Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2018-02-18 13:27:33 +0300
committerCampbell Barton <ideasman42@gmail.com>2018-02-18 13:27:33 +0300
commitdeacb3d6b816afe9f86f51b00043821829fb550e (patch)
tree1c295ca61cef944cb60924c5c4488c221f338617 /source/blender/blenlib/intern/polyfill_2d.c
parentfee4b646c451303a78baef3cbf031e9e0f771373 (diff)
Cleanup: add 2d suffix to BLI files
Some of these API's can have 3D versions, explicitly name them 2D.
Diffstat (limited to 'source/blender/blenlib/intern/polyfill_2d.c')
-rw-r--r--source/blender/blenlib/intern/polyfill_2d.c969
1 files changed, 969 insertions, 0 deletions
diff --git a/source/blender/blenlib/intern/polyfill_2d.c b/source/blender/blenlib/intern/polyfill_2d.c
new file mode 100644
index 00000000000..8c0870f0c07
--- /dev/null
+++ b/source/blender/blenlib/intern/polyfill_2d.c
@@ -0,0 +1,969 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenlib/intern/polyfill_2d.c
+ * \ingroup bli
+ *
+ * An ear clipping algorithm to triangulate single boundary polygons.
+ *
+ * Details:
+ *
+ * - The algorithm guarantees all triangles are assigned (number of coords - 2)
+ * and that triangles will have non-overlapping indices (even for degenerate geometry).
+ * - Self-intersections are considered degenerate (resulting triangles will overlap).
+ * - While multiple polygons aren't supported, holes can still be defined using *key-holes*
+ * (where the polygon doubles back on its self with *exactly* matching coordinates).
+ *
+ * \note
+ *
+ * Changes made for Blender.
+ *
+ * - loop the array to clip last verts first (less array resizing)
+ *
+ * - advance the ear to clip each iteration
+ * to avoid fan-filling convex shapes (USE_CLIP_EVEN).
+ *
+ * - avoid intersection tests when there are no convex points (USE_CONVEX_SKIP).
+ *
+ * \note
+ *
+ * No globals - keep threadsafe.
+ */
+
+#include "BLI_utildefines.h"
+#include "BLI_math.h"
+
+#include "BLI_memarena.h"
+#include "BLI_alloca.h"
+
+#include "BLI_polyfill_2d.h" /* own include */
+
+#include "BLI_strict_flags.h"
+
+/* avoid fan-fill topology */
+#define USE_CLIP_EVEN
+#define USE_CONVEX_SKIP
+/* sweep back-and-forth about convex ears (avoids lop-sided fans) */
+#define USE_CLIP_SWEEP
+// #define USE_CONVEX_SKIP_TEST
+
+#ifdef USE_CONVEX_SKIP
+# define USE_KDTREE
+#endif
+
+/* disable in production, it can fail on near zero area ngons */
+// #define USE_STRICT_ASSERT
+
+// #define DEBUG_TIME
+#ifdef DEBUG_TIME
+# include "PIL_time_utildefines.h"
+#endif
+
+
+typedef signed char eSign;
+
+#ifdef USE_KDTREE
+/**
+ * Spatial optimization for point-in-triangle intersection checks.
+ * The simple version of this algorithm is ``O(n^2)`` complexity
+ * (every point needing to check the triangle defined by every other point),
+ * Using a binary-tree reduces the complexity to ``O(n log n)``
+ * plus some overhead of creating the tree.
+ *
+ * This is a single purpose KDTree based on BLI_kdtree with some modifications
+ * to better suit polyfill2d.
+ *
+ *
+ * - #KDTreeNode2D is kept small (only 16 bytes),
+ * by not storing coords in the nodes and using index values rather then pointers
+ * to reference neg/pos values.
+ *
+ * - #kdtree2d_isect_tri is the only function currently used.
+ * This simply intersects a triangle with the kdtree points.
+ *
+ * - the KDTree is only built & used when the polygon is concave.
