Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Lucke <jacques@blender.org>2022-04-26 18:12:34 +0300
committerJacques Lucke <jacques@blender.org>2022-04-26 18:12:34 +0300
commitae94e36cfb2f3bc9a99b638782092d9c71d4b3c7 (patch)
treedc54dc643a2c498af1d3de97b471115607a8d3b4 /source/blender/blenlib
parent9a53599180041cf9501e2ac6150c9f900a3a3fc0 (diff)
Geometry Nodes: refactor array devirtualization
Goals: * Better high level control over where devirtualization occurs. There is always a trade-off between performance and compile-time/binary-size. * Simplify using array devirtualization. * Better performance for cases where devirtualization wasn't used before. Many geometry nodes accept fields as inputs. Internally, that means that the execution functions have to accept so called "virtual arrays" as inputs. Those can be e.g. actual arrays, just single values, or lazily computed arrays. Due to these different possible virtual arrays implementations, access to individual elements is slower than it would be if everything was just a normal array (access does through a virtual function call). For more complex execution functions, this overhead does not matter, but for small functions (like a simple addition) it very much does. The virtual function call also prevents the compiler from doing some optimizations (e.g. loop unrolling and inserting simd instructions). The solution is to "devirtualize" the virtual arrays for small functions where the overhead is measurable. Essentially, the function is generated many times with different array types as input. Then there is a run-time dispatch that calls the best implementation. We have been doing devirtualization in e.g. math nodes for a long time already. This patch just generalizes the concept and makes it easier to control. It also makes it easier to investigate the different trade-offs when it comes to devirtualization. Nodes that we've optimized using devirtualization before didn't get a speedup. However, a couple of nodes are using devirtualization now, that didn't before. Those got a 2-4x speedup in common cases. * Map Range * Random Value * Switch * Combine XYZ Differential Revision: https://developer.blender.org/D14628
Diffstat (limited to 'source/blender/blenlib')
-rw-r--r--source/blender/blenlib/BLI_devirtualize_parameters.hh309
-rw-r--r--source/blender/blenlib/BLI_parameter_pack_utils.hh122
-rw-r--r--source/blender/blenlib/BLI_virtual_array.hh71
-rw-r--r--source/blender/blenlib/CMakeLists.txt2
4 files changed, 439 insertions, 65 deletions
diff --git a/source/blender/blenlib/BLI_devirtualize_parameters.hh b/source/blender/blenlib/BLI_devirtualize_parameters.hh
new file mode 100644
index 00000000000..bf4f6c47cfe
--- /dev/null
+++ b/source/blender/blenlib/BLI_devirtualize_parameters.hh
@@ -0,0 +1,309 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#pragma once
+
+/** \file
+ * \ingroup bli
+ *
+ * In geometry nodes, many functions accept fields as inputs. For the implementation that means
+ * that the inputs are virtual arrays. Usually those are backed by actual arrays or single values
+ * but sometimes virtual arrays are used to compute values on demand or convert between data
+ * formats.
+ *
+ * Using virtual arrays has the downside that individual elements are accessed through a virtual
+ * method call, which has some overhead compared to normal array access. Whether this overhead is
+ * negilible depends on the context. For very small functions (e.g. a single addition), the
+ * overhead can make the function many times slower. Furthermore, it prevents the compiler from
+ * doing some optimizations (e.g. loop unrolling and inserting SIMD instructions).
+ *
+ * The solution is to "devirtualize" the virtual arrays in cases when the overhead cannot be
+ * ignored. That means that the function is instantiated multiple times at compile time for the
+ * different cases. For example, there can be an optimized function that adds a span and a single
+ * value, and another function that adds a span and another span. At run-time there is a dynamic
+ * dispatch that executes the best function given the specific virtual arrays.
+ *
+ * The problem with this devirtualization is that it can result in exponentially increasing compile
+ * times and binary sizes, depending on the number of parameters that are devirtualized separately.
+ * So there is always a trade-off between run-time performance and compile-time/binary-size.
