Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHoward Trickey <howard.trickey@gmail.com>2020-08-28 17:56:44 +0300
committerHoward Trickey <howard.trickey@gmail.com>2020-08-28 18:01:06 +0300
commit9e09b5c418c0a436e3c84ccf38c065527988b0a0 (patch)
treec0e81b8834aaf27c22a2734e364452fa2af5c6c1 /source/blender/blenlib/tests/BLI_mesh_intersect_test.cc
parent4a17508c6d2a24dfb7c018ae49c80f12b4d3e610 (diff)
Merge newboolean branch into master.
This is for design task T67744, Boolean Redesign. It adds a choice of solver to the Boolean modifier and the Intersect (Boolean) and Intersect (Knife) tools. The 'Fast' choice is the current Bmesh boolean. The new 'Exact' choice is a more advanced algorithm that supports overlapping geometry and uses more robust calculations, but is slower than the Fast choice. The default with this commit is set to 'Exact'. We can decide before the 2.91 release whether or not this is the right choice, but this choice now will get us more testing and feedback on the new code.
Diffstat (limited to 'source/blender/blenlib/tests/BLI_mesh_intersect_test.cc')
-rw-r--r--source/blender/blenlib/tests/BLI_mesh_intersect_test.cc1072
1 files changed, 1072 insertions, 0 deletions
diff --git a/source/blender/blenlib/tests/BLI_mesh_intersect_test.cc b/source/blender/blenlib/tests/BLI_mesh_intersect_test.cc
new file mode 100644
index 00000000000..6d24c4e6c03
--- /dev/null
+++ b/source/blender/blenlib/tests/BLI_mesh_intersect_test.cc
@@ -0,0 +1,1072 @@
+/* Apache License, Version 2.0 */
+
+#include "testing/testing.h"
+
+#include <algorithm>
+#include <fstream>
+#include <iostream>
+
+#include "PIL_time.h"
+
+#include "BLI_array.hh"
+#include "BLI_math_mpq.hh"
+#include "BLI_mesh_intersect.hh"
+#include "BLI_mpq3.hh"
+#include "BLI_task.h"
+#include "BLI_vector.hh"
+
+#define DO_REGULAR_TESTS 1
+#define DO_PERF_TESTS 0
+
+namespace blender::meshintersect::tests {
+
+constexpr bool DO_OBJ = false;
+
+/* Build and hold an IMesh from a string spec. Also hold and own resources used by IMesh. */
+class IMeshBuilder {
+ public:
+ IMesh imesh;
+ IMeshArena arena;
+
+ /* "Edge orig" indices are an encoding of <input face#, position in face of start of edge>. */
+ static constexpr int MAX_FACE_LEN = 1000; /* Used for forming "orig edge" indices only. */
+
+ static int edge_index(int face_index, int facepos)
+ {
+ return face_index * MAX_FACE_LEN + facepos;
+ }
+
+ static std::pair<int, int> face_and_pos_for_edge_index(int e_index)
+ {
+ return std::pair<int, int>(e_index / MAX_FACE_LEN, e_index % MAX_FACE_LEN);
+ }
+
+ /*
+ * Spec should have form:
+ * #verts #faces
+ * mpq_class mpq_class mpq_clas [#verts lines]
+ * int int int ... [#faces lines; indices into verts for given face]
+ */
+ IMeshBuilder(const char *spec)
+ {
+ std::istringstream ss(spec);
+ std::string line;
+ getline(ss, line);
+ std::istringstream hdrss(line);
+ int nv, nf;
+ hdrss >> nv >> nf;
+ if (nv == 0 || nf == 0) {
+ return;
+ }
+ arena.reserve(nv, nf);
+ Vector<const Vert *> verts;
+ Vector<Face *> faces;
+ bool spec_ok = true;
+ int v_index = 0;
+ while (v_index < nv && spec_ok && getline(ss, line)) {
+ std::istringstream iss(line);
+ mpq_class p0;
+ mpq_class p1;
+ mpq_class p2;
+ iss >> p0 >> p1 >> p2;
+ spec_ok = !iss.fail();
+ if (spec_ok) {
+ verts.append(arena.add_or_find_vert(mpq3(p0, p1, p2), v_index));
+ }
+ ++v_index;
+ }
+ if (v_index != nv) {
+ spec_ok = false;
+ }
+ int f_index = 0;
+ while (f_index < nf && spec_ok && getline(ss, line)) {
+ std::istringstream fss(line);
+ Vector<const Vert *> face_verts;
+ Vector<int> edge_orig;
+ int fpos = 0;
+ while (spec_ok && fss >> v_index) {
+ if (v_index < 0 || v_index >= nv) {
+ spec_ok = false;
+ continue;
+ }
+ face_verts.append(verts[v_index]);
+ edge_orig.append(edge_index(f_index, fpos));
+ ++fpos;
+ }
+ if (fpos < 3) {
+ spec_ok = false;
+ }
+ if (spec_ok) {
+ Face *facep = arena.add_face(face_verts, f_index, edge_orig);
+ faces.append(facep);
+ }
+ ++f_index;
+ }
+ if (f_index != nf) {
+ spec_ok = false;
+ }
+ if (!spec_ok) {
+ std::cout << "Bad spec: " << spec;
+ return;
+ }
+ imesh = IMesh(faces);
+ }
+};
+
+/* Return a const Face * in mesh with verts equal to v0, v1, and v2, in
+ * some cyclic order; return nullptr if not found.