+ */
+
+typedef bool axis_t;
+
+/* use for sorting */
+typedef struct KDTreeNode2D_head {
+ uint neg, pos;
+ uint index;
+} KDTreeNode2D_head;
+
+typedef struct KDTreeNode2D {
+ uint neg, pos;
+ uint index;
+ axis_t axis; /* range is only (0-1) */
+ ushort flag;
+ uint parent;
+} KDTreeNode2D;
+
+struct KDTree2D {
+ KDTreeNode2D *nodes;
+ const float (*coords)[2];
+ uint root;
+ uint totnode;
+ uint *nodes_map; /* index -> node lookup */
+};
+
+struct KDRange2D {
+ float min, max;
+};
+#endif /* USE_KDTREE */
+
+enum {
+ CONCAVE = -1,
+ TANGENTIAL = 0,
+ CONVEX = 1,
+};
+
+typedef struct PolyFill {
+ struct PolyIndex *indices; /* vertex aligned */
+
+ const float (*coords)[2];
+ uint coords_tot;
+#ifdef USE_CONVEX_SKIP
+ uint coords_tot_concave;
+#endif
+
+ /* A polygon with n vertices has a triangulation of n-2 triangles. */
+ uint (*tris)[3];
+ uint tris_tot;
+
+#ifdef USE_KDTREE
+ struct KDTree2D kdtree;
+#endif
+} PolyFill;
+
+
+/* circular linklist */
+typedef struct PolyIndex {
+ struct PolyIndex *next, *prev;
+ uint index;
+ eSign sign;
+} PolyIndex;
+
+
+/* based on libgdx 2013-11-28, apache 2.0 licensed */
+
+static void pf_coord_sign_calc(PolyFill *pf, PolyIndex *pi);
+
+static PolyIndex *pf_ear_tip_find(
+ PolyFill *pf
+#ifdef USE_CLIP_EVEN
+ , PolyIndex *pi_ear_init
+#endif
+#ifdef USE_CLIP_SWEEP
+ , bool reverse
+#endif
+ );
+
+static bool pf_ear_tip_check(PolyFill *pf, PolyIndex *pi_ear_tip);
+static void pf_ear_tip_cut(PolyFill *pf, PolyIndex *pi_ear_tip);
+
+
+BLI_INLINE eSign signum_enum(float a)
+{
+ if (UNLIKELY(a == 0.0f))
+ return 0;
+ else if (a > 0.0f)
+ return 1;
+ else
+ return -1;
+}
+
+/**
+ * alternative version of #area_tri_signed_v2
+ * needed because of float precision issues
+ *
+ * \note removes / 2 since its not needed since we only need the sign.
+ */
+BLI_INLINE float area_tri_signed_v2_alt_2x(const float v1[2], const float v2[2], const float v3[2])
+{
+ return ((v1[0] * (v2[1] - v3[1])) +
+ (v2[0] * (v3[1] - v1[1])) +
+ (v3[0] * (v1[1] - v2[1])));
+}
+
+
+static eSign span_tri_v2_sign(const float v1[2], const float v2[2], const float v3[2])
+{
+ return signum_enum(area_tri_signed_v2_alt_2x(v3, v2, v1));
+}
+
+
+#ifdef USE_KDTREE
+#define KDNODE_UNSET ((uint)-1)
+
+enum {
+ KDNODE_FLAG_REMOVED = (1 << 0),
+};
+
+static void kdtree2d_new(
+ struct KDTree2D *tree,
+ uint tot,
+ const float (*coords)[2])
+{
+ /* set by caller */
+ // tree->nodes = nodes;
+ tree->coords = coords;
+ tree->root = KDNODE_UNSET;
+ tree->totnode = tot;
+}
+
+/**
+ * no need for kdtree2d_insert, since we know the coords array.