+ *
+ * This file provides a utility to devirtualize array parameters to a function using a high level
+ * API. This makes it easy to experiment with different extremes of the mentioned trade-off and
+ * allows finding a good compromise for each function.
+ */
+
+#include "BLI_parameter_pack_utils.hh"
+#include "BLI_virtual_array.hh"
+
+namespace blender::devirtualize_parameters {
+
+/**
+ * Bit flag that specifies how an individual parameter is or can be devirtualized.
+ */
+enum class DeviMode {
+ /* This is used as zero-value to compare to, to avoid casting to int. */
+ None = 0,
+ /* Don't use devirtualization for that parameter, just pass it along. */
+ Keep = (1 << 0),
+ /* Devirtualize #Varray as #Span. */
+ Span = (1 << 1),
+ /* Devirtualize #VArray as #SingleAsSpan. */
+ Single = (1 << 2),
+ /* Devirtualize #IndexMask as #IndexRange. */
+ Range = (1 << 3),
+};
+ENUM_OPERATORS(DeviMode, DeviMode::Range);
+
+/** Utility to encode multiple #DeviMode in a type. */
+template<DeviMode... Mode> using DeviModeSequence = ValueSequence<DeviMode, Mode...>;
+
+/**
+ * Main class that performs the devirtualization.
+ */
+template<typename Fn, typename... SourceTypes> class Devirtualizer {
+ private:
+ /** Utility to get the tag of the I-th source type. */
+ template<size_t I>
+ using type_at_index = typename TypeSequence<SourceTypes...>::template at_index<I>;
+ static constexpr size_t SourceTypesNum = sizeof...(SourceTypes);
+
+ /** Function to devirtualize. */
+ Fn fn_;
+
+ /**
+ * Source values that will be devirtualized. Note that these are stored as pointers to avoid
+ * unnecessary copies. The caller is responsible for keeping the memory alive.
+ */
+ std::tuple<const SourceTypes *...> sources_;
+
+ /** Keeps track of whether #fn_ has been called already to avoid calling it twice. */
+ bool executed_ = false;
+
+ public:
+ Devirtualizer(Fn fn, const SourceTypes *...sources) : fn_(std::move(fn)), sources_{sources...}
+ {
+ }
+
+ /**
+ * Return true when the function passed to the constructor has been called already.
+ */
+ bool executed() const
+ {
+ return executed_;
+ }
+
+ /**
+ * At compile time, generates multiple variants of the function, each optimized for a different
+ * combination of devirtualized parameters. For every parameter, a bit flag is passed that
+ * determines how it will be devirtualized. At run-time, if possible, one of the generated
+ * functions is picked and executed.
+ *
+ * To check whether the function was called successfully, call #executed() afterwards.
+ *
+ * \note This generates an exponential amount of code in the final binary, depending on how many
+ * to-be-virtualized parameters there are.
+ */
+ template<DeviMode... AllowedModes>
+ void try_execute_devirtualized(DeviModeSequence<AllowedModes...> /* allowed_modes */)
+ {
+ BLI_assert(!executed_);
+ static_assert(sizeof...(AllowedModes) == SourceTypesNum);
+ return this->try_execute_devirtualized_impl(DeviModeSequence<>(),
+ DeviModeSequence<AllowedModes...>());
+ }
+
+ /**
+ * Execute the function and pass in the original parameters without doing any devirtualization.
+ */
+ void execute_without_devirtualization()
+ {
+ BLI_assert(!executed_);
+ this->try_execute_devirtualized_impl_call(
+ make_value_sequence<DeviMode, DeviMode::Keep, SourceTypesNum>(),
+ std::make_index_sequence<SourceTypesNum>());
+ }
+
+ private:
+ /**
+ * A recursive method that generates all the combinations of devirtualized parameters that the
+ * caller requested. A recursive function is necessary to achieve generating an exponential
+ * number of function calls (which has to be used with care, but is expected here).
+ *
+ * At every recursive step, the #DeviMode of one parameter is determined. This is achieved by
+ * extending #DeviModeSequence<Mode...> by one element in each step. The recursion ends once all
+ * parameters are handled.
