Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBastien Montagne <montagne29@wanadoo.fr>2015-02-05 16:24:48 +0300
committerBastien Montagne <montagne29@wanadoo.fr>2015-02-05 16:32:57 +0300
commit138c9dba9be67a93c91717ae3fcd8855aced9185 (patch)
treedfb5d14d965297a069386148bdcff4236ca1f23b /source/blender/blenkernel
parent7bae9ee6b62dbc5defffb698ec3d3f39ce460254 (diff)
Add Custom Loop Normals.
This is the core code for it, tools (datatransfer and modifier) will come in next commits). RNA api is already there, though. See the code for details, but basically, we define, for each 'smooth fan' (which is a set of adjacent loops around a same vertex that are smooth, i.e. have a single same normal), a 'loop normal space' (or lnor space), using auto-computed normal and relevant edges, and store custom normal as two angular factors inside that space. This allows to have custom normals 'following' deformations of the geometry, and to only save two shorts per loop in new clnor CDLayer. Normal manipulation (editing, mixing, interpolating, etc.) shall always happen with plain 3D vectors normals, and be converted back into storage format at the end. Clnor computation has also been threaded (at least for Mesh case, not for BMesh), since the process can be rather heavy with high poly meshes. Also, bumping subversion, and fix mess in 2.70 versioning code.
Diffstat (limited to 'source/blender/blenkernel')
-rw-r--r--source/blender/blenkernel/BKE_DerivedMesh.h5
-rw-r--r--source/blender/blenkernel/BKE_blender.h2
-rw-r--r--source/blender/blenkernel/BKE_cdderivedmesh.h3
-rw-r--r--source/blender/blenkernel/BKE_mesh.h58
-rw-r--r--source/blender/blenkernel/intern/cdderivedmesh.c41
-rw-r--r--source/blender/blenkernel/intern/customdata.c18
-rw-r--r--source/blender/blenkernel/intern/editderivedmesh.c46
-rw-r--r--source/blender/blenkernel/intern/mesh.c10
-rw-r--r--source/blender/blenkernel/intern/mesh_evaluate.c1177
-rw-r--r--source/blender/blenkernel/intern/mesh_remap.c6
-rw-r--r--source/blender/blenkernel/intern/subsurf_ccg.c1
11 files changed, 1179 insertions, 188 deletions
diff --git a/source/blender/blenkernel/BKE_DerivedMesh.h b/source/blender/blenkernel/BKE_DerivedMesh.h
index da982f869e8..04251641d9b 100644
--- a/source/blender/blenkernel/BKE_DerivedMesh.h
+++ b/source/blender/blenkernel/BKE_DerivedMesh.h
@@ -88,6 +88,7 @@ struct MTFace;
struct Object;
struct Scene;
struct Mesh;
+struct MLoopNorSpaceArray;
struct BMEditMesh;
struct KeyBlock;
struct ModifierData;
@@ -199,6 +200,10 @@ struct DerivedMesh {
/** Calculate loop (split) normals */
void (*calcLoopNormals)(DerivedMesh *dm, const bool use_split_normals, const float split_angle);
+ /** Calculate loop (split) normals, and returns split loop normal spacearr. */
+ void (*calcLoopNormalsSpaceArray)(DerivedMesh *dm, const bool use_split_normals, const float split_angle,
+ struct MLoopNorSpaceArray *r_lnors_spacearr);
+
/** Recalculates mesh tessellation */
void (*recalcTessellation)(DerivedMesh *dm);
diff --git a/source/blender/blenkernel/BKE_blender.h b/source/blender/blenkernel/BKE_blender.h
index a2214f79618..0c10b209fb7 100644
--- a/source/blender/blenkernel/BKE_blender.h
+++ b/source/blender/blenkernel/BKE_blender.h
@@ -42,7 +42,7 @@ extern "C" {
* and keep comment above the defines.
* Use STRINGIFY() rather than defining with quotes */
#define BLENDER_VERSION 273
-#define BLENDER_SUBVERSION 5
+#define BLENDER_SUBVERSION 6
/* 262 was the last editmesh release but it has compatibility code for bmesh data */
#define BLENDER_MINVERSION 270
#define BLENDER_MINSUBVERSION 5
diff --git a/source/blender/blenkernel/BKE_cdderivedmesh.h b/source/blender/blenkernel/BKE_cdderivedmesh.h
index 448617f73f9..59ec316a403 100644
--- a/source/blender/blenkernel/BKE_cdderivedmesh.h
+++ b/source/blender/blenkernel/BKE_cdderivedmesh.h
@@ -40,6 +40,7 @@
struct DerivedMesh;
struct BMEditMesh;
struct Mesh;
+struct MLoopNorSpaceArray;
struct Object;
/* creates a new CDDerivedMesh */
@@ -107,6 +108,8 @@ void CDDM_calc_normals(struct DerivedMesh *dm);
void CDDM_calc_normals_tessface(struct DerivedMesh *dm);
void CDDM_calc_loop_normals(struct DerivedMesh *dm, const bool use_split_normals, const float split_angle);
+void CDDM_calc_loop_normals_spacearr(struct DerivedMesh *dm, const bool use_split_normals, const float split_angle,
+ struct MLoopNorSpaceArray *r_lnors_spacearr);
/* calculates edges for a CDDerivedMesh (from face data)
* this completely replaces the current edge data in the DerivedMesh
diff --git a/source/blender/blenkernel/BKE_mesh.h b/source/blender/blenkernel/BKE_mesh.h
index 3138fd69cc4..224be0f3685 100644
--- a/source/blender/blenkernel/BKE_mesh.h
+++ b/source/blender/blenkernel/BKE_mesh.h
@@ -36,6 +36,9 @@ struct BoundBox;
struct DispList;
struct EdgeHash;
struct ListBase;
+struct LinkNode;
+struct BLI_Stack;
+struct MemArena;
struct BMEditMesh;
struct BMesh;
struct Main;
@@ -174,11 +177,6 @@ void BKE_mesh_calc_normals_tessface(
struct MVert *mverts, int numVerts,
struct MFace *mfaces, int numFaces,
float (*r_faceNors)[3]);
-void BKE_mesh_normals_loop_split(
- struct MVert *mverts, const int numVerts, struct MEdge *medges, const int numEdges,
- struct MLoop *mloops, float (*r_loopnors)[3], const int numLoops,
- struct MPoly *mpolys, float (*polynors)[3], const int numPolys,
- const bool use_split_normals, float split_angle);
void BKE_mesh_loop_tangents_ex(
struct MVert *mverts, const int numVerts, struct MLoop *mloops, float (*r_looptangent)[4], float (*loopnors)[3],
struct MLoopUV *loopuv, const int numLoops, struct MPoly *mpolys, const int numPolys,
@@ -186,6 +184,56 @@ void BKE_mesh_loop_tangents_ex(
void BKE_mesh_loop_tangents(
struct Mesh *mesh, const char *uvmap, float (*r_looptangents)[4], struct ReportList *reports);
+/**
+ * References a contiguous loop-fan with normal offset vars.
+ */
+typedef struct MLoopNorSpace {
+ float vec_lnor[3]; /* Automatically computed loop normal. */
+ float vec_ref[3]; /* Reference vector, orthogonal to vec_lnor. */
+ float vec_ortho[3]; /* Third vector, orthogonal to vec_lnor and vec_ref. */
+ float ref_alpha; /* Reference angle, around vec_ortho, in ]0, pi] range (0.0 marks that space as invalid). */
+ float ref_beta; /* Reference angle, around vec_lnor, in ]0, 2pi] range (0.0 marks that space as invalid). */
+ struct LinkNode *loops; /* All indices (uint_in_ptr) of loops using this lnor space (i.e. smooth fan of loops). */
+} MLoopNorSpace;
+/**
+ * Collection of #MLoopNorSpace basic storage & pre-allocation.