+ */
+static void kdtree2d_init(
+ struct KDTree2D *tree,
+ const uint coords_tot,
+ const PolyIndex *indices)
+{
+ KDTreeNode2D *node;
+ uint i;
+
+ for (i = 0, node = tree->nodes; i < coords_tot; i++) {
+ if (indices[i].sign != CONVEX) {
+ node->neg = node->pos = KDNODE_UNSET;
+ node->index = indices[i].index;
+ node->axis = 0;
+ node->flag = 0;
+ node++;
+ }
+ }
+
+ BLI_assert(tree->totnode == (uint)(node - tree->nodes));
+}
+
+static uint kdtree2d_balance_recursive(
+ KDTreeNode2D *nodes, uint totnode, axis_t axis,
+ const float (*coords)[2], const uint ofs)
+{
+ KDTreeNode2D *node;
+ uint neg, pos, median, i, j;
+
+ if (totnode <= 0) {
+ return KDNODE_UNSET;
+ }
+ else if (totnode == 1) {
+ return 0 + ofs;
+ }
+
+ /* quicksort style sorting around median */
+ neg = 0;
+ pos = totnode - 1;
+ median = totnode / 2;
+
+ while (pos > neg) {
+ const float co = coords[nodes[pos].index][axis];
+ i = neg - 1;
+ j = pos;
+
+ while (1) {
+ while (coords[nodes[++i].index][axis] < co) ;
+ while (coords[nodes[--j].index][axis] > co && j > neg) ;
+
+ if (i >= j) {
+ break;
+ }
+ SWAP(KDTreeNode2D_head, *(KDTreeNode2D_head *)&nodes[i], *(KDTreeNode2D_head *)&nodes[j]);
+ }
+
+ SWAP(KDTreeNode2D_head, *(KDTreeNode2D_head *)&nodes[i], *(KDTreeNode2D_head *)&nodes[pos]);
+ if (i >= median) {
+ pos = i - 1;
+ }
+ if (i <= median) {
+ neg = i + 1;
+ }
+ }
+
+ /* set node and sort subnodes */
+ node = &nodes[median];
+ node->axis = axis;
+ axis = !axis;
+ node->neg = kdtree2d_balance_recursive(nodes, median, axis, coords, ofs);
+ node->pos = kdtree2d_balance_recursive(&nodes[median + 1], (totnode - (median + 1)), axis, coords, (median + 1) + ofs);
+
+ return median + ofs;
+}
+
+static void kdtree2d_balance(
+ struct KDTree2D *tree)
+{
+ tree->root = kdtree2d_balance_recursive(tree->nodes, tree->totnode, 0, tree->coords, 0);
+}
+
+
+static void kdtree2d_init_mapping(
+ struct KDTree2D *tree)
+{
+ uint i;
+ KDTreeNode2D *node;
+
+ for (i = 0, node = tree->nodes; i < tree->totnode; i++, node++) {
+ if (node->neg != KDNODE_UNSET) {
+ tree->nodes[node->neg].parent = i;
+ }
+ if (node->pos != KDNODE_UNSET) {
+ tree->nodes[node->pos].parent = i;
+ }
+
+ /* build map */
+ BLI_assert(tree->nodes_map[node->index] == KDNODE_UNSET);
+ tree->nodes_map[node->index] = i;
+ }
+
+ tree->nodes[tree->root].parent = KDNODE_UNSET;
+}
+
+static void kdtree2d_node_remove(
+ struct KDTree2D *tree,
+ uint index)
+{
+ uint node_index = tree->nodes_map[index];
+ KDTreeNode2D *node;
+
+ if (node_index == KDNODE_UNSET) {
+ return;
+ }
+ else {
+ tree->nodes_map[index] = KDNODE_UNSET;
+ }
+
+ node = &tree->nodes[node_index];
+ tree->totnode -= 1;
+
+ BLI_assert((node->flag & KDNODE_FLAG_REMOVED) == 0);
+ node->flag |= KDNODE_FLAG_REMOVED;
+
+ while ((node->neg == KDNODE_UNSET) &&
+ (node->pos == KDNODE_UNSET) &&
