Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2012-06-15 22:42:03 +0400
committerCampbell Barton <ideasman42@gmail.com>2012-06-15 22:42:03 +0400
commit570cc70772d78703053956ce57b20c6c4ed74c95 (patch)
treeb4c5db0392384251f1b1ccefc17c959d3e742977 /source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp
parent8fd2267e56d3d0b6bb860800eb8059bcbfa0b501 (diff)
style cleanup: compositor operations
Diffstat (limited to 'source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp')
-rw-r--r--source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp1062
1 files changed, 531 insertions, 531 deletions
diff --git a/source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp b/source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp
index df04b889200..ba54c8ad9d6 100644
--- a/source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp
+++ b/source/blender/compositor/operations/COM_DoubleEdgeMaskOperation.cpp
@@ -30,735 +30,735 @@
static void do_adjacentKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
+ unsigned int isz = 0; // inner edge size
+ unsigned int osz = 0; // outer edge size
+ unsigned int gsz = 0; // gradient fill area size
/* Test the four corners */
/* upper left corner */
- x=t-rw+1;
+ x = t - rw + 1;
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or to the right, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
lres[x] = 3; // flag pixel as outer edge
}
/* upper right corner */
- x=t;
+ x = t;
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or to the left, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x - 1] && lomask[x - 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
/* lower left corner */
- x=0;
+ x = 0;
// test if inner mask is filled
if (limask[x]) {
// test if pixel above, or to the right, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x + rw] && lomask[x + rw]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
/* lower right corner */
- x=rw-1;
+ x = rw - 1;
// test if inner mask is filled
if (limask[x]) {
// test if pixel above, or to the left, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])) {
+ if ((!limask[x + rw] && lomask[x + rw]) || (!limask[x - 1] && lomask[x - 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
/* Test the TOP row of pixels in buffer, except corners */
- for (x = t-1; x>=(t-rw)+2; x--) {
+ for (x = t - 1; x >= (t - rw) + 2; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel to the right, or to the left, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x - 1] && lomask[x - 1]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
/* Test the BOTTOM row of pixels in buffer, except corners */
- for (x = rw-2; x; x--) {
+ for (x = rw - 2; x; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel to the right, or to the left, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x - 1] && lomask[x - 1]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
/* Test the LEFT edge of pixels in buffer, except corners */
- for (x = t-(rw<<1)+1; x>=rw; x-=rw) {
+ for (x = t - (rw << 1) + 1; x >= rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or above, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x + rw] && lomask[x + rw])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
/* Test the RIGHT edge of pixels in buffer, except corners */
- for (x = t-rw; x>rw; x-=rw) {
+ for (x = t - rw; x > rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or above, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x + rw] && lomask[x + rw])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ rsize[0] = isz; // fill in our return sizes for edges + fill
+ rsize[1] = osz;
+ rsize[2] = gsz;
}
static void do_adjacentBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
+ unsigned int isz = 0; // inner edge size
+ unsigned int osz = 0; // outer edge size
+ unsigned int gsz = 0; // gradient fill area size
/* Test the four corners */
/* upper left corner */
- x=t-rw+1;
+ x = t - rw + 1;
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or to the right, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ if (!lomask[x - rw] || !lomask[x + 1]) { // test if outer mask is empty underneath or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* upper right corner */
- x=t;
+ x = t;
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or to the left, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x - 1] && lomask[x - 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
+ if (!lomask[x - rw] || !lomask[x - 1]) { // test if outer mask is empty underneath or to the left
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* lower left corner */
- x=0;
+ x = 0;
// test if inner mask is filled
if (limask[x]) {
// test if pixel above, or to the right, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x + rw] && lomask[x + rw]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty above or to the right
+ if (!lomask[x + rw] || !lomask[x + 1]) { // test if outer mask is empty above or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* lower right corner */
- x=rw-1;
+ x = rw - 1;
// test if inner mask is filled
if (limask[x]) {
// test if pixel above, or to the left, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])) {
+ if ((!limask[x + rw] && lomask[x + rw]) || (!limask[x - 1] && lomask[x - 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