+ */
+static const Face *find_tri_with_verts(const IMesh &mesh,
+ const Vert *v0,
+ const Vert *v1,
+ const Vert *v2)
+{
+ Face f_arg({v0, v1, v2}, 0, NO_INDEX);
+ for (const Face *f : mesh.faces()) {
+ if (f->cyclic_equal(f_arg)) {
+ return f;
+ }
+ }
+ return nullptr;
+}
+
+/* How many instances of a triangle with v0, v1, v2 are in the mesh? */
+static int count_tris_with_verts(const IMesh &mesh, const Vert *v0, const Vert *v1, const Vert *v2)
+{
+ Face f_arg({v0, v1, v2}, 0, NO_INDEX);
+ int ans = 0;
+ for (const Face *f : mesh.faces()) {
+ if (f->cyclic_equal(f_arg)) {
+ ++ans;
+ }
+ }
+ return ans;
+}
+
+/* What is the starting position, if any, of the edge (v0, v1), in either order, in f? -1 if none.
+ */
+static int find_edge_pos_in_tri(const Vert *v0, const Vert *v1, const Face *f)
+{
+ for (int pos : f->index_range()) {
+ int nextpos = f->next_pos(pos);
+ if (((*f)[pos] == v0 && (*f)[nextpos] == v1) || ((*f)[pos] == v1 && (*f)[nextpos] == v0)) {
+ return static_cast<int>(pos);
+ }
+ }
+ return -1;
+}
+
+#if DO_REGULAR_TESTS
+TEST(mesh_intersect, Mesh)
+{
+ Vector<const Vert *> verts;
+ Vector<Face *> faces;
+ IMeshArena arena;
+
+ verts.append(arena.add_or_find_vert(mpq3(0, 0, 1), 0));
+ verts.append(arena.add_or_find_vert(mpq3(1, 0, 1), 1));
+ verts.append(arena.add_or_find_vert(mpq3(0.5, 1, 1), 2));
+ faces.append(arena.add_face(verts, 0, {10, 11, 12}));
+
+ IMesh mesh(faces);
+ const Face *f = mesh.face(0);
+ EXPECT_TRUE(f->is_tri());
+}
+
+TEST(mesh_intersect, OneTri)
+{
+ const char *spec = R"(3 1
+ 0 0 0
+ 1 0 0
+ 1/2 1 0
+ 0 1 2
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh imesh = trimesh_self_intersect(mb.imesh, &mb.arena);
+ imesh.populate_vert();
+ EXPECT_EQ(imesh.vert_size(), 3);
+ EXPECT_EQ(imesh.face_size(), 1);
+ const Face &f_in = *mb.imesh.face(0);
+ const Face &f_out = *imesh.face(0);
+ EXPECT_EQ(f_in.orig, f_out.orig);
+ for (int i = 0; i < 3; ++i) {
+ EXPECT_EQ(f_in[i], f_out[i]);
+ EXPECT_EQ(f_in.edge_orig[i], f_out.edge_orig[i]);
+ }
+}
+
+TEST(mesh_intersect, TriTri)
+{
+ const char *spec = R"(6 2
+ 0 0 0
+ 4 0 0
+ 0 4 0
+ 1 0 0
+ 2 0 0
+ 1 1 0
+ 0 1 2
+ 3 4 5
+ )";
+
+ /* Second triangle is smaller and congruent to first, resting on same base, partway along. */
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 6);
+ EXPECT_EQ(out.face_size(), 6);
+ if (out.vert_size() == 6 && out.face_size() == 6) {
+ const Vert *v0 = mb.arena.find_vert(mpq3(0, 0, 0));
+ const Vert *v1 = mb.arena.find_vert(mpq3(4, 0, 0));
+ const Vert *v2 = mb.arena.find_vert(mpq3(0, 4, 0));
+ const Vert *v3 = mb.arena.find_vert(mpq3(1, 0, 0));
+ const Vert *v4 = mb.arena.find_vert(mpq3(2, 0, 0));
+ const Vert *v5 = mb.arena.find_vert(mpq3(1, 1, 0));
+ EXPECT_TRUE(v0 != nullptr && v1 != nullptr && v2 != nullptr);
+ EXPECT_TRUE(v3 != nullptr && v4 != nullptr && v5 != nullptr);
+ if (v0 != nullptr && v1 != nullptr && v2 != nullptr && v3 != nullptr && v4 != nullptr &&
+ v5 != nullptr) {
+ EXPECT_EQ(v0->orig, 0);
+ EXPECT_EQ(v1->orig, 1);
+ const Face *f0 = find_tri_with_verts(out, v4, v1, v5);
+ const Face *f1 = find_tri_with_verts(out, v3, v4, v5);
+ const Face *f2 = find_tri_with_verts(out, v0, v3, v5);
+ const Face *f3 = find_tri_with_verts(out, v0, v5, v2);
+ const Face *f4 = find_tri_with_verts(out, v5, v1, v2);
+ EXPECT_TRUE(f0 != nullptr && f1 != nullptr && f2 != nullptr && f3 != nullptr &&
+ f4 != nullptr);
+ /* For boolean to work right, there need to be two copies of the smaller triangle in the
+ * output. */
+ EXPECT_EQ(count_tris_with_verts(out, v3, v4, v5), 2);
+ if (f0 != nullptr && f1 != nullptr && f2 != nullptr && f3 != nullptr && f4 != nullptr) {
+ EXPECT_EQ(f0->orig, 0);
+ EXPECT_TRUE(f1->orig == 0 || f1->orig == 1);
+ EXPECT_EQ(f2->orig, 0);
+ EXPECT_EQ(f3->orig, 0);
+ EXPECT_EQ(f4->orig, 0);
+ }
+ int e03 = find_edge_pos_in_tri(v0, v3, f2);
+ int e34 = find_edge_pos_in_tri(v3, v4, f1);
+ int e45 = find_edge_pos_in_tri(v4, v5, f1);
+ int e05 = find_edge_pos_in_tri(v0, v5, f3);
+ int e15 = find_edge_pos_in_tri(v1, v5, f0);
+ EXPECT_TRUE(e03 != -1 && e34 != -1 && e45 != -1 && e05 != -1 && e15 != -1);
+ if (e03 != -1 && e34 != -1 && e45 != -1 && e05 != -1 && e15 != -1) {
+ EXPECT_EQ(f2->edge_orig[e03], 0);
+ EXPECT_TRUE(f1->edge_orig[e34] == 0 ||
+ f1->edge_orig[e34] == 1 * IMeshBuilder::MAX_FACE_LEN);
+ EXPECT_EQ(f1->edge_orig[e45], 1 * IMeshBuilder::MAX_FACE_LEN + 1);
+ EXPECT_EQ(f3->edge_orig[e05], NO_INDEX);
+ EXPECT_EQ(f0->edge_orig[e15], NO_INDEX);
+ }
+ }
+ }
+ if (DO_OBJ) {
+ write_obj_mesh(out, "tritri");
+ }
+}
+
+TEST(mesh_intersect, TriTriReversed)
+{
+ /* Like TriTri but with triangles of opposite orientation.