+ */
+typedef struct MLoopNorSpaceArray {
+ MLoopNorSpace **lspacearr; /* MLoop aligned array */
+ struct LinkNode *loops_pool; /* Allocated once, avoids to call BLI_linklist_prepend_arena() for each loop! */
+ struct MemArena *mem;
+} MLoopNorSpaceArray;
+void BKE_lnor_spacearr_init(MLoopNorSpaceArray *lnors_spacearr, const int numLoops);
+void BKE_lnor_spacearr_clear(MLoopNorSpaceArray *lnors_spacearr);
+void BKE_lnor_spacearr_free(MLoopNorSpaceArray *lnors_spacearr);
+MLoopNorSpace *BKE_lnor_space_create(MLoopNorSpaceArray *lnors_spacearr);
+void BKE_lnor_space_define(
+ MLoopNorSpace *lnor_space, const float lnor[3], float vec_ref[3], float vec_other[3],
+ struct BLI_Stack *edge_vectors);
+void BKE_lnor_space_add_loop(
+ MLoopNorSpaceArray *lnors_spacearr, MLoopNorSpace *lnor_space, const int ml_index, const bool add_to_list);
+void BKE_lnor_space_custom_data_to_normal(MLoopNorSpace *lnor_space, const short clnor_data[2], float r_custom_lnor[3]);
+void BKE_lnor_space_custom_normal_to_data(MLoopNorSpace *lnor_space, const float custom_lnor[3], short r_clnor_data[2]);
+
+bool BKE_mesh_has_custom_loop_normals(struct Mesh *me);
+
+void BKE_mesh_normals_loop_split(struct MVert *mverts, const int numVerts, struct MEdge *medges, const int numEdges,
+ struct MLoop *mloops, float (*r_loopnors)[3], const int numLoops,
+ struct MPoly *mpolys, const float (*polynors)[3], const int numPolys,
+ const bool use_split_normals, float split_angle,
+ MLoopNorSpaceArray *r_lnors_spacearr, short (*clnors_data)[2], int *r_loop_to_poly);
+
+void BKE_mesh_normals_loop_custom_set(
+ struct MVert *mverts, const int numVerts, struct MEdge *medges, const int numEdges,
+ struct MLoop *mloops, float (*custom_loopnors)[3], const int numLoops,
+ struct MPoly *mpolys, const float (*polynors)[3], const int numPolys,
+ short (*r_clnors_data)[2]);
+void BKE_mesh_normals_loop_custom_from_vertices_set(
+ struct MVert *mverts, float (*custom_vertnors)[3], const int numVerts,
+ struct MEdge *medges, const int numEdges, struct MLoop *mloops, const int numLoops,
+ struct MPoly *mpolys, const float (*polynors)[3], const int numPolys,
+ short (*r_clnors_data)[2]);
+
void BKE_mesh_calc_poly_normal(
struct MPoly *mpoly, struct MLoop *loopstart,
struct MVert *mvarray, float no[3]);
diff --git a/source/blender/blenkernel/intern/cdderivedmesh.c b/source/blender/blenkernel/intern/cdderivedmesh.c
index 084376e768e..2554151c99d 100644
--- a/source/blender/blenkernel/intern/cdderivedmesh.c
+++ b/source/blender/blenkernel/intern/cdderivedmesh.c
@@ -1540,6 +1540,7 @@ static CDDerivedMesh *cdDM_create(const char *desc)
dm->calcNormals = CDDM_calc_normals;
dm->calcLoopNormals = CDDM_calc_loop_normals;
+ dm->calcLoopNormalsSpaceArray = CDDM_calc_loop_normals_spacearr;
dm->recalcTessellation = CDDM_recalc_tessellation;
dm->getVertCos = cdDM_getVertCos;
@@ -2158,6 +2159,14 @@ void CDDM_calc_normals(DerivedMesh *dm)
void CDDM_calc_loop_normals(DerivedMesh *dm, const bool use_split_normals, const float split_angle)
{
+ CDDM_calc_loop_normals_spacearr(dm, use_split_normals, split_angle, NULL);
+}
+
+/* #define DEBUG_CLNORS */
+
+void CDDM_calc_loop_normals_spacearr(
+ DerivedMesh *dm, const bool use_split_normals, const float split_angle, MLoopNorSpaceArray *r_lnors_spacearr)
+{
MVert *mverts = dm->getVertArray(dm);
MEdge *medges = dm->getEdgeArray(dm);
MLoop *mloops = dm->getLoopArray(dm);
@@ -2166,6 +2175,7 @@ void CDDM_calc_loop_normals(DerivedMesh *dm, const bool use_split_normals, const
CustomData *ldata, *pdata;
float (*lnors)[3];
+ short (*clnor_data)[2];
float (*pnors)[3];
const int numVerts = dm->getNumVerts(dm);
@@ -2193,8 +2203,37 @@ void CDDM_calc_loop_normals(DerivedMesh *dm, const bool use_split_normals, const
dm->dirty &= ~DM_DIRTY_NORMALS;
+ clnor_data = CustomData_get_layer(ldata, CD_CUSTOMLOOPNORMAL);
+
BKE_mesh_normals_loop_split(mverts, numVerts, medges, numEdges, mloops, lnors, numLoops,
- mpolys, pnors, numPolys, use_split_normals, split_angle);
+ mpolys, (const float (*)[3])pnors, numPolys,
+ use_split_normals, split_angle,
+ r_lnors_spacearr, clnor_data, NULL);
+#ifdef DEBUG_CLNORS
+ if (r_lnors_spacearr) {
+ int i;
+ for (i = 0; i < numLoops; i++) {
+ if (r_lnors_spacearr->lspacearr[i]->ref_alpha != 0.0f) {
+ LinkNode *loops = r_lnors_spacearr->lspacearr[i]->loops;
+ printf("Loop %d uses lnor space %p:\n", i, r_lnors_spacearr->lspacearr[i]);
+ print_v3("\tfinal lnor", lnors[i]);
+ print_v3("\tauto lnor", r_lnors_spacearr->lspacearr[i]->vec_lnor);
+ print_v3("\tref_vec", r_lnors_spacearr->lspacearr[i]->vec_ref);
+ printf("\talpha: %f\n\tbeta: %f\n\tloops: %p\n", r_lnors_spacearr->lspacearr[i]->ref_alpha,
+ r_lnors_spacearr->lspacearr[i]->ref_beta, r_lnors_spacearr->lspacearr[i]->loops);
+ printf("\t\t(shared with loops");
+ while (loops) {
+ printf(" %d", GET_INT_FROM_POINTER(loops->link));
+ loops = loops->next;
+ }
+ printf(")\n");
+ }
+ else {
+ printf("Loop %d has no lnor space\n", i);
+ }
+ }
+ }
+#endif
}
diff --git a/source/blender/blenkernel/intern/customdata.c b/source/blender/blenkernel/intern/customdata.c
index a259958dc0c..0c437f6e02f 100644
--- a/source/blender/blenkernel/intern/customdata.c
+++ b/source/blender/blenkernel/intern/customdata.c
@@ -1255,6 +1255,8 @@ static const LayerTypeInfo LAYERTYPEINFO[CD_NUMTYPES] = {
{sizeof(float[4]), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 40: CD_TESSLOOPNORMAL */
{sizeof(short[4][3]), "", 0, NULL, NULL, NULL, NULL, layerSwap_flnor, NULL},
+ /* 41: CD_CUSTOMLOOPNORMAL */
+ {sizeof(short[2]), "vec2s", 1, NULL, NULL, NULL, NULL, NULL, NULL},
};
/* note, numbers are from trunk and need updating for bmesh */
@@ -1270,7 +1272,8 @@ static const char *LAYERTYPENAMES[CD_NUMTYPES] = {
/* 25-29 */ "CDMPoly", "CDMLoop", "CDShapeKeyIndex", "CDShapeKey", "CDBevelWeight",
/* 30-34 */ "CDSubSurfCrease", "CDOrigSpaceLoop", "CDPreviewLoopCol", "CDBMElemPyPtr", "CDPaintMask",
/* 35-36 */ "CDGridPaintMask", "CDMVertSkin",
- /* 37-40 */ "CDFreestyleEdge", "CDFreestyleFace", "CDMLoopTangent", "CDTessLoopNormal",
+ /* 37-38 */ "CDFreestyleEdge", "CDFreestyleFace",
+ /* 39-41 */ "CDMLoopTangent", "CDTessLoopNormal", "CDCustomLoopNormal",
};
@@ -1282,26 +1285,29 @@ const CustomDataMask CD_MASK_MESH =
CD_MASK_PROP_FLT | CD_MASK_PROP_INT | CD_MASK_PROP_STR | CD_MASK_MDISPS |
CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_MPOLY | CD_MASK_MLOOP |
CD_MASK_MTEXPOLY | CD_MASK_RECAST | CD_MASK_PAINT_MASK |
- CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE;
+ CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE |
+ CD_MASK_CUSTOMLOOPNORMAL;
const CustomDataMask CD_MASK_EDITMESH =
CD_MASK_MSTICKY | CD_MASK_MDEFORMVERT | CD_MASK_MTFACE | CD_MASK_MLOOPUV |
CD_MASK_MLOOPCOL | CD_MASK_MTEXPOLY | CD_MASK_SHAPE_KEYINDEX |
CD_MASK_MCOL | CD_MASK_PROP_FLT | CD_MASK_PROP_INT | CD_MASK_PROP_STR |
CD_MASK_MDISPS | CD_MASK_SHAPEKEY | CD_MASK_RECAST | CD_MASK_PAINT_MASK |
- CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN;
+ CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_CUSTOMLOOPNORMAL;
const CustomDataMask CD_MASK_DERIVEDMESH =
CD_MASK_MSTICKY | CD_MASK_MDEFORMVERT | CD_MASK_MTFACE |
CD_MASK_MCOL | CD_MASK_PROP_FLT | CD_MASK_PROP_INT | CD_MASK_CLOTH_ORCO |
CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_MTEXPOLY | CD_MASK_PREVIEW_MLOOPCOL |
CD_MASK_PROP_STR | CD_MASK_ORIGSPACE | CD_MASK_ORIGSPACE_MLOOP | CD_MASK_ORCO | CD_MASK_TANGENT |
CD_MASK_PREVIEW_MCOL | CD_MASK_SHAPEKEY | CD_MASK_RECAST |
