= MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
+ jitter_offset = MEM_callocN(sizeof(float)*totelem, "particle_distribution_jitoff");
+
+ /* Calculate weights from face areas */
+ if ((part->flag&PART_EDISTR || children) && from != PART_FROM_VERT) {
+ MVert *v1, *v2, *v3, *v4;
+ float totarea=0.f, co1[3], co2[3], co3[3], co4[3];
+ float (*orcodata)[3];
+
+ orcodata= dm->getVertDataArray(dm, CD_ORCO);
+
+ for (i=0; i<totelem; i++) {
+ MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
+
+ if (orcodata) {
+ copy_v3_v3(co1, orcodata[mf->v1]);
+ copy_v3_v3(co2, orcodata[mf->v2]);
+ copy_v3_v3(co3, orcodata[mf->v3]);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co1, 1, 1);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co2, 1, 1);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co3, 1, 1);
+ if (mf->v4) {
+ copy_v3_v3(co4, orcodata[mf->v4]);
+ BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co4, 1, 1);
+ }
+ }
+ else {
+ v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
+ v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
+ v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
+ copy_v3_v3(co1, v1->co);
+ copy_v3_v3(co2, v2->co);
+ copy_v3_v3(co3, v3->co);
+ if (mf->v4) {
+ v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
+ copy_v3_v3(co4, v4->co);
+ }
+ }
+
+ cur = mf->v4 ? area_quad_v3(co1, co2, co3, co4) : area_tri_v3(co1, co2, co3);
+
+ if (cur > maxweight)
+ maxweight = cur;
+
+ element_weight[i] = cur;
+ totarea += cur;
+ }
+
+ for (i=0; i<totelem; i++)
+ element_weight[i] /= totarea;
+
+ maxweight /= totarea;
+ }
+ else {
+ float min=1.0f/(float)(MIN2(totelem,totpart));
+ for (i=0; i<totelem; i++)
+ element_weight[i]=min;
+ maxweight=min;
+ }
+
+ /* Calculate weights from vgroup */
+ vweight = psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
+
+ if (vweight) {
+ if (from==PART_FROM_VERT) {
+ for (i=0;i<totelem; i++)
+ element_weight[i]*=vweight[i];
+ }
+ else { /* PART_FROM_FACE / PART_FROM_VOLUME */
+ for (i=0;i<totelem; i++) {
+ MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
+ tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
+
+ if (mf->v4) {
+ tweight += vweight[mf->v4];
+ tweight /= 4.0f;
+ }
+ else {
+ tweight /= 3.0f;
+ }
+
+ element_weight[i]*=tweight;
+ }
+ }
+ MEM_freeN(vweight);
+ }
+
+ /* Calculate total weight of all elements */
+ int totmapped = 0;
+ totweight = 0.0f;
+ for (i = 0; i < totelem; i++) {
+ if (element_weight[i] > 0.0f) {
+ totmapped++;
+ totweight += element_weight[i];
+ }
+ }
+
+ if (totmapped == 0) {
+ /* We are not allowed to distribute particles anywhere... */
+ return 0;
+ }
+
+ inv_totweight = 1.0f / totweight;
+
+ /* Calculate cumulative weights.
+ * We remove all null-weighted elements from element_sum, and create a new mapping
+ * 'activ'_elem_index -> orig_elem_index.
+ * This simplifies greatly the filtering of zero-weighted items - and can be much more efficient
+ * especially in random case (reducing a lot the size of binary-searched array)...