+ */
+ template<DeviMode... Mode, DeviMode... AllowedModes>
+ void try_execute_devirtualized_impl(
+ /* Initially empty, but then extended by one element in each recursive step. */
+ DeviModeSequence<Mode...> /* modes */,
+ /* Bit flag for every parameter. */
+ DeviModeSequence<AllowedModes...> /* allowed_modes */)
+ {
+ static_assert(SourceTypesNum == sizeof...(AllowedModes));
+ if constexpr (SourceTypesNum == sizeof...(Mode)) {
+ /* End of recursion, now call the function with the determined #DeviModes. */
+ this->try_execute_devirtualized_impl_call(DeviModeSequence<Mode...>(),
+ std::make_index_sequence<SourceTypesNum>());
+ }
+ else {
+ /* Index of the parameter that is checked in the current recursive step. */
+ constexpr size_t I = sizeof...(Mode);
+ /* Non-devirtualized parameter type. */
+ using SourceType = type_at_index<I>;
+ /* A bit flag indicating what devirtualizations are allowed in this step. */
+ constexpr DeviMode allowed_modes = DeviModeSequence<AllowedModes...>::template at_index<I>();
+
+ /* Handle #VArray types. */
+ if constexpr (is_VArray_v<SourceType>) {
+ /* The actual virtual array, used for dynamic dispatch at run-time. */
+ const SourceType &varray = *std::get<I>(sources_);
+ /* Check if the virtual array is a single value. */
+ if constexpr ((allowed_modes & DeviMode::Single) != DeviMode::None) {
+ if (varray.is_single()) {
+ this->try_execute_devirtualized_impl(DeviModeSequence<Mode..., DeviMode::Single>(),
+ DeviModeSequence<AllowedModes...>());
+ }
+ }
+ /* Check if the virtual array is a span. */
+ if constexpr ((allowed_modes & DeviMode::Span) != DeviMode::None) {
+ if (varray.is_span()) {
+ this->try_execute_devirtualized_impl(DeviModeSequence<Mode..., DeviMode::Span>(),
+ DeviModeSequence<AllowedModes...>());
+ }
+ }
+ /* Check if it is ok if the virtual array is not devirtualized. */
+ if constexpr ((allowed_modes & DeviMode::Keep) != DeviMode::None) {
+ this->try_execute_devirtualized_impl(DeviModeSequence<Mode..., DeviMode::Keep>(),
+ DeviModeSequence<AllowedModes...>());
+ }
+ }
+
+ /* Handle #IndexMask. */
+ else if constexpr (std::is_same_v<IndexMask, SourceType>) {
+ /* Check if the mask is actually a contiguous range. */
+ if constexpr ((allowed_modes & DeviMode::Range) != DeviMode::None) {
+ /* The actual mask used for dynamic dispatch at run-time. */
+ const IndexMask &mask = *std::get<I>(sources_);
+ if (mask.is_range()) {
+ this->try_execute_devirtualized_impl(DeviModeSequence<Mode..., DeviMode::Range>(),
+ DeviModeSequence<AllowedModes...>());
+ }
+ }
+ /* Check if mask is also allowed to stay a span. */
+ if constexpr ((allowed_modes & DeviMode::Span) != DeviMode::None) {
+ this->try_execute_devirtualized_impl(DeviModeSequence<Mode..., DeviMode::Span>(),
+ DeviModeSequence<AllowedModes...>());
+ }
+ }
+
+ /* Handle unknown types. */
+ else {
+ this->try_execute_devirtualized_impl(DeviModeSequence<Mode..., DeviMode::Keep>(),
+ DeviModeSequence<AllowedModes...>());
+ }
+ }
+ }
+
+ /**
+ * Actually call the function with devirtualized parameters.
+ */
+ template<DeviMode... Mode, size_t... I>
+ void try_execute_devirtualized_impl_call(DeviModeSequence<Mode...> /* modes */,
+ std::index_sequence<I...> /* indices */)
+ {
+
+ fn_(this->get_devirtualized_parameter<I, Mode>()...);
+ executed_ = true;
+ }
+
+ /**
+ * Return the I-th parameter devirtualized using the passed in #DeviMode. This has different
+ * return types based on the template parameters.
