Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMartin Poirier <theeth@yahoo.com>2008-08-15 01:16:48 +0400
committerMartin Poirier <theeth@yahoo.com>2008-08-15 01:16:48 +0400
commitdb42038bcf4373da6c06d936cf268fa90a90a2f4 (patch)
tree35488e1c40cf040a4591b58bb73e75004134a552 /source/blender/blenlib
parent715ca7cbf6d4b6b26a3ecf65de24bda64b1f1709 (diff)
parent47c2271d673173ee93b9d91926de9ea41415d411 (diff)
merging trunk 15964 -> 16116
Diffstat (limited to 'source/blender/blenlib')
-rw-r--r--source/blender/blenlib/BLI_kdopbvh.h36
-rw-r--r--source/blender/blenlib/intern/BLI_kdopbvh.c1025
2 files changed, 800 insertions, 261 deletions
diff --git a/source/blender/blenlib/BLI_kdopbvh.h b/source/blender/blenlib/BLI_kdopbvh.h
index b81ff0ee66f..6d9a17efebf 100644
--- a/source/blender/blenlib/BLI_kdopbvh.h
+++ b/source/blender/blenlib/BLI_kdopbvh.h
@@ -1,5 +1,7 @@
/**
*
+ * $Id$
+ *
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
@@ -40,6 +42,35 @@ typedef struct BVHTreeOverlap {
int indexB;
} BVHTreeOverlap;
+typedef struct BVHTreeNearest
+{
+ int index; /* the index of the nearest found (untouched if none is found within a dist radius from the given coordinates) */
+ float co[3]; /* nearest coordinates (untouched it none is found within a dist radius from the given coordinates) */
+ float no[3]; /* normal at nearest coordinates (untouched it none is found within a dist radius from the given coordinates) */
+ float dist; /* squared distance to search arround */
+} BVHTreeNearest;
+
+typedef struct BVHTreeRay
+{
+ float origin[3]; /* ray origin */
+ float direction[3]; /* ray direction */
+} BVHTreeRay;
+
+typedef struct BVHTreeRayHit
+{
+ int index; /* index of the tree node (untouched if no hit is found) */
+ float co[3]; /* coordinates of the hit point */
+ float no[3]; /* normal on hit point */
+ float dist; /* distance to the hit point */
+} BVHTreeRayHit;
+
+/* callback must update nearest in case it finds a nearest result */
+typedef void (*BVHTree_NearestPointCallback) (void *userdata, int index, const float *co, BVHTreeNearest *nearest);
+
+/* callback must update hit in case it finds a nearest successful hit */
+typedef void (*BVHTree_RayCastCallback) (void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit);
+
+
BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis);
void BLI_bvhtree_free(BVHTree *tree);
@@ -56,5 +87,10 @@ BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
float BLI_bvhtree_getepsilon(BVHTree *tree);
+/* find nearest node to the given coordinates (if nearest is given it will only search nodes where square distance is smaller than nearest->dist) */
+int BLI_bvhtree_find_nearest(BVHTree *tree, const float *co, BVHTreeNearest *nearest, BVHTree_NearestPointCallback callback, void *userdata);
+
+int BLI_bvhtree_ray_cast(BVHTree *tree, const float *co, const float *dir, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata);
+
#endif // BLI_KDOPBVH_H
diff --git a/source/blender/blenlib/intern/BLI_kdopbvh.c b/source/blender/blenlib/intern/BLI_kdopbvh.c
index 4ceb9762a7b..9671551a7f1 100644
--- a/source/blender/blenlib/intern/BLI_kdopbvh.c
+++ b/source/blender/blenlib/intern/BLI_kdopbvh.c
@@ -28,8 +28,9 @@
#include "math.h"
#include <stdio.h>
-#include <stdlib.h>
+#include <stdlib.h>
#include <string.h>
+#include <assert.h>
#include "MEM_guardedalloc.h"
@@ -42,15 +43,17 @@
#include <omp.h>
#endif
+
+
+#define MAX_TREETYPE 32
+
typedef struct BVHNode
{
- struct BVHNode **children; // max 8 children
- struct BVHNode *parent; // needed for bottom - top update
- float *bv; // Bounding volume of all nodes, max 13 axis
- int index; /* face, edge, vertex index */
- char totnode; // how many nodes are used, used for speedup
- char traversed; // how many nodes already traversed until this level?
