Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCharlie Jolly <charlie>2021-10-15 17:27:16 +0300
committerCharlie Jolly <mistajolly@gmail.com>2021-10-15 17:28:20 +0300
commit104887800c0f221fbcffa84bb360dd9ff001d7f1 (patch)
tree743a308c6eda1918e4e97df0d8ba32b7046bedf7 /source/blender/blenlib/intern
parent6e4ab5b761b03b52177985ecbeb2c2f576159c74 (diff)
Geometry Nodes: Add Voronoi Texture
Port shader Voronoi to GN Reviewed By: JacquesLucke Differential Revision: https://developer.blender.org/D12725
Diffstat (limited to 'source/blender/blenlib/intern')
-rw-r--r--source/blender/blenlib/intern/math_base_inline.c16
-rw-r--r--source/blender/blenlib/intern/math_vector_inline.c13
-rw-r--r--source/blender/blenlib/intern/noise.cc890
3 files changed, 919 insertions, 0 deletions
diff --git a/source/blender/blenlib/intern/math_base_inline.c b/source/blender/blenlib/intern/math_base_inline.c
index 49f9faf1704..f609d5f8e8b 100644
--- a/source/blender/blenlib/intern/math_base_inline.c
+++ b/source/blender/blenlib/intern/math_base_inline.c
@@ -511,6 +511,22 @@ MINLINE float smoothminf(float a, float b, float c)
}
}
+MINLINE float smoothstep(float edge0, float edge1, float x)
+{
+ float result;
+ if (x < edge0) {
+ result = 0.0f;
+ }
+ else if (x >= edge1) {
+ result = 1.0f;
+ }
+ else {
+ float t = (x - edge0) / (edge1 - edge0);
+ result = (3.0f - 2.0f * t) * (t * t);
+ }
+ return result;
+}
+
MINLINE double min_dd(double a, double b)
{
return (a < b) ? a : b;
diff --git a/source/blender/blenlib/intern/math_vector_inline.c b/source/blender/blenlib/intern/math_vector_inline.c
index 8be066bb0e9..bb32b511005 100644
--- a/source/blender/blenlib/intern/math_vector_inline.c
+++ b/source/blender/blenlib/intern/math_vector_inline.c
@@ -1145,6 +1145,19 @@ MINLINE float len_v3v3(const float a[3], const float b[3])
return len_v3(d);
}
+MINLINE float len_v4(const float a[4])
+{
+ return sqrtf(dot_v4v4(a, a));
+}
+
+MINLINE float len_v4v4(const float a[4], const float b[4])
+{
+ float d[4];
+
+ sub_v4_v4v4(d, b, a);
+ return len_v4(d);
+}
+
/**
* \note any vectors containing `nan` will be zeroed out.
*/
diff --git a/source/blender/blenlib/intern/noise.cc b/source/blender/blenlib/intern/noise.cc
index ce2e9594059..a6c3377b71f 100644
--- a/source/blender/blenlib/intern/noise.cc
+++ b/source/blender/blenlib/intern/noise.cc
@@ -52,6 +52,7 @@
#include "BLI_float2.hh"
#include "BLI_float3.hh"
#include "BLI_float4.hh"
+#include "BLI_math_base_safe.h"
#include "BLI_noise.hh"
#include "BLI_utildefines.h"
@@ -755,4 +756,893 @@ float3 perlin_float3_fractal_distorted(float4 position,
perlin_fractal(position + random_float4_offset(5.0f), octaves, roughness));
}
+/*
+ * Voronoi: Ported from Cycles code.
+ *
+ * Original code is under the MIT License, Copyright (c) 2013 Inigo Quilez.
+ *
+ * Smooth Voronoi:
+ *
+ * - https://wiki.blender.org/wiki/User:OmarSquircleArt/GSoC2019/Documentation/Smooth_Voronoi
+ *
+ * Distance To Edge based on:
+ *
+ * - https://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
+ * - https://www.shadertoy.com/view/ldl3W8
+ *
+ * With optimization to change -2..2 scan window to -1..1 for better performance,
+ * as explained in https://www.shadertoy.com/view/llG3zy.