+ */
+ float *element_sum = MEM_mallocN(sizeof(*element_sum) * totmapped, __func__);
+ int *element_map = MEM_mallocN(sizeof(*element_map) * totmapped, __func__);
+ int i_mapped = 0;
+
+ for (i = 0; i < totelem && element_weight[i] == 0.0f; i++);
+ element_sum[i_mapped] = element_weight[i] * inv_totweight;
+ element_map[i_mapped] = i;
+ i_mapped++;
+ for (i++; i < totelem; i++) {
+ if (element_weight[i] > 0.0f) {
+ element_sum[i_mapped] = element_sum[i_mapped - 1] + element_weight[i] * inv_totweight;
+ /* Skip elements which weight is so small that it does not affect the sum. */
+ if (element_sum[i_mapped] > element_sum[i_mapped - 1]) {
+ element_map[i_mapped] = i;
+ i_mapped++;
+ }
+ }
+ }
+ totmapped = i_mapped;
+
+ /* Finally assign elements to particles */
+ if ((part->flag & PART_TRAND) || (part->simplify_flag & PART_SIMPLIFY_ENABLE)) {
+ for (p = 0; p < totpart; p++) {
+ /* In theory element_sum[totmapped - 1] should be 1.0,
+ * but due to float errors this is not necessarily always true, so scale pos accordingly. */
+ const float pos = BLI_frand() * element_sum[totmapped - 1];
+ const int eidx = distribute_binary_search(element_sum, totmapped, pos);
+ particle_element[p] = element_map[eidx];
+ BLI_assert(pos <= element_sum[eidx]);
+ BLI_assert(eidx ? (pos > element_sum[eidx - 1]) : (pos >= 0.0f));
+ jitter_offset[particle_element[p]] = pos;
+ }
+ }
+ else {
+ double step, pos;
+
+ step = (totpart < 2) ? 0.5 : 1.0 / (double)totpart;
+ /* This is to address tricky issues with vertex-emitting when user tries (and expects) exact 1-1 vert/part
+ * distribution (see T47983 and its two example files). It allows us to consider pos as
+ * 'midpoint between v and v+1' (or 'p and p+1', depending whether we have more vertices than particles or not),
+ * and avoid stumbling over float imprecisions in element_sum. */
+ if (from == PART_FROM_VERT) {
+ pos = (totpart < totmapped) ? 0.5 / (double)totmapped : step * 0.5; /* We choose the smaller step. */
+ }
+ else {
+ pos = 0.0;
+ }
+
+ for (i = 0, p = 0; p < totpart; p++, pos += step) {
+ for ( ; (i < totmapped - 1) && (pos > (double)element_sum[i]); i++);
+
+ particle_element[p] = element_map[i];
+
+ jitter_offset[particle_element[p]] = pos;
+ }
+ }
+
+ MEM_freeN(element_sum);
+ MEM_freeN(element_map);
+
+ /* For hair, sort by origindex (allows optimization's in rendering), */
+ /* however with virtual parents the children need to be in random order. */
+ if (part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0f)) {
+ int *orig_index = NULL;
+
+ if (from == PART_FROM_VERT) {
+ if (dm->numVertData)
+ orig_index = dm->getVertDataArray(dm, CD_ORIGINDEX);
+ }
+ else {
+ if (dm->numTessFaceData)
+ orig_index = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
+ }
+
+ if (orig_index) {
+ BLI_qsort_r(particle_element, totpart, sizeof(int), distribute_compare_orig_index, orig_index);
+ }
+ }
+
+ /* Create jittering if needed */
+ if (distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
+ jitlevel= part->userjit;
+
+ if (jitlevel == 0) {
+ jitlevel= totpart/totelem;
+ if (part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
+ if (jitlevel<3) jitlevel= 3;
+ }
+
+ jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
+
+ /* for small amounts of particles we use regular jitter since it looks
+ * a bit better, for larger amounts we switch to hammersley sequence