- char main_axis;
+ struct BVHNode **children;
+ float *bv; // Bounding volume of all nodes, max 13 axis
+ int index; // face, edge, vertex index
+ char totnode; // how many nodes are used, used for speedup
+ char main_axis; // Axis used to split this node
} BVHNode;
struct BVHTree
@@ -72,8 +75,34 @@ typedef struct BVHOverlapData
BVHTree *tree1, *tree2;
BVHTreeOverlap *overlap;
int i, max_overlap; /* i is number of overlaps */
+ int start_axis, stop_axis;
} BVHOverlapData;
-////////////////////////////////////////
+
+typedef struct BVHNearestData
+{
+ BVHTree *tree;
+ float *co;
+ BVHTree_NearestPointCallback callback;
+ void *userdata;
+ float proj[13]; //coordinates projection over axis
+ BVHTreeNearest nearest;
+
+} BVHNearestData;
+
+typedef struct BVHRayCastData
+{
+ BVHTree *tree;
+
+ BVHTree_RayCastCallback callback;
+ void *userdata;
+
+
+ BVHTreeRay ray;
+ float ray_dot_axis[13];
+
+ BVHTreeRayHit hit;
+} BVHRayCastData;
+////////////////////////////////////////m
////////////////////////////////////////////////////////////////////////
@@ -244,7 +273,7 @@ int partition_nth_element(BVHNode **a, int _begin, int _end, int n, int axis){
int begin = _begin, end = _end, cut;
while(end-begin > 3)
{
- cut = bvh_partition(a, begin, end, bvh_medianof3(a, begin, (begin+end)/2, end-1, axis), axis );
+ cut = bvh_partition(a, begin, end, bvh_medianof3(a, begin, (begin+end)/2, end-1, axis), axis );
if(cut <= n)
begin = cut;
else
@@ -255,124 +284,15 @@ int partition_nth_element(BVHNode **a, int _begin, int _end, int n, int axis){
return n;
}
-
//////////////////////////////////////////////////////////////////////////////////////////////////////
-void BLI_bvhtree_free(BVHTree *tree)
-{
- if(tree)
- {
- MEM_freeN(tree->nodes);
- MEM_freeN(tree->nodearray);
- MEM_freeN(tree->nodebv);
- MEM_freeN(tree->nodechild);
- MEM_freeN(tree);
- }
-}
-
-BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
-{
- BVHTree *tree;
- int numbranches=0, i;
-
- // only support up to octree
- if(tree_type > 8)
- return NULL;
-
- tree = (BVHTree *)MEM_callocN(sizeof(BVHTree), "BVHTree");
-
- if(tree)
- {
- tree->epsilon = epsilon;
- tree->tree_type = tree_type;
- tree->axis = axis;
-
- if(axis == 26)
- {
- tree->start_axis = 0;
- tree->stop_axis = 13;
- }
- else if(axis == 18)
- {
- tree->start_axis = 7;
- tree->stop_axis = 13;
- }
- else if(axis == 14)
- {
- tree->start_axis = 0;
- tree->stop_axis = 7;
- }
- else if(axis == 8) // AABB
- {
- tree->start_axis = 0;
- tree->stop_axis = 4;
- }
- else if(axis == 6) // OBB
- {
- tree->start_axis = 0;
- tree->stop_axis = 3;
- }
- else
- {
- MEM_freeN(tree);
- return NULL;
- }
-
-
- // calculate max number of branches, our bvh kdop is "almost perfect"
- for(i = 1; i <= (int)ceil((float)((float)log(maxsize)/(float)log(tree_type))); i++)
- numbranches += (pow(tree_type, i) / tree_type);
-
- tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*(numbranches+maxsize + tree_type), "BVHNodes");
-
- if(!tree->nodes)
- {
- MEM_freeN(tree);
- return NULL;
- }
-
- tree->nodebv = (float*)MEM_callocN(sizeof(float)* axis * (numbranches+maxsize + tree_type), "BVHNodeBV");
- if(!tree->nodebv)
- {
- MEM_freeN(tree->nodes);
- MEM_freeN(tree);
- }
-
- tree->nodechild = (BVHNode**)MEM_callocN(sizeof(BVHNode*) * tree_type * (numbranches+maxsize + tree_type), "BVHNodeBV");
- if(!tree->nodechild)
- {
- MEM_freeN(tree->nodebv);
- MEM_freeN(tree->nodes);
- MEM_freeN(tree);
- }
-
- tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)*(numbranches+maxsize + tree_type), "BVHNodeArray");
-
- if(!tree->nodearray)
- {
- MEM_freeN(tree->nodechild);
- MEM_freeN(tree->nodebv);
- MEM_freeN(tree->nodes);
- MEM_freeN(tree);
- return NULL;
- }
-
- //link the dynamic bv and child links
- for(i=0; i< numbranches+maxsize + tree_type; i++)
- {
- tree->nodearray[i].bv = tree->nodebv + i * axis;
- tree->nodearray[i].children = tree->nodechild + i * tree_type;
- }
-
- }
-
- return tree;
-}
-
-
+/*
+ * BVHTree bounding volumes functions
+ */
static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoints, int moving)
{
float newminmax;
+ float *bv = node->bv;
int i, k;
// don't init boudings for the moving case
@@ -380,8 +300,8 @@ static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoi
{
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
- node->bv[2*i] = FLT_MAX;
- node->bv[2*i + 1] = -FLT_MAX;
+ bv[2*i] = FLT_MAX;
+ bv[2*i + 1] = -FLT_MAX;
}
}
@@ -391,10 +311,10 @@ static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoi
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
newminmax = INPR(&co[k * 3], KDOP_AXES[i]);
- if (newminmax < node->bv[2 * i])
- node->bv[2 * i] = newminmax;