+ * This matters because projection to 2D will now need reversed triangles. */
+ const char *spec = R"(6 2
+ 0 0 0
+ 4 0 0
+ 0 4 0
+ 1 0 0
+ 2 0 0
+ 1 1 0
+ 0 2 1
+ 3 5 4
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 6);
+ EXPECT_EQ(out.face_size(), 6);
+ if (out.vert_size() == 6 && out.face_size() == 6) {
+ const Vert *v0 = mb.arena.find_vert(mpq3(0, 0, 0));
+ const Vert *v1 = mb.arena.find_vert(mpq3(4, 0, 0));
+ const Vert *v2 = mb.arena.find_vert(mpq3(0, 4, 0));
+ const Vert *v3 = mb.arena.find_vert(mpq3(1, 0, 0));
+ const Vert *v4 = mb.arena.find_vert(mpq3(2, 0, 0));
+ const Vert *v5 = mb.arena.find_vert(mpq3(1, 1, 0));
+ EXPECT_TRUE(v0 != nullptr && v1 != nullptr && v2 != nullptr);
+ EXPECT_TRUE(v3 != nullptr && v4 != nullptr && v5 != nullptr);
+ if (v0 != nullptr && v1 != nullptr && v2 != nullptr && v3 != nullptr && v4 != nullptr &&
+ v5 != nullptr) {
+ EXPECT_EQ(v0->orig, 0);
+ EXPECT_EQ(v1->orig, 1);
+ const Face *f0 = find_tri_with_verts(out, v4, v5, v1);
+ const Face *f1 = find_tri_with_verts(out, v3, v5, v4);
+ const Face *f2 = find_tri_with_verts(out, v0, v5, v3);
+ const Face *f3 = find_tri_with_verts(out, v0, v2, v5);
+ const Face *f4 = find_tri_with_verts(out, v5, v2, v1);
+ EXPECT_TRUE(f0 != nullptr && f1 != nullptr && f2 != nullptr && f3 != nullptr &&
+ f4 != nullptr);
+ /* For boolean to work right, there need to be two copies of the smaller triangle in the
+ * output. */
+ EXPECT_EQ(count_tris_with_verts(out, v3, v5, v4), 2);
+ if (f0 != nullptr && f1 != nullptr && f2 != nullptr && f3 != nullptr && f4 != nullptr) {
+ EXPECT_EQ(f0->orig, 0);
+ EXPECT_TRUE(f1->orig == 0 || f1->orig == 1);
+ EXPECT_EQ(f2->orig, 0);
+ EXPECT_EQ(f3->orig, 0);
+ EXPECT_EQ(f4->orig, 0);
+ }
+ int e03 = find_edge_pos_in_tri(v0, v3, f2);
+ int e34 = find_edge_pos_in_tri(v3, v4, f1);
+ int e45 = find_edge_pos_in_tri(v4, v5, f1);
+ int e05 = find_edge_pos_in_tri(v0, v5, f3);
+ int e15 = find_edge_pos_in_tri(v1, v5, f0);
+ EXPECT_TRUE(e03 != -1 && e34 != -1 && e45 != -1 && e05 != -1 && e15 != -1);
+ if (e03 != -1 && e34 != -1 && e45 != -1 && e05 != -1 && e15 != -1) {
+ EXPECT_EQ(f2->edge_orig[e03], 2);
+ EXPECT_TRUE(f1->edge_orig[e34] == 2 ||
+ f1->edge_orig[e34] == 1 * IMeshBuilder::MAX_FACE_LEN + 2);
+ EXPECT_EQ(f1->edge_orig[e45], 1 * IMeshBuilder::MAX_FACE_LEN + 1);
+ EXPECT_EQ(f3->edge_orig[e05], NO_INDEX);
+ EXPECT_EQ(f0->edge_orig[e15], NO_INDEX);
+ }
+ }
+ }
+ if (DO_OBJ) {
+ write_obj_mesh(out, "tritrirev");
+ }
+}
+
+TEST(mesh_intersect, TwoTris)
+{
+ Array<mpq3> verts = {
+ mpq3(1, 1, 1), mpq3(1, 4, 1), mpq3(1, 1, 4), /* T0 */
+ mpq3(2, 2, 2), mpq3(-3, 3, 2), mpq3(-4, 1, 3), /* T1 */
+ mpq3(2, 2, 2), mpq3(-3, 3, 2), mpq3(0, 3, 5), /* T2 */
+ mpq3(2, 2, 2), mpq3(-3, 3, 2), mpq3(0, 3, 3), /* T3 */
+ mpq3(1, 0, 0), mpq3(2, 4, 1), mpq3(-3, 2, 2), /* T4 */
+ mpq3(0, 2, 1), mpq3(-2, 3, 3), mpq3(0, 1, 3), /* T5 */
+ mpq3(1.5, 2, 0.5), mpq3(-2, 3, 3), mpq3(0, 1, 3), /* T6 */
+ mpq3(1, 0, 0), mpq3(-2, 3, 3), mpq3(0, 1, 3), /* T7 */
+ mpq3(1, 0, 0), mpq3(-3, 2, 2), mpq3(0, 1, 3), /* T8 */
+ mpq3(1, 0, 0), mpq3(-1, 1, 1), mpq3(0, 1, 3), /* T9 */
+ mpq3(3, -1, -1), mpq3(-1, 1, 1), mpq3(0, 1, 3), /* T10 */
+ mpq3(0, 0.5, 0.5), mpq3(-1, 1, 1), mpq3(0, 1, 3), /* T11 */
+ mpq3(2, 1, 1), mpq3(3, 5, 2), mpq3(-2, 3, 3), /* T12 */
+ mpq3(2, 1, 1), mpq3(3, 5, 2), mpq3(-2, 3, 4), /* T13 */
+ mpq3(2, 2, 5), mpq3(-3, 3, 5), mpq3(0, 3, 10), /* T14 */
+ mpq3(0, 0, 0), mpq3(4, 4, 0), mpq3(-4, 2, 4), /* T15 */
+ mpq3(0, 1.5, 1), mpq3(1, 2.5, 1), mpq3(-1, 2, 2), /* T16 */
+ mpq3(3, 0, -2), mpq3(7, 4, -2), mpq3(-1, 2, 2), /* T17 */
+ mpq3(3, 0, -2), mpq3(3, 6, 2), mpq3(-1, 2, 2), /* T18 */
+ mpq3(7, 4, -2), mpq3(3, 6, 2), mpq3(-1, 2, 2), /* T19 */
+ mpq3(5, 2, -2), mpq3(1, 4, 2), mpq3(-3, 0, 2), /* T20 */
+ mpq3(2, 2, 0), mpq3(1, 4, 2), mpq3(-3, 0, 2), /* T21 */
+ mpq3(0, 0, 0), mpq3(4, 4, 0), mpq3(-3, 0, 2), /* T22 */
+ mpq3(0, 0, 0), mpq3(4, 4, 0), mpq3(-1, 2, 2), /* T23 */