+ (node->parent != KDNODE_UNSET))
+ {
+ KDTreeNode2D *node_parent = &tree->nodes[node->parent];
+
+ BLI_assert((uint)(node - tree->nodes) == node_index);
+ if (node_parent->neg == node_index) {
+ node_parent->neg = KDNODE_UNSET;
+ }
+ else {
+ BLI_assert(node_parent->pos == node_index);
+ node_parent->pos = KDNODE_UNSET;
+ }
+
+ if (node_parent->flag & KDNODE_FLAG_REMOVED) {
+ node_index = node->parent;
+ node = node_parent;
+ }
+ else {
+ break;
+ }
+ }
+}
+
+static bool kdtree2d_isect_tri_recursive(
+ const struct KDTree2D *tree,
+ const uint tri_index[3],
+ const float *tri_coords[3],
+ const float tri_center[2],
+ const struct KDRange2D bounds[2],
+ const KDTreeNode2D *node)
+{
+ const float *co = tree->coords[node->index];
+
+ /* bounds then triangle intersect */
+ if ((node->flag & KDNODE_FLAG_REMOVED) == 0) {
+ /* bounding box test first */
+ if ((co[0] >= bounds[0].min) &&
+ (co[0] <= bounds[0].max) &&
+ (co[1] >= bounds[1].min) &&
+ (co[1] <= bounds[1].max))
+ {
+ if ((span_tri_v2_sign(tri_coords[0], tri_coords[1], co) != CONCAVE) &&
+ (span_tri_v2_sign(tri_coords[1], tri_coords[2], co) != CONCAVE) &&
+ (span_tri_v2_sign(tri_coords[2], tri_coords[0], co) != CONCAVE))
+ {
+ if (!ELEM(node->index, tri_index[0], tri_index[1], tri_index[2])) {
+ return true;
+ }
+ }
+ }
+ }
+
+#define KDTREE2D_ISECT_TRI_RECURSE_NEG \
+ (((node->neg != KDNODE_UNSET) && (co[node->axis] >= bounds[node->axis].min)) && \
+ (kdtree2d_isect_tri_recursive(tree, tri_index, tri_coords, tri_center, bounds, \
+ &tree->nodes[node->neg])))
+#define KDTREE2D_ISECT_TRI_RECURSE_POS \
+ (((node->pos != KDNODE_UNSET) && (co[node->axis] <= bounds[node->axis].max)) && \
+ (kdtree2d_isect_tri_recursive(tree, tri_index, tri_coords, tri_center, bounds, \
+ &tree->nodes[node->pos])))
+
+ if (tri_center[node->axis] > co[node->axis]) {
+ if (KDTREE2D_ISECT_TRI_RECURSE_POS) {
+ return true;
+ }
+ if (KDTREE2D_ISECT_TRI_RECURSE_NEG) {
+ return true;
+ }
+ }
+ else {
+ if (KDTREE2D_ISECT_TRI_RECURSE_NEG) {
+ return true;
+ }
+ if (KDTREE2D_ISECT_TRI_RECURSE_POS) {
+ return true;
+ }
+ }
+
+#undef KDTREE2D_ISECT_TRI_RECURSE_NEG
+#undef KDTREE2D_ISECT_TRI_RECURSE_POS
+
+ BLI_assert(node->index != KDNODE_UNSET);
+
+ return false;
+}
+
+static bool kdtree2d_isect_tri(
+ struct KDTree2D *tree,
+ const uint ind[3])
+{
+ const float *vs[3];
+ uint i;
+ struct KDRange2D bounds[2] = {
+ {FLT_MAX, -FLT_MAX},
+ {FLT_MAX, -FLT_MAX},
+ };
+ float tri_center[2] = {0.0f, 0.0f};
+
+ for (i = 0; i < 3; i++) {
+ vs[i] = tree->coords[ind[i]];
+
+ add_v2_v2(tri_center, vs[i]);
+
+ CLAMP_MAX(bounds[0].min, vs[i][0]);
+ CLAMP_MIN(bounds[0].max, vs[i][0]);
+ CLAMP_MAX(bounds[1].min, vs[i][1]);
+ CLAMP_MIN(bounds[1].max, vs[i][1]);
+ }
+
+ mul_v2_fl(tri_center, 1.0f / 3.0f);
+
+ return kdtree2d_isect_tri_recursive(tree, ind, vs, tri_center, bounds, &tree->nodes[tree->root]);