- if (newminmax > node->bv[(2 * i) + 1])
- node->bv[(2 * i) + 1] = newminmax;
+ if (newminmax < bv[2 * i])
+ bv[2 * i] = newminmax;
+ if (newminmax > bv[(2 * i) + 1])
+ bv[(2 * i) + 1] = newminmax;
}
}
}
@@ -405,6 +325,7 @@ static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
float newmin,newmax;
int i, j;
float *bv = node->bv;
+
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
@@ -426,37 +347,7 @@ static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
bv[(2 * i) + 1] = newmax;
}
}
-}
-int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
-{
- BVHNode *node= NULL;
- int i;
-
- // insert should only possible as long as tree->totbranch is 0
- if(tree->totbranch > 0)
- return 0;
-
- if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes))
- return 0;
-
- // TODO check if have enough nodes in array
-
- node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
- tree->totleaf++;
-
- create_kdop_hull(tree, node, co, numpoints, 0);
-
- // inflate the bv with some epsilon
- for (i = tree->start_axis; i < tree->stop_axis; i++)
- {
- node->bv[(2 * i)] -= tree->epsilon; // minimum
- node->bv[(2 * i) + 1] += tree->epsilon; // maximum
- }
-
- node->index= index;
-
- return 1;
}
// only supports x,y,z axis in the moment
@@ -484,45 +375,76 @@ static char get_largest_axis(float *bv)
}
}
-static void bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end)
+// bottom-up update of bvh node BV
+// join the children on the parent BV
+static void node_join(BVHTree *tree, BVHNode *node)
{
- int i, tend;
- BVHNode *tnode;
- int slice = (end-start+tree->tree_type-1)/tree->tree_type; //division rounded up
+ int i, j;
- // Determine which axis to split along
- char laxis = get_largest_axis(node->bv);
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ node->bv[2*i] = FLT_MAX;
+ node->bv[2*i + 1] = -FLT_MAX;
+ }
- // split nodes along longest axis
- for (i=0; start < end; start += slice, i++) //i counts the current child
- {
- tend = start + slice;
-
- if(tend > end) tend = end;
-
- if(tend-start == 1) // ok, we have 1 left for this node
+ for (i = 0; i < tree->tree_type; i++)
+ {
+ if (node->children[i])
{
- node->children[i] = tree->nodes[start];
- node->children[i]->parent = node;
+ for (j = tree->start_axis; j < tree->stop_axis; j++)
+ {
+ // update minimum
+ if (node->children[i]->bv[(2 * j)] < node->bv[(2 * j)])
+ node->bv[(2 * j)] = node->children[i]->bv[(2 * j)];
+
+ // update maximum
+ if (node->children[i]->bv[(2 * j) + 1] > node->bv[(2 * j) + 1])
+ node->bv[(2 * j) + 1] = node->children[i]->bv[(2 * j) + 1];
+ }
}
else
- {
- tnode = node->children[i] = tree->nodes[tree->totleaf + tree->totbranch] = &(tree->nodearray[tree->totbranch + tree->totleaf]);
- tree->totbranch++;
- tnode->parent = node;
-
- if(tend != end)
- partition_nth_element(tree->nodes, start, end, tend, laxis);
- refit_kdop_hull(tree, tnode, start, tend);
- bvh_div_nodes(tree, tnode, start, tend);
- }
- node->totnode++;
+ break;
}
-
- return;
+}
+
+/*
+ * Debug and information functions
+ */
+static void bvhtree_print_tree(BVHTree *tree, BVHNode *node, int depth)
+{
+ int i;
+ for(i=0; i<depth; i++) printf(" ");
+ printf(" - %d (%d): ", node->index, node - tree->nodearray);
+ for(i=2*tree->start_axis; i<2*tree->stop_axis; i++)
+ printf("%.3f ", node->bv[i]);
+ printf("\n");
+
+ for(i=0; i<tree->tree_type; i++)
+ if(node->children[i])
+ bvhtree_print_tree(tree, node->children[i], depth+1);
+}
+
+static void bvhtree_info(BVHTree *tree)
+{
+ printf("BVHTree info\n");
+ printf("tree_type = %d, axis = %d, epsilon = %f\n", tree->tree_type, tree->axis, tree->epsilon);
+ printf("nodes = %d, branches = %d, leafs = %d\n", tree->totbranch + tree->totleaf, tree->totbranch, tree->totleaf);
+ printf("Memory per node = %dbytes\n", sizeof(BVHNode) + sizeof(BVHNode*)*tree->tree_type + sizeof(float)*tree->axis);
+ printf("BV memory = %dbytes\n", MEM_allocN_len(tree->nodebv));
+
+ printf("Total memory = %dbytes\n", sizeof(BVHTree)
+ + MEM_allocN_len(tree->nodes)
+ + MEM_allocN_len(tree->nodearray)
+ + MEM_allocN_len(tree->nodechild)
+ + MEM_allocN_len(tree->nodebv)
+ );
+
+// bvhtree_print_tree(tree, tree->nodes[tree->totleaf], 0);
}
#if 0
+
+
static void verify_tree(BVHTree *tree)
{
int i, j, check = 0;
@@ -570,29 +492,445 @@ static void verify_tree(BVHTree *tree)
printf("branches: %d, leafs: %d, total: %d\n", tree->totbranch, tree->totleaf, tree->totbranch + tree->totleaf);
}
#endif
+
+//Helper data and structures to build a min-leaf generalized implicit tree
+//This code can be easily reduced (basicly this is only method to calculate pow(k, n) in O(1).. and stuff like that)
+typedef struct BVHBuildHelper
+{
+ int tree_type; //
+ int totleafs; //