+ mpq3(2, 2, 0), mpq3(4, 4, 0), mpq3(0, 3, 2), /* T24 */
+ mpq3(0, 0, 0), mpq3(-4, 2, 4), mpq3(4, 4, 0), /* T25 */
+ };
+ struct two_tri_test_spec {
+ int t0;
+ int t1;
+ int nv_out;
+ int nf_out;
+ };
+ Array<two_tri_test_spec> test_tris = Span<two_tri_test_spec>{
+ {0, 1, 8, 8}, /* 0: T1 pierces T0 inside at (1,11/6,13/6) and (1,11/5,2). */
+ {0, 2, 8, 8}, /* 1: T2 intersects T0 inside (1,11/5,2) and edge (1,7/3,8/3). */
+ {0, 3, 8, 7}, /* 2: T3 intersects T0 (1,11/5,2) and edge-edge (1,5/2,5/2). */
+ {4, 5, 6, 4}, /* 3: T5 touches T4 inside (0,2,1). */
+ {4, 6, 6, 3}, /* 4: T6 touches T4 on edge (3/2,2/1/2). */
+ {4, 7, 5, 2}, /* 5: T7 touches T4 on vert (1,0,0). */
+ {4, 8, 4, 2}, /* 6: T8 shared edge with T4 (1,0,0)(-3,2,2). */
+ {4, 9, 5, 3}, /* 7: T9 edge (1,0,0)(-1,1,1) is subset of T4 edge. */
+ {4, 10, 6, 4}, /* 8: T10 edge overlaps T4 edge with seg (-1,1,0)(1,0,0). */
+ {4, 11, 6, 4}, /* 9: T11 edge (-1,1,1)(0,1/2,1/2) inside T4 edge. */
+ {4, 12, 6, 2}, /* 10: parallel planes, not intersecting. */
+ {4, 13, 6, 2}, /* 11: non-parallel planes, not intersecting, all one side. */
+ {0, 14, 6, 2}, /* 12: non-paralel planes, not intersecting, alternate sides. */
+ /* Following are all coplanar cases. */
+ {15, 16, 6, 8}, /* 13: T16 inside T15. Note: dup'd tri is expected. */
+ {15, 17, 8, 8}, /* 14: T17 intersects one edge of T15 at (1,1,0)(3,3,0). */
+ {15, 18, 10, 12}, /* 15: T18 intersects T15 at (1,1,0)(3,3,0)(3,15/4,1/2)(0,3,2). */
+ {15, 19, 8, 10}, /* 16: T19 intersects T15 at (3,3,0)(0,3,2). */
+ {15, 20, 12, 14}, /* 17: T20 intersects T15 on three edges, six intersects. */
+ {15, 21, 10, 11}, /* 18: T21 intersects T15 on three edges, touching one. */
+ {15, 22, 5, 4}, /* 19: T22 shares edge T15, one other outside. */
+ {15, 23, 4, 4}, /* 20: T23 shares edge T15, one other outside. */
+ {15, 24, 5, 4}, /* 21: T24 shares two edges with T15. */
+ {15, 25, 3, 2}, /* 22: T25 same T15, reverse orientation. */
+ };
+ static int perms[6][3] = {{0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {1, 2, 0}, {2, 0, 1}, {2, 1, 0}};
+
+ const int do_only_test = -1; /* Make this negative to do all tests. */
+ for (int test = 0; test < test_tris.size(); ++test) {
+ if (do_only_test >= 0 && test != do_only_test) {
+ continue;
+ }
+ int tri1_index = test_tris[test].t0;
+ int tri2_index = test_tris[test].t1;
+ int co1_i = 3 * tri1_index;
+ int co2_i = 3 * tri2_index;
+
+ const bool verbose = false;
+
+ if (verbose) {
+ std::cout << "\nTest " << test << ": T" << tri1_index << " intersect T" << tri2_index
+ << "\n";
+ }
+
+ const bool do_all_perms = true;
+ const int perm_limit = do_all_perms ? 3 : 1;
+
+ for (int i = 0; i < perm_limit; ++i) {
+ for (int j = 0; j < perm_limit; ++j) {
+ if (do_all_perms && verbose) {
+ std::cout << "\nperms " << i << " " << j << "\n";
+ }
+ IMeshArena arena;
+ arena.reserve(2 * 3, 2);
+ Array<const Vert *> f0_verts(3);
+ Array<const Vert *> f1_verts(3);
+ for (int k = 0; k < 3; ++k) {
+ f0_verts[k] = arena.add_or_find_vert(verts[co1_i + perms[i][k]], k);
+ }
+ for (int k = 0; k < 3; ++k) {
+ f1_verts[k] = arena.add_or_find_vert(verts[co2_i + perms[i][k]], k + 3);
+ }
+ Face *f0 = arena.add_face(f0_verts, 0, {0, 1, 2});
+ Face *f1 = arena.add_face(f1_verts, 1, {3, 4, 5});
+ IMesh in_mesh({f0, f1});
+ IMesh out_mesh = trimesh_self_intersect(in_mesh, &arena);
+ out_mesh.populate_vert();
+ EXPECT_EQ(out_mesh.vert_size(), test_tris[test].nv_out);
+ EXPECT_EQ(out_mesh.face_size(), test_tris[test].nf_out);
+ bool constexpr dump_input = true;
+ if (DO_OBJ && i == 0 && j == 0) {
+ if (dump_input) {
+ std::string name = "test_tt_in" + std::to_string(test);
+ write_obj_mesh(in_mesh, name);
+ }
+ std::string name = "test_tt" + std::to_string(test);
+ write_obj_mesh(out_mesh, name);
+ }
+ }
+ }
+ }
+}
+
+TEST(mesh_intersect, OverlapCluster)
+{
+ /* Chain of 5 overlapping coplanar tris.
