Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Lucke <mail@jlucke.com>2019-09-12 15:23:21 +0300
committerJacques Lucke <mail@jlucke.com>2019-09-12 15:23:21 +0300
commit369d5e8ad2bb7c249c6b941779066b6aa99f9ea0 (patch)
treeb0aece159472bfdc863832d8dc94666eba9a6327 /source/blender/blenlib/BLI_vector.h
parent19547236355d59bc3888635ecbe4a9e35c1f86cb (diff)
BLI: new C++ ArrayRef, Vector, Stack, ... data structures
Many generic C++ data structures have been developed in the functions branch. This commit merges a first chunk of them into master. The following new data structures are included: Array: Owns a memory buffer with a fixed size. It is different from std::array in that the size is not part of the type. ArrayRef: References an array owned by someone else. All elements in the referenced array are considered to be const. This should be the preferred parameter type for functions that take arrays as input. MutableArrayRef: References an array owned by someone else. The elements in the referenced array can be changed. IndexRange: Specifies a continuous range of integers with a start and end index. IntrusiveListBaseWrapper: A utility class that allows iterating over ListBase instances where the prev and next pointer are stored in the objects directly. Stack: A stack implemented on top of a vector. Vector: An array that can grow dynamically. Allocators: Three allocator types are included that can be used by the container types to support different use cases. The Stack and Vector support small object optimization. So when the amount of elements in them is below a certain threshold, no memory allocation is performed. Additionally, most methods have unit tests. I'm merging this without normal code review, after I checked the code roughly with Sergey, and after we talked about it with Brecht.
Diffstat (limited to 'source/blender/blenlib/BLI_vector.h')
-rw-r--r--source/blender/blenlib/BLI_vector.h601
1 files changed, 601 insertions, 0 deletions
diff --git a/source/blender/blenlib/BLI_vector.h b/source/blender/blenlib/BLI_vector.h
new file mode 100644
index 00000000000..167131cc99e
--- /dev/null
+++ b/source/blender/blenlib/BLI_vector.h
@@ -0,0 +1,601 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/** \file
+ * \ingroup bli
+ *
+ * This vector wraps a dynamically sized array of a specific type. It supports small object
+ * optimization. That means, when the vector only contains a few elements, no memory allocation is
+ * performed. Instead, those elements are stored directly in the vector.
+ */
+
+#pragma once
+
+#include <algorithm>
+#include <cstdlib>
+#include <cstring>
+#include <iostream>
+#include <memory>
+
+#include "BLI_utildefines.h"
+#include "BLI_memory_utils_cxx.h"
+#include "BLI_array_ref.h"
+#include "BLI_listbase_wrapper.h"
+#include "BLI_math_base.h"
+#include "BLI_allocator.h"
+
+#include "MEM_guardedalloc.h"
+
+namespace BLI {
+
+template<typename T, uint N = 4, typename Allocator = GuardedAllocator> class Vector {
+ private:
+ T *m_begin;
+ T *m_end;
+ T *m_capacity_end;
+ Allocator m_allocator;
+ char m_small_buffer[sizeof(T) * N];
+
+#ifdef DEBUG
+ /* Storing size in debug builds, because it makes debugging much easier sometimes. */
+ uint m_debug_size;
+# define UPDATE_VECTOR_SIZE(ptr) (ptr)->m_debug_size = (ptr)->m_end - (ptr)->m_begin
+#else
+# define UPDATE_VECTOR_SIZE(ptr) ((void)0)
+#endif
+
+ template<typename OtherT, uint OtherN, typename OtherAllocator> friend class Vector;
+
+ public:
+ /**
+ * Create an empty vector.
+ * This does not do any memory allocation.
+ */
+ Vector()
+ {
+ m_begin = this->small_buffer();
+ m_end = m_begin;
+ m_capacity_end = m_begin + N;
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Create a vector with a specific size.
+ * The elements will be default initialized.
+ */
+ explicit Vector(uint size) : Vector()
+ {
+ this->reserve(size);
+ this->increase_size_unchecked(size);
+ for (T *current = m_begin; current != m_end; current++) {
+ new (current) T();
+ }
+ }
+
+ /**
+ * Create a vector filled with a specific value.
+ */
+ Vector(uint size, const T &value) : Vector()
+ {
+ this->reserve(size);
+ this->increase_size_unchecked(size);
+ BLI::uninitialized_fill_n(m_begin, size, value);
+ }
+
+ /**
+ * Create a vector from an initializer list.