+
+ int leafs_per_child [32]; //Min number of leafs that are archievable from a node at depth N
+ int branches_on_level[32]; //Number of nodes at depth N (tree_type^N)
+
+ int remain_leafs; //Number of leafs that are placed on the level that is not 100% filled
+
+} BVHBuildHelper;
+
+static void build_implicit_tree_helper(BVHTree *tree, BVHBuildHelper *data)
+{
+ int depth = 0;
+ int remain;
+ int nnodes;
+
+ data->totleafs = tree->totleaf;
+ data->tree_type= tree->tree_type;
+
+ //Calculate the smallest tree_type^n such that tree_type^n >= num_leafs
+ for(
+ data->leafs_per_child[0] = 1;
+ data->leafs_per_child[0] < data->totleafs;
+ data->leafs_per_child[0] *= data->tree_type
+ );
+
+ data->branches_on_level[0] = 1;
+
+ //We could stop the loop first (but I am lazy to find out when)
+ for(depth = 1; depth < 32; depth++)
+ {
+ data->branches_on_level[depth] = data->branches_on_level[depth-1] * data->tree_type;
+ data->leafs_per_child [depth] = data->leafs_per_child [depth-1] / data->tree_type;
+ }
+
+ remain = data->totleafs - data->leafs_per_child[1];
+ nnodes = (remain + data->tree_type - 2) / (data->tree_type - 1);
+ data->remain_leafs = remain + nnodes;
+}
+
+// return the min index of all the leafs archivable with the given branch
+static int implicit_leafs_index(BVHBuildHelper *data, int depth, int child_index)
+{
+ int min_leaf_index = child_index * data->leafs_per_child[depth-1];
+ if(min_leaf_index <= data->remain_leafs)
+ return min_leaf_index;
+ else if(data->leafs_per_child[depth])
+ return data->totleafs - (data->branches_on_level[depth-1] - child_index) * data->leafs_per_child[depth];
+ else
+ return data->remain_leafs;
+}
+
+/**
+ * Generalized implicit tree build
+ *
+ * An implicit tree is a tree where its structure is implied, thus there is no need to store child pointers or indexs.
+ * Its possible to find the position of the child or the parent with simple maths (multiplication and adittion). This type
+ * of tree is for example used on heaps.. where node N has its childs at indexs N*2 and N*2+1.
+ *
+ * Altought in this case the tree type is general.. and not know until runtime.
+ * tree_type stands for the maximum number of childs that a tree node can have.
+ * All tree types >= 2 are supported.
+ *
+ * Advantages of the used trees include:
+ * - No need to store child/parent relations (they are implicit);
+ * - Any node child always has an index greater than the parent;
+ * - Brother nodes are sequencial in memory;
+ *
+ *
+ * Some math relations derived for general implicit trees:
+ *
+ * K = tree_type, ( 2 <= K )
+ * ROOT = 1
+ * N child of node A = A * K + (2 - K) + N, (0 <= N < K)
+ *
+ * Util methods:
+ * TODO...
+ * (looping elements, knowing if its a leaf or not.. etc...)
+ */
+
+// This functions returns the number of branches needed to have the requested number of leafs.
+static int implicit_needed_branches(int tree_type, int leafs)
+{
+ return MAX2(1, (leafs + tree_type - 3) / (tree_type-1) );
+}
+
+/*
+ * This function handles the problem of "sorting" the leafs (along the split_axis).
+ *
+ * It arranges the elements in the given partitions such that:
+ * - any element in partition N is less or equal to any element in partition N+1.
+ * - if all elements are diferent all partition will get the same subset of elements
+ * as if the array was sorted.
+ *
+ * partition P is described as the elements in the range ( nth[P] , nth[P+1] ]
+ *
+ * TODO: This can be optimized a bit by doing a specialized nth_element instead of K nth_elements
+ */
+static void split_leafs(BVHNode **leafs_array, int *nth, int partitions, int split_axis)
+{
+ int i;
+ for(i=0; i < partitions-1; i++)
+ {
+ if(nth[i] >= nth[partitions])
+ break;
+
+ partition_nth_element(leafs_array, nth[i], nth[partitions], nth[i+1], split_axis);
+ }
+}
+
+/*
+ * This functions builds an optimal implicit tree from the given leafs.
+ * Where optimal stands for:
+ * - The resulting tree will have the smallest number of branches;
+ * - At most only one branch will have NULL childs;
+ * - All leafs will be stored at level N or N+1.
+ *
+ * This function creates an implicit tree on branches_array, the leafs are given on the leafs_array.
+ *
+ * The tree is built per depth levels. First branchs at depth 1.. then branches at depth 2.. etc..
+ * The reason is that we can build level N+1 from level N witouth any data dependencies.. thus it allows
+ * to use multithread building.
+ *
+ * To archieve this is necessary to find how much leafs are accessible from a certain branch, BVHBuildHelper
+ * implicit_needed_branches and implicit_leafs_index are auxiliar functions to solve that "optimal-split".
