Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Genrich <daniel.genrich@gmx.net>2009-07-30 19:00:26 +0400
committerDaniel Genrich <daniel.genrich@gmx.net>2009-07-30 19:00:26 +0400
commit58c88bcf7636abce291168af189284181f2f7033 (patch)
treef99c18e5601242113b0d3888331578d5b0966c59 /source/blender/blenlib
parent1b26fe50c35afe5c83a0bf3a69fce55db00374d3 (diff)
BF2.5: First commit of smoke code.
Not working: a) rendering (since volumterics branch is not merged yet) b) moving collision objects of any kind c) saving of collision objects (because that's what I am working on) d) pointcache e) A bunch of other things I already know of So please do not report any bugs on this one yet :-)
Diffstat (limited to 'source/blender/blenlib')
-rw-r--r--source/blender/blenlib/BLI_kdopbvh.h2
-rw-r--r--source/blender/blenlib/intern/BLI_kdopbvh.c183
2 files changed, 109 insertions, 76 deletions
diff --git a/source/blender/blenlib/BLI_kdopbvh.h b/source/blender/blenlib/BLI_kdopbvh.h
index e3591a84e98..50462d531ef 100644
--- a/source/blender/blenlib/BLI_kdopbvh.h
+++ b/source/blender/blenlib/BLI_kdopbvh.h
@@ -93,5 +93,7 @@ int BLI_bvhtree_find_nearest(BVHTree *tree, const float *co, BVHTreeNearest *nea
int BLI_bvhtree_ray_cast(BVHTree *tree, const float *co, const float *dir, float radius, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata);
+float BLI_bvhtree_bb_raycast(float *bv, float *light_start, float *light_end, float *pos);
+
#endif // BLI_KDOPBVH_H
diff --git a/source/blender/blenlib/intern/BLI_kdopbvh.c b/source/blender/blenlib/intern/BLI_kdopbvh.c
index 0f8194362c9..84de9f9d862 100644
--- a/source/blender/blenlib/intern/BLI_kdopbvh.c
+++ b/source/blender/blenlib/intern/BLI_kdopbvh.c
@@ -72,10 +72,10 @@ struct BVHTree
char start_axis, stop_axis; // KDOP_AXES array indices according to axis
};
-typedef struct BVHOverlapData
-{
- BVHTree *tree1, *tree2;
- BVHTreeOverlap *overlap;
+typedef struct BVHOverlapData
+{
+ BVHTree *tree1, *tree2;
+ BVHTreeOverlap *overlap;
int i, max_overlap; /* i is number of overlaps */
int start_axis, stop_axis;
} BVHOverlapData;
@@ -109,7 +109,7 @@ typedef struct BVHRayCastData
////////////////////////////////////////////////////////////////////////
// Bounding Volume Hierarchy Definition
-//
+//
// Notes: From OBB until 26-DOP --> all bounding volumes possible, just choose type below
// Notes: You have to choose the type at compile time ITM
// Notes: You can choose the tree type --> binary, quad, octree, choose below
@@ -188,10 +188,10 @@ int ADJUST_MEMORY(void *local_memblock, void **memblock, int new_size, int *max_
//////////////////////////////////////////////////////////////////////////////////////////////////////
-// Introsort
+// Introsort
// with permission deriven from the following Java code:
// http://ralphunden.net/content/tutorials/a-guide-to-introsort/
-// and he derived it from the SUN STL
+// and he derived it from the SUN STL
//////////////////////////////////////////////////////////////////////////////////////////////////////
static int size_threshold = 16;
/*
@@ -362,7 +362,7 @@ static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoi
float newminmax;
float *bv = node->bv;
int i, k;
-
+
// don't init boudings for the moving case
if(!moving)
{
@@ -372,7 +372,7 @@ static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoi
bv[2*i + 1] = -FLT_MAX;
}
}
-
+
for(k = 0; k < numpoints; k++)
{
// for all Axes.
@@ -394,7 +394,7 @@ static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
int i, j;
float *bv = node->bv;
-
+
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
bv[2*i] = FLT_MAX;
@@ -406,10 +406,10 @@ static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
// for all Axes.