+ */
+ Vector(std::initializer_list<T> values) : Vector(ArrayRef<T>(values))
+ {
+ }
+
+ /**
+ * Create a vector from an array ref.
+ */
+ Vector(ArrayRef<T> values) : Vector()
+ {
+ this->reserve(values.size());
+ this->increase_size_unchecked(values.size());
+ BLI::uninitialized_copy_n(values.begin(), values.size(), this->begin());
+ }
+
+ /**
+ * Create a vector from any container. It must be possible to use the container in a range-for
+ * loop.
+ */
+ template<typename ContainerT> static Vector FromContainer(const ContainerT &container)
+ {
+ Vector vector;
+ for (const auto &value : container) {
+ vector.append(value);
+ }
+ return vector;
+ }
+
+ /**
+ * Create a vector from a ListBase.
+ */
+ Vector(ListBase &values, bool intrusive_next_and_prev_pointers) : Vector()
+ {
+ BLI_assert(intrusive_next_and_prev_pointers);
+ if (intrusive_next_and_prev_pointers) {
+ for (T value : IntrusiveListBaseWrapper<typename std::remove_pointer<T>::type>(values)) {
+ this->append(value);
+ }
+ }
+ }
+
+ /**
+ * Create a copy of another vector.
+ * The other vector will not be changed.
+ * If the other vector has less than N elements, no allocation will be made.
+ */
+ Vector(const Vector &other) : m_allocator(other.m_allocator)
+ {
+ this->init_copy_from_other_vector(other);
+ }
+
+ template<uint OtherN>
+ Vector(const Vector<T, OtherN, Allocator> &other) : m_allocator(other.m_allocator)
+ {
+ this->init_copy_from_other_vector(other);
+ }
+
+ /**
+ * Steal the elements from another vector.
+ * This does not do an allocation.
+ * The other vector will have zero elements afterwards.
+ */
+ template<uint OtherN>
+ Vector(Vector<T, OtherN, Allocator> &&other) noexcept : m_allocator(other.m_allocator)
+ {
+ uint size = other.size();
+
+ if (other.is_small()) {
+ if (size <= N) {
+ /* Copy between inline buffers. */
+ m_begin = this->small_buffer();
+ m_end = m_begin + size;
+ m_capacity_end = m_begin + N;
+ uninitialized_relocate_n(other.m_begin, size, m_begin);
+ }
+ else {
+ /* Copy from inline buffer to newly allocated buffer. */
+ uint capacity = size;
+ m_begin = (T *)m_allocator.allocate_aligned(
+ sizeof(T) * capacity, std::alignment_of<T>::value, __func__);
+ m_end = m_begin + size;
+ m_capacity_end = m_begin + capacity;
+ uninitialized_relocate_n(other.m_begin, size, m_begin);
+ }
+ }
+ else {
+ /* Steal the pointer. */
+ m_begin = other.m_begin;
+ m_end = other.m_end;
+ m_capacity_end = other.m_capacity_end;
+ }
+
+ other.m_begin = other.small_buffer();
+ other.m_end = other.m_begin;
+ other.m_capacity_end = other.m_begin + OtherN;
+ UPDATE_VECTOR_SIZE(this);
+ UPDATE_VECTOR_SIZE(&other);
+ }
+
+ ~Vector()
+ {
+ destruct_n(m_begin, this->size());
+ if (!this->is_small()) {
+ m_allocator.deallocate(m_begin);
+ }
+ }
+
+ operator ArrayRef<T>() const
+ {
+ return ArrayRef<T>(m_begin, this->size());
+ }
+
+ operator MutableArrayRef<T>()
+ {
+ return MutableArrayRef<T>(m_begin, this->size());
+ }
+
+ Vector &operator=(const Vector &other)
+ {
+ if (this == &other) {
+ return *this;
+ }
+
+ this->~Vector();
+ new (this) Vector(other);
+
+ return *this;
+ }
+
+ Vector &operator=(Vector &&other)
+ {
+ if (this == &other) {
+ return *this;
+ }
+
+ this->~Vector();
+ new (this) Vector(std::move(other));
+
+ return *this;
+ }
+
+ /**
+ * Make sure that enough memory is allocated to hold size elements.
+ * This won't necessarily make an allocation when size is small.
+ * The actual size of the vector does not change.