+ */
+static void non_recursive_bvh_div_nodes(BVHTree *tree, BVHNode *branches_array, BVHNode **leafs_array, int num_leafs)
+{
+ int i;
+
+ const int tree_type = tree->tree_type;
+ const int tree_offset = 2 - tree->tree_type; //this value is 0 (on binary trees) and negative on the others
+ const int num_branches= implicit_needed_branches(tree_type, num_leafs);
+
+ BVHBuildHelper data;
+ int depth;
+
+ branches_array--; //Implicit trees use 1-based indexs
+
+ build_implicit_tree_helper(tree, &data);
+
+ //Loop tree levels (log N) loops
+ for(i=1, depth = 1; i <= num_branches; i = i*tree_type + tree_offset, depth++)
+ {
+ const int first_of_next_level = i*tree_type + tree_offset;
+ const int end_j = MIN2(first_of_next_level, num_branches + 1); //index of last branch on this level
+ int j;
+
+ //Loop all branches on this level
+#pragma omp parallel for private(j) schedule(static)
+ for(j = i; j < end_j; j++)
+ {
+ int k;
+ const int parent_level_index= j-i;
+ BVHNode* parent = branches_array + j;
+ int nth_positions[ MAX_TREETYPE + 1];
+ char split_axis;
+
+ int parent_leafs_begin = implicit_leafs_index(&data, depth, parent_level_index);
+ int parent_leafs_end = implicit_leafs_index(&data, depth, parent_level_index+1);
+
+ //This calculates the bounding box of this branch
+ //and chooses the largest axis as the axis to divide leafs
+ refit_kdop_hull(tree, parent, parent_leafs_begin, parent_leafs_end);
+ split_axis = get_largest_axis(parent->bv);
+
+ //Save split axis (this can be used on raytracing to speedup the query time)
+ parent->main_axis = split_axis / 2;
+
+ //Split the childs along the split_axis, note: its not needed to sort the whole leafs array
+ //Only to assure that the elements are partioned on a way that each child takes the elements
+ //it would take in case the whole array was sorted.
+ //Split_leafs takes care of that "sort" problem.
+ nth_positions[ 0] = parent_leafs_begin;
+ nth_positions[tree_type] = parent_leafs_end;
+ for(k = 1; k < tree_type; k++)
+ {
+ int child_index = j * tree_type + tree_offset + k;
+ int child_level_index = child_index - first_of_next_level; //child level index
+ nth_positions[k] = implicit_leafs_index(&data, depth+1, child_level_index);
+ }
+
+ split_leafs(leafs_array, nth_positions, tree_type, split_axis);
+
+
+ //Setup children and totnode counters
+ //Not really needed but currently most of BVH code relies on having an explicit children structure
+ for(k = 0; k < tree_type; k++)
+ {
+ int child_index = j * tree_type + tree_offset + k;
+ int child_level_index = child_index - first_of_next_level; //child level index
+
+ int child_leafs_begin = implicit_leafs_index(&data, depth+1, child_level_index);
+ int child_leafs_end = implicit_leafs_index(&data, depth+1, child_level_index+1);
+
+ if(child_leafs_end - child_leafs_begin > 1)
+ parent->children[k] = branches_array + child_index;
+ else if(child_leafs_end - child_leafs_begin == 1)
+ parent->children[k] = leafs_array[ child_leafs_begin ];
+ else
+ break;
+
+ parent->totnode = k+1;
+ }
+ }
+ }
+}
+
+
+/*
+ * BLI_bvhtree api
+ */
+BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
+{
+ BVHTree *tree;
+ int numnodes, i;
+ // theres not support for trees below binary-trees :P
+ if(tree_type < 2)
+ return NULL;
+
+ if(tree_type > MAX_TREETYPE)
+ return NULL;
+
+ tree = (BVHTree *)MEM_callocN(sizeof(BVHTree), "BVHTree");
+
+ if(tree)
+ {
+ tree->epsilon = epsilon;
+ tree->tree_type = tree_type;
+ tree->axis = axis;
+
+ if(axis == 26)
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 13;
+ }
+ else if(axis == 18)
+ {
+ tree->start_axis = 7;
+ tree->stop_axis = 13;
+ }
+ else if(axis == 14)
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 7;
+ }
+ else if(axis == 8) // AABB
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 4;
+ }
+ else if(axis == 6) // OBB
+ {
+ tree->start_axis = 0;
+ tree->stop_axis = 3;
+ }
+ else
+ {
+ MEM_freeN(tree);
+ return NULL;
+ }
+
+
+ //Allocate arrays
+ numnodes = maxsize + implicit_needed_branches(tree_type, maxsize) + tree_type;
+
+ tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*numnodes, "BVHNodes");
+