+ if (!lomask[x + rw] || !lomask[x - 1]) { // test if outer mask is empty above or to the left
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* Test the TOP row of pixels in buffer, except corners */
- for (x = t-1; x>=(t-rw)+2; x--) {
+ for (x = t - 1; x >= (t - rw) + 2; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel to the left, or to the right, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x - 1] && lomask[x - 1]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x - 1] || !lomask[x + 1]) { // test if outer mask is empty to the left or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
/* Test the BOTTOM row of pixels in buffer, except corners */
- for (x = rw-2; x; x--) {
+ for (x = rw - 2; x; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel to the left, or to the right, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ if ((!limask[x - 1] && lomask[x - 1]) || (!limask[x + 1] && lomask[x + 1])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x - 1] || !lomask[x + 1]) { // test if outer mask is empty to the left or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
/* Test the LEFT edge of pixels in buffer, except corners */
- for (x = t-(rw<<1)+1; x>=rw; x-=rw) {
+ for (x = t - (rw << 1) + 1; x >= rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or above, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x + rw] && lomask[x + rw])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x - rw] || !lomask[x + rw]) { // test if outer mask is empty underneath or above
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
/* Test the RIGHT edge of pixels in buffer, except corners */
- for (x = t-rw; x>rw; x-=rw) {
+ for (x = t - rw; x > rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if pixel underneath, or above, are empty in the inner mask,
// but filled in the outer mask
- if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ if ((!limask[x - rw] && lomask[x - rw]) || (!limask[x + rw] && lomask[x + rw])) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x - rw] || !lomask[x + rw]) { // test if outer mask is empty underneath or above
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ rsize[0] = isz; // fill in our return sizes for edges + fill
+ rsize[1] = osz;
+ rsize[2] = gsz;
}
static void do_allKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
+ unsigned int isz = 0; // inner edge size
+ unsigned int osz = 0; // outer edge size
+ unsigned int gsz = 0; // gradient fill area size
/* Test the four corners */
/* upper left corner */
- x=t-rw+1;
+ x = t - rw + 1;
// test if inner mask is filled
if (limask[x]) {
// test if the inner mask is empty underneath or to the right
- if (!limask[x-rw] || !limask[x+1]) {
+ if (!limask[x - rw] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
/* upper right corner */
- x=t;
+ x = t;
// test if inner mask is filled
if (limask[x]) {
// test if the inner mask is empty underneath or to the left
- if (!limask[x-rw] || !limask[x-1]) {
+ if (!limask[x - rw] || !limask[x - 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
/* lower left corner */
- x=0;
+ x = 0;
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty above or to the right
- if (!limask[x+rw] || !limask[x+1]) {
+ if (!limask[x + rw] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
/* lower right corner */
- x=rw-1;
+ x = rw - 1;
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty above or to the left
- if (!limask[x+rw] || !limask[x-1]) {
+ if (!limask[x + rw] || !limask[x - 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
/* Test the TOP row of pixels in buffer, except corners */
- for (x = t-1; x>=(t-rw)+2; x--) {
+ for (x = t - 1; x >= (t - rw) + 2; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty to the left or to the right
- if (!limask[x-1] || !limask[x+1]) {
+ if (!limask[x - 1] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
/* Test the BOTTOM row of pixels in buffer, except corners */
- for (x = rw-2; x; x--) {
+ for (x = rw - 2; x; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty to the left or to the right
- if (!limask[x-1] || !limask[x+1]) {
+ if (!limask[x - 1] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
/* Test the LEFT edge of pixels in buffer, except corners */
- for (x = t-(rw<<1)+1; x>=rw; x-=rw) {
+ for (x = t - (rw << 1) + 1; x >= rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty underneath or above
- if (!limask[x-rw] || !limask[x+rw]) {
+ if (!limask[x - rw] || !limask[x + rw]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
/* Test the RIGHT edge of pixels in buffer, except corners */
- for (x = t-rw; x>rw; x-=rw) {
+ for (x = t - rw; x > rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty underneath or above
- if (!limask[x-rw] || !limask[x+rw]) {
+ if (!limask[x - rw] || !limask[x + rw]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
}
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ rsize[0] = isz; // fill in our return sizes for edges + fill
+ rsize[1] = osz;
+ rsize[2] = gsz;
}
static void do_allBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
+ unsigned int isz = 0; // inner edge size
+ unsigned int osz = 0; // outer edge size
+ unsigned int gsz = 0; // gradient fill area size