+}
+
+#endif /* USE_KDTREE */
+
+
+static uint *pf_tri_add(PolyFill *pf)
+{
+ return pf->tris[pf->tris_tot++];
+}
+
+static void pf_coord_remove(PolyFill *pf, PolyIndex *pi)
+{
+#ifdef USE_KDTREE
+ /* avoid double lookups, since convex coords are ignored when testing intersections */
+ if (pf->kdtree.totnode) {
+ kdtree2d_node_remove(&pf->kdtree, pi->index);
+ }
+#endif
+
+ pi->next->prev = pi->prev;
+ pi->prev->next = pi->next;
+
+ if (UNLIKELY(pf->indices == pi)) {
+ pf->indices = pi->next;
+ }
+#ifdef DEBUG
+ pi->index = (uint)-1;
+ pi->next = pi->prev = NULL;
+#endif
+
+ pf->coords_tot -= 1;
+}
+
+static void pf_triangulate(PolyFill *pf)
+{
+ /* localize */
+ PolyIndex *pi_ear;
+
+#ifdef USE_CLIP_EVEN
+ PolyIndex *pi_ear_init = pf->indices;
+#endif
+#ifdef USE_CLIP_SWEEP
+ bool reverse = false;
+#endif
+
+ while (pf->coords_tot > 3) {
+ PolyIndex *pi_prev, *pi_next;
+ eSign sign_orig_prev, sign_orig_next;
+
+ pi_ear = pf_ear_tip_find(
+ pf
+#ifdef USE_CLIP_EVEN
+ , pi_ear_init
+#endif
+#ifdef USE_CLIP_SWEEP
+ , reverse
+#endif
+ );
+
+#ifdef USE_CONVEX_SKIP
+ if (pi_ear->sign != CONVEX) {
+ pf->coords_tot_concave -= 1;
+ }
+#endif
+
+ pi_prev = pi_ear->prev;
+ pi_next = pi_ear->next;
+
+ pf_ear_tip_cut(pf, pi_ear);
+
+ /* The type of the two vertices adjacent to the clipped vertex may have changed. */
+ sign_orig_prev = pi_prev->sign;
+ sign_orig_next = pi_next->sign;
+
+ /* check if any verts became convex the (else if)
+ * case is highly unlikely but may happen with degenerate polygons */
+ if (sign_orig_prev != CONVEX) {
+ pf_coord_sign_calc(pf, pi_prev);
+#ifdef USE_CONVEX_SKIP
+ if (pi_prev->sign == CONVEX) {
+ pf->coords_tot_concave -= 1;
+#ifdef USE_KDTREE
+ kdtree2d_node_remove(&pf->kdtree, pi_prev->index);
+#endif
+ }
+#endif
+ }
+ if (sign_orig_next != CONVEX) {
+ pf_coord_sign_calc(pf, pi_next);
+#ifdef USE_CONVEX_SKIP
+ if (pi_next->sign == CONVEX) {
+ pf->coords_tot_concave -= 1;
+#ifdef USE_KDTREE
+ kdtree2d_node_remove(&pf->kdtree, pi_next->index);
+#endif
+ }
+#endif
+ }
+
+#ifdef USE_CLIP_EVEN
+#ifdef USE_CLIP_SWEEP
+ pi_ear_init = reverse ? pi_prev->prev : pi_next->next;
+#else
+ pi_ear_init = pi_next->next;
+#endif
+#endif
+
+#ifdef USE_CLIP_EVEN
+#ifdef USE_CLIP_SWEEP
+ if (pi_ear_init->sign != CONVEX) {
+ /* take the extra step since this ear isn't a good candidate */
+ pi_ear_init = reverse ? pi_ear_init->prev : pi_ear_init->next;
+ reverse = !reverse;
+ }
+#endif
+#else
+ if ((reverse ? pi_prev->prev : pi_next->next)->sign != CONVEX) {
+ reverse = !reverse;
+ }
+#endif
+
+ }
+
+ if (pf->coords_tot == 3) {
+ uint *tri = pf_tri_add(pf);
+ pi_ear = pf->indices;
+ tri[0] = pi_ear->index; pi_ear = pi_ear->next;
+ tri[1] = pi_ear->index; pi_ear = pi_ear->next;
+ tri[2] = pi_ear->index;
+ }
+}
+
+/**
+ * \return CONCAVE, TANGENTIAL or CONVEX
+ */