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
- newmin = tree->nodes[j]->bv[(2 * i)];
+ newmin = tree->nodes[j]->bv[(2 * i)];
if ((newmin < bv[(2 * i)]))
bv[(2 * i)] = newmin;
-
+
newmax = tree->nodes[j]->bv[(2 * i) + 1];
if ((newmax > bv[(2 * i) + 1]))
bv[(2 * i) + 1] = newmax;
@@ -427,14 +427,14 @@ static char get_largest_axis(float *bv)
middle_point[0] = (bv[1]) - (bv[0]); // x axis
middle_point[1] = (bv[3]) - (bv[2]); // y axis
middle_point[2] = (bv[5]) - (bv[4]); // z axis
- if (middle_point[0] > middle_point[1])
+ if (middle_point[0] > middle_point[1])
{
if (middle_point[0] > middle_point[2])
return 1; // max x axis
else
return 5; // max z axis
}
- else
+ else
{
if (middle_point[1] > middle_point[2])
return 3; // max y axis
@@ -448,24 +448,24 @@ static char get_largest_axis(float *bv)
static void node_join(BVHTree *tree, BVHNode *node)
{
int i, j;
-
+
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
node->bv[2*i] = FLT_MAX;
node->bv[2*i + 1] = -FLT_MAX;
}
-
+
for (i = 0; i < tree->tree_type; i++)
{
- if (node->children[i])
+ if (node->children[i])
{
for (j = tree->start_axis; j < tree->stop_axis; j++)
{
- // update minimum
- if (node->children[i]->bv[(2 * j)] < node->bv[(2 * j)])
+ // update minimum
+ if (node->children[i]->bv[(2 * j)] < node->bv[(2 * j)])
node->bv[(2 * j)] = node->children[i]->bv[(2 * j)];
-
- // update maximum
+
+ // update maximum
if (node->children[i]->bv[(2 * j) + 1] > node->bv[(2 * j) + 1])
node->bv[(2 * j) + 1] = node->children[i]->bv[(2 * j) + 1];
}
@@ -518,7 +518,7 @@ static void bvhtree_info(BVHTree *tree)
static void verify_tree(BVHTree *tree)
{
int i, j, check = 0;
-
+
// check the pointer list
for(i = 0; i < tree->totleaf; i++)
{
@@ -538,7 +538,7 @@ static void verify_tree(BVHTree *tree)
check = 0;
}
}
-
+
// check the leaf list
for(i = 0; i < tree->totleaf; i++)
{
@@ -558,7 +558,7 @@ static void verify_tree(BVHTree *tree)
check = 0;
}
}
-
+
printf("branches: %d, leafs: %d, total: %d\n", tree->totbranch, tree->totleaf, tree->totbranch + tree->totleaf);
}
#endif
@@ -703,7 +703,7 @@ static void non_recursive_bvh_div_nodes(BVHTree *tree, BVHNode *branches_array,
BVHBuildHelper data;
int depth;
-
+
// set parent from root node to NULL
BVHNode *tmp = branches_array+0;
tmp->parent = NULL;
@@ -722,7 +722,7 @@ static void non_recursive_bvh_div_nodes(BVHTree *tree, BVHNode *branches_array,
}
branches_array--; //Implicit trees use 1-based indexs
-
+
build_implicit_tree_helper(tree, &data);
//Loop tree levels (log N) loops
@@ -806,11 +806,11 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
{
BVHTree *tree;
int numnodes, i;
-
+
// theres not support for trees below binary-trees :P
if(tree_type < 2)
return NULL;
-
+
if(tree_type > MAX_TREETYPE)
return NULL;
@@ -820,13 +820,13 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
//so that tangent rays can still hit a bounding volume..