/* Test the four corners */
/* upper left corner */
- x=t-rw+1;
+ x = t - rw + 1;
// test if inner mask is filled
if (limask[x]) {
// test if the inner mask is empty underneath or to the right
- if (!limask[x-rw] || !limask[x+1]) {
+ if (!limask[x - rw] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ if (!lomask[x - rw] || !lomask[x + 1]) { // test if outer mask is empty underneath or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* upper right corner */
- x=t;
+ x = t;
// test if inner mask is filled
if (limask[x]) {
// test if the inner mask is empty underneath or to the left
- if (!limask[x-rw] || !limask[x-1]) {
+ if (!limask[x - rw] || !limask[x - 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
+ if (!lomask[x - rw] || !lomask[x - 1]) { // test if outer mask is empty above or to the left
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* lower left corner */
- x=0;
+ x = 0;
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty above or to the right
- if (!limask[x+rw] || !limask[x+1]) {
+ if (!limask[x + rw] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ if (!lomask[x + rw] || !lomask[x + 1]) { // test if outer mask is empty underneath or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* lower right corner */
- x=rw-1;
+ x = rw - 1;
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty above or to the left
- if (!limask[x+rw] || !limask[x-1]) {
+ if (!limask[x + rw] || !limask[x - 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
+ if (!lomask[x + rw] || !lomask[x - 1]) { // test if outer mask is empty underneath or to the left
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
/* Test the TOP row of pixels in buffer, except corners */
- for (x = t-1; x>=(t-rw)+2; x--) {
+ for (x = t - 1; x >= (t - rw) + 2; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty to the left or to the right
- if (!limask[x-1] || !limask[x+1]) {
+ if (!limask[x - 1] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x - 1] || !lomask[x + 1]) { // test if outer mask is empty to the left or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
/* Test the BOTTOM row of pixels in buffer, except corners */
- for (x = rw-2; x; x--) {
+ for (x = rw - 2; x; x--) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty to the left or to the right
- if (!limask[x-1] || !limask[x+1]) {
+ if (!limask[x - 1] || !limask[x + 1]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x - 1] || !lomask[x + 1]) { // test if outer mask is empty to the left or to the right
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
/* Test the LEFT edge of pixels in buffer, except corners */
- for (x = t-(rw<<1)+1; x>=rw; x-=rw) {
+ for (x = t - (rw << 1) + 1; x >= rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty underneath or above
- if (!limask[x-rw] || !limask[x+rw]) {
+ if (!limask[x - rw] || !limask[x + rw]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ if (!lomask[x - rw] || !lomask[x + rw]) { // test if outer mask is empty underneath or above
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
/* Test the RIGHT edge of pixels in buffer, except corners */
- for (x = t-rw; x>rw; x-=rw) {
+ for (x = t - rw; x > rw; x -= rw) {
// test if inner mask is filled
if (limask[x]) {
// test if inner mask is empty underneath or above
- if (!limask[x-rw] || !limask[x+rw]) {
+ if (!limask[x - rw] || !limask[x + rw]) {
isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
+ lres[x] = 4; // flag pixel as inner edge
}
else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ res[x] = 1.0f; // pixel is just part of inner mask, and it's not an edge
}
}
- else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
- if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x - rw] || !lomask[x + rw]) { // test if outer mask is empty underneath or above
osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
+ lres[x] = 3; // flag pixel as outer edge
}
else {
gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
+ lres[x] = 2; // flag pixel as gradient
}
}
}
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ rsize[0] = isz; // fill in our return sizes for edges + fill
+ rsize[1] = osz;
+ rsize[2] = gsz;
}
static void do_allEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz)
@@ -771,43 +771,43 @@ static void do_allEdgeDetection(unsigned int t, unsigned int rw, unsigned int *l
int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
/* Test all rows between the FIRST and LAST rows, excluding left and right edges */
- for (x = (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
- a=x-2;
- pix_prevRow=a+rw;
- pix_nextRow=a-rw;
- pix_prevCol=a+1;
- pix_nextCol=a-1;
- while (a>dx-2) {
+ for (x = (t - rw) + 1, dx = x - (rw - 2); dx > rw; x -= rw, dx -= rw) {
+ a = x - 2;
+ pix_prevRow = a + rw;
+ pix_nextRow = a - rw;
+ pix_prevCol = a + 1;
+ pix_nextCol = a - 1;
+ while (a > dx - 2) {
if (!limask[a]) { // if the inner mask is empty
if (lomask[a]) { // if the outer mask is full
/*
- Next we test all 4 directions around the current pixel: next/prev/up/down
- The test ensures that the outer mask is empty and that the inner mask
- is also empty. If both conditions are true for any one of the 4 adjacent pixels
- then the current pixel is counted as being a true outer edge pixel.