+ * Ordered so that clustering will make two separate clusters
+ * that it will have to merge into one cluster with everything. */
+ const char *spec = R"(15 5
+ 0 0 0
+ 1 0 0
+ 1/2 1 0
+ 1/2 0 0
+ 3/2 0 0
+ 1 1 0
+ 1 0 0
+ 2 0 0
+ 3/2 1 0
+ 3/2 0 0
+ 5/2 0 0
+ 2 1 0
+ 2 0 0
+ 3 0 0
+ 5/2 1 0
+ 0 1 2
+ 3 4 5
+ 9 10 11
+ 12 13 14
+ 6 7 8
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 16);
+ EXPECT_EQ(out.face_size(), 18);
+ if (DO_OBJ) {
+ write_obj_mesh(out, "overlapcluster");
+ }
+}
+
+TEST(mesh_intersect, TriCornerCross1)
+{
+ /* A corner formed by 3 tris, and a 4th crossing two of them. */
+ const char *spec = R"(12 4
+ 0 0 0
+ 1 0 0
+ 0 0 1
+ 0 0 0
+ 0 1 0
+ 0 0 1
+ 0 0 0
+ 1 0 0
+ 0 1 0
+ 1 1 1/2
+ 1 -2 1/2
+ -2 1 1/2
+ 0 1 2
+ 3 4 5
+ 6 7 8
+ 9 10 11
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 10);
+ EXPECT_EQ(out.face_size(), 14);
+ if (DO_OBJ) {
+ write_obj_mesh(out, "test_tc_1");
+ }
+}
+
+TEST(mesh_intersect, TriCornerCross2)
+{
+ /* A corner formed by 3 tris, and a 4th coplanar with base. */
+ const char *spec = R"(12 4
+ 0 0 0
+ 1 0 0
+ 0 0 1
+ 0 0 0
+ 0 1 0
+ 0 0 1
+ 0 0 0
+ 1 0 0
+ 0 1 0
+ 1 1 0
+ 1 -2 0
+ -2 1 0
+ 0 1 2
+ 3 4 5
+ 6 7 8
+ 9 10 11
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 7);
+ EXPECT_EQ(out.face_size(), 8);
+ if (DO_OBJ) {
+ write_obj_mesh(out, "test_tc_2");
+ }
+}
+
+TEST(mesh_intersect, TriCornerCross3)
+{
+ /* A corner formed by 3 tris, and a 4th crossing all 3. */
+ const char *spec = R"(12 4
+ 0 0 0
+ 1 0 0
+ 0 0 1
+ 0 0 0
+ 0 1 0
+ 0 0 1
+ 0 0 0
+ 1 0 0
+ 0 1 0
+ 3/2 -1/2 -1/4
+ -1/2 3/2 -1/4
+ -1/2 -1/2 3/4
+ 0 1 2
+ 3 4 5
+ 6 7 8
+ 9 10 11
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 10);
+ EXPECT_EQ(out.face_size(), 16);
+ if (DO_OBJ) {
+ write_obj_mesh(out, "test_tc_3");
+ }
+}
+
+TEST(mesh_intersect, TetTet)
+{
+ const char *spec = R"(8 8
+ 0 0 0
+ 2 0 0
+ 1 2 0
+ 1 1 2
+ 0 0 1
+ 2 0 1
+ 1 2 1
+ 1 1 3
+ 0 1 2
+ 0 3 1
+ 1 3 2
+ 2 3 0
+ 4 5 6
+ 4 7 5
+ 5 7 6
+ 6 7 4
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 11);
+ EXPECT_EQ(out.face_size(), 20);
+ /* Expect there to be a triangle with these three verts, oriented this way, with original face 1.