- CD_MASK_ORIGINDEX | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE;
+ CD_MASK_ORIGINDEX | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE |
+ CD_MASK_CUSTOMLOOPNORMAL;
const CustomDataMask CD_MASK_BMESH =
CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_MTEXPOLY |
CD_MASK_MSTICKY | CD_MASK_MDEFORMVERT | CD_MASK_PROP_FLT | CD_MASK_PROP_INT |
CD_MASK_PROP_STR | CD_MASK_SHAPEKEY | CD_MASK_SHAPE_KEYINDEX | CD_MASK_MDISPS |
CD_MASK_CREASE | CD_MASK_BWEIGHT | CD_MASK_RECAST | CD_MASK_PAINT_MASK |
- CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE;
+ CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE |
+ CD_MASK_CUSTOMLOOPNORMAL;
const CustomDataMask CD_MASK_FACECORNERS = /* XXX Not used anywhere! */
CD_MASK_MTFACE | CD_MASK_MCOL | CD_MASK_MTEXPOLY | CD_MASK_MLOOPUV |
CD_MASK_MLOOPCOL | CD_MASK_NORMAL | CD_MASK_MLOOPTANGENT;
@@ -1316,7 +1322,7 @@ const CustomDataMask CD_MASK_EVERYTHING =
/* BMESH ONLY END */
CD_MASK_PAINT_MASK | CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN |
CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE |
- CD_MASK_MLOOPTANGENT | CD_MASK_TESSLOOPNORMAL;
+ CD_MASK_MLOOPTANGENT | CD_MASK_TESSLOOPNORMAL | CD_MASK_CUSTOMLOOPNORMAL;
static const LayerTypeInfo *layerType_getInfo(int type)
{
diff --git a/source/blender/blenkernel/intern/editderivedmesh.c b/source/blender/blenkernel/intern/editderivedmesh.c
index 62d9009a131..082edb01efd 100644
--- a/source/blender/blenkernel/intern/editderivedmesh.c
+++ b/source/blender/blenkernel/intern/editderivedmesh.c
@@ -169,12 +169,25 @@ static void emDM_calcNormals(DerivedMesh *dm)
dm->dirty &= ~DM_DIRTY_NORMALS;
}
+static void emDM_calcLoopNormalsSpaceArray(
+ DerivedMesh *dm, const bool use_split_normals, const float split_angle, MLoopNorSpaceArray *r_lnors_spacearr);
+
static void emDM_calcLoopNormals(DerivedMesh *dm, const bool use_split_normals, const float split_angle)
{
+ emDM_calcLoopNormalsSpaceArray(dm, use_split_normals, split_angle, NULL);
+}
+
+/* #define DEBUG_CLNORS */
+
+static void emDM_calcLoopNormalsSpaceArray(
+ DerivedMesh *dm, const bool use_split_normals, const float split_angle, MLoopNorSpaceArray *r_lnors_spacearr)
+{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->em->bm;
const float (*vertexCos)[3], (*vertexNos)[3], (*polyNos)[3];
float (*loopNos)[3];
+ short (*clnors_data)[2];
+ int cd_loop_clnors_offset;
/* calculate loop normals from poly and vertex normals */
emDM_ensureVertNormals(bmdm);
@@ -191,7 +204,37 @@ static void emDM_calcLoopNormals(DerivedMesh *dm, const bool use_split_normals,
loopNos = dm->getLoopDataArray(dm, CD_NORMAL);
}
- BM_loops_calc_normal_vcos(bm, vertexCos, vertexNos, polyNos, use_split_normals, split_angle, loopNos);
+ /* We can have both, give priority to dm's data, and fallback to bm's ones. */
+ clnors_data = dm->getLoopDataArray(dm, CD_CUSTOMLOOPNORMAL);
+ cd_loop_clnors_offset = clnors_data ? -1 : CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
+
+ BM_loops_calc_normal_vcos(bm, vertexCos, vertexNos, polyNos, use_split_normals, split_angle, loopNos,
+ r_lnors_spacearr, clnors_data, cd_loop_clnors_offset);
+#ifdef DEBUG_CLNORS
+ if (r_lnors_spacearr) {
+ int i;
+ for (i = 0; i < numLoops; i++) {
+ if (r_lnors_spacearr->lspacearr[i]->ref_alpha != 0.0f) {
+ LinkNode *loops = r_lnors_spacearr->lspacearr[i]->loops;
+ printf("Loop %d uses lnor space %p:\n", i, r_lnors_spacearr->lspacearr[i]);
+ print_v3("\tfinal lnor:", loopNos[i]);
+ print_v3("\tauto lnor:", r_lnors_spacearr->lspacearr[i]->vec_lnor);
+ print_v3("\tref_vec:", r_lnors_spacearr->lspacearr[i]->vec_ref);
+ printf("\talpha: %f\n\tbeta: %f\n\tloops: %p\n", r_lnors_spacearr->lspacearr[i]->ref_alpha,
+ r_lnors_spacearr->lspacearr[i]->ref_beta, r_lnors_spacearr->lspacearr[i]->loops);
+ printf("\t\t(shared with loops");
+ while (loops) {
+ printf(" %d", GET_INT_FROM_POINTER(loops->link));
+ loops = loops->next;
+ }
+ printf(")\n");
+ }
+ else {
+ printf("Loop %d has no lnor space\n", i);
+ }
+ }
+ }
+#endif
}
static void emDM_recalcTessellation(DerivedMesh *UNUSED(dm))
@@ -1764,6 +1807,7 @@ DerivedMesh *getEditDerivedBMesh(BMEditMesh *em,
bmdm->dm.calcNormals = emDM_calcNormals;
bmdm->dm.calcLoopNormals = emDM_calcLoopNormals;
+ bmdm->dm.calcLoopNormalsSpaceArray = emDM_calcLoopNormalsSpaceArray;
bmdm->dm.recalcTessellation = emDM_recalcTessellation;
bmdm->dm.foreachMappedVert = emDM_foreachMappedVert;
diff --git a/source/blender/blenkernel/intern/mesh.c b/source/blender/blenkernel/intern/mesh.c
index 8ad20df18db..7757babaca2 100644
--- a/source/blender/blenkernel/intern/mesh.c
+++ b/source/blender/blenkernel/intern/mesh.c
@@ -414,6 +414,16 @@ void BKE_mesh_update_customdata_pointers(Mesh *me, const bool do_ensure_tess_cd)
me->mloopuv = CustomData_get_layer(&me->ldata, CD_MLOOPUV);
}
+bool BKE_mesh_has_custom_loop_normals(Mesh *me)
+{
+ if (me->edit_btmesh) {
+ return CustomData_has_layer(&me->edit_btmesh->bm->ldata, CD_CUSTOMLOOPNORMAL);
+ }
+ else {
+ return CustomData_has_layer(&me->ldata, CD_CUSTOMLOOPNORMAL);
+ }
+}
+
/* Note: unlinking is called when me->id.us is 0, question remains how
* much unlinking of Library data in Mesh should be done... probably
* we need a more generic method, like the expand() functions in
diff --git a/source/blender/blenkernel/intern/mesh_evaluate.c b/source/blender/blenkernel/intern/mesh_evaluate.c
index af9ac911921..f12fdeb7a80 100644
--- a/source/blender/blenkernel/intern/mesh_evaluate.c
+++ b/source/blender/blenkernel/intern/mesh_evaluate.c
@@ -39,6 +39,7 @@
#include "BLI_utildefines.h"
#include "BLI_memarena.h"
+#include "BLI_mempool.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_bitmap.h"
@@ -46,6 +47,8 @@
#include "BLI_linklist.h"
#include "BLI_linklist_stack.h"
#include "BLI_alloca.h"
+#include "BLI_stack.h"
+#include "BLI_task.h"
#include "BKE_customdata.h"
#include "BKE_mesh.h"
@@ -58,8 +61,8 @@
// #define DEBUG_TIME
+#include "PIL_time.h"
#ifdef DEBUG_TIME
-# include "PIL_time.h"
# include "PIL_time_utildefines.h"
#endif
@@ -316,16 +319,751 @@ void BKE_mesh_calc_normals_tessface(MVert *mverts, int numVerts, MFace *mfaces,
MEM_freeN(fnors);
}
+void BKE_lnor_spacearr_init(MLoopNorSpaceArray *lnors_spacearr, const int numLoops)
+{
+ if (!(lnors_spacearr->lspacearr && lnors_spacearr->loops_pool)) {
+ MemArena *mem;
+
+ if (!lnors_spacearr->mem) {
+ lnors_spacearr->mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
+ }
+ mem = lnors_spacearr->mem;
+ lnors_spacearr->lspacearr = BLI_memarena_calloc(mem, sizeof(MLoopNorSpace *) * (size_t)numLoops);
+ lnors_spacearr->loops_pool = BLI_memarena_alloc(mem, sizeof(LinkNode) * (size_t)numLoops);
+ }
+}
+
+void BKE_lnor_spacearr_clear(MLoopNorSpaceArray *lnors_spacearr)
+{
+ BLI_memarena_clear(lnors_spacearr->mem);
+ lnors_spacearr->lspacearr = NULL;
+ lnors_spacearr->loops_pool = NULL;
+}
+
+void BKE_lnor_spacearr_free(MLoopNorSpaceArray *lnors_spacearr)
+{
+ BLI_memarena_free(lnors_spacearr->mem);
+ lnors_spacearr->lspacearr = NULL;
+ lnors_spacearr->loops_pool = NULL;
+ lnors_spacearr->mem = NULL;
+}
+
+MLoopNorSpace *BKE_lnor_space_create(MLoopNorSpaceArray *lnors_spacearr)
+{
+ return BLI_memarena_calloc(lnors_spacearr->mem, sizeof(MLoopNorSpace));
+}
+
+/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */
+#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-6f)
+
+/* Should only be called once.
+ * Beware, this modifies ref_vec and other_vec in place!
+ * In case no valid space can be generated, ref_alpha and ref_beta are set to zero (which means 'use auto lnors').