+ */
+ void reserve(uint size)
+ {
+ this->grow(size);
+ }
+
+ /**
+ * Afterwards the vector has 0 elements, but will still have
+ * memory to be refilled again.
+ */
+ void clear()
+ {
+ destruct_n(m_begin, this->size());
+ m_end = m_begin;
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Afterwards the vector has 0 elements and any allocated memory
+ * will be freed.
+ */
+ void clear_and_make_small()
+ {
+ destruct_n(m_begin, this->size());
+ if (!this->is_small()) {
+ m_allocator.deallocate(m_begin);
+ }
+
+ m_begin = this->small_buffer();
+ m_end = m_begin;
+ m_capacity_end = m_begin + N;
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Insert a new element at the end of the vector.
+ * This might cause a reallocation with the capacity is exceeded.
+ */
+ void append(const T &value)
+ {
+ this->ensure_space_for_one();
+ this->append_unchecked(value);
+ }
+
+ void append(T &&value)
+ {
+ this->ensure_space_for_one();
+ this->append_unchecked(std::move(value));
+ }
+
+ void append_unchecked(const T &value)
+ {
+ BLI_assert(m_end < m_capacity_end);
+ new (m_end) T(value);
+ m_end++;
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ void append_unchecked(T &&value)
+ {
+ BLI_assert(m_end < m_capacity_end);
+ new (m_end) T(std::move(value));
+ m_end++;
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Insert the same element n times at the end of the vector.
+ * This might result in a reallocation internally.
+ */
+ void append_n_times(const T &value, uint n)
+ {
+ this->reserve(this->size() + n);
+ BLI::uninitialized_fill_n(m_end, n, value);
+ this->increase_size_unchecked(n);
+ }
+
+ void increase_size_unchecked(uint n)
+ {
+ BLI_assert(m_end + n <= m_capacity_end);
+ m_end += n;
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Copy the elements of another array to the end of this vector.
+ */
+ void extend(ArrayRef<T> array)
+ {
+ this->extend(array.begin(), array.size());
+ }
+
+ void extend(const T *start, uint amount)
+ {
+ this->reserve(this->size() + amount);
+ this->extend_unchecked(start, amount);
+ }
+
+ void extend_unchecked(ArrayRef<T> array)
+ {
+ this->extend_unchecked(array.begin(), array.size());
+ }
+
+ void extend_unchecked(const T *start, uint amount)
+ {
+ BLI_assert(m_begin + amount <= m_capacity_end);
+ BLI::uninitialized_copy_n(start, amount, m_end);
+ m_end += amount;
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Return a reference to the last element in the vector.
+ * This will assert when the vector is empty.
+ */
+ const T &last() const
+ {
+ BLI_assert(this->size() > 0);
+ return *(m_end - 1);
+ }
+
+ T &last()
+ {
+ BLI_assert(this->size() > 0);
+ return *(m_end - 1);
+ }
+
+ /**
+ * Replace every element with a new value.
+ */
+ void fill(const T &value)
+ {
+ std::fill(m_begin, m_end, value);
+ }
+
+ void fill_indices(ArrayRef<uint> indices, const T &value)
+ {
+ MutableArrayRef<T>(*this).fill_indices(indices, value);
+ }
+
+ /**
+ * Return how many values are currently stored in the vector.
+ */
+ uint size() const
+ {
+ BLI_assert(m_debug_size == m_end - m_begin);
+ return m_end - m_begin;
+ }
+
+ /**
+ * Returns true when the vector contains no elements, otherwise false.
+ */
+ bool empty() const
+ {
+ return m_begin == m_end;
+ }
+
+ /**
+ * Deconstructs the last element and decreases the size by one.
+ * This will assert when the vector is empty.
+ */
+ void remove_last()
+ {
+ BLI_assert(!this->empty());
+ m_end--;
+ destruct(m_end);
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Remove the last element from the vector and return it.
+ */
+ T pop_last()
+ {
+ BLI_assert(!this->empty());
+ m_end--;
+ T value = *m_end;
+ destruct(m_end);
+ UPDATE_VECTOR_SIZE(this);
+ return value;
+ }
+
+ /**
+ * Delete any element in the vector.
+ * The empty space will be filled by the previously last element.