+ if(!tree->nodes)
+ {
+ MEM_freeN(tree);
+ return NULL;
+ }
+
+ tree->nodebv = (float*)MEM_callocN(sizeof(float)* axis * numnodes, "BVHNodeBV");
+ if(!tree->nodebv)
+ {
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree);
+ }
+
+ tree->nodechild = (BVHNode**)MEM_callocN(sizeof(BVHNode*) * tree_type * numnodes, "BVHNodeBV");
+ if(!tree->nodechild)
+ {
+ MEM_freeN(tree->nodebv);
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree);
+ }
+
+ tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)* numnodes, "BVHNodeArray");
+
+ if(!tree->nodearray)
+ {
+ MEM_freeN(tree->nodechild);
+ MEM_freeN(tree->nodebv);
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree);
+ return NULL;
+ }
+
+ //link the dynamic bv and child links
+ for(i=0; i< numnodes; i++)
+ {
+ tree->nodearray[i].bv = tree->nodebv + i * axis;
+ tree->nodearray[i].children = tree->nodechild + i * tree_type;
+ }
+
+ }
+
+ return tree;
+}
+
+void BLI_bvhtree_free(BVHTree *tree)
+{
+ if(tree)
+ {
+ MEM_freeN(tree->nodes);
+ MEM_freeN(tree->nodearray);
+ MEM_freeN(tree->nodebv);
+ MEM_freeN(tree->nodechild);
+ MEM_freeN(tree);
+ }
+}
+
void BLI_bvhtree_balance(BVHTree *tree)
{
- BVHNode *node;
+ int i;
+
+ BVHNode* branches_array = tree->nodearray + tree->totleaf;
+ BVHNode** leafs_array = tree->nodes;
+
+ //This function should only be called once (some big bug goes here if its being called more than once per tree)
+ assert(tree->totbranch == 0);
+
+ //Build the implicit tree
+ non_recursive_bvh_div_nodes(tree, branches_array, leafs_array, tree->totleaf);
+
+ //current code expects the branches to be linked to the nodes array
+ //we perform that linkage here
+ tree->totbranch = implicit_needed_branches(tree->tree_type, tree->totleaf);
+ for(i = 0; i < tree->totbranch; i++)
+ tree->nodes[tree->totleaf + i] = branches_array + i;
+
+ //bvhtree_info(tree);
+}
+
+int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
+{
+ int i;
+ BVHNode *node = NULL;
- if(tree->totleaf == 0)
- return;
+ // insert should only possible as long as tree->totbranch is 0
+ if(tree->totbranch > 0)
+ return 0;
+
+ if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes)/sizeof(*(tree->nodes)))
+ return 0;
+
+ // TODO check if have enough nodes in array
- // create root node
node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
- tree->totbranch++;
+ tree->totleaf++;
+
+ create_kdop_hull(tree, node, co, numpoints, 0);
+ node->index= index;
+
+ // inflate the bv with some epsilon
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ node->bv[(2 * i)] -= tree->epsilon; // minimum
+ node->bv[(2 * i) + 1] += tree->epsilon; // maximum
+ }
+
+ return 1;
+}
+
+
+// call before BLI_bvhtree_update_tree()
+int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_moving, int numpoints)
+{
+ int i;
+ BVHNode *node= NULL;
+
+ // check if index exists
+ if(index > tree->totleaf)
+ return 0;
- // refit root bvh node
- refit_kdop_hull(tree, tree->nodes[tree->totleaf], 0, tree->totleaf);
- // create + balance tree
- bvh_div_nodes(tree, tree->nodes[tree->totleaf], 0, tree->totleaf);
+ node = tree->nodearray + index;
+
+ create_kdop_hull(tree, node, co, numpoints, 0);
- // verify_tree(tree);
+ if(co_moving)
+ create_kdop_hull(tree, node, co_moving, numpoints, 1);
+
+ // inflate the bv with some epsilon
+ for (i = tree->start_axis; i < tree->stop_axis; i++)
+ {
+ node->bv[(2 * i)] -= tree->epsilon; // minimum
+ node->bv[(2 * i) + 1] += tree->epsilon; // maximum
+ }
+
+ return 1;
+}
+
+// call BLI_bvhtree_update_node() first for every node/point/triangle
+void BLI_bvhtree_update_tree(BVHTree *tree)
+{
+ //Update bottom=>top
+ //TRICKY: the way we build the tree all the childs have an index greater than the parent
+ //This allows us todo a bottom up update by starting on the biger numbered branch
+
+ BVHNode** root = tree->nodes + tree->totleaf;
+ BVHNode** index = tree->nodes + tree->totleaf + tree->totbranch-1;
+
+ for (; index >= root; index--)
+ node_join(tree, *index);
}
+float BLI_bvhtree_getepsilon(BVHTree *tree)
+{
+ return tree->epsilon;
+}
+
+
+/*
+ * BLI_bvhtree_overlap
+ */
// overlap - is it possbile for 2 bv's to collide ?