+ */
+ const Vert *v1 = mb.arena.find_vert(mpq3(2, 0, 0));
+ const Vert *v8 = mb.arena.find_vert(mpq3(0.5, 0.5, 1));
+ const Vert *v9 = mb.arena.find_vert(mpq3(1.5, 0.5, 1));
+ EXPECT_TRUE(v1 != nullptr && v8 != nullptr && v9 != nullptr);
+ const Face *f = mb.arena.find_face({v1, v8, v9});
+ EXPECT_NE(f, nullptr);
+ EXPECT_EQ(f->orig, 1);
+ int v1pos = f->vert[0] == v1 ? 0 : (f->vert[1] == v1 ? 1 : 2);
+ EXPECT_EQ(f->edge_orig[v1pos], NO_INDEX);
+ EXPECT_EQ(f->edge_orig[(v1pos + 1) % 3], NO_INDEX);
+ EXPECT_EQ(f->edge_orig[(v1pos + 2) % 3], 1001);
+ EXPECT_EQ(f->is_intersect[v1pos], false);
+ EXPECT_EQ(f->is_intersect[(v1pos + 1) % 3], true);
+ EXPECT_EQ(f->is_intersect[(v1pos + 2) % 3], false);
+ if (DO_OBJ) {
+ write_obj_mesh(out, "test_tc_3");
+ }
+}
+
+TEST(mesh_intersect, CubeCubeStep)
+{
+ const char *spec = R"(16 24
+ 0 -1 0
+ 0 -1 2
+ 0 1 0
+ 0 1 2
+ 2 -1 0
+ 2 -1 2
+ 2 1 0
+ 2 1 2
+ -1 -1 -1
+ -1 -1 1
+ -1 1 -1
+ -1 1 1
+ 1 -1 -1
+ 1 -1 1
+ 1 1 -1
+ 1 1 1
+ 0 1 3
+ 0 3 2
+ 2 3 7
+ 2 7 6
+ 6 7 5
+ 6 5 4
+ 4 5 1
+ 4 1 0
+ 2 6 4
+ 2 4 0
+ 7 3 1
+ 7 1 5
+ 8 9 11
+ 8 11 10
+ 10 11 15
+ 10 15 14
+ 14 15 13
+ 14 13 12
+ 12 13 9
+ 12 9 8
+ 10 14 12
+ 10 12 8
+ 15 11 9
+ 15 9 13
+ )";
+
+ IMeshBuilder mb(spec);
+ IMesh out = trimesh_self_intersect(mb.imesh, &mb.arena);
+ out.populate_vert();
+ EXPECT_EQ(out.vert_size(), 22);
+ EXPECT_EQ(out.face_size(), 56);
+ if (DO_OBJ) {
+ write_obj_mesh(out, "test_cubecubestep");
+ }
+
+ IMeshBuilder mb2(spec);
+ IMesh out2 = trimesh_nary_intersect(
+ mb2.imesh, 2, [](int t) { return t < 12 ? 0 : 1; }, false, &mb2.arena);
+ out2.populate_vert();
+ EXPECT_EQ(out2.vert_size(), 22);
+ EXPECT_EQ(out2.face_size(), 56);
+ if (DO_OBJ) {
+ write_obj_mesh(out2, "test_cubecubestep_nary");
+ }
+}
+#endif
+
+#if DO_PERF_TESTS
+
+static void get_sphere_params(
+ int nrings, int nsegs, bool triangulate, int *r_num_verts, int *r_num_faces)
+{
+ *r_num_verts = nsegs * (nrings - 1) + 2;
+ if (triangulate) {
+ *r_num_faces = 2 * nsegs + 2 * nsegs * (nrings - 2);
+ }
+ else {
+ *r_num_faces = nsegs * nrings;
+ }
+}
+
+static void fill_sphere_data(int nrings,
+ int nsegs,
+ const double3 &center,
+ double radius,
+ bool triangulate,
+ MutableSpan<Face *> face,
+ int vid_start,
+ int fid_start,
+ IMeshArena *arena)
+{
+ int num_verts;
+ int num_faces;
+ get_sphere_params(nrings, nsegs, triangulate, &num_verts, &num_faces);
+ BLI_assert(num_faces == face.size());
+ Array<const Vert *> vert(num_verts);
+ const bool nrings_even = (nrings % 2 == 0);
+ int half_nrings = nrings / 2;
+ const bool nsegs_even = (nsegs % 2) == 0;
+ const bool nsegs_four_divisible = (nsegs % 4 == 0);
+ int half_nsegs = nrings;
+ int quarter_nsegs = half_nsegs / 2;
+ double delta_phi = 2 * M_PI / nsegs;
+ double delta_theta = M_PI / nrings;
+ int fid = fid_start;
+ int vid = vid_start;
+ auto vert_index_fn = [nrings, num_verts](int seg, int ring) {
+ if (ring == 0) { /* Top vert. */
+ return num_verts - 2;
+ }
+ if (ring == nrings) { /* Bottom vert. */
+ return num_verts - 1;
+ }
+ return seg * (nrings - 1) + (ring - 1);
+ };
+ auto face_index_fn = [nrings](int seg, int ring) { return seg * nrings + ring; };
+ auto tri_index_fn = [nrings, nsegs](int seg, int ring, int tri) {
+ if (ring == 0) {
+ return seg;
+ }
+ if (ring < nrings - 1) {
+ return nsegs + 2 * (ring - 1) * nsegs + 2 * seg + tri;
+ }
+ return nsegs + 2 * (nrings - 2) * nsegs + seg;
+ };
+ Array<int> eid = {0, 0, 0, 0}; /* Don't care about edge ids. */
+ /*
+ * (x, y , z) is given from inclination theta and azimuth phi,
+ * where 0 <= theta <= pi; 0 <= phi <= 2pi.