+ */
+
+/* **** 1D Voronoi **** */
+
+/* Ensure to align with DNA. */
+enum {
+ NOISE_SHD_VORONOI_EUCLIDEAN = 0,
+ NOISE_SHD_VORONOI_MANHATTAN = 1,
+ NOISE_SHD_VORONOI_CHEBYCHEV = 2,
+ NOISE_SHD_VORONOI_MINKOWSKI = 3,
+};
+
+BLI_INLINE float voronoi_distance(const float a, const float b)
+{
+ return fabsf(b - a);
+}
+
+void voronoi_f1(
+ const float w, const float randomness, float *r_distance, float3 *r_color, float *r_w)
+{
+ const float cellPosition = floorf(w);
+ const float localPosition = w - cellPosition;
+
+ float minDistance = 8.0f;
+ float targetOffset = 0.0f;
+ float targetPosition = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ const float cellOffset = i;
+ const float pointPosition = cellOffset +
+ hash_float_to_float(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ *r_distance = minDistance;
+ *r_color = hash_float_to_float3(cellPosition + targetOffset);
+ *r_w = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1(const float w,
+ const float smoothness,
+ const float randomness,
+ float *r_distance,
+ float3 *r_color,
+ float *r_w)
+{
+ const float cellPosition = floorf(w);
+ const float localPosition = w - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float smoothPosition = 0.0f;
+ float3 smoothColor = float3(0.0f, 0.0f, 0.0f);
+ for (int i = -2; i <= 2; i++) {
+ const float cellOffset = i;
+ const float pointPosition = cellOffset +
+ hash_float_to_float(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(pointPosition, localPosition);
+ const float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ const float3 cellColor = hash_float_to_float3(cellPosition + cellOffset);
+ smoothColor = float3::interpolate(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ *r_distance = smoothDistance;
+ *r_color = smoothColor;
+ *r_w = cellPosition + smoothPosition;
+}
+
+void voronoi_f2(
+ const float w, const float randomness, float *r_distance, float3 *r_color, float *r_w)
+{
+ const float cellPosition = floorf(w);
+ const float localPosition = w - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float offsetF1 = 0.0f;
+ float positionF1 = 0.0f;
+ float offsetF2 = 0.0f;
+ float positionF2 = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ const float cellOffset = i;
+ const float pointPosition = cellOffset +
+ hash_float_to_float(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(pointPosition, localPosition);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ *r_distance = distanceF2;
+ *r_color = hash_float_to_float3(cellPosition + offsetF2);
+ *r_w = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge(const float w, const float randomness, float *r_distance)
+{
+ const float cellPosition = floorf(w);
+ const float localPosition = w - cellPosition;
+
+ const float midPointPosition = hash_float_to_float(cellPosition) * randomness;
+ const float leftPointPosition = -1.0f + hash_float_to_float(cellPosition - 1.0f) * randomness;
+ const float rightPointPosition = 1.0f + hash_float_to_float(cellPosition + 1.0f) * randomness;
+ const float distanceToMidLeft = fabsf((midPointPosition + leftPointPosition) / 2.0f -
+ localPosition);
+ const float distanceToMidRight = fabsf((midPointPosition + rightPointPosition) / 2.0f -
+ localPosition);
+
+ *r_distance = std::min(distanceToMidLeft, distanceToMidRight);
+}
+
+void voronoi_n_sphere_radius(const float w, const float randomness, float *r_radius)
+{
+ const float cellPosition = floorf(w);
+ const float localPosition = w - cellPosition;
+
+ float closestPoint = 0.0f;
+ float closestPointOffset = 0.0f;
+ float minDistance = 8.0f;
+ for (int i = -1; i <= 1; i++) {
+ const float cellOffset = i;
+ const float pointPosition = cellOffset +
+ hash_float_to_float(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = fabsf(pointPosition - localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+
+ minDistance = 8.0f;
+ float closestPointToClosestPoint = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0) {
+ continue;
+ }
+ const float cellOffset = i + closestPointOffset;
+ const float pointPosition = cellOffset +
+ hash_float_to_float(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = fabsf(closestPoint - pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ *r_radius = fabsf(closestPointToClosestPoint - closestPoint) / 2.0f;
+}
+
+/* **** 2D Voronoi **** */
+
+static float voronoi_distance(const float2 a,
+ const float2 b,
+ const int metric,
+ const float exponent)
+{
+ switch (metric) {
+ case NOISE_SHD_VORONOI_EUCLIDEAN:
+ return float2::distance(a, b);
+ case NOISE_SHD_VORONOI_MANHATTAN:
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y);
+ case NOISE_SHD_VORONOI_CHEBYCHEV:
+ return std::max(fabsf(a.x - b.x), fabsf(a.y - b.y));
+ case NOISE_SHD_VORONOI_MINKOWSKI:
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent),
+ 1.0f / exponent);
+ default:
+ BLI_assert_unreachable();
+ break;
+ }
+ return 0.0f;
+}
+
+void voronoi_f1(const float2 coord,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float2 *r_position)
+{
+ const float2 cellPosition = float2::floor(coord);