+ *
+ * \note It is expected that the caller already knows that the parameter can be devirtualized
+ * with the given mode.
+ */
+ template<size_t I, DeviMode Mode> decltype(auto) get_devirtualized_parameter()
+ {
+ using SourceType = type_at_index<I>;
+ static_assert(Mode != DeviMode::None);
+ if constexpr (Mode == DeviMode::Keep) {
+ /* Don't change the original parameter at all. */
+ return *std::get<I>(sources_);
+ }
+ if constexpr (is_VArray_v<SourceType>) {
+ const SourceType &varray = *std::get<I>(sources_);
+ if constexpr (Mode == DeviMode::Single) {
+ /* Devirtualize virtual array as single value. */
+ return SingleAsSpan(varray);
+ }
+ else if constexpr (Mode == DeviMode::Span) {
+ /* Devirtualize virtual array as span. */
+ return varray.get_internal_span();
+ }
+ }
+ else if constexpr (std::is_same_v<IndexMask, SourceType>) {
+ const IndexMask &mask = *std::get<I>(sources_);
+ if constexpr (ELEM(Mode, DeviMode::Span)) {
+ /* Don't devirtualize mask, it's still a span. */
+ return mask;
+ }
+ else if constexpr (Mode == DeviMode::Range) {
+ /* Devirtualize the mask as range. */
+ return mask.as_range();
+ }
+ }
+ }
+};
+
+} // namespace blender::devirtualize_parameters
+
+namespace blender {
+
+/**
+ * Generate multiple versions of the given function optimized for different virtual arrays.
+ * One has to be careful with nesting multiple devirtualizations, because that results in an
+ * exponential number of function instantiations (increasing compile time and binary size).
+ *
+ * Generally, this function should only be used when the virtual method call overhead to get an
+ * element from a virtual array is significant.
+ */
+template<typename T, typename Func>
+inline void devirtualize_varray(const VArray<T> &varray, const Func &func, bool enable = true)
+{
+ using namespace devirtualize_parameters;
+ if (enable) {
+ Devirtualizer<decltype(func), VArray<T>> devirtualizer(func, &varray);
+ constexpr DeviMode devi_mode = DeviMode::Single | DeviMode::Span;
+ devirtualizer.try_execute_devirtualized(DeviModeSequence<devi_mode>());
+ if (devirtualizer.executed()) {
+ return;
+ }
+ }
+ func(varray);
+}
+
+/**
+ * Same as `devirtualize_varray`, but devirtualizes two virtual arrays at the same time.
+ * This is better than nesting two calls to `devirtualize_varray`, because it instantiates fewer
+ * cases.
+ */
+template<typename T1, typename T2, typename Func>
+inline void devirtualize_varray2(const VArray<T1> &varray1,
+ const VArray<T2> &varray2,
+ const Func &func,
+ bool enable = true)
+{
+ using namespace devirtualize_parameters;
+ if (enable) {
+ Devirtualizer<decltype(func), VArray<T1>, VArray<T2>> devirtualizer(func, &varray1, &varray2);
+ constexpr DeviMode devi_mode = DeviMode::Single | DeviMode::Span;
+ devirtualizer.try_execute_devirtualized(DeviModeSequence<devi_mode, devi_mode>());
+ if (devirtualizer.executed()) {
+ return;
+ }
+ }
+ func(varray1, varray2);
+}
+
+} // namespace blender
diff --git a/source/blender/blenlib/BLI_parameter_pack_utils.hh b/source/blender/blenlib/BLI_parameter_pack_utils.hh
new file mode 100644
index 00000000000..d1ef7bcbc65
--- /dev/null
+++ b/source/blender/blenlib/BLI_parameter_pack_utils.hh
@@ -0,0 +1,122 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#pragma once
+
+/** \file
+ * \ingroup bli
+ *
+ * C++ has a feature called "parameter packs" which allow building variadic templates.