+static void pf_coord_sign_calc(PolyFill *pf, PolyIndex *pi)
+{
+ /* localize */
+ const float (*coords)[2] = pf->coords;
+
+ pi->sign = span_tri_v2_sign(
+ coords[pi->prev->index],
+ coords[pi->index],
+ coords[pi->next->index]);
+}
+
+static PolyIndex *pf_ear_tip_find(
+ PolyFill *pf
+#ifdef USE_CLIP_EVEN
+ , PolyIndex *pi_ear_init
+#endif
+#ifdef USE_CLIP_SWEEP
+ , bool reverse
+#endif
+ )
+{
+ /* localize */
+ const uint coords_tot = pf->coords_tot;
+ PolyIndex *pi_ear;
+
+ uint i;
+
+#ifdef USE_CLIP_EVEN
+ pi_ear = pi_ear_init;
+#else
+ pi_ear = pf->indices;
+#endif
+
+ i = coords_tot;
+ while (i--) {
+ if (pf_ear_tip_check(pf, pi_ear)) {
+ return pi_ear;
+ }
+#ifdef USE_CLIP_SWEEP
+ pi_ear = reverse ? pi_ear->prev : pi_ear->next;
+#else
+ pi_ear = pi_ear->next;
+#endif
+ }
+
+ /* Desperate mode: if no vertex is an ear tip, we are dealing with a degenerate polygon (e.g. nearly collinear).
+ * Note that the input was not necessarily degenerate, but we could have made it so by clipping some valid ears.
+ *
+ * Idea taken from Martin Held, "FIST: Fast industrial-strength triangulation of polygons", Algorithmica (1998),
+ * http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.291
+ *
+ * Return a convex or tangential vertex if one exists.
+ */
+
+#ifdef USE_CLIP_EVEN
+ pi_ear = pi_ear_init;
+#else
+ pi_ear = pf->indices;
+#endif
+
+ i = coords_tot;
+ while (i--) {
+ if (pi_ear->sign != CONCAVE) {
+ return pi_ear;
+ }
+ pi_ear = pi_ear->next;
+ }
+
+ /* If all vertices are concave, just return the last one. */
+ return pi_ear;
+}
+
+static bool pf_ear_tip_check(PolyFill *pf, PolyIndex *pi_ear_tip)
+{
+#ifndef USE_KDTREE
+ /* localize */
+ const float (*coords)[2] = pf->coords;
+ PolyIndex *pi_curr;
+
+ const float *v1, *v2, *v3;
+#endif
+
+#if defined(USE_CONVEX_SKIP) && !defined(USE_KDTREE)
+ uint coords_tot_concave_checked = 0;
+#endif
+
+
+#ifdef USE_CONVEX_SKIP
+
+#ifdef USE_CONVEX_SKIP_TEST
+ /* check if counting is wrong */
+ {
+ uint coords_tot_concave_test = 0;
+ PolyIndex *pi_iter = pi_ear_tip;
+ do {
+ if (pi_iter->sign != CONVEX) {
+ coords_tot_concave_test += 1;
+ }
+ } while ((pi_iter = pi_iter->next) != pi_ear_tip);
+ BLI_assert(coords_tot_concave_test == pf->coords_tot_concave);
+ }
+#endif
+
+ /* fast-path for circles */
+ if (pf->coords_tot_concave == 0) {
+ return true;
+ }
+#endif
+
+ if (UNLIKELY(pi_ear_tip->sign == CONCAVE)) {
+ return false;
+ }
+
+#ifdef USE_KDTREE
+ {
+ const uint ind[3] = {
+ pi_ear_tip->index,
+ pi_ear_tip->next->index,
+ pi_ear_tip->prev->index};
+
+ if (kdtree2d_isect_tri(&pf->kdtree, ind)) {
+ return false;
+ }
+ }
+#else
+
+ v1 = coords[pi_ear_tip->prev->index];
+ v2 = coords[pi_ear_tip->index];
+ v3 = coords[pi_ear_tip->next->index];
+
+ /* Check if any point is inside the triangle formed by previous, current and next vertices.