+ const float2 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float2 targetOffset = float2(0.0f, 0.0f);
+ float2 targetPosition = float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float2 cellOffset = float2(i, j);
+ const float2 pointPosition = cellOffset +
+ hash_float_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ *r_distance = minDistance;
+ *r_color = hash_float_to_float3(cellPosition + targetOffset);
+ *r_position = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1(const float2 coord,
+ const float smoothness,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float2 *r_position)
+{
+ const float2 cellPosition = float2::floor(coord);
+ const float2 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = float3(0.0f, 0.0f, 0.0f);
+ float2 smoothPosition = float2(0.0f, 0.0f);
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ const float2 cellOffset = float2(i, j);
+ const float2 pointPosition = cellOffset +
+ hash_float_to_float2(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ const float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ const float3 cellColor = hash_float_to_float3(cellPosition + cellOffset);
+ smoothColor = float3::interpolate(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = float2::interpolate(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ *r_distance = smoothDistance;
+ *r_color = smoothColor;
+ *r_position = cellPosition + smoothPosition;
+}
+
+void voronoi_f2(const float2 coord,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float2 *r_position)
+{
+ const float2 cellPosition = float2::floor(coord);
+ const float2 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float2 offsetF1 = float2(0.0f, 0.0f);
+ float2 positionF1 = float2(0.0f, 0.0f);
+ float2 offsetF2 = float2(0.0f, 0.0f);
+ float2 positionF2 = float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float2 cellOffset = float2(i, j);
+ const float2 pointPosition = cellOffset +
+ hash_float_to_float2(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ *r_distance = distanceF2;
+ *r_color = hash_float_to_float3(cellPosition + offsetF2);
+ *r_position = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge(const float2 coord, const float randomness, float *r_distance)
+{
+ const float2 cellPosition = float2::floor(coord);
+ const float2 localPosition = coord - cellPosition;
+
+ float2 vectorToClosest = float2(0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float2 cellOffset = float2(i, j);
+ const float2 vectorToPoint = cellOffset +
+ hash_float_to_float2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ const float distanceToPoint = dot_v2v2(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float2 cellOffset = float2(i, j);
+ const float2 vectorToPoint = cellOffset +
+ hash_float_to_float2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ const float2 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot_v2v2(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ const float distanceToEdge = dot_v2v2((vectorToClosest + vectorToPoint) / 2.0f,
+ perpendicularToEdge.normalized());
+ minDistance = std::min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ *r_distance = minDistance;
+}
+
+void voronoi_n_sphere_radius(const float2 coord, const float randomness, float *r_radius)
+{
+ const float2 cellPosition = float2::floor(coord);
+ const float2 localPosition = coord - cellPosition;
+
+ float2 closestPoint = float2(0.0f, 0.0f);
+ float2 closestPointOffset = float2(0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float2 cellOffset = float2(i, j);
+ const float2 pointPosition = cellOffset +
+ hash_float_to_float2(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = float2::distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float2 closestPointToClosestPoint = float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0) {
+ continue;
+ }
+ const float2 cellOffset = float2(i, j) + closestPointOffset;
+ const float2 pointPosition = cellOffset +
+ hash_float_to_float2(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = float2::distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ *r_radius = float2::distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+/* **** 3D Voronoi **** */
+
+static float voronoi_distance(const float3 a,
+ const float3 b,
+ const int metric,
+ const float exponent)
+{
+ switch (metric) {
+ case NOISE_SHD_VORONOI_EUCLIDEAN:
+ return float3::distance(a, b);
+ case NOISE_SHD_VORONOI_MANHATTAN:
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y) + fabsf(a.z - b.z);
+ case NOISE_SHD_VORONOI_CHEBYCHEV:
+ return std::max(fabsf(a.x - b.x), std::max(fabsf(a.y - b.y), fabsf(a.z - b.z)));
+ case NOISE_SHD_VORONOI_MINKOWSKI:
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent) +
+ powf(fabsf(a.z - b.z), exponent),
+ 1.0f / exponent);
+ default:
+ BLI_assert_unreachable();
+ break;
+ }
+ return 0.0f;
+}
+
+void voronoi_f1(const float3 coord,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float3 *r_position)
+{