+ * because it is much faster */
+ if (jitlevel < 25)
+ init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
+ else
+ hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
+ BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
+ }
+
+ /* Setup things for threaded distribution */
+ ctx->tree= tree;
+ ctx->seams= seams;
+ ctx->totseam= totseam;
+ ctx->sim.psys= psys;
+ ctx->index= particle_element;
+ ctx->jit= jit;
+ ctx->jitlevel= jitlevel;
+ ctx->jitoff= jitter_offset;
+ ctx->weight= element_weight;
+ ctx->maxweight= maxweight;
+ ctx->cfrom= cfrom;
+ ctx->distr= distr;
+ ctx->dm= dm;
+ ctx->tpars= tpars;
+
+ if (children) {
+ totpart= psys_render_simplify_distribution(ctx, totpart);
+ alloc_child_particles(psys, totpart);
+ }
+
+ return 1;
+}
+
+static void psys_task_init_distribute(ParticleTask *task, ParticleSimulationData *sim)
+{
+ /* init random number generator */
+ int seed = 31415926 + sim->psys->seed;
+
+ task->rng = BLI_rng_new(seed);
+}
+
+static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
+{
+ TaskScheduler *task_scheduler;
+ TaskPool *task_pool;
+ ParticleThreadContext ctx;
+ ParticleTask *tasks;
+ DerivedMesh *finaldm = sim->psmd->dm_final;
+ int i, totpart, numtasks;
+
+ /* create a task pool for distribution tasks */
+ if (!psys_thread_context_init_distribute(&ctx, sim, from))
+ return;
+
+ task_scheduler = BLI_task_scheduler_get();
+ task_pool = BLI_task_pool_create(task_scheduler, &ctx);
+
+ totpart = (from == PART_FROM_CHILD ? sim->psys->totchild : sim->psys->totpart);
+ psys_tasks_create(&ctx, 0, totpart, &tasks, &numtasks);
+ for (i = 0; i < numtasks; ++i) {
+ ParticleTask *task = &tasks[i];
+
+ psys_task_init_distribute(task, sim);
+ if (from == PART_FROM_CHILD)
+ BLI_task_pool_push(task_pool, exec_distribute_child, task, false, TASK_PRIORITY_LOW);
+ else
+ BLI_task_pool_push(task_pool, exec_distribute_parent, task, false, TASK_PRIORITY_LOW);
+ }
+ BLI_task_pool_work_and_wait(task_pool);
+
+ BLI_task_pool_free(task_pool);
+
+ psys_calc_dmcache(sim->ob, finaldm, sim->psmd->dm_deformed, sim->psys);
+
+ if (ctx.dm != finaldm)
+ ctx.dm->release(ctx.dm);
+
+ psys_tasks_free(tasks, numtasks);
+
+ psys_thread_context_free(&ctx);
+}
+
+/* ready for future use, to emit particles without geometry */
+static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
+{
+ distribute_invalid(sim->scene, sim->psys, 0);
+
+ fprintf(stderr,"Shape emission not yet possible!\n");
+}
+
+void distribute_particles(ParticleSimulationData *sim, int from)
+{
+ PARTICLE_PSMD;
+ int distr_error=0;
+
+ if (psmd) {
+ if (psmd->dm_final)
+ distribute_particles_on_dm(sim, from);
+ else
+ distr_error=1;
+ }
+ else
+ distribute_particles_on_shape(sim, from);
+
+ if (distr_error) {
+ distribute_invalid(sim->scene, sim->psys, from);
+
+ fprintf(stderr,"Particle distribution error!\n");
+ }
+}
+
+/* ======== Simplify ======== */
+
+static float psys_render_viewport_falloff(double rate, float dist, float width)
+{
+ return pow(rate, dist / width);
+}
+
+static float psys_render_projected_area(ParticleSystem *psys, const float center[3], float area, double vprate, float *viewport)
+{
+ ParticleRenderData *data = psys->renderdata;
+ float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius;
+
+ /* transform to view space */
+ copy_v3_v3(co, center);
+ co[3] = 1.0f;
+ mul_m4_v4(data->viewmat, co);
+
+ /* compute two vectors orthogonal to view vector */