+ * Only consider vertices that are not part of this triangle, or else we'll always find one inside. */
+
+ for (pi_curr = pi_ear_tip->next->next; pi_curr != pi_ear_tip->prev; pi_curr = pi_curr->next) {
+ /* Concave vertices can obviously be inside the candidate ear, but so can tangential vertices
+ * if they coincide with one of the triangle's vertices. */
+ if (pi_curr->sign != CONVEX) {
+ const float *v = coords[pi_curr->index];
+ /* Because the polygon has clockwise winding order,
+ * the area sign will be positive if the point is strictly inside.
+ * It will be 0 on the edge, which we want to include as well. */
+
+ /* note: check (v3, v1) first since it fails _far_ more often then the other 2 checks (those fail equally).
+ * It's logical - the chance is low that points exist on the same side as the ear we're clipping off. */
+ if ((span_tri_v2_sign(v3, v1, v) != CONCAVE) &&
+ (span_tri_v2_sign(v1, v2, v) != CONCAVE) &&
+ (span_tri_v2_sign(v2, v3, v) != CONCAVE))
+ {
+ return false;
+ }
+
+#ifdef USE_CONVEX_SKIP
+ coords_tot_concave_checked += 1;
+ if (coords_tot_concave_checked == pf->coords_tot_concave) {
+ break;
+ }
+#endif
+ }
+ }
+#endif /* USE_KDTREE */
+
+ return true;
+}
+
+static void pf_ear_tip_cut(PolyFill *pf, PolyIndex *pi_ear_tip)
+{
+ uint *tri = pf_tri_add(pf);
+
+ tri[0] = pi_ear_tip->prev->index;
+ tri[1] = pi_ear_tip->index;
+ tri[2] = pi_ear_tip->next->index;
+
+ pf_coord_remove(pf, pi_ear_tip);
+}
+
+/**
+ * Initializes the #PolyFill structure before tessellating with #polyfill_calc.
+ */
+static void polyfill_prepare(
+ PolyFill *pf,
+ const float (*coords)[2],
+ const uint coords_tot,
+ int coords_sign,
+ uint (*r_tris)[3],
+ PolyIndex *r_indices)
+{
+ /* localize */
+ PolyIndex *indices = r_indices;
+
+ uint i;
+
+ /* assign all polyfill members here */
+ pf->indices = r_indices;
+ pf->coords = coords;
+ pf->coords_tot = coords_tot;
+#ifdef USE_CONVEX_SKIP
+ pf->coords_tot_concave = 0;
+#endif
+ pf->tris = r_tris;
+ pf->tris_tot = 0;
+
+ if (coords_sign == 0) {
+ coords_sign = (cross_poly_v2(coords, coords_tot) >= 0.0f) ? 1 : -1;
+ }
+ else {
+ /* check we're passing in correcty args */
+#ifdef USE_STRICT_ASSERT
+#ifndef NDEBUG
+ if (coords_sign == 1) {
+ BLI_assert(cross_poly_v2(coords, coords_tot) >= 0.0f);
+ }
+ else {
+ BLI_assert(cross_poly_v2(coords, coords_tot) <= 0.0f);
+ }
+#endif
+#endif
+ }
+
+ if (coords_sign == 1) {
+ for (i = 0; i < coords_tot; i++) {
+ indices[i].next = &indices[i + 1];
+ indices[i].prev = &indices[i - 1];
+ indices[i].index = i;
+ }
+ }
+ else {
+ /* reversed */
+ uint n = coords_tot - 1;
+ for (i = 0; i < coords_tot; i++) {
+ indices[i].next = &indices[i + 1];
+ indices[i].prev = &indices[i - 1];
+ indices[i].index = (n - i);
+ }
+ }
+ indices[0].prev = &indices[coords_tot - 1];
+ indices[coords_tot - 1].next = &indices[0];
+
+ for (i = 0; i < coords_tot; i++) {
+ PolyIndex *pi = &indices[i];
+ pf_coord_sign_calc(pf, pi);
+#ifdef USE_CONVEX_SKIP
+ if (pi->sign != CONVEX) {
+ pf->coords_tot_concave += 1;
+ }
+#endif
+ }
+}
+
+static void polyfill_calc(
+ PolyFill *pf)
+{
+#ifdef USE_KDTREE
+#ifdef USE_CONVEX_SKIP
+ if (pf->coords_tot_concave)
+#endif
+ {
+ kdtree2d_new(&pf->kdtree, pf->coords_tot_concave, pf->coords);
+ kdtree2d_init(&pf->kdtree, pf->coords_tot, pf->indices);
+ kdtree2d_balance(&pf->kdtree);
+ kdtree2d_init_mapping(&pf->kdtree);
+ }
+#endif
+
+ pf_triangulate(pf);
+}
+
+/**
+ * A version of #BLI_polyfill_calc that uses a memory arena to avoid re-allocations.