+ const float3 cellPosition = float3::floor(coord);
+ const float3 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float3 targetOffset = float3(0.0f, 0.0f, 0.0f);
+ float3 targetPosition = float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float3 cellOffset = float3(i, j, k);
+ const float3 pointPosition = cellOffset +
+ hash_float_to_float3(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ }
+ *r_distance = minDistance;
+ *r_color = hash_float_to_float3(cellPosition + targetOffset);
+ *r_position = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1(const float3 coord,
+ const float smoothness,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float3 *r_position)
+{
+ const float3 cellPosition = float3::floor(coord);
+ const float3 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = float3(0.0f, 0.0f, 0.0f);
+ float3 smoothPosition = float3(0.0f, 0.0f, 0.0f);
+ for (int k = -2; k <= 2; k++) {
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ const float3 cellOffset = float3(i, j, k);
+ const float3 pointPosition = cellOffset +
+ hash_float_to_float3(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ const float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ const float3 cellColor = hash_float_to_float3(cellPosition + cellOffset);
+ smoothColor = float3::interpolate(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = float3::interpolate(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ }
+ *r_distance = smoothDistance;
+ *r_color = smoothColor;
+ *r_position = cellPosition + smoothPosition;
+}
+
+void voronoi_f2(const float3 coord,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float3 *r_position)
+{
+ const float3 cellPosition = float3::floor(coord);
+ const float3 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float3 offsetF1 = float3(0.0f, 0.0f, 0.0f);
+ float3 positionF1 = float3(0.0f, 0.0f, 0.0f);
+ float3 offsetF2 = float3(0.0f, 0.0f, 0.0f);
+ float3 positionF2 = float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float3 cellOffset = float3(i, j, k);
+ const float3 pointPosition = cellOffset +
+ hash_float_to_float3(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ }
+ *r_distance = distanceF2;
+ *r_color = hash_float_to_float3(cellPosition + offsetF2);
+ *r_position = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge(const float3 coord, const float randomness, float *r_distance)
+{
+ const float3 cellPosition = float3::floor(coord);
+ const float3 localPosition = coord - cellPosition;
+
+ float3 vectorToClosest = float3(0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float3 cellOffset = float3(i, j, k);
+ const float3 vectorToPoint = cellOffset +
+ hash_float_to_float3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ const float distanceToPoint = dot_v3v3(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float3 cellOffset = float3(i, j, k);
+ const float3 vectorToPoint = cellOffset +
+ hash_float_to_float3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ const float3 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot_v3v3(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ const float distanceToEdge = dot_v3v3((vectorToClosest + vectorToPoint) / 2.0f,
+ perpendicularToEdge.normalized());
+ minDistance = std::min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ }
+ *r_distance = minDistance;
+}
+
+void voronoi_n_sphere_radius(const float3 coord, const float randomness, float *r_radius)
+{
+ const float3 cellPosition = float3::floor(coord);
+ const float3 localPosition = coord - cellPosition;
+
+ float3 closestPoint = float3(0.0f, 0.0f, 0.0f);
+ float3 closestPointOffset = float3(0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float3 cellOffset = float3(i, j, k);
+ const float3 pointPosition = cellOffset +
+ hash_float_to_float3(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = float3::distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float3 closestPointToClosestPoint = float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0) {
+ continue;
+ }
+ const float3 cellOffset = float3(i, j, k) + closestPointOffset;
+ const float3 pointPosition = cellOffset +
+ hash_float_to_float3(cellPosition + cellOffset) * randomness;
+ const float distanceToPoint = float3::distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ *r_radius = float3::distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+/* **** 4D Voronoi **** */
+
+static float voronoi_distance(const float4 a,
+ const float4 b,
+ const int metric,
+ const float exponent)
+{
+ switch (metric) {
+ case NOISE_SHD_VORONOI_EUCLIDEAN:
+ return float4::distance(a, b);
+ case NOISE_SHD_VORONOI_MANHATTAN:
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y) + fabsf(a.z - b.z) + fabsf(a.w - b.w);
+ case NOISE_SHD_VORONOI_CHEBYCHEV:
+ return std::max(fabsf(a.x - b.x),
+ std::max(fabsf(a.y - b.y), std::max(fabsf(a.z - b.z), fabsf(a.w - b.w))));
+ case NOISE_SHD_VORONOI_MINKOWSKI:
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent) +
+ powf(fabsf(a.z - b.z), exponent) + powf(fabsf(a.w - b.w), exponent),