-static int tree_overlap(float *bv1, float *bv2, int start_axis, int stop_axis)
+static int tree_overlap(BVHNode *node1, BVHNode *node2, int start_axis, int stop_axis)
{
+ float *bv1 = node1->bv;
+ float *bv2 = node2->bv;
+
float *bv1_end = bv1 + (stop_axis<<1);
bv1 += start_axis<<1;
@@ -612,7 +950,7 @@ static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
{
int j;
- if(tree_overlap(node1->bv, node2->bv, MIN2(data->tree1->start_axis, data->tree2->start_axis), MIN2(data->tree1->stop_axis, data->tree2->stop_axis)))
+ if(tree_overlap(node1, node2, data->start_axis, data->stop_axis))
{
// check if node1 is a leaf
if(!node1->totnode)
@@ -678,7 +1016,7 @@ BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
return 0;
// fast check root nodes for collision before doing big splitting + traversal
- if(!tree_overlap(tree1->nodes[tree1->totleaf]->bv, tree2->nodes[tree2->totleaf]->bv, MIN2(tree1->start_axis, tree2->start_axis), MIN2(tree1->stop_axis, tree2->stop_axis)))
+ if(!tree_overlap(tree1->nodes[tree1->totleaf], tree2->nodes[tree2->totleaf], MIN2(tree1->start_axis, tree2->start_axis), MIN2(tree1->stop_axis, tree2->stop_axis)))
return 0;
data = MEM_callocN(sizeof(BVHOverlapData *)* tree1->tree_type, "BVHOverlapData_star");
@@ -693,6 +1031,8 @@ BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
data[j]->tree2 = tree2;
data[j]->max_overlap = MAX2(tree1->totleaf, tree2->totleaf);
data[j]->i = 0;
+ data[j]->start_axis = MIN2(tree1->start_axis, tree2->start_axis);
+ data[j]->stop_axis = MIN2(tree1->stop_axis, tree2->stop_axis );
}
#pragma omp parallel for private(j) schedule(static)
@@ -724,88 +1064,251 @@ BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
}
-// bottom up update of bvh tree:
-// join the 4 children here
-static void node_join(BVHTree *tree, BVHNode *node)
+/*
+ * Nearest neighbour - BLI_bvhtree_find_nearest
+ */
+static float squared_dist(const float *a, const float *b)
{
- int i, j;
-
- for (i = tree->start_axis; i < tree->stop_axis; i++)
+ float tmp[3];
+ VECSUB(tmp, a, b);
+ return INPR(tmp, tmp);
+}
+
+//Determines the nearest point of the given node BV. Returns the squared distance to that point.
+static float calc_nearest_point(BVHNearestData *data, BVHNode *node, float *nearest)
+{
+ int i;
+ const float *bv = node->bv;
+
+ //nearest on AABB hull
+ for(i=0; i != 3; i++, bv += 2)
{
- node->bv[2*i] = FLT_MAX;
- node->bv[2*i + 1] = -FLT_MAX;
+ if(bv[0] > data->proj[i])
+ nearest[i] = bv[0];
+ else if(bv[1] < data->proj[i])
+ nearest[i] = bv[1];
+ else
+ nearest[i] = data->proj[i];
}
-
- for (i = 0; i < tree->tree_type; i++)
+
+/*
+ //nearest on a general hull
+ VECCOPY(nearest, data->co);
+ for(i = data->tree->start_axis; i != data->tree->stop_axis; i++, bv+=2)
{
- if (node->children[i])
+ float proj = INPR( nearest, KDOP_AXES[i]);
+ float dl = bv[0] - proj;
+ float du = bv[1] - proj;
+
+ if(dl > 0)
{
- for (j = tree->start_axis; j < tree->stop_axis; j++)
- {
- // update minimum
- if (node->children[i]->bv[(2 * j)] < node->bv[(2 * j)])
- node->bv[(2 * j)] = node->children[i]->bv[(2 * j)];
-
- // update maximum
- if (node->children[i]->bv[(2 * j) + 1] > node->bv[(2 * j) + 1])
- node->bv[(2 * j) + 1] = node->children[i]->bv[(2 * j) + 1];
- }
+ VECADDFAC(nearest, nearest, KDOP_AXES[i], dl);
+ }
+ else if(du < 0)
+ {
+ VECADDFAC(nearest, nearest, KDOP_AXES[i], du);
}
+ }
+*/
+ return squared_dist(data->co, nearest);
+}
+
+
+// TODO: use a priority queue to reduce the number of nodes looked on
+static void dfs_find_nearest(BVHNearestData *data, BVHNode *node)
+{
+ int i;
+ float nearest[3], sdist;
+
+ sdist = calc_nearest_point(data, node, nearest);
+ if(sdist >= data->nearest.dist) return;
+
+ if(node->totnode == 0)
+ {
+ if(data->callback)
+ data->callback(data->userdata , node->index, data->co, &data->nearest);
else
- break;
+ {
+ data->nearest.index = node->index;
+ VECCOPY(data->nearest.co, nearest);
+ data->nearest.dist = sdist;
+ }
+ }
+ else
+ {
+ for(i=0; i != node->totnode; i++)
+ dfs_find_nearest(data, node->children[i]);
}
}
-// call before BLI_bvhtree_update_tree()
-int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_moving, int numpoints)
+int BLI_bvhtree_find_nearest(BVHTree *tree, const float *co, BVHTreeNearest *nearest, BVHTree_NearestPointCallback callback, void *userdata)
{
- BVHNode *node= NULL;
- int i = 0;
-
- // check if index exists
- if(index > tree->totleaf)