+ */
+void BKE_lnor_space_define(MLoopNorSpace *lnor_space, const float lnor[3],
+ float vec_ref[3], float vec_other[3], BLI_Stack *edge_vectors)
+{
+ const float pi2 = (float)M_PI * 2.0f;
+ float tvec[3], dtp;
+ const float dtp_ref = dot_v3v3(vec_ref, lnor);
+ const float dtp_other = dot_v3v3(vec_other, lnor);
+
+ if (UNLIKELY(fabsf(dtp_ref) >= LNOR_SPACE_TRIGO_THRESHOLD || fabsf(dtp_other) >= LNOR_SPACE_TRIGO_THRESHOLD)) {
+ /* If vec_ref or vec_other are too much aligned with lnor, we can't build lnor space,
+ * tag it as invalid and abort. */
+ lnor_space->ref_alpha = lnor_space->ref_beta = 0.0f;
+ return;
+ }
+
+ copy_v3_v3(lnor_space->vec_lnor, lnor);
+
+ /* Compute ref alpha, average angle of all available edge vectors to lnor. */
+ if (edge_vectors) {
+ float alpha = 0.0f;
+ int nbr = 0;
+ while (!BLI_stack_is_empty(edge_vectors)) {
+ const float *vec = BLI_stack_peek(edge_vectors);
+ alpha += saacosf(dot_v3v3(vec, lnor));
+ BLI_stack_discard(edge_vectors);
+ nbr++;
+ }
+ lnor_space->ref_alpha = alpha / (float)nbr;
+ }
+ else {
+ lnor_space->ref_alpha = (saacosf(dot_v3v3(vec_ref, lnor)) + saacosf(dot_v3v3(vec_other, lnor))) / 2.0f;
+ }
+
+ /* Project vec_ref on lnor's ortho plane. */
+ mul_v3_v3fl(tvec, lnor, dtp_ref);
+ sub_v3_v3(vec_ref, tvec);
+ normalize_v3_v3(lnor_space->vec_ref, vec_ref);
+
+ cross_v3_v3v3(tvec, lnor, lnor_space->vec_ref);
+ normalize_v3_v3(lnor_space->vec_ortho, tvec);
+
+ /* Project vec_other on lnor's ortho plane. */
+ mul_v3_v3fl(tvec, lnor, dtp_other);
+ sub_v3_v3(vec_other, tvec);
+ normalize_v3(vec_other);
+
+ /* Beta is angle between ref_vec and other_vec, around lnor. */
+ dtp = dot_v3v3(lnor_space->vec_ref, vec_other);
+ if (LIKELY(dtp < LNOR_SPACE_TRIGO_THRESHOLD)) {
+ const float beta = saacos(dtp);
+ lnor_space->ref_beta = (dot_v3v3(lnor_space->vec_ortho, vec_other) < 0.0f) ? pi2 - beta : beta;
+ }
+ else {
+ lnor_space->ref_beta = pi2;
+ }
+}
+
+void BKE_lnor_space_add_loop(MLoopNorSpaceArray *lnors_spacearr, MLoopNorSpace *lnor_space, const int ml_index,
+ const bool do_add_loop)
+{
+ lnors_spacearr->lspacearr[ml_index] = lnor_space;
+ if (do_add_loop) {
+ BLI_linklist_prepend_nlink(&lnor_space->loops, SET_INT_IN_POINTER(ml_index), &lnors_spacearr->loops_pool[ml_index]);
+ }
+}
+
+MINLINE float unit_short_to_float(const short val)
+{
+ return (float)val / (float)SHRT_MAX;
+}
+
+MINLINE short unit_float_to_short(const float val)
+{
+ /* Rounding... */
+ return (short)floorf(val * (float)SHRT_MAX + 0.5f);
+}
+
+void BKE_lnor_space_custom_data_to_normal(MLoopNorSpace *lnor_space, const short clnor_data[2], float r_custom_lnor[3])
+{
+ /* NOP custom normal data or invalid lnor space, return. */
+ if (clnor_data[0] == 0 || lnor_space->ref_alpha == 0.0f || lnor_space->ref_beta == 0.0f) {
+ copy_v3_v3(r_custom_lnor, lnor_space->vec_lnor);
+ return;
+ }
+
+ {
+ /* TODO Check whether using sincosf() gives any noticeable benefit
+ * (could not even get it working under linux though)! */
+ const float pi2 = (float)(M_PI * 2.0);
+ const float alphafac = unit_short_to_float(clnor_data[0]);
+ const float alpha = (alphafac > 0.0f ? lnor_space->ref_alpha : pi2 - lnor_space->ref_alpha) * alphafac;
+ const float betafac = unit_short_to_float(clnor_data[1]);
+
+ mul_v3_v3fl(r_custom_lnor, lnor_space->vec_lnor, cosf(alpha));
+
+ if (betafac == 0.0f) {
+ madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinf(alpha));
+ }
+ else {
+ const float sinalpha = sinf(alpha);
+ const float beta = (betafac > 0.0f ? lnor_space->ref_beta : pi2 - lnor_space->ref_beta) * betafac;
+ madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinalpha * cosf(beta));
+ madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ortho, sinalpha * sinf(beta));
+ }
+ }
+}
+
+void BKE_lnor_space_custom_normal_to_data(MLoopNorSpace *lnor_space, const float custom_lnor[3], short r_clnor_data[2])
+{
+ /* We use null vector as NOP custom normal (can be simpler than giving autocomputed lnor...). */
+ if (is_zero_v3(custom_lnor) || compare_v3v3(lnor_space->vec_lnor, custom_lnor, 1e-4f)) {
+ r_clnor_data[0] = r_clnor_data[1] = 0;
+ return;
+ }
+
+ {
+ const float pi2 = (float)(M_PI * 2.0);
+ const float cos_alpha = dot_v3v3(lnor_space->vec_lnor, custom_lnor);
+ float vec[3], cos_beta;
+ float alpha;
+
+ alpha = saacosf(cos_alpha);
+ if (alpha > lnor_space->ref_alpha) {
+ /* Note we could stick to [0, pi] range here, but makes decoding more complex, not worth it. */
+ r_clnor_data[0] = unit_float_to_short(-(pi2 - alpha) / (pi2 - lnor_space->ref_alpha));
+ }
+ else {
+ r_clnor_data[0] = unit_float_to_short(alpha / lnor_space->ref_alpha);
+ }
+
+ /* Project custom lnor on (vec_ref, vec_ortho) plane. */
+ mul_v3_v3fl(vec, lnor_space->vec_lnor, -cos_alpha);
+ add_v3_v3(vec, custom_lnor);
+ normalize_v3(vec);
+
+ cos_beta = dot_v3v3(lnor_space->vec_ref, vec);
+
+ if (cos_beta < LNOR_SPACE_TRIGO_THRESHOLD) {
+ float beta = saacosf(cos_beta);
+ if (dot_v3v3(lnor_space->vec_ortho, vec) < 0.0f) {
+ beta = pi2 - beta;
+ }
+
+ if (beta > lnor_space->ref_beta) {
+ r_clnor_data[1] = unit_float_to_short(-(pi2 - beta) / (pi2 - lnor_space->ref_beta));
+ }
+ else {
+ r_clnor_data[1] = unit_float_to_short(beta / lnor_space->ref_beta);
+ }
+ }
+ else {
+ r_clnor_data[1] = 0;
+ }
+ }
+}
+
+#define LOOP_SPLIT_TASK_BLOCK_SIZE 1024
+
+typedef struct LoopSplitTaskData {
+ /* Specific to each instance (each task). */
+ MLoopNorSpace *lnor_space; /* We have to create those outside of tasks, since afaik memarena is not threadsafe. */
+ float (*lnor)[3];
+ const MLoop *ml_curr;
+ const MLoop *ml_prev;
+ int ml_curr_index;
+ int ml_prev_index;
+ const int *e2l_prev; /* Also used a flag to switch between single or fan process! */
+ int mp_index;
+
+ /* This one is special, it's owned and managed by worker tasks, avoid to have to create it for each fan! */
+ BLI_Stack *edge_vectors;
+
+ char pad_c;
+} LoopSplitTaskData;
+
+typedef struct LoopSplitTaskDataCommon {
+ /* Read/write.
+ * Note we do not need to protect it, though, since two different tasks will *always* affect different
+ * elements in the arrays. */
+ MLoopNorSpaceArray *lnors_spacearr;
+ BLI_bitmap *sharp_verts;
+ float (*loopnors)[3];
+ short (*clnors_data)[2];
+
+ /* Read-only. */
+ const MVert *mverts;
+ const MEdge *medges;
+ const MLoop *mloops;
+ const MPoly *mpolys;
+ const int (*edge_to_loops)[2];
+ const int *loop_to_poly;
+ const float (*polynors)[3];
+
+ int numPolys;
+
+ /* ***** Workers communication. ***** */
+ ThreadQueue *task_queue;
+
+} LoopSplitTaskDataCommon;
+
+#define INDEX_UNSET INT_MIN
+#define INDEX_INVALID -1
+/* See comment about edge_to_loops below. */
+#define IS_EDGE_SHARP(_e2l) (ELEM((_e2l)[1], INDEX_UNSET, INDEX_INVALID))
+
+static void split_loop_nor_single_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data)
+{
+ MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr;
+ short (*clnors_data)[2] = common_data->clnors_data;
+
+ const MVert *mverts = common_data->mverts;
+ const MEdge *medges = common_data->medges;
+ const float (*polynors)[3] = common_data->polynors;
+
+ MLoopNorSpace *lnor_space = data->lnor_space;
+ float (*lnor)[3] = data->lnor;
+ const MLoop *ml_curr = data->ml_curr;
+ const MLoop *ml_prev = data->ml_prev;
+ const int ml_curr_index = data->ml_curr_index;
+#if 0 /* Not needed for 'single' loop. */
+ const int ml_prev_index = data->ml_prev_index;
+ const int *e2l_prev = data->e2l_prev;
+#endif
+ const int mp_index = data->mp_index;
+
+ /* Simple case (both edges around that vertex are sharp in current polygon),
+ * this loop just takes its poly normal.
+ */
+ copy_v3_v3(*lnor, polynors[mp_index]);
+
+ /* printf("BASIC: handling loop %d / edge %d / vert %d\n", ml_curr_index, ml_curr->e, ml_curr->v); */
+
+ /* If needed, generate this (simple!) lnor space. */
+ if (lnors_spacearr) {
+ float vec_curr[3], vec_prev[3];
+
+ const unsigned int mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */
+ const MVert *mv_pivot = &mverts[mv_pivot_index];
+ const MEdge *me_curr = &medges[ml_curr->e];
+ const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : &mverts[me_curr->v1];
+ const MEdge *me_prev = &medges[ml_prev->e];
+ const MVert *mv_3 = (me_prev->v1 == mv_pivot_index) ? &mverts[me_prev->v2] : &mverts[me_prev->v1];
+
+ sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co);
+ normalize_v3(vec_curr);
+ sub_v3_v3v3(vec_prev, mv_3->co, mv_pivot->co);
+ normalize_v3(vec_prev);
+
+ BKE_lnor_space_define(lnor_space, *lnor, vec_curr, vec_prev, NULL);
+ /* We know there is only one loop in this space, no need to create a linklist in this case... */
+ BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, ml_curr_index, false);
+
+ if (clnors_data) {
+ BKE_lnor_space_custom_data_to_normal(lnor_space, clnors_data[ml_curr_index], *lnor);
+ }
+ }
+}
+
+static void split_loop_nor_fan_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data)
+{
+ MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr;
+ float (*loopnors)[3] = common_data->loopnors;
+ short (*clnors_data)[2] = common_data->clnors_data;
+
+ const MVert *mverts = common_data->mverts;
+ const MEdge *medges = common_data->medges;
+ const MLoop *mloops = common_data->mloops;
+ const MPoly *mpolys = common_data->mpolys;
+ const int (*edge_to_loops)[2] = common_data->edge_to_loops;
+ const int *loop_to_poly = common_data->loop_to_poly;
+ const float (*polynors)[3] = common_data->polynors;
+
+ MLoopNorSpace *lnor_space = data->lnor_space;
+#if 0 /* Not needed for 'fan' loops. */
+ float (*lnor)[3] = data->lnor;
+#endif
+ const MLoop *ml_curr = data->ml_curr;
+ const MLoop *ml_prev = data->ml_prev;
+ const int ml_curr_index = data->ml_curr_index;
+ const int ml_prev_index = data->ml_prev_index;
+ const int mp_index = data->mp_index;
+ const int *e2l_prev = data->e2l_prev;
+
+ BLI_Stack *edge_vectors = data->edge_vectors;
+
+ /* Gah... We have to fan around current vertex, until we find the other non-smooth edge,
+ * and accumulate face normals into the vertex!
+ * Note in case this vertex has only one sharp edges, this is a waste because the normal is the same as
+ * the vertex normal, but I do not see any easy way to detect that (would need to count number
+ * of sharp edges per vertex, I doubt the additional memory usage would be worth it, especially as
+ * it should not be a common case in real-life meshes anyway).