+ */
+void BLI_polyfill_calc_arena(
+ const float (*coords)[2],
+ const uint coords_tot,
+ const int coords_sign,
+ uint (*r_tris)[3],
+
+ struct MemArena *arena)
+{
+ PolyFill pf;
+ PolyIndex *indices = BLI_memarena_alloc(arena, sizeof(*indices) * coords_tot);
+
+#ifdef DEBUG_TIME
+ TIMEIT_START(polyfill2d);
+#endif
+
+ polyfill_prepare(
+ &pf,
+ coords, coords_tot, coords_sign,
+ r_tris,
+ /* cache */
+ indices);
+
+#ifdef USE_KDTREE
+ if (pf.coords_tot_concave) {
+ pf.kdtree.nodes = BLI_memarena_alloc(arena, sizeof(*pf.kdtree.nodes) * pf.coords_tot_concave);
+ pf.kdtree.nodes_map = memset(BLI_memarena_alloc(arena, sizeof(*pf.kdtree.nodes_map) * coords_tot),
+ 0xff, sizeof(*pf.kdtree.nodes_map) * coords_tot);
+ }
+ else {
+ pf.kdtree.totnode = 0;
+ }
+#endif
+
+ polyfill_calc(&pf);
+
+ /* indices are no longer needed,
+ * caller can clear arena */
+
+#ifdef DEBUG_TIME
+ TIMEIT_END(polyfill2d);
+#endif
+}
+
+/**
+ * Triangulates the given (convex or concave) simple polygon to a list of triangle vertices.
+ *
+ * \param coords: 2D coordinates describing vertices of the polygon,
+ * in either clockwise or counterclockwise order.
+ * \param coords_tot: Total points in the array.
+ * \param coords_sign: Pass this when we know the sign in advance to avoid extra calculations.
+ *
+ * \param r_tris: This array is filled in with triangle indices in clockwise order.
+ * The length of the array must be ``coords_tot - 2``.
+ * Indices are guaranteed to be assigned to unique triangles, with valid indices,
+ * even in the case of degenerate input (self intersecting polygons, zero area ears... etc).
+ */
+void BLI_polyfill_calc(
+ const float (*coords)[2],
+ const uint coords_tot,
+ const int coords_sign,
+ uint (*r_tris)[3])
+{
+ PolyFill pf;
+ PolyIndex *indices = BLI_array_alloca(indices, coords_tot);
+
+#ifdef DEBUG_TIME
+ TIMEIT_START(polyfill2d);
+#endif
+
+ polyfill_prepare(
+ &pf,
+ coords, coords_tot, coords_sign,
+ r_tris,
+ /* cache */
+ indices);
+
+#ifdef USE_KDTREE
+ if (pf.coords_tot_concave) {
+ pf.kdtree.nodes = BLI_array_alloca(pf.kdtree.nodes, pf.coords_tot_concave);
+ pf.kdtree.nodes_map = memset(BLI_array_alloca(pf.kdtree.nodes_map, coords_tot),
+ 0xff, sizeof(*pf.kdtree.nodes_map) * coords_tot);
+ }
+ else {
+ pf.kdtree.totnode = 0;
+ }
+#endif
+
+ polyfill_calc(&pf);
+
+#ifdef DEBUG_TIME
+ TIMEIT_END(polyfill2d);
+#endif
+}