+ normalize_v3_v3(view, co);
+ ortho_basis_v3v3_v3(ortho1, ortho2, view);
+
+ /* compute on screen minification */
+ w = co[2] * data->winmat[2][3] + data->winmat[3][3];
+ dx = data->winx * ortho2[0] * data->winmat[0][0];
+ dy = data->winy * ortho2[1] * data->winmat[1][1];
+ w = sqrtf(dx * dx + dy * dy) / w;
+
+ /* w squared because we are working with area */
+ area = area * w * w;
+
+ /* viewport of the screen test */
+
+ /* project point on screen */
+ mul_m4_v4(data->winmat, co);
+ if (co[3] != 0.0f) {
+ co[0] = 0.5f * data->winx * (1.0f + co[0] / co[3]);
+ co[1] = 0.5f * data->winy * (1.0f + co[1] / co[3]);
+ }
+
+ /* screen space radius */
+ radius = sqrtf(area / (float)M_PI);
+
+ /* make smaller using fallof once over screen edge */
+ *viewport = 1.0f;
+
+ if (co[0] + radius < 0.0f)
+ *viewport *= psys_render_viewport_falloff(vprate, -(co[0] + radius), data->winx);
+ else if (co[0] - radius > data->winx)
+ *viewport *= psys_render_viewport_falloff(vprate, (co[0] - radius) - data->winx, data->winx);
+
+ if (co[1] + radius < 0.0f)
+ *viewport *= psys_render_viewport_falloff(vprate, -(co[1] + radius), data->winy);
+ else if (co[1] - radius > data->winy)
+ *viewport *= psys_render_viewport_falloff(vprate, (co[1] - radius) - data->winy, data->winy);
+
+ return area;
+}
+
+/* BMESH_TODO, for orig face data, we need to use MPoly */
+static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot)
+{
+ DerivedMesh *dm = ctx->dm;
+ Mesh *me = (Mesh *)(ctx->sim.ob->data);
+ MFace *mf, *mface;
+ MVert *mvert;
+ ParticleRenderData *data;
+ ParticleRenderElem *elems, *elem;
+ ParticleSettings *part = ctx->sim.psys->part;
+ float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp;
+ float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport;
+ double vprate;
+ int *facetotvert;
+ int a, b, totorigface, totface, newtot, skipped;
+
+ /* double lookup */
+ const int *index_mf_to_mpoly;
+ const int *index_mp_to_orig;
+
+ if (part->ren_as != PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND))
+ return tot;
+ if (!ctx->sim.psys->renderdata)
+ return tot;
+
+ data = ctx->sim.psys->renderdata;
+ if (data->timeoffset)
+ return 0;
+ if (!(part->simplify_flag & PART_SIMPLIFY_ENABLE))
+ return tot;
+
+ mvert = dm->getVertArray(dm);
+ mface = dm->getTessFaceArray(dm);
+ totface = dm->getNumTessFaces(dm);
+ totorigface = me->totpoly;
+
+ if (totface == 0 || totorigface == 0)
+ return tot;
+
+ index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
+ index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
+ if (index_mf_to_mpoly == NULL) {
+ index_mp_to_orig = NULL;
+ }
+
+ facearea = MEM_callocN(sizeof(float) * totorigface, "SimplifyFaceArea");
+ facecenter = MEM_callocN(sizeof(float[3]) * totorigface, "SimplifyFaceCenter");
+ facetotvert = MEM_callocN(sizeof(int) * totorigface, "SimplifyFaceArea");
+ elems = MEM_callocN(sizeof(ParticleRenderElem) * totorigface, "SimplifyFaceElem");
+
+ if (data->elems)
+ MEM_freeN(data->elems);
+
+ data->do_simplify = true;
+ data->elems = elems;
+ data->index_mf_to_mpoly = index_mf_to_mpoly;
+ data->index_mp_to_orig = index_mp_to_orig;
+
+ /* compute number of children per original face */
+ for (a = 0; a < tot; a++) {
+ b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
+ if (b != ORIGINDEX_NONE) {
+ elems[b].totchild++;
+ }
+ }
+
+ /* compute areas and centers of original faces */