- */
+ Next we test all 4 directions around the current pixel: next/prev/up/down
+ The test ensures that the outer mask is empty and that the inner mask
+ is also empty. If both conditions are true for any one of the 4 adjacent pixels
+ then the current pixel is counted as being a true outer edge pixel.
+ */
if ((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
(!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
(!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
(!lomask[pix_prevRow] && !limask[pix_prevRow]))
{
- in_osz++; // increment the outer boundary pixel count
- lres[a]=3; // flag pixel as part of outer edge
+ in_osz++; // increment the outer boundary pixel count
+ lres[a] = 3; // flag pixel as part of outer edge
}
- else { // it's not a boundary pixel, but it is a gradient pixel
- in_gsz++; // increment the gradient pixel count
- lres[a]=2; // flag pixel as gradient
+ else { // it's not a boundary pixel, but it is a gradient pixel
+ in_gsz++; // increment the gradient pixel count
+ lres[a] = 2; // flag pixel as gradient
}
}
}
else {
if (!limask[pix_nextCol] || !limask[pix_prevCol] || !limask[pix_nextRow] || !limask[pix_prevRow]) {
- in_isz++; // increment the inner boundary pixel count
- lres[a]=4; // flag pixel as part of inner edge
+ in_isz++; // increment the inner boundary pixel count
+ lres[a] = 4; // flag pixel as part of inner edge
}
else {
- res[a]=1.0f; // pixel is part of inner mask, but not at an edge
+ res[a] = 1.0f; // pixel is part of inner mask, but not at an edge
}
}
a--;
@@ -818,9 +818,9 @@ static void do_allEdgeDetection(unsigned int t, unsigned int rw, unsigned int *l
}
}
- rsize[0]=in_isz; // fill in our return sizes for edges + fill
- rsize[1]=in_osz;
- rsize[2]=in_gsz;
+ rsize[0] = in_isz; // fill in our return sizes for edges + fill
+ rsize[1] = in_osz;
+ rsize[2] = in_gsz;
}
static void do_adjacentEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz)
@@ -833,32 +833,32 @@ static void do_adjacentEdgeDetection(unsigned int t, unsigned int rw, unsigned i
int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
/* Test all rows between the FIRST and LAST rows, excluding left and right edges */
- for (x = (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
- a=x-2;
- pix_prevRow=a+rw;
- pix_nextRow=a-rw;
- pix_prevCol=a+1;
- pix_nextCol=a-1;
- while (a>dx-2) {
- if (!limask[a]) { // if the inner mask is empty
- if (lomask[a]) { // if the outer mask is full
+ for (x = (t - rw) + 1, dx = x - (rw - 2); dx > rw; x -= rw, dx -= rw) {
+ a = x - 2;
+ pix_prevRow = a + rw;
+ pix_nextRow = a - rw;
+ pix_prevCol = a + 1;
+ pix_nextCol = a - 1;
+ while (a > dx - 2) {
+ if (!limask[a]) { // if the inner mask is empty
+ if (lomask[a]) { // if the outer mask is full
/*
- Next we test all 4 directions around the current pixel: next/prev/up/down
- The test ensures that the outer mask is empty and that the inner mask
- is also empty. If both conditions are true for any one of the 4 adjacent pixels
- then the current pixel is counted as being a true outer edge pixel.
- */
+ Next we test all 4 directions around the current pixel: next/prev/up/down
+ The test ensures that the outer mask is empty and that the inner mask
+ is also empty. If both conditions are true for any one of the 4 adjacent pixels
+ then the current pixel is counted as being a true outer edge pixel.