+ */
+ const unsigned int mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */
+ const MVert *mv_pivot = &mverts[mv_pivot_index];
+ const MEdge *me_org = &medges[ml_curr->e]; /* ml_curr would be mlfan_prev if we needed that one */
+ const int *e2lfan_curr;
+ float vec_curr[3], vec_prev[3], vec_org[3];
+ const MLoop *mlfan_curr, *mlfan_next;
+ const MPoly *mpfan_next;
+ float lnor[3] = {0.0f, 0.0f, 0.0f};
+ /* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */
+ int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index;
+
+ /* We validate clnors data on the fly - cheapest way to do! */
+ int clnors_avg[2] = {0, 0};
+ short (*clnor_ref)[2] = NULL;
+ int clnors_nbr = 0;
+ bool clnors_invalid = false;
+
+ /* Temp loop normal stack. */
+ BLI_SMALLSTACK_DECLARE(normal, float *);
+ /* Temp clnors stack. */
+ BLI_SMALLSTACK_DECLARE(clnors, short *);
+
+ e2lfan_curr = e2l_prev;
+ mlfan_curr = ml_prev;
+ mlfan_curr_index = ml_prev_index;
+ mlfan_vert_index = ml_curr_index;
+ mpfan_curr_index = mp_index;
+
+ BLI_assert(mlfan_curr_index >= 0);
+ BLI_assert(mlfan_vert_index >= 0);
+ BLI_assert(mpfan_curr_index >= 0);
+
+ /* Only need to compute previous edge's vector once, then we can just reuse old current one! */
+ {
+ const MVert *mv_2 = (me_org->v1 == mv_pivot_index) ? &mverts[me_org->v2] : &mverts[me_org->v1];
+
+ sub_v3_v3v3(vec_org, mv_2->co, mv_pivot->co);
+ normalize_v3(vec_org);
+ copy_v3_v3(vec_prev, vec_org);
+
+ if (lnors_spacearr) {
+ BLI_stack_push(edge_vectors, vec_org);
+ }
+ }
+
+ /* printf("FAN: vert %d, start edge %d\n", mv_pivot_index, ml_curr->e); */
+
+ while (true) {
+ const MEdge *me_curr = &medges[mlfan_curr->e];
+ /* Compute edge vectors.
+ * NOTE: We could pre-compute those into an array, in the first iteration, instead of computing them
+ * twice (or more) here. However, time gained is not worth memory and time lost,
+ * given the fact that this code should not be called that much in real-life meshes...
+ */
+ {
+ const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : &mverts[me_curr->v1];
+
+ sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co);
+ normalize_v3(vec_curr);
+ }
+
+ /* printf("\thandling edge %d / loop %d\n", mlfan_curr->e, mlfan_curr_index); */
+
+ {
+ /* Code similar to accumulate_vertex_normals_poly. */
+ /* Calculate angle between the two poly edges incident on this vertex. */
+ const float fac = saacos(dot_v3v3(vec_curr, vec_prev));
+ /* Accumulate */
+ madd_v3_v3fl(lnor, polynors[mpfan_curr_index], fac);
+
+ if (clnors_data) {
+ /* Accumulate all clnors, if they are not all equal we have to fix that! */
+ short (*clnor)[2] = &clnors_data[mlfan_vert_index];
+ if (clnors_nbr) {
+ clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] || (*clnor_ref)[1] != (*clnor)[1]);
+ }
+ else {
+ clnor_ref = clnor;
+ }
+ clnors_avg[0] += (*clnor)[0];
+ clnors_avg[1] += (*clnor)[1];
+ clnors_nbr++;
+ /* We store here a pointer to all custom lnors processed. */
+ BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor);
+ }
+ }
+
+ /* We store here a pointer to all loop-normals processed. */
+ BLI_SMALLSTACK_PUSH(normal, (float *)(loopnors[mlfan_vert_index]));
+
+ if (lnors_spacearr) {
+ /* Assign current lnor space to current 'vertex' loop. */
+ BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, mlfan_vert_index, true);
+ if (me_curr != me_org) {
+ /* We store here all edges-normalized vectors processed. */
+ BLI_stack_push(edge_vectors, vec_curr);
+ }
+ }
+
+ if (IS_EDGE_SHARP(e2lfan_curr) || (me_curr == me_org)) {
+ /* Current edge is sharp and we have finished with this fan of faces around this vert,
+ * or this vert is smooth, and we have completed a full turn around it.
+ */
+ /* printf("FAN: Finished!\n"); */
+ break;
+ }
+
+ copy_v3_v3(vec_prev, vec_curr);
+
+ /* Warning! This is rather complex!
+ * We have to find our next edge around the vertex (fan mode).
+ * First we find the next loop, which is either previous or next to mlfan_curr_index, depending
+ * whether both loops using current edge are in the same direction or not, and whether
+ * mlfan_curr_index actually uses the vertex we are fanning around!
+ * mlfan_curr_index is the index of mlfan_next here, and mlfan_next is not the real next one
+ * (i.e. not the future mlfan_curr)...
+ */
+ mlfan_curr_index = (e2lfan_curr[0] == mlfan_curr_index) ? e2lfan_curr[1] : e2lfan_curr[0];
+ mpfan_curr_index = loop_to_poly[mlfan_curr_index];
+
+ BLI_assert(mlfan_curr_index >= 0);
+ BLI_assert(mpfan_curr_index >= 0);
+
+ mlfan_next = &mloops[mlfan_curr_index];
+ mpfan_next = &mpolys[mpfan_curr_index];
+ if ((mlfan_curr->v == mlfan_next->v && mlfan_curr->v == mv_pivot_index) ||
+ (mlfan_curr->v != mlfan_next->v && mlfan_curr->v != mv_pivot_index))
+ {
+ /* We need the previous loop, but current one is our vertex's loop. */
+ mlfan_vert_index = mlfan_curr_index;
+ if (--mlfan_curr_index < mpfan_next->loopstart) {
+ mlfan_curr_index = mpfan_next->loopstart + mpfan_next->totloop - 1;
+ }
+ }
+ else {
+ /* We need the next loop, which is also our vertex's loop. */
+ if (++mlfan_curr_index >= mpfan_next->loopstart + mpfan_next->totloop) {
+ mlfan_curr_index = mpfan_next->loopstart;
+ }
+ mlfan_vert_index = mlfan_curr_index;
+ }
+ mlfan_curr = &mloops[mlfan_curr_index];
+ /* And now we are back in sync, mlfan_curr_index is the index of mlfan_curr! Pff! */
+
+ e2lfan_curr = edge_to_loops[mlfan_curr->e];
+ }
+
+ {
+ float lnor_len = normalize_v3(lnor);
+
+ /* If we are generating lnor spacearr, we can now define the one for this fan,
+ * and optionally compute final lnor from custom data too!
+ */
+ if (lnors_spacearr) {
+ if (UNLIKELY(lnor_len == 0.0f)) {
+ /* Use vertex normal as fallback! */
+ copy_v3_v3(lnor, loopnors[mlfan_vert_index]);
+ lnor_len = 1.0f;
+ }
+
+ BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_curr, edge_vectors);
+
+ if (clnors_data) {
+ if (clnors_invalid) {
+ short *clnor;
+
+ clnors_avg[0] /= clnors_nbr;
+ clnors_avg[1] /= clnors_nbr;
+ /* Fix/update all clnors of this fan with computed average value. */
+ printf("Invalid clnors in this fan!\n");
+ while ((clnor = BLI_SMALLSTACK_POP(clnors))) {
+ //print_v2("org clnor", clnor);
+ clnor[0] = (short)clnors_avg[0];
+ clnor[1] = (short)clnors_avg[1];
+ }
+ //print_v2("new clnors", clnors_avg);
+ }
+ /* Extra bonus: since smallstack is local to this func, no more need to empty it at all cost! */
+
+ BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor);
+ }
+ }
+
+ /* In case we get a zero normal here, just use vertex normal already set! */
+ if (LIKELY(lnor_len != 0.0f)) {
+ /* Copy back the final computed normal into all related loop-normals. */
+ float *nor;
+
+ while ((nor = BLI_SMALLSTACK_POP(normal))) {
+ copy_v3_v3(nor, lnor);
+ }
+ }
+ /* Extra bonus: since smallstack is local to this func, no more need to empty it at all cost! */
+ }
+}
+
+static void loop_split_worker_do(
+ LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data, BLI_Stack *edge_vectors)
+{
+ BLI_assert(data->ml_curr);
+ if (data->e2l_prev) {
+ BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors));
+ data->edge_vectors = edge_vectors;
+ split_loop_nor_fan_do(common_data, data);
+ }
+ else {
+ /* No need for edge_vectors for 'single' case! */
+ split_loop_nor_single_do(common_data, data);
+ }
+}
+
+static void loop_split_worker(TaskPool *UNUSED(pool), void *taskdata, int UNUSED(threadid))
+{
+ LoopSplitTaskDataCommon *common_data = taskdata;
+ LoopSplitTaskData *data_buff;
+
+ /* Temp edge vectors stack, only used when computing lnor spacearr. */
+ BLI_Stack *edge_vectors = common_data->lnors_spacearr ? BLI_stack_new(sizeof(float[3]), __func__) : NULL;
+
+#ifdef DEBUG_TIME
+ TIMEIT_START(loop_split_worker);
+#endif
+
+ while ((data_buff = BLI_thread_queue_pop(common_data->task_queue))) {
+ LoopSplitTaskData *data = data_buff;
+ int i;
+
+ for (i = 0; i < LOOP_SPLIT_TASK_BLOCK_SIZE; i++, data++) {
+ /* A NULL ml_curr is used to tag ended data! */
+ if (data->ml_curr == NULL) {
+ break;
+ }
+ loop_split_worker_do(common_data, data, edge_vectors);
+ }
+
+ MEM_freeN(data_buff);
+ }
+
+ if (edge_vectors) {
+ BLI_stack_free(edge_vectors);
+ }
+
+#ifdef DEBUG_TIME
+ TIMEIT_END(loop_split_worker);
+#endif
+}
+
+/* Note we use data_buff to detect whether we are in threaded context or not, in later case it is NULL. */
+static void loop_split_generator_do(LoopSplitTaskDataCommon *common_data, const bool threaded)
+{
+ MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr;
+ BLI_bitmap *sharp_verts = common_data->sharp_verts;
+ float (*loopnors)[3] = common_data->loopnors;
+
+ const MLoop *mloops = common_data->mloops;
+ const MPoly *mpolys = common_data->mpolys;
+ const int (*edge_to_loops)[2] = common_data->edge_to_loops;
+ const int numPolys = common_data->numPolys;
+
+ const MPoly *mp;
+ int mp_index;
+
+ LoopSplitTaskData *data, *data_buff = NULL, data_mem;
+ int data_idx = 0;
+
+ /* Temp edge vectors stack, only used when computing lnor spacearr (and we are not multi-threading). */
+ BLI_Stack *edge_vectors = (lnors_spacearr && !data_buff) ? BLI_stack_new(sizeof(float[3]), __func__) : NULL;
+
+#ifdef DEBUG_TIME
+ TIMEIT_START(loop_split_generator);
+#endif
+
+ if (!threaded) {
+ memset(&data_mem, 0, sizeof(data_mem));
+ data = &data_mem;
+ }
+
+ /* We now know edges that can be smoothed (with their vector, and their two loops), and edges that will be hard!