- return 0;
-
- node = tree->nodearray + index;
-
- create_kdop_hull(tree, node, co, numpoints, 0);
-
- if(co_moving)
- create_kdop_hull(tree, node, co_moving, numpoints, 1);
-
- // inflate the bv with some epsilon
- for (i = tree->start_axis; i < tree->stop_axis; i++)
+ int i;
+
+ BVHNearestData data;
+ BVHNode* root = tree->nodes[tree->totleaf];
+
+ //init data to search
+ data.tree = tree;
+ data.co = co;
+
+ data.callback = callback;
+ data.userdata = userdata;
+
+ for(i = data.tree->start_axis; i != data.tree->stop_axis; i++)
{
- node->bv[(2 * i)] -= tree->epsilon; // minimum
- node->bv[(2 * i) + 1] += tree->epsilon; // maximum
+ data.proj[i] = INPR(data.co, KDOP_AXES[i]);
}
-
- return 1;
+
+ if(nearest)
+ {
+ memcpy( &data.nearest , nearest, sizeof(*nearest) );
+ }
+ else
+ {
+ data.nearest.index = -1;
+ data.nearest.dist = FLT_MAX;
+ }
+
+ //dfs search
+ if(root)
+ dfs_find_nearest(&data, root);
+
+ //copy back results
+ if(nearest)
+ {
+ memcpy(nearest, &data.nearest, sizeof(*nearest));
+ }
+
+ return data.nearest.index;
}
-// call BLI_bvhtree_update_node() first for every node/point/triangle
-void BLI_bvhtree_update_tree(BVHTree *tree)
+
+/*
+ * Raycast - BLI_bvhtree_ray_cast
+ *
+ * raycast is done by performing a DFS on the BVHTree and saving the closest hit
+ */
+
+//Determines the distance that the ray must travel to hit the bounding volume of the given node
+static float ray_nearest_hit(BVHRayCastData *data, BVHNode *node)
{
- BVHNode *leaf, *parent;
-
- // reset tree traversing flag
- for (leaf = tree->nodearray + tree->totleaf; leaf != tree->nodearray + tree->totleaf + tree->totbranch; leaf++)
- leaf->traversed = 0;
+ int i;
+ const float *bv = node->bv;
+
+ float low = 0, upper = data->hit.dist;
+
+ for(i=0; i != 3; i++, bv += 2)
+ {
+ if(data->ray_dot_axis[i] == 0.0f)
+ {
+ //axis aligned ray
+ if(data->ray.origin[i] < bv[0]
+ || data->ray.origin[i] > bv[1])
+ return FLT_MAX;
+ }
+ else
+ {
+ float ll = (bv[0] - data->ray.origin[i]) / data->ray_dot_axis[i];
+ float lu = (bv[1] - data->ray.origin[i]) / data->ray_dot_axis[i];
+
+ if(data->ray_dot_axis[i] > 0)
+ {
+ if(ll > low) low = ll;
+ if(lu < upper) upper = lu;
+ }
+ else
+ {
+ if(lu > low) low = lu;
+ if(ll < upper) upper = ll;
+ }
- for (leaf = tree->nodearray; leaf != tree->nodearray + tree->totleaf; leaf++)
+ if(low > upper) return FLT_MAX;
+ }
+ }
+ return low;
+}
+
+static void dfs_raycast(BVHRayCastData *data, BVHNode *node)
+{
+ int i;
+
+ //ray-bv is really fast.. and simple tests revealed its worth to test it
+ //before calling the ray-primitive functions
+ float dist = ray_nearest_hit(data, node);
+ if(dist >= data->hit.dist) return;
+
+ if(node->totnode == 0)
{
- for (parent = leaf->parent; parent; parent = parent->parent)
+ if(data->callback)
+ data->callback(data->userdata, node->index, &data->ray, &data->hit);
+ else
{
- parent->traversed++; // we tried to go up in hierarchy
- if (parent->traversed < parent->totnode)
- break; // we do not need to check further
- else
- node_join(tree, parent);
+ data->hit.index = node->index;
+ data->hit.dist = dist;
+ VECADDFAC(data->hit.co, data->ray.origin, data->ray.direction, dist);
+ }
+ }
+ else
+ {
+ //pick loop direction to dive into the tree (based on ray direction and split axis)
+ if(data->ray_dot_axis[ node->main_axis ] > 0)
+ {
+ for(i=0; i != node->totnode; i++)
+ {
+ dfs_raycast(data, node->children[i]);
+ }
+ }
+ else
+ {
+ for(i=node->totnode-1; i >= 0; i--)
+ {
+ dfs_raycast(data, node->children[i]);
+ }
}
}
}
-float BLI_bvhtree_getepsilon(BVHTree *tree)
+int BLI_bvhtree_ray_cast(BVHTree *tree, const float *co, const float *dir, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata)
{
- return tree->epsilon;
+ int i;
+ BVHRayCastData data;
+ BVHNode * root = tree->nodes[tree->totleaf];
+
+ data.tree = tree;
+
+ data.callback = callback;
+ data.userdata = userdata;
+
+ VECCOPY(data.ray.origin, co);
+ VECCOPY(data.ray.direction, dir);
+
+ Normalize(data.ray.direction);
+
+ for(i=0; i<3; i++)
+ {
+ data.ray_dot_axis[i] = INPR( data.ray.direction, KDOP_AXES[i]);
+
+ if(fabs(data.ray_dot_axis[i]) < 1e-7)
+ data.ray_dot_axis[i] = 0.0;
+ }
+
+
+ if(hit)
+ memcpy( &data.hit, hit, sizeof(*hit) );
+ else
+ {
+ data.hit.index = -1;
+ data.hit.dist = FLT_MAX;
+ }
+
+ if(root)
+ dfs_raycast(&data, root);
+
+
+ if(hit)
+ memcpy( hit, &data.hit, sizeof(*hit) );
+
+ return data.hit.index;
}
+