//this bug would show up when casting a ray aligned with a kdop-axis and with an edge of 2 faces
epsilon = MAX2(FLT_EPSILON, epsilon);
-
+
if(tree)
{
tree->epsilon = epsilon;
- tree->tree_type = tree_type;
+ tree->tree_type = tree_type;
tree->axis = axis;
-
+
if(axis == 26)
{
tree->start_axis = 0;
@@ -863,13 +863,13 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
numnodes = maxsize + implicit_needed_branches(tree_type, maxsize) + tree_type;
tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*numnodes, "BVHNodes");
-
+
if(!tree->nodes)
{
MEM_freeN(tree);
return NULL;
}
-
+
tree->nodebv = (float*)MEM_callocN(sizeof(float)* axis * numnodes, "BVHNodeBV");
if(!tree->nodebv)
{
@@ -886,7 +886,7 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
}
tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)* numnodes, "BVHNodeArray");
-
+
if(!tree->nodearray)
{
MEM_freeN(tree->nodechild);
@@ -902,14 +902,14 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
tree->nodearray[i].bv = tree->nodebv + i * axis;
tree->nodearray[i].children = tree->nodechild + i * tree_type;
}
-
+
}
return tree;
}
void BLI_bvhtree_free(BVHTree *tree)
-{
+{
if(tree)
{
MEM_freeN(tree->nodes);
@@ -946,27 +946,27 @@ int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
{
int i;
BVHNode *node = NULL;
-
+
// insert should only possible as long as tree->totbranch is 0
if(tree->totbranch > 0)
return 0;
-
+
if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes)/sizeof(*(tree->nodes)))
return 0;
-
+
// TODO check if have enough nodes in array
-
+
node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
tree->totleaf++;
-
+
create_kdop_hull(tree, node, co, numpoints, 0);
node->index= index;
-
+
// inflate the bv with some epsilon
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
- node->bv[(2 * i)] -= tree->epsilon; // minimum
- node->bv[(2 * i) + 1] += tree->epsilon; // maximum
+ node->bv[(2 * i)] -= tree->epsilon; // minimum
+ node->bv[(2 * i) + 1] += tree->epsilon; // maximum
}
return 1;
@@ -978,23 +978,23 @@ int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_movin
{
int i;
BVHNode *node= NULL;
-
+
// check if index exists
if(index > tree->totleaf)
return 0;
-
+
node = tree->nodearray + index;
-
+
create_kdop_hull(tree, node, co, numpoints, 0);
-
+
if(co_moving)
create_kdop_hull(tree, node, co_moving, numpoints, 1);
-
+
// inflate the bv with some epsilon
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
- node->bv[(2 * i)] -= tree->epsilon; // minimum
- node->bv[(2 * i) + 1] += tree->epsilon; // maximum
+ node->bv[(2 * i)] -= tree->epsilon; // minimum
+ node->bv[(2 * i) + 1] += tree->epsilon; // maximum
}
return 1;
@@ -1030,24 +1030,24 @@ static int tree_overlap(BVHNode *node1, BVHNode *node2, int start_axis, int stop
float *bv2 = node2->bv;
float *bv1_end = bv1 + (stop_axis<<1);
-
+
bv1 += start_axis<<1;
bv2 += start_axis<<1;
-
+
// test all axis if min + max overlap
for (; bv1 != bv1_end; bv1+=2, bv2+=2)
{
- if ((*(bv1) > *(bv2 + 1)) || (*(bv2) > *(bv1 + 1)))
+ if ((*(bv1) > *(bv2 + 1)) || (*(bv2) > *(bv1 + 1)))
return 0;
}
-
+
return 1;
}
static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
{
int j;
-
+
if(tree_overlap(node1, node2, data->start_axis, data->stop_axis))
{
// check if node1 is a leaf
@@ -1056,17 +1056,17 @@ static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
// check if node2 is a leaf
if(!node2->totnode)
{
-
+
if(node1 == node2)
{
return;
}
-
+
if(data->i >= data->max_overlap)
- {
+ {
// try to make alloc'ed memory bigger
data->overlap = realloc(data->overlap, sizeof(BVHTreeOverlap)*data->max_overlap*2);
-
+
if(!data->overlap)
{
printf("Out of Memory in traverse\n");
@@ -1074,7 +1074,7 @@ static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
}
data->max_overlap *= 2;
}
-
+
// both leafs, insert overlap!