+ 1.0f / exponent);
+ default:
+ BLI_assert_unreachable();
+ break;
+ }
+ return 0.0f;
+}
+
+void voronoi_f1(const float4 coord,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float4 *r_position)
+{
+ const float4 cellPosition = float4::floor(coord);
+ const float4 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float4 targetOffset = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 targetPosition = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float4 cellOffset = float4(i, j, k, u);
+ const float4 pointPosition = cellOffset +
+ hash_float_to_float4(cellPosition + cellOffset) *
+ randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *r_distance = minDistance;
+ *r_color = hash_float_to_float3(cellPosition + targetOffset);
+ *r_position = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1(const float4 coord,
+ const float smoothness,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float4 *r_position)
+{
+ const float4 cellPosition = float4::floor(coord);
+ const float4 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = float3(0.0f, 0.0f, 0.0f);
+ float4 smoothPosition = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -2; u <= 2; u++) {
+ for (int k = -2; k <= 2; k++) {
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ const float4 cellOffset = float4(i, j, k, u);
+ const float4 pointPosition = cellOffset +
+ hash_float_to_float4(cellPosition + cellOffset) *
+ randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ const float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ const float3 cellColor = hash_float_to_float3(cellPosition + cellOffset);
+ smoothColor = float3::interpolate(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = float4::interpolate(smoothPosition, pointPosition, h) -
+ correctionFactor;
+ }
+ }
+ }
+ }
+ *r_distance = smoothDistance;
+ *r_color = smoothColor;
+ *r_position = cellPosition + smoothPosition;
+}
+
+void voronoi_f2(const float4 coord,
+ const float exponent,
+ const float randomness,
+ const int metric,
+ float *r_distance,
+ float3 *r_color,
+ float4 *r_position)
+{
+ const float4 cellPosition = float4::floor(coord);
+ const float4 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float4 offsetF1 = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 positionF1 = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 offsetF2 = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 positionF2 = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float4 cellOffset = float4(i, j, k, u);
+ const float4 pointPosition = cellOffset +
+ hash_float_to_float4(cellPosition + cellOffset) *
+ randomness;
+ const float distanceToPoint = voronoi_distance(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *r_distance = distanceF2;
+ *r_color = hash_float_to_float3(cellPosition + offsetF2);
+ *r_position = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge(const float4 coord, const float randomness, float *r_distance)
+{
+ const float4 cellPosition = float4::floor(coord);
+ const float4 localPosition = coord - cellPosition;
+
+ float4 vectorToClosest = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float4 cellOffset = float4(i, j, k, u);
+ const float4 vectorToPoint = cellOffset +
+ hash_float_to_float4(cellPosition + cellOffset) *
+ randomness -
+ localPosition;
+ const float distanceToPoint = dot_v4v4(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float4 cellOffset = float4(i, j, k, u);
+ const float4 vectorToPoint = cellOffset +
+ hash_float_to_float4(cellPosition + cellOffset) *
+ randomness -
+ localPosition;
+ const float4 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot_v4v4(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ const float distanceToEdge = dot_v4v4((vectorToClosest + vectorToPoint) / 2.0f,
+ float4::normalize(perpendicularToEdge));
+ minDistance = std::min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ }
+ }
+ *r_distance = minDistance;
+}
+
+void voronoi_n_sphere_radius(const float4 coord, const float randomness, float *r_radius)
+{
+ const float4 cellPosition = float4::floor(coord);
+ const float4 localPosition = coord - cellPosition;
+
+ float4 closestPoint = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 closestPointOffset = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ const float4 cellOffset = float4(i, j, k, u);
+ const float4 pointPosition = cellOffset +
+ hash_float_to_float4(cellPosition + cellOffset) *
+ randomness;
+ const float distanceToPoint = float4::distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float4 closestPointToClosestPoint = float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0 && u == 0) {
+ continue;
+ }
+ const float4 cellOffset = float4(i, j, k, u) + closestPointOffset;
+ const float4 pointPosition = cellOffset +
+ hash_float_to_float4(cellPosition + cellOffset) *
+ randomness;
+ const float distanceToPoint = float4::distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *r_radius = float4::distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
} // namespace blender::noise