+ * x = radius * sin(theta) cos(phi)
+ * y = radius * sin(theta) sin(phi)
+ * z = radius * cos(theta)
+ */
+ for (int s = 0; s < nsegs; ++s) {
+ double phi = s * delta_phi;
+ double sin_phi;
+ double cos_phi;
+ /* Avoid use of trig functions for pi/2 divisible angles. */
+ if (s == 0) {
+ /* phi = 0. */
+ sin_phi = 0.0;
+ cos_phi = 1.0;
+ }
+ else if (nsegs_even && s == half_nsegs) {
+ /* phi = pi. */
+ sin_phi = 0.0;
+ cos_phi = -1.0;
+ }
+ else if (nsegs_four_divisible && s == quarter_nsegs) {
+ /* phi = pi/2. */
+ sin_phi = 1.0;
+ cos_phi = 0.0;
+ }
+ else if (nsegs_four_divisible && s == 3 * quarter_nsegs) {
+ /* phi = 3pi/2. */
+ sin_phi = -1.0;
+ cos_phi = 0.0;
+ }
+ else {
+ sin_phi = sin(phi);
+ cos_phi = cos(phi);
+ }
+ for (int r = 1; r < nrings; ++r) {
+ double theta = r * delta_theta;
+ double r_sin_theta;
+ double r_cos_theta;
+ if (nrings_even && r == half_nrings) {
+ /* theta = pi/2. */
+ r_sin_theta = radius;
+ r_cos_theta = 0.0;
+ }
+ else {
+ r_sin_theta = radius * sin(theta);
+ r_cos_theta = radius * cos(theta);
+ }
+ double x = r_sin_theta * cos_phi + center[0];
+ double y = r_sin_theta * sin_phi + center[1];
+ double z = r_cos_theta + center[2];
+ const Vert *v = arena->add_or_find_vert(mpq3(x, y, z), vid++);
+ vert[vert_index_fn(s, r)] = v;
+ }
+ }
+ const Vert *vtop = arena->add_or_find_vert(mpq3(center[0], center[1], center[2] + radius),
+ vid++);
+ const Vert *vbot = arena->add_or_find_vert(mpq3(center[0], center[1], center[2] - radius),
+ vid++);
+ vert[vert_index_fn(0, 0)] = vtop;
+ vert[vert_index_fn(0, nrings)] = vbot;
+ for (int s = 0; s < nsegs; ++s) {
+ int snext = (s + 1) % nsegs;
+ for (int r = 0; r < nrings; ++r) {
+ int rnext = r + 1;
+ int i0 = vert_index_fn(s, r);
+ int i1 = vert_index_fn(s, rnext);
+ int i2 = vert_index_fn(snext, rnext);
+ int i3 = vert_index_fn(snext, r);
+ Face *f;
+ Face *f2 = nullptr;
+ if (r == 0) {
+ f = arena->add_face({vert[i0], vert[i1], vert[i2]}, fid++, eid);
+ }
+ else if (r == nrings - 1) {
+ f = arena->add_face({vert[i0], vert[i1], vert[i3]}, fid++, eid);
+ }
+ else {
+ if (triangulate) {
+ f = arena->add_face({vert[i0], vert[i1], vert[i2]}, fid++, eid);
+ f2 = arena->add_face({vert[i2], vert[i3], vert[i0]}, fid++, eid);
+ }
+ else {
+ f = arena->add_face({vert[i0], vert[i1], vert[i2], vert[i3]}, fid++, eid);
+ }
+ }
+ if (triangulate) {
+ int f_index = tri_index_fn(s, r, 0);
+ face[f_index] = f;
+ if (r != 0 && r != nrings - 1) {
+ int f_index2 = tri_index_fn(s, r, 1);
+ face[f_index2] = f2;
+ }
+ }
+ else {
+ int f_index = face_index_fn(s, r);
+ face[f_index] = f;
+ }
+ }
+ }
+}
+
+static void spheresphere_test(int nrings, double y_offset, bool use_self)
+{
+ /* Make two uvspheres with nrings rings ad 2*nrings segments. */
+ if (nrings < 2) {
+ return;
+ }
+ BLI_task_scheduler_init(); /* Without this, no parallelism. */
+ double time_start = PIL_check_seconds_timer();
+ IMeshArena arena;
+ int nsegs = 2 * nrings;
+ int num_sphere_verts;
+ int num_sphere_tris;
+ get_sphere_params(nrings, nsegs, true, &num_sphere_verts, &num_sphere_tris);
+ Array<Face *> tris(2 * num_sphere_tris);
+ arena.reserve(2 * num_sphere_verts, 2 * num_sphere_tris);
+ double3 center1(0.0, 0.0, 0.0);
+ fill_sphere_data(nrings,
+ nsegs,
+ center1,
+ 1.0,
+ true,
+ MutableSpan<Face *>(tris.begin(), num_sphere_tris),
+ 0,
+ 0,
+ &arena);
+ double3 center2(0.0, y_offset, 0.0);
+ fill_sphere_data(nrings,
+ nsegs,
+ center2,
+ 1.0,
+ true,
+ MutableSpan<Face *>(tris.begin() + num_sphere_tris, num_sphere_tris),
+ num_sphere_verts,
+ num_sphere_verts,
+ &arena);
+ IMesh mesh(tris);
+ double time_create = PIL_check_seconds_timer();
+ // write_obj_mesh(mesh, "spheresphere_in");
+ IMesh out;
+ if (use_self) {
+ out = trimesh_self_intersect(mesh, &arena);
+ }
+ else {
+ int nf = num_sphere_tris;
+ out = trimesh_nary_intersect(
+ mesh, 2, [nf](int t) { return t < nf ? 0 : 1; }, false, &arena);
+ }
+ double time_intersect = PIL_check_seconds_timer();
+ std::cout << "Create time: " << time_create - time_start << "\n";
+ std::cout << "Intersect time: " << time_intersect - time_create << "\n";
+ std::cout << "Total time: " << time_intersect - time_start << "\n";
+ if (DO_OBJ) {
+ write_obj_mesh(out, "spheresphere");
+ }
+ BLI_task_scheduler_exit();
+}
+
+static void get_grid_params(
+ int x_subdiv, int y_subdiv, bool triangulate, int *r_num_verts, int *r_num_faces)