+ * Now, time to generate the normals.
+ */
+ for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
+ const MLoop *ml_curr, *ml_prev;
+ float (*lnors)[3];
+ const int ml_last_index = (mp->loopstart + mp->totloop) - 1;
+ int ml_curr_index = mp->loopstart;
+ int ml_prev_index = ml_last_index;
+
+ ml_curr = &mloops[ml_curr_index];
+ ml_prev = &mloops[ml_prev_index];
+ lnors = &loopnors[ml_curr_index];
+
+ for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++, lnors++) {
+ const int *e2l_curr = edge_to_loops[ml_curr->e];
+ const int *e2l_prev = edge_to_loops[ml_prev->e];
+
+ if (!IS_EDGE_SHARP(e2l_curr) && (!lnors_spacearr || BLI_BITMAP_TEST_BOOL(sharp_verts, ml_curr->v))) {
+ /* A smooth edge, and we are not generating lnor_spacearr, or the related vertex is sharp.
+ * We skip it because it is either:
+ * - in the middle of a 'smooth fan' already computed (or that will be as soon as we hit
+ * one of its ends, i.e. one of its two sharp edges), or...
+ * - the related vertex is a "full smooth" one, in which case pre-populated normals from vertex
+ * are just fine (or it has already be handled in a previous loop in case of needed lnors spacearr)!
+ */
+ /* printf("Skipping loop %d / edge %d / vert %d(%d)\n", ml_curr_index, ml_curr->e, ml_curr->v, sharp_verts[ml_curr->v]); */
+ }
+ else {
+ if (threaded) {
+ if (data_idx == 0) {
+ data_buff = MEM_callocN(sizeof(*data_buff) * LOOP_SPLIT_TASK_BLOCK_SIZE, __func__);
+ }
+ data = &data_buff[data_idx];
+ }
+
+ if (IS_EDGE_SHARP(e2l_curr) && IS_EDGE_SHARP(e2l_prev)) {
+ data->lnor = lnors;
+ data->ml_curr = ml_curr;
+ data->ml_prev = ml_prev;
+ data->ml_curr_index = ml_curr_index;
+#if 0 /* Not needed for 'single' loop. */
+ data->ml_prev_index = ml_prev_index;
+ data->e2l_prev = NULL; /* Tag as 'single' task. */
+#endif
+ data->mp_index = mp_index;
+ if (lnors_spacearr) {
+ data->lnor_space = BKE_lnor_space_create(lnors_spacearr);
+ }
+ }
+ /* We *do not need* to check/tag loops as already computed!
+ * Due to the fact a loop only links to one of its two edges, a same fan *will never be walked
+ * more than once!*
+ * Since we consider edges having neighbor polys with inverted (flipped) normals as sharp, we are sure
+ * that no fan will be skipped, even only considering the case (sharp curr_edge, smooth prev_edge),
+ * and not the alternative (smooth curr_edge, sharp prev_edge).
+ * All this due/thanks to link between normals and loop ordering (i.e. winding).
+ */
+ else {
+#if 0 /* Not needed for 'fan' loops. */
+ data->lnor = lnors;
+#endif
+ data->ml_curr = ml_curr;
+ data->ml_prev = ml_prev;
+ data->ml_curr_index = ml_curr_index;
+ data->ml_prev_index = ml_prev_index;
+ data->e2l_prev = e2l_prev; /* Also tag as 'fan' task. */
+ data->mp_index = mp_index;
+ if (lnors_spacearr) {
+ data->lnor_space = BKE_lnor_space_create(lnors_spacearr);
+ /* Tag related vertex as sharp, to avoid fanning around it again (in case it was a smooth one).
+ * This *has* to be done outside of workers tasks! */
+ BLI_BITMAP_ENABLE(sharp_verts, ml_curr->v);
+ }
+ }
+
+ if (threaded) {
+ data_idx++;
+ if (data_idx == LOOP_SPLIT_TASK_BLOCK_SIZE) {
+ BLI_thread_queue_push(common_data->task_queue, data_buff);
+ data_idx = 0;
+ }
+ }
+ else {
+ loop_split_worker_do(common_data, data, edge_vectors);
+ memset(data, 0, sizeof(data_mem));
+ }
+ }
+
+ ml_prev = ml_curr;
+ ml_prev_index = ml_curr_index;
+ }
+ }
+
+ if (threaded) {
+ /* Last block of data... Since it is calloc'ed and we use first NULL item as stopper, everything is fine. */
+ if (LIKELY(data_idx)) {
+ BLI_thread_queue_push(common_data->task_queue, data_buff);
+ }
+
+ /* This will signal all other worker threads to wake up and finish! */
+ BLI_thread_queue_nowait(common_data->task_queue);
+ }
+
+ if (edge_vectors) {
+ BLI_stack_free(edge_vectors);
+ }
+
+#ifdef DEBUG_TIME
+ TIMEIT_END(loop_split_generator);
+#endif
+}
+
+static void loop_split_generator(TaskPool *UNUSED(pool), void *taskdata, int UNUSED(threadid))
+{
+ LoopSplitTaskDataCommon *common_data = taskdata;
+
+ loop_split_generator_do(common_data, true);
+}
+
/**
* Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
* Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry (splitting edges).
*/
void BKE_mesh_normals_loop_split(
- MVert *mverts, const int UNUSED(numVerts), MEdge *medges, const int numEdges,
+ MVert *mverts, const int numVerts, MEdge *medges, const int numEdges,
MLoop *mloops, float (*r_loopnors)[3], const int numLoops,
- MPoly *mpolys, float (*polynors)[3], const int numPolys,
- const bool use_split_normals, float split_angle)
+ MPoly *mpolys, const float (*polynors)[3], const int numPolys,
+ const bool use_split_normals, float split_angle,
+ MLoopNorSpaceArray *r_lnors_spacearr, short (*clnors_data)[2], int *r_loop_to_poly)
{
+
+ /* For now this is not supported. If we do not use split normals, we do not generate anything fancy! */
+ BLI_assert(use_split_normals || !(r_lnors_spacearr || r_loop_to_poly));
+
if (!use_split_normals) {
/* In this case, we simply fill lnors with vnors, quite simple!
* Note this is done here to keep some logic and consistency in this quite complex code,
@@ -342,11 +1080,6 @@ void BKE_mesh_normals_loop_split(
{
-#define INDEX_UNSET INT_MIN
-#define INDEX_INVALID -1
-/* See comment about edge_to_loops below. */
-#define IS_EDGE_SHARP(_e2l) (ELEM((_e2l)[1], INDEX_UNSET, INDEX_INVALID))
-
/* Mapping edge -> loops.
* If that edge is used by more than two loops (polys), it is always sharp (and tagged as such, see below).
* We also use the second loop index as a kind of flag: smooth edge: > 0,
@@ -359,21 +1092,39 @@ void BKE_mesh_normals_loop_split(
int (*edge_to_loops)[2] = MEM_callocN(sizeof(int[2]) * (size_t)numEdges, __func__);
/* Simple mapping from a loop to its polygon index. */
- int *loop_to_poly = MEM_mallocN(sizeof(int) * (size_t)numLoops, __func__);
+ int *loop_to_poly = r_loop_to_poly ? r_loop_to_poly : MEM_mallocN(sizeof(int) * (size_t)numLoops, __func__);
MPoly *mp;
- int mp_index;
- const bool check_angle = (split_angle < (float)M_PI);
+ int mp_index, me_index;
+ bool check_angle = (split_angle < (float)M_PI);
+ int i;
- /* Temp normal stack. */
- BLI_SMALLSTACK_DECLARE(normal, float *);
+ BLI_bitmap *sharp_verts = NULL;
+ MLoopNorSpaceArray _lnors_spacearr = {NULL};
+
+ LoopSplitTaskDataCommon common_data = {NULL};
#ifdef DEBUG_TIME
TIMEIT_START(BKE_mesh_normals_loop_split);
#endif
if (check_angle) {
- split_angle = cosf(split_angle);
+ /* When using custom loop normals, disable the angle feature! */
+ if (clnors_data) {
+ check_angle = false;
+ }
+ else {
+ split_angle = cosf(split_angle);
+ }
+ }
+
+ if (!r_lnors_spacearr && clnors_data) {
+ /* We need to compute lnor spacearr if some custom lnor data are given to us! */
+ r_lnors_spacearr = &_lnors_spacearr;
+ }
+ if (r_lnors_spacearr) {
+ BKE_lnor_spacearr_init(r_lnors_spacearr, numLoops);
+ sharp_verts = BLI_BITMAP_NEW((size_t)numVerts, __func__);
}
/* This first loop check which edges are actually smooth, and compute edge vectors. */
@@ -427,189 +1178,271 @@ void BKE_mesh_normals_loop_split(
}
}
- /* We now know edges that can be smoothed (with their vector, and their two loops), and edges that will be hard!
- * Now, time to generate the normals.
- */
- for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
- MLoop *ml_curr, *ml_prev;
- float (*lnors)[3];
- const int ml_last_index = (mp->loopstart + mp->totloop) - 1;
- int ml_curr_index = mp->loopstart;
- int ml_prev_index = ml_last_index;
+ if (r_lnors_spacearr) {
+ /* Tag vertices that have at least one sharp edge as 'sharp' (used for the lnor spacearr computation).
+ * XXX This third loop over edges is a bit disappointing, could not find any other way yet.
+ * Not really performance-critical anyway.