+ * This file has some utilities to work with such parameter packs.
+ */
+
+#include <tuple>
+#include <type_traits>
+
+#include "BLI_utildefines.h"
+
+namespace blender {
+
+/**
+ * A type that encodes a specific value.
+ */
+template<typename T, T Element> struct TypeForValue {
+ static constexpr T value = Element;
+};
+
+/**
+ * A type that encodes a list of values of the same type.
+ * This is similar to #std::integer_sequence, but a bit more general. It's main purpose it to also
+ * support enums instead of just ints.
+ */
+template<typename T, T... Elements> struct ValueSequence {
+ /**
+ * Get the number of elements in the sequence.
+ */
+ static constexpr size_t size() noexcept
+ {
+ return sizeof...(Elements);
+ }
+
+ /**
+ * Get the element at a specific index.
+ */
+ template<size_t I> static constexpr T at_index()
+ {
+ static_assert(I < sizeof...(Elements));
+ return std::tuple_element_t<I, std::tuple<TypeForValue<T, Elements>...>>::value;
+ }
+
+ /**
+ * Return true if the element is in the sequence.
+ */
+ template<T Element> static constexpr bool contains()
+ {
+ return ((Element == Elements) || ...);
+ }
+};
+
+/**
+ * A type that encodes a list of types.
+ * #std::tuple can also encode a list of types, but has a much more complex implementation.
+ */
+template<typename... T> struct TypeSequence {
+ /**
+ * Get the number of types in the sequence.
+ */
+ static constexpr size_t size() noexcept
+ {
+ return sizeof...(T);
+ }
+
+ /**
+ * Get the type at a specific index.
+ */
+ template<size_t I> using at_index = std::tuple_element_t<I, std::tuple<T...>>;
+};
+
+namespace detail {
+
+template<typename T, T Value, size_t... I>
+inline ValueSequence<T, ((I == 0) ? Value : Value)...> make_value_sequence_impl(
+ std::index_sequence<I...> /* indices */)
+{
+ return {};
+}
+
+template<typename T, T Value1, T Value2, size_t... Value1Indices, size_t... I>
+inline ValueSequence<T,
+ (ValueSequence<size_t, Value1Indices...>::template contains<I>() ? Value1 :
+ Value2)...>
+ make_two_value_sequence_impl(ValueSequence<size_t, Value1Indices...> /* value1_indices */,
+ std::index_sequence<I...> /* indices */)
+{
+ return {};
+};
+
+} // namespace detail
+
+/**
+ * Utility to create a #ValueSequence that has the same value at every index.
+ */
+template<typename T, T Value, size_t Size>
+using make_value_sequence = decltype(detail::make_value_sequence_impl<T, Value>(
+ std::make_index_sequence<Size>()));
+
+/**
+ * Utility to create a #ValueSequence that contains two different values. The indices of where the
+ * first value should be used are passed in.
+ */
+template<typename T, T Value1, T Value2, size_t Size, size_t... Value1Indices>
+using make_two_value_sequence = decltype(detail::make_two_value_sequence_impl<T, Value1, Value2>(
+ ValueSequence<size_t, Value1Indices...>(), std::make_index_sequence<Size>()));
+
+namespace parameter_pack_utils_static_tests {
+enum class MyEnum { A, B };
+static_assert(std::is_same_v<make_value_sequence<MyEnum, MyEnum::A, 3>,
+ ValueSequence<MyEnum, MyEnum::A, MyEnum::A, MyEnum::A>>);
+static_assert(
+ std::is_same_v<make_two_value_sequence<MyEnum, MyEnum::A, MyEnum::B, 5, 1, 2>,
+ ValueSequence<MyEnum, MyEnum::B, MyEnum::A, MyEnum::A, MyEnum::B, MyEnum::B>>);
+} // namespace parameter_pack_utils_static_tests
+
+} // namespace blender
diff --git a/source/blender/blenlib/BLI_virtual_array.hh b/source/blender/blenlib/BLI_virtual_array.hh
index 41a73b45853..7aa221f62ce 100644
--- a/source/blender/blenlib/BLI_virtual_array.hh
+++ b/source/blender/blenlib/BLI_virtual_array.hh
@@ -1089,6 +1089,12 @@ template<typename T> class VMutableArray : public VArrayCommon<T> {
}
};
+template<typename T> static constexpr bool is_VArray_v = false;
+template<typename T> static constexpr bool is_VArray_v<VArray<T>> = true;
+
+template<typename T> static constexpr bool is_VMutableArray_v = false;
+template<typename T> static constexpr bool is_VMutableArray_v<VMutableArray<T>> = true;
+
/**
* In many cases a virtual array is a span internally. In those cases, access to individual could
* be much more efficient than calling a virtual method. When the underlying virtual array is not a
@@ -1207,69 +1213,4 @@ template<typename T> class SingleAsSpan {
}
};
-/**
- * Generate multiple versions of the given function optimized for different virtual arrays.