data->overlap[data->i].indexA = node1->index;
data->overlap[data->i].indexB = node2->index;
@@ -1092,7 +1092,7 @@ static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
}
else
{
-
+
for(j = 0; j < data->tree2->tree_type; j++)
{
if(node1->children[j])
@@ -1108,21 +1108,21 @@ BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
int j, total = 0;
BVHTreeOverlap *overlap = NULL, *to = NULL;
BVHOverlapData **data;
-
+
// check for compatibility of both trees (can't compare 14-DOP with 18-DOP)
if((tree1->axis != tree2->axis) && (tree1->axis == 14 || tree2->axis == 14) && (tree1->axis == 18 || tree2->axis == 18))
return 0;
-
+
// fast check root nodes for collision before doing big splitting + traversal
if(!tree_overlap(tree1->nodes[tree1->totleaf], tree2->nodes[tree2->totleaf], MIN2(tree1->start_axis, tree2->start_axis), MIN2(tree1->stop_axis, tree2->stop_axis)))
return 0;
data = MEM_callocN(sizeof(BVHOverlapData *)* tree1->tree_type, "BVHOverlapData_star");
-
+
for(j = 0; j < tree1->tree_type; j++)
{
data[j] = (BVHOverlapData *)MEM_callocN(sizeof(BVHOverlapData), "BVHOverlapData");
-
+
// init BVHOverlapData
data[j]->overlap = (BVHTreeOverlap *)malloc(sizeof(BVHTreeOverlap)*MAX2(tree1->totleaf, tree2->totleaf));
data[j]->tree1 = tree1;
@@ -1138,25 +1138,25 @@ BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
{
traverse(data[j], tree1->nodes[tree1->totleaf]->children[j], tree2->nodes[tree2->totleaf]);
}
-
+
for(j = 0; j < tree1->tree_type; j++)
total += data[j]->i;
-
+
to = overlap = (BVHTreeOverlap *)MEM_callocN(sizeof(BVHTreeOverlap)*total, "BVHTreeOverlap");
-
+
for(j = 0; j < tree1->tree_type; j++)
{
memcpy(to, data[j]->overlap, data[j]->i*sizeof(BVHTreeOverlap));
to+=data[j]->i;
}
-
+
for(j = 0; j < tree1->tree_type; j++)
{
free(data[j]->overlap);
MEM_freeN(data[j]);
}
MEM_freeN(data);
-
+
(*result) = total;
return overlap;
}
@@ -1339,7 +1339,7 @@ static void bfs_find_nearest(BVHNearestData *data, BVHNode *node)
push_heaps++;
}
}
-
+
if(heap_size == 0) break;
current = heap[0];
@@ -1405,10 +1405,9 @@ int BLI_bvhtree_find_nearest(BVHTree *tree, const float *co, BVHTreeNearest *nea
*/
//Determines the distance that the ray must travel to hit the bounding volume of the given node
-static float ray_nearest_hit(BVHRayCastData *data, BVHNode *node)
+static float ray_nearest_hit(BVHRayCastData *data, float *bv)
{
int i;
- const float *bv = node->bv;
float low = 0, upper = data->hit.dist;
@@ -1436,7 +1435,7 @@ static float ray_nearest_hit(BVHRayCastData *data, BVHNode *node)
if(lu > low) low = lu;
if(ll < upper) upper = ll;
}
-
+
if(low > upper) return FLT_MAX;
}
}
@@ -1449,7 +1448,7 @@ static void dfs_raycast(BVHRayCastData *data, BVHNode *node)
//ray-bv is really fast.. and simple tests revealed its worth to test it
//before calling the ray-primitive functions
- float dist = ray_nearest_hit(data, node);
+ float dist = ray_nearest_hit(data, node->bv);
if(dist >= data->hit.dist) return;
if(node->totnode == 0)
@@ -1527,3 +1526,35 @@ int BLI_bvhtree_ray_cast(BVHTree *tree, const float *co, const float *dir, float
return data.hit.index;
}
+float BLI_bvhtree_bb_raycast(float *bv, float *light_start, float *light_end, float *pos)
+{
+ BVHRayCastData data;
+ float dist = 0.0;
+ int i;
+
+ data.hit.dist = FLT_MAX;
+
+ // get light direction
+ data.ray.direction[0] = light_end[0] - light_start[0];
+ data.ray.direction[1] = light_end[1] - light_start[1];
+ data.ray.direction[2] = light_end[2] - light_start[2];
+
+ data.ray.radius = 0.0;
+
+ data.ray.origin[0] = light_start[0];
+ data.ray.origin[1] = light_start[1];
+ data.ray.origin[2] = light_start[2];
+
+ Normalize(data.ray.direction);
+ VECCOPY(data.ray_dot_axis, data.ray.direction);
+
+ dist = ray_nearest_hit(&data, bv);
+
+ if(dist > 0.0)
+ {
+ VECADDFAC(pos, light_start, data.ray.direction, dist);
+ }
+ return dist;
+
+}
+