+ */
+ void remove_and_reorder(uint index)
+ {
+ BLI_assert(index < this->size());
+ T *element_to_remove = m_begin + index;
+ m_end--;
+ if (element_to_remove < m_end) {
+ *element_to_remove = *m_end;
+ }
+ destruct(m_end);
+ UPDATE_VECTOR_SIZE(this);
+ }
+
+ /**
+ * Do a linear search to find the value in the vector.
+ * When found, return the first index, otherwise return -1.
+ */
+ int index(const T &value) const
+ {
+ for (T *current = m_begin; current != m_end; current++) {
+ if (*current == value) {
+ return current - m_begin;
+ }
+ }
+ return -1;
+ }
+
+ /**
+ * Do a linear search to see of the value is in the vector.
+ * Return true when it exists, otherwise false.
+ */
+ bool contains(const T &value) const
+ {
+ return this->index(value) != -1;
+ }
+
+ /**
+ * Compare vectors element-wise.
+ * Return true when they have the same length and all elements
+ * compare equal, otherwise false.
+ */
+ static bool all_equal(const Vector &a, const Vector &b)
+ {
+ if (a.size() != b.size()) {
+ return false;
+ }
+ for (uint i = 0; i < a.size(); i++) {
+ if (a[i] != b[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ const T &operator[](uint index) const
+ {
+ BLI_assert(index < this->size());
+ return m_begin[index];
+ }
+
+ T &operator[](uint index)
+ {
+ BLI_assert(index < this->size());
+ return m_begin[index];
+ }
+
+ T *begin()
+ {
+ return m_begin;
+ }
+ T *end()
+ {
+ return m_end;
+ }
+
+ const T *begin() const
+ {
+ return m_begin;
+ }
+ const T *end() const
+ {
+ return m_end;
+ }
+
+ void print_stats() const
+ {
+ std::cout << "Small Vector at " << (void *)this << ":" << std::endl;
+ std::cout << " Elements: " << this->size() << std::endl;
+ std::cout << " Capacity: " << (m_capacity_end - m_begin) << std::endl;
+ std::cout << " Small Elements: " << N << " Size on Stack: " << sizeof(*this) << std::endl;
+ }
+
+ private:
+ T *small_buffer() const
+ {
+ return (T *)m_small_buffer;
+ }
+
+ bool is_small() const
+ {
+ return m_begin == this->small_buffer();
+ }
+
+ void ensure_space_for_one()
+ {
+ if (UNLIKELY(m_end >= m_capacity_end)) {
+ this->grow(std::max(this->size() * 2, (uint)1));
+ }
+ }
+
+ uint capacity() const
+ {
+ return m_capacity_end - m_begin;
+ }
+
+ BLI_NOINLINE void grow(uint min_capacity)
+ {
+ if (this->capacity() >= min_capacity) {
+ return;
+ }
+
+ /* Round up to the next power of two. Otherwise consecutive calls to grow can cause a
+ * reallocation every time even though the min_capacity only increments. */
+ min_capacity = power_of_2_max_u(min_capacity);
+ uint size = this->size();
+
+ T *new_array = (T *)m_allocator.allocate_aligned(
+ min_capacity * sizeof(T), std::alignment_of<T>::value, __func__);
+ uninitialized_relocate_n(m_begin, size, new_array);
+
+ if (!this->is_small()) {
+ m_allocator.deallocate(m_begin);
+ }
+
+ m_begin = new_array;
+ m_end = m_begin + size;
+ m_capacity_end = m_begin + min_capacity;
+ }
+
+ /**
+ * Initialize all properties, except for m_allocator, which has to be initialized beforehand.
+ */
+ template<uint OtherN> void init_copy_from_other_vector(const Vector<T, OtherN, Allocator> &other)
+ {
+ m_allocator = other.m_allocator;
+
+ uint size = other.size();
+ uint capacity = size;
+
+ if (size <= N) {
+ m_begin = this->small_buffer();
+ capacity = N;
+ }
+ else {
+ m_begin = (T *)m_allocator.allocate_aligned(
+ sizeof(T) * size, std::alignment_of<T>::value, __func__);
+ capacity = size;
+ }
+
+ m_end = m_begin + size;
+ m_capacity_end = m_begin + capacity;
+
+ uninitialized_copy(other.begin(), other.end(), m_begin);
+ UPDATE_VECTOR_SIZE(this);
+ }
+};
+
+#undef UPDATE_VECTOR_SIZE
+
+template<typename T, uint N = 4> using TemporaryVector = Vector<T, N, TemporaryAllocator>;
+
+} /* namespace BLI */