+ */
+ for (me_index = 0; me_index < numEdges; me_index++) {
+ const int *e2l = edge_to_loops[me_index];
+ const MEdge *me = &medges[me_index];
+ if (IS_EDGE_SHARP(e2l)) {
+ BLI_BITMAP_ENABLE(sharp_verts, me->v1);
+ BLI_BITMAP_ENABLE(sharp_verts, me->v2);
+ }
+ }
+ }
- ml_curr = &mloops[ml_curr_index];
- ml_prev = &mloops[ml_prev_index];
- lnors = &r_loopnors[ml_curr_index];
+ /* Init data common to all tasks. */
+ common_data.lnors_spacearr = r_lnors_spacearr;
+ common_data.loopnors = r_loopnors;
+ common_data.clnors_data = clnors_data;
- for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++, lnors++) {
- const int *e2l_curr = edge_to_loops[ml_curr->e];
- const int *e2l_prev = edge_to_loops[ml_prev->e];
+ common_data.mverts = mverts;
+ common_data.medges = medges;
+ common_data.mloops = mloops;
+ common_data.mpolys = mpolys;
+ common_data.sharp_verts = sharp_verts;
+ common_data.edge_to_loops = (const int(*)[2])edge_to_loops;
+ common_data.loop_to_poly = loop_to_poly;
+ common_data.polynors = polynors;
+ common_data.numPolys = numPolys;
- if (!IS_EDGE_SHARP(e2l_curr)) {
- /* A smooth edge.
- * We skip it because it is either:
- * - in the middle of a 'smooth fan' already computed (or that will be as soon as we hit
- * one of its ends, i.e. one of its two sharp edges), or...
- * - the related vertex is a "full smooth" one, in which case pre-populated normals from vertex
- * are just fine!
- */
- }
- else if (IS_EDGE_SHARP(e2l_prev)) {
- /* Simple case (both edges around that vertex are sharp in current polygon),
- * this vertex just takes its poly normal.
- */
- copy_v3_v3(*lnors, polynors[mp_index]);
- /* No need to mark loop as done here, we won't run into it again anyway! */
- }
- /* We *do not need* to check/tag loops as already computed!
- * Due to the fact a loop only links to one of its two edges, a same fan *will never be walked more than
- * once!*
- * Since we consider edges having neighbor polys with inverted (flipped) normals as sharp, we are sure that
- * no fan will be skipped, even only considering the case (sharp curr_edge, smooth prev_edge), and not the
- * alternative (smooth curr_edge, sharp prev_edge).
- * All this due/thanks to link between normals and loop ordering.
- */
- else {
- /* Gah... We have to fan around current vertex, until we find the other non-smooth edge,
- * and accumulate face normals into the vertex!
- * Note in case this vertex has only one sharp edges, this is a waste because the normal is the same as
- * the vertex normal, but I do not see any easy way to detect that (would need to count number
- * of sharp edges per vertex, I doubt the additional memory usage would be worth it, especially as
- * it should not be a common case in real-life meshes anyway).
- */
- const unsigned int mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */
- const MVert *mv_pivot = &mverts[mv_pivot_index];
- const int *e2lfan_curr;
- float vec_curr[3], vec_prev[3];
- MLoop *mlfan_curr, *mlfan_next;
- MPoly *mpfan_next;
- float lnor[3] = {0.0f, 0.0f, 0.0f};
- /* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */
- int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index;
-
- e2lfan_curr = e2l_prev;
- mlfan_curr = ml_prev;
- mlfan_curr_index = ml_prev_index;
- mlfan_vert_index = ml_curr_index;
- mpfan_curr_index = mp_index;
-
- BLI_assert(mlfan_curr_index >= 0);
- BLI_assert(mlfan_vert_index >= 0);
- BLI_assert(mpfan_curr_index >= 0);
-
- /* Only need to compute previous edge's vector once, then we can just reuse old current one! */
- {
- const MEdge *me_prev = &medges[ml_curr->e]; /* ml_curr would be mlfan_prev if we needed that one */
- const MVert *mv_2 = (me_prev->v1 == mv_pivot_index) ? &mverts[me_prev->v2] : &mverts[me_prev->v1];
+ if (numLoops < LOOP_SPLIT_TASK_BLOCK_SIZE * 8) {
+ /* Not enough loops to be worth the whole threading overhead... */
+ loop_split_generator_do(&common_data, false);
+ }
+ else {
+ TaskScheduler *task_scheduler;
+ TaskPool *task_pool;
+ int nbr_workers;
- sub_v3_v3v3(vec_prev, mv_2->co, mv_pivot->co);
- normalize_v3(vec_prev);
- }
+ common_data.task_queue = BLI_thread_queue_init();
- while (true) {
- /* Compute edge vectors.
- * NOTE: We could pre-compute those into an array, in the first iteration, instead of computing them
- * twice (or more) here. However, time gained is not worth memory and time lost,
- * given the fact that this code should not be called that much in real-life meshes...
- */
- {
- const MEdge *me_curr = &medges[mlfan_curr->e];
- const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] :
- &mverts[me_curr->v1];
-
- sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co);
- normalize_v3(vec_curr);
- }
+ task_scheduler = BLI_task_scheduler_get();
+ task_pool = BLI_task_pool_create(task_scheduler, NULL);
- {
- /* Code similar to accumulate_vertex_normals_poly. */
- /* Calculate angle between the two poly edges incident on this vertex. */
- const float fac = saacos(dot_v3v3(vec_curr, vec_prev));
- /* Accumulate */
- madd_v3_v3fl(lnor, polynors[mpfan_curr_index], fac);
- }
+ nbr_workers = max_ii(2, BLI_task_scheduler_num_threads(task_scheduler));
+ for (i = 1; i < nbr_workers; i++) {
+ BLI_task_pool_push(task_pool, loop_split_worker, &common_data, false, TASK_PRIORITY_HIGH);
+ }
+ BLI_task_pool_push(task_pool, loop_split_generator, &common_data, false, TASK_PRIORITY_HIGH);
+ BLI_task_pool_work_and_wait(task_pool);
- /* We store here a pointer to all loop-normals processed. */
- BLI_SMALLSTACK_PUSH(normal, &(r_loopnors[mlfan_vert_index][0]));
+ BLI_task_pool_free(task_pool);
- if (IS_EDGE_SHARP(e2lfan_curr)) {
- /* Current edge is sharp, we have finished with this fan of faces around this vert! */
- break;
- }
+ BLI_thread_queue_free(common_data.task_queue);
+ }
+
+ MEM_freeN(edge_to_loops);
+ if (!r_loop_to_poly) {
+ MEM_freeN(loop_to_poly);
+ }
+
+ if (r_lnors_spacearr) {
+ MEM_freeN(sharp_verts);
+ if (r_lnors_spacearr == &_lnors_spacearr) {
+ BKE_lnor_spacearr_free(r_lnors_spacearr);
+ }
+ }
+
+#ifdef DEBUG_TIME
+ TIMEIT_END(BKE_mesh_normals_loop_split);
+#endif
+
+ }
+}
- copy_v3_v3(vec_prev, vec_curr);
-
- /* Warning! This is rather complex!
- * We have to find our next edge around the vertex (fan mode).
- * First we find the next loop, which is either previous or next to mlfan_curr_index, depending
- * whether both loops using current edge are in the same direction or not, and whether
- * mlfan_curr_index actually uses the vertex we are fanning around!
- * mlfan_curr_index is the index of mlfan_next here, and mlfan_next is not the real next one
- * (i.e. not the future mlfan_curr)...
- */
- mlfan_curr_index = (e2lfan_curr[0] == mlfan_curr_index) ? e2lfan_curr[1] : e2lfan_curr[0];
- mpfan_curr_index = loop_to_poly[mlfan_curr_index];
-
- BLI_assert(mlfan_curr_index >= 0);
- BLI_assert(mpfan_curr_index >= 0);
-
- mlfan_next = &mloops[mlfan_curr_index];
- mpfan_next = &mpolys[mpfan_curr_index];
- if ((mlfan_curr->v == mlfan_next->v && mlfan_curr->v == mv_pivot_index) ||
- (mlfan_curr->v != mlfan_next->v && mlfan_curr->v != mv_pivot_index))
- {
- /* We need the previous loop, but current one is our vertex's loop. */
- mlfan_vert_index = mlfan_curr_index;
- if (--mlfan_curr_index < mpfan_next->loopstart) {
- mlfan_curr_index = mpfan_next->loopstart + mpfan_next->totloop - 1;
- }
+#undef INDEX_UNSET
+#undef INDEX_INVALID
+#undef IS_EDGE_SHARP
+
+/**
+ * Compute internal representation of given custom normals (as an array of float[2]).
+ * It also makes sure the mesh matches those custom normals, by setting sharp edges flag as needed to get a
+ * same custom lnor for all loops sharing a same smooth fan.
+ * If use_vertices if true, custom_loopnors is assumed to be per-vertex, not per-loop
+ * (this allows to set whole vert's normals at once, useful in some cases).
+ */
+static void mesh_normals_loop_custom_set(
+ MVert *mverts, const int numVerts, MEdge *medges, const int numEdges,
+ MLoop *mloops, float (*custom_loopnors)[3], const int numLoops,
+ MPoly *mpolys, const float (*polynors)[3], const int numPolys,
+ short (*r_clnors_data)[2], const bool use_vertices)
+{
+ /* We *may* make that poor BKE_mesh_normals_loop_split() even more complex by making it handling that
+ * feature too, would probably be more efficient in absolute.
+ * However, this function *is not* performance-critical, since it is mostly expected to be called
+ * by io addons when importing custom normals, and modifier (and perhaps from some editing tools later?).
+ * So better to keep some simplicity here, and just call BKE_mesh_normals_loop_split() twice!
+ */
+ MLoopNorSpaceArray lnors_spacearr = {NULL};
+ BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)numLoops, __func__);
+ float (*lnors)[3] = MEM_callocN(sizeof(*lnors) * (size_t)numLoops, __func__);
+ int *loop_to_poly = MEM_mallocN(sizeof(int) * (size_t)numLoops, __func__);
+ /* In this case we always consider split nors as ON, and do not want to use angle to define smooth fans! */
+ const bool use_split_normals = true;
+ const float split_angle = (float)M_PI;
+ int i;
+
+ BLI_SMALLSTACK_DECLARE(clnors_data, short *);
+
+ /* Compute current lnor spacearr. */
+ BKE_mesh_normals_loop_split(mverts, numVerts, medges, numEdges, mloops, lnors, numLoops,
+ mpolys, polynors, numPolys, use_split_normals, split_angle,
+ &lnors_spacearr, NULL, loop_to_poly);
+
+ /* Now, check each current smooth fan (one lnor space per smooth fan!), and if all its matching custom lnors
+ * are not (enough) equal, add sharp edges as needed.