+{
+ *r_num_verts = x_subdiv * y_subdiv;
+ if (triangulate) {
+ *r_num_faces = 2 * (x_subdiv - 1) * (y_subdiv - 1);
+ }
+ else {
+ *r_num_faces = (x_subdiv - 1) * (y_subdiv - 1);
+ }
+}
+
+static void fill_grid_data(int x_subdiv,
+ int y_subdiv,
+ bool triangulate,
+ double size,
+ const double3 &center,
+ MutableSpan<Face *> face,
+ int vid_start,
+ int fid_start,
+ IMeshArena *arena)
+{
+ if (x_subdiv <= 1 || y_subdiv <= 1) {
+ return;
+ }
+ int num_verts;
+ int num_faces;
+ get_grid_params(x_subdiv, y_subdiv, triangulate, &num_verts, &num_faces);
+ BLI_assert(face.size() == num_faces);
+ Array<const Vert *> vert(num_verts);
+ auto vert_index_fn = [x_subdiv](int ix, int iy) { return iy * x_subdiv + ix; };
+ auto face_index_fn = [x_subdiv](int ix, int iy) { return iy * (x_subdiv - 1) + ix; };
+ auto tri_index_fn = [x_subdiv](int ix, int iy, int tri) {
+ return 2 * iy * (x_subdiv - 1) + 2 * ix + tri;
+ };
+ Array<int> eid = {0, 0, 0, 0}; /* Don't care about edge ids. */
+ double r = size / 2.0;
+ double delta_x = size / (x_subdiv - 1);
+ double delta_y = size / (y_subdiv - 1);
+ int vid = vid_start;
+ for (int iy = 0; iy < y_subdiv; ++iy) {
+ for (int ix = 0; ix < x_subdiv; ++ix) {
+ double x = center[0] - r + ix * delta_x;
+ double y = center[1] - r + iy * delta_y;
+ double z = center[2];
+ const Vert *v = arena->add_or_find_vert(mpq3(x, y, z), vid++);
+ vert[vert_index_fn(ix, iy)] = v;
+ }
+ }
+ int fid = fid_start;
+ for (int iy = 0; iy < y_subdiv - 1; ++iy) {
+ for (int ix = 0; ix < x_subdiv - 1; ++ix) {
+ int i0 = vert_index_fn(ix, iy);
+ int i1 = vert_index_fn(ix, iy + 1);
+ int i2 = vert_index_fn(ix + 1, iy + 1);
+ int i3 = vert_index_fn(ix + 1, iy);
+ if (triangulate) {
+ Face *f = arena->add_face({vert[i0], vert[i1], vert[i2]}, fid++, eid);
+ Face *f2 = arena->add_face({vert[i2], vert[i3], vert[i0]}, fid++, eid);
+ face[tri_index_fn(ix, iy, 0)] = f;
+ face[tri_index_fn(ix, iy, 1)] = f2;
+ }
+ else {
+ Face *f = arena->add_face({vert[i0], vert[i1], vert[i2], vert[i3]}, fid++, eid);
+ face[face_index_fn(ix, iy)] = f;
+ }
+ }
+ }
+}
+
+static void spheregrid_test(int nrings, int grid_level, double z_offset, bool use_self)
+{
+ /* Make a uvsphere and a grid.
+ * The sphere is radius 1, has nrings rings and 2 * nrings segs,
+ * and is centered at (0,0,z_offset).
+ * The plane is 4x4, has 2**grid_level subdivisions x and y,
+ * and is centered at the origin. */
+ if (nrings < 2 || grid_level < 1) {
+ return;
+ }
+ BLI_task_scheduler_init(); /* Without this, no parallelism. */
+ double time_start = PIL_check_seconds_timer();
+ IMeshArena arena;
+ int num_sphere_verts;
+ int num_sphere_tris;
+ int nsegs = 2 * nrings;
+ int num_grid_verts;
+ int num_grid_tris;
+ int subdivs = 1 << grid_level;
+ get_sphere_params(nrings, nsegs, true, &num_sphere_verts, &num_sphere_tris);
+ get_grid_params(subdivs, subdivs, true, &num_grid_verts, &num_grid_tris);
+ Array<Face *> tris(num_sphere_tris + num_grid_tris);
+ arena.reserve(num_sphere_verts + num_grid_verts, num_sphere_tris + num_grid_tris);
+ double3 center(0.0, 0.0, z_offset);
+ fill_sphere_data(nrings,
+ nsegs,
+ center,
+ 1.0,
+ true,
+ MutableSpan<Face *>(tris.begin(), num_sphere_tris),
+ 0,
+ 0,
+ &arena);
+ fill_grid_data(subdivs,
+ subdivs,
+ true,
+ 4.0,
+ double3(0, 0, 0),
+ MutableSpan<Face *>(tris.begin() + num_sphere_tris, num_grid_tris),
+ num_sphere_verts,
+ num_sphere_tris,
+ &arena);
+ IMesh mesh(tris);
+ double time_create = PIL_check_seconds_timer();
+ // write_obj_mesh(mesh, "spheregrid_in");
+ IMesh out;
+ if (use_self) {
+ out = trimesh_self_intersect(mesh, &arena);
+ }
+ else {
+ int nf = num_sphere_tris;
+ out = trimesh_nary_intersect(
+ mesh, 2, [nf](int t) { return t < nf ? 0 : 1; }, false, &arena);
+ }
+ double time_intersect = PIL_check_seconds_timer();
+ std::cout << "Create time: " << time_create - time_start << "\n";
+ std::cout << "Intersect time: " << time_intersect - time_create << "\n";
+ std::cout << "Total time: " << time_intersect - time_start << "\n";
+ if (DO_OBJ) {
+ write_obj_mesh(out, "spheregrid");
+ }
+ BLI_task_scheduler_exit();
+}
+
+TEST(mesh_intersect_perf, SphereSphere)
+{
+ spheresphere_test(64, 0.5, false);
+}
+
+TEST(mesh_intersect_perf, SphereGrid)
+{
+ spheregrid_test(64, 4, 0.1, false);
+}
+
+#endif
+
+} // namespace blender::meshintersect::tests