- * One has to be careful with nesting multiple devirtualizations, because that results in an
- * exponential number of function instantiations (increasing compile time and binary size).
- *
- * Generally, this function should only be used when the virtual method call overhead to get an
- * element from a virtual array is significant.
- */
-template<typename T, typename Func>
-inline void devirtualize_varray(const VArray<T> &varray, const Func &func, bool enable = true)
-{
- /* Support disabling the devirtualization to simplify benchmarking. */
- if (enable) {
- if (varray.is_single()) {
- func(SingleAsSpan<T>(varray));
- return;
- }
- if (varray.is_span()) {
- func(varray.get_internal_span());
- return;
- }
- }
- func(varray);
-}
-
-/**
- * Same as `devirtualize_varray`, but devirtualizes two virtual arrays at the same time.
- * This is better than nesting two calls to `devirtualize_varray`, because it instantiates fewer
- * cases.
- */
-template<typename T1, typename T2, typename Func>
-inline void devirtualize_varray2(const VArray<T1> &varray1,
- const VArray<T2> &varray2,
- const Func &func,
- bool enable = true)
-{
- /* Support disabling the devirtualization to simplify benchmarking. */
- if (enable) {
- const bool is_span1 = varray1.is_span();
- const bool is_span2 = varray2.is_span();
- const bool is_single1 = varray1.is_single();
- const bool is_single2 = varray2.is_single();
- if (is_span1 && is_span2) {
- func(varray1.get_internal_span(), varray2.get_internal_span());
- return;
- }
- if (is_span1 && is_single2) {
- func(varray1.get_internal_span(), SingleAsSpan(varray2));
- return;
- }
- if (is_single1 && is_span2) {
- func(SingleAsSpan(varray1), varray2.get_internal_span());
- return;
- }
- if (is_single1 && is_single2) {
- func(SingleAsSpan(varray1), SingleAsSpan(varray2));
- return;
- }
- }
- /* This fallback is used even when one of the inputs could be optimized. It's probably not worth
- * it to optimize just one of the inputs, because then the compiler still has to call into
- * unknown code, which inhibits many compiler optimizations. */
- func(varray1, varray2);
-}
-
} // namespace blender
diff --git a/source/blender/blenlib/CMakeLists.txt b/source/blender/blenlib/CMakeLists.txt
index 446a027b03b..e0f28522d6c 100644
--- a/source/blender/blenlib/CMakeLists.txt
+++ b/source/blender/blenlib/CMakeLists.txt
@@ -180,6 +180,7 @@ set(SRC
BLI_cpp_type.hh
BLI_cpp_type_make.hh
BLI_delaunay_2d.h
+ BLI_devirtualize_parameters.hh
BLI_dial_2d.h
BLI_disjoint_set.hh
BLI_dlrbTree.h
@@ -274,6 +275,7 @@ set(SRC
BLI_noise.h
BLI_noise.hh
BLI_path_util.h
+ BLI_parameter_pack_utils.hh
BLI_polyfill_2d.h
BLI_polyfill_2d_beautify.h
BLI_probing_strategies.hh