+ * This way, next time we run BKE_mesh_normals_loop_split(), we'll get lnor spacearr/smooth fans matching
+ * given custom lnors.
+ * Note this code *will never* unsharp edges!
+ * And quite obviously, when we set custom normals per vertices, running this is absolutely useless.
+ */
+ if (!use_vertices) {
+ for (i = 0; i < numLoops; i++) {
+ if (!lnors_spacearr.lspacearr[i]) {
+ /* This should not happen in theory, but in some rare case (probably ugly geometry)
+ * we can get some NULL loopspacearr at this point. :/
+ * Maybe we should set those loops' edges as sharp?
+ */
+ BLI_BITMAP_ENABLE(done_loops, i);
+ printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i);
+ continue;
+ }
+
+ if (!BLI_BITMAP_TEST(done_loops, i)) {
+ /* Notes:
+ * * In case of mono-loop smooth fan, loops is NULL, so everything is fine (we have nothing to do).
+ * * Loops in this linklist are ordered (in reversed order compared to how they were discovered by
+ * BKE_mesh_normals_loop_split(), but this is not a problem). Which means if we find a
+ * mismatching clnor, we know all remaining loops will have to be in a new, different smooth fan/
+ * lnor space.
+ * * In smooth fan case, we compare each clnor against a ref one, to avoid small differences adding
+ * up into a real big one in the end!
+ */
+ LinkNode *loops = lnors_spacearr.lspacearr[i]->loops;
+ MLoop *prev_ml = NULL;
+ const float *org_nor = NULL;
+
+ while (loops) {
+ const int lidx = GET_INT_FROM_POINTER(loops->link);
+ MLoop *ml = &mloops[lidx];
+ const int nidx = use_vertices ? (int)ml->v : lidx;
+ float *nor = custom_loopnors[nidx];
+
+ if (!org_nor) {
+ org_nor = nor;
}
- else {
- /* We need the next loop, which is also our vertex's loop. */
- if (++mlfan_curr_index >= mpfan_next->loopstart + mpfan_next->totloop) {
- mlfan_curr_index = mpfan_next->loopstart;
- }
- mlfan_vert_index = mlfan_curr_index;
+ else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
+ /* Current normal differs too much from org one, we have to tag the edge between
+ * previous loop's face and current's one as sharp.
+ * We know those two loops do not point to the same edge, since we do not allow reversed winding
+ * in a same smooth fan.
+ */
+ const MPoly *mp = &mpolys[loop_to_poly[lidx]];
+ const MLoop *mlp = &mloops[(lidx == mp->loopstart) ? mp->loopstart + mp->totloop - 1 : lidx - 1];
+ medges[(prev_ml->e == mlp->e) ? prev_ml->e : ml->e].flag |= ME_SHARP;
+
+ org_nor = nor;
}
- mlfan_curr = &mloops[mlfan_curr_index];
- /* And now we are back in sync, mlfan_curr_index is the index of mlfan_curr! Pff! */
- e2lfan_curr = edge_to_loops[mlfan_curr->e];
+ prev_ml = ml;
+ loops = loops->next;
+ BLI_BITMAP_ENABLE(done_loops, lidx);
}
+ BLI_BITMAP_ENABLE(done_loops, i); /* For single loops, where lnors_spacearr.lspacearr[i]->loops is NULL. */
+ }
+ }
- /* In case we get a zero normal here, just use vertex normal already set! */
- if (LIKELY(normalize_v3(lnor) != 0.0f)) {
- /* Copy back the final computed normal into all related loop-normals. */
- float *nor;
- while ((nor = BLI_SMALLSTACK_POP(normal))) {
- copy_v3_v3(nor, lnor);
- }
+ /* And now, recompute our new auto lnors and lnor spacearr! */
+ BKE_lnor_spacearr_clear(&lnors_spacearr);
+ BKE_mesh_normals_loop_split(mverts, numVerts, medges, numEdges, mloops, lnors, numLoops,
+ mpolys, polynors, numPolys, use_split_normals, split_angle,
+ &lnors_spacearr, NULL, loop_to_poly);
+ }
+ else {
+ BLI_BITMAP_SET_ALL(done_loops, true, (size_t)numLoops);
+ }
+
+ /* And we just have to convert plain object-space custom normals to our lnor space-encoded ones. */
+ for (i = 0; i < numLoops; i++) {
+ if (!lnors_spacearr.lspacearr[i]) {
+ BLI_BITMAP_DISABLE(done_loops, i);
+ printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i);
+ continue;
+ }
+
+ if (BLI_BITMAP_TEST_BOOL(done_loops, i)) {
+ /* Note we accumulate and average all custom normals in current smooth fan, to avoid getting different
+ * clnors data (tiny differences in plain custom normals can give rather huge differences in
+ * computed 2D factors).
+ */
+ LinkNode *loops = lnors_spacearr.lspacearr[i]->loops;
+ if (loops) {
+ int nbr_nors = 0;
+ float avg_nor[3];
+ short clnor_data_tmp[2], *clnor_data;
+
+ zero_v3(avg_nor);
+ while (loops) {
+ const int lidx = GET_INT_FROM_POINTER(loops->link);
+ const int nidx = use_vertices ? (int)mloops[lidx].v : lidx;
+ float *nor = custom_loopnors[nidx];
+
+ nbr_nors++;
+ add_v3_v3(avg_nor, nor);
+ BLI_SMALLSTACK_PUSH(clnors_data, (short *)r_clnors_data[lidx]);
+
+ loops = loops->next;
+ BLI_BITMAP_DISABLE(done_loops, lidx);
}
- else {
- /* We still have to clear the stack! */
- while (BLI_SMALLSTACK_POP(normal));
+
+ mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors);
+ BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], avg_nor, clnor_data_tmp);
+
+ while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) {
+ clnor_data[0] = clnor_data_tmp[0];
+ clnor_data[1] = clnor_data_tmp[1];
}
}
+ else {
+ const int nidx = use_vertices ? (int)mloops[i].v : i;
+ float *nor = custom_loopnors[nidx];
- ml_prev = ml_curr;
- ml_prev_index = ml_curr_index;
+ BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], nor, r_clnors_data[i]);
+ BLI_BITMAP_DISABLE(done_loops, i);
+ }
}
}
- MEM_freeN(edge_to_loops);
+ MEM_freeN(lnors);
MEM_freeN(loop_to_poly);
+ MEM_freeN(done_loops);
+ BKE_lnor_spacearr_free(&lnors_spacearr);
+}
-#ifdef DEBUG_TIME
- TIMEIT_END(BKE_mesh_normals_loop_split);
-#endif
-
-#undef INDEX_UNSET
-#undef INDEX_INVALID
-#undef IS_EDGE_SHARP
+void BKE_mesh_normals_loop_custom_set(
+ MVert *mverts, const int numVerts, MEdge *medges, const int numEdges,
+ MLoop *mloops, float (*custom_loopnors)[3], const int numLoops,
+ MPoly *mpolys, const float (*polynors)[3], const int numPolys,
+ short (*r_clnors_data)[2])
+{
+ mesh_normals_loop_custom_set(mverts, numVerts, medges, numEdges, mloops, custom_loopnors, numLoops,
+ mpolys, polynors, numPolys, r_clnors_data, false);
+}
- }
+void BKE_mesh_normals_loop_custom_from_vertices_set(
+ MVert *mverts, float (*custom_vertnors)[3], const int numVerts,
+ MEdge *medges, const int numEdges, MLoop *mloops, const int numLoops,
+ MPoly *mpolys, const float (*polynors)[3], const int numPolys,
+ short (*r_clnors_data)[2])
+{
+ mesh_normals_loop_custom_set(mverts, numVerts, medges, numEdges, mloops, custom_vertnors, numLoops,
+ mpolys, polynors, numPolys, r_clnors_data, true);
}
+#undef LNOR_SPACE_TRIGO_THRESHOLD
/** \} */
diff --git a/source/blender/blenkernel/intern/mesh_remap.c b/source/blender/blenkernel/intern/mesh_remap.c
index 7e94e17d1ff..aca72614094 100644
--- a/source/blender/blenkernel/intern/mesh_remap.c
+++ b/source/blender/blenkernel/intern/mesh_remap.c
@@ -1047,6 +1047,8 @@ void BKE_mesh_remap_calc_loops_from_dm(
}
}
if (need_lnors_dst) {
+ short (*custom_nors_dst)[2] = CustomData_get_layer(ldata_dst, CD_CUSTOMLOOPNORMAL);
+
/* Cache poly nors into a temp CDLayer. */
loop_nors_dst = CustomData_get_layer(ldata_dst, CD_NORMAL);
if (dirty_nors_dst || !loop_nors_dst) {
@@ -1056,8 +1058,8 @@ void BKE_mesh_remap_calc_loops_from_dm(
}
BKE_mesh_normals_loop_split(verts_dst, numverts_dst, edges_dst, numedges_dst,
loops_dst, loop_nors_dst, numloops_dst,
- polys_dst, poly_nors_dst, numpolys_dst,
- use_split_nors_dst, split_angle_dst);
+ polys_dst, (const float (*)[3])poly_nors_dst, numpolys_dst,
+ use_split_nors_dst, split_angle_dst, NULL, custom_nors_dst, NULL);
}
}
if (need_pnors_src || need_lnors_src) {
diff --git a/source/blender/blenkernel/intern/subsurf_ccg.c b/source/blender/blenkernel/intern/subsurf_ccg.c
index 45ec3370672..9519c7b25a1 100644
--- a/source/blender/blenkernel/intern/subsurf_ccg.c
+++ b/source/blender/blenkernel/intern/subsurf_ccg.c
@@ -3465,6 +3465,7 @@ static CCGDerivedMesh *getCCGDerivedMesh(CCGSubSurf *ss,
ccgdm->dm.calcNormals = ccgDM_calcNormals;
ccgdm->dm.calcLoopNormals = CDDM_calc_loop_normals;
+ ccgdm->dm.calcLoopNormalsSpaceArray = CDDM_calc_loop_normals_spacearr;
ccgdm->dm.recalcTessellation = ccgDM_recalcTessellation;
ccgdm->dm.getVertCos = ccgdm_getVertCos;