+ for (mf = mface, a = 0; a < totface; a++, mf++) {
+ b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
+
+ if (b != ORIGINDEX_NONE) {
+ copy_v3_v3(co1, mvert[mf->v1].co);
+ copy_v3_v3(co2, mvert[mf->v2].co);
+ copy_v3_v3(co3, mvert[mf->v3].co);
+
+ add_v3_v3(facecenter[b], co1);
+ add_v3_v3(facecenter[b], co2);
+ add_v3_v3(facecenter[b], co3);
+
+ if (mf->v4) {
+ copy_v3_v3(co4, mvert[mf->v4].co);
+ add_v3_v3(facecenter[b], co4);
+ facearea[b] += area_quad_v3(co1, co2, co3, co4);
+ facetotvert[b] += 4;
+ }
+ else {
+ facearea[b] += area_tri_v3(co1, co2, co3);
+ facetotvert[b] += 3;
+ }
+ }
+ }
+
+ for (a = 0; a < totorigface; a++)
+ if (facetotvert[a] > 0)
+ mul_v3_fl(facecenter[a], 1.0f / facetotvert[a]);
+
+ /* for conversion from BU area / pixel area to reference screen size */
+ BKE_mesh_texspace_get(me, 0, 0, size);
+ fac = ((size[0] + size[1] + size[2]) / 3.0f) / part->simplify_refsize;
+ fac = fac * fac;
+
+ powrate = log(0.5f) / log(part->simplify_rate * 0.5f);
+ if (part->simplify_flag & PART_SIMPLIFY_VIEWPORT)
+ vprate = pow(1.0f - part->simplify_viewport, 5.0);
+ else
+ vprate = 1.0;
+
+ /* set simplification parameters per original face */
+ for (a = 0, elem = elems; a < totorigface; a++, elem++) {
+ area = psys_render_projected_area(ctx->sim.psys, facecenter[a], facearea[a], vprate, &viewport);
+ arearatio = fac * area / facearea[a];
+
+ if ((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) {
+ /* lambda is percentage of elements to keep */
+ lambda = (arearatio < 1.0f) ? powf(arearatio, powrate) : 1.0f;
+ lambda *= viewport;
+
+ lambda = MAX2(lambda, 1.0f / elem->totchild);
+
+ /* compute transition region */
+ t = part->simplify_transition;
+ elem->t = (lambda - t < 0.0f) ? lambda : (lambda + t > 1.0f) ? 1.0f - lambda : t;
+ elem->reduce = 1;
+
+ /* scale at end and beginning of the transition region */
+ elem->scalemax = (lambda + t < 1.0f) ? 1.0f / lambda : 1.0f / (1.0f - elem->t * elem->t / t);
+ elem->scalemin = (lambda + t < 1.0f) ? 0.0f : elem->scalemax * (1.0f - elem->t / t);
+
+ elem->scalemin = sqrtf(elem->scalemin);
+ elem->scalemax = sqrtf(elem->scalemax);
+
+ /* clamp scaling */
+ scaleclamp = (float)min_ii(elem->totchild, 10);
+ elem->scalemin = MIN2(scaleclamp, elem->scalemin);
+ elem->scalemax = MIN2(scaleclamp, elem->scalemax);
+
+ /* extend lambda to include transition */
+ lambda = lambda + elem->t;
+ if (lambda > 1.0f)
+ lambda = 1.0f;
+ }
+ else {
+ lambda = arearatio;
+
+ elem->scalemax = 1.0f; //sqrt(lambda);
+ elem->scalemin = 1.0f; //sqrt(lambda);
+ elem->reduce = 0;
+ }
+
+ elem->lambda = lambda;
+ elem->scalemin = sqrtf(elem->scalemin);
+ elem->scalemax = sqrtf(elem->scalemax);
+ elem->curchild = 0;
+ }
+
+ MEM_freeN(facearea);
+ MEM_freeN(facecenter);
+ MEM_freeN(facetotvert);
+
+ /* move indices and set random number skipping */
+ ctx->skip = MEM_callocN(sizeof(int) * tot, "SimplificationSkip");
+
+ skipped = 0;
+ for (a = 0, newtot = 0; a < tot; a++) {
+ b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
+
+ if (b != ORIGINDEX_NONE) {
+ if (elems[b].curchild++ < ceil(elems[b].lambda * elems[b].totchild)) {
+ ctx->index[newtot] = ctx->index[a];
+ ctx->skip[newtot] = skipped;
+ skipped = 0;
+ newtot++;
+ }
+ else skipped++;
+ }
+ else skipped++;
+ }
+
+ for (a = 0, elem = elems; a < totorigface; a++, elem++)
+ elem->curchild = 0;
+
+ return newtot;
+}