+ */
if ((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
(!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
(!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
(!lomask[pix_prevRow] && !limask[pix_prevRow]))
{
- in_osz++; // increment the outer boundary pixel count
- lres[a]=3; // flag pixel as part of outer edge
+ in_osz++; // increment the outer boundary pixel count
+ lres[a] = 3; // flag pixel as part of outer edge
}
- else { // it's not a boundary pixel, but it is a gradient pixel
- in_gsz++; // increment the gradient pixel count
- lres[a]=2; // flag pixel as gradient
+ else { // it's not a boundary pixel, but it is a gradient pixel
+ in_gsz++; // increment the gradient pixel count
+ lres[a] = 2; // flag pixel as gradient
}
}
@@ -869,24 +869,24 @@ static void do_adjacentEdgeDetection(unsigned int t, unsigned int rw, unsigned i
(!limask[pix_nextRow] && lomask[pix_nextRow]) ||
(!limask[pix_prevRow] && lomask[pix_prevRow]))
{
- in_isz++; // increment the inner boundary pixel count
- lres[a]=4; // flag pixel as part of inner edge
+ in_isz++; // increment the inner boundary pixel count
+ lres[a] = 4; // flag pixel as part of inner edge
}
else {
- res[a]=1.0f; // pixel is part of inner mask, but not at an edge
+ res[a] = 1.0f; // pixel is part of inner mask, but not at an edge
}
}
a--;
- pix_prevRow--; // advance all four "surrounding" pixel pointers
+ pix_prevRow--; // advance all four "surrounding" pixel pointers
pix_nextRow--;
pix_prevCol--;
pix_nextCol--;
}
}
- rsize[0]=in_isz; // fill in our return sizes for edges + fill
- rsize[1]=in_osz;
- rsize[2]=in_gsz;
+ rsize[0] = in_isz; // fill in our return sizes for edges + fill
+ rsize[1] = in_osz;
+ rsize[2] = in_gsz;
}
static void do_createEdgeLocationBuffer(unsigned int t, unsigned int rw, unsigned int *lres, float *res, unsigned short *gbuf, unsigned int *innerEdgeOffset, unsigned int *outerEdgeOffset, unsigned int isz, unsigned int gsz)
@@ -898,102 +898,102 @@ static void do_createEdgeLocationBuffer(unsigned int t, unsigned int rw, unsigne
unsigned int rsl; // long used for finding fast 1.0/sqrt
unsigned int gradientFillOffset;
- unsigned int innerAccum=0; // for looping inner edge pixel indexes, represents current position from offset
- unsigned int outerAccum=0; // for looping outer edge pixel indexes, represents current position from offset
- unsigned int gradientAccum=0; // for looping gradient pixel indexes, represents current position from offset
+ unsigned int innerAccum = 0; // for looping inner edge pixel indexes, represents current position from offset
+ unsigned int outerAccum = 0; // for looping outer edge pixel indexes, represents current position from offset
+ unsigned int gradientAccum = 0; // for looping gradient pixel indexes, represents current position from offset
/*
- Here we compute the size of buffer needed to hold (row,col) coordinates
- for each pixel previously determined to be either gradient, inner edge,
- or outer edge.
-
- Allocation is done by requesting 4 bytes "sizeof(int)" per pixel, even
- though gbuf[] is declared as unsigned short* (2 bytes) because we don't
- store the pixel indexes, we only store x,y location of pixel in buffer.
-
- This does make the assumption that x and y can fit in 16 unsigned bits
- so if Blender starts doing renders greater than 65536 in either direction
- this will need to allocate gbuf[] as unsigned int *and allocate 8 bytes
- per flagged pixel.
-
- In general, the buffer on-screen:
-
- Example: 9 by 9 pixel block
-
- . = pixel non-white in both outer and inner mask
- o = pixel white in outer, but not inner mask, adjacent to "." pixel
- g = pixel white in outer, but not inner mask, not adjacent to "." pixel
- i = pixel white in inner mask, adjacent to "g" or "." pixel
- F = pixel white in inner mask, only adjacent to other pixels white in the inner mask
-
-
- ......... <----- pixel #80
- ..oooo...
- .oggggo..
- .oggiggo.
- .ogiFigo.
- .oggiggo.
- .oggggo..
- ..oooo...
- pixel #00 -----> .........
-
- gsz = 18 (18 "g" pixels above)
- isz = 4 (4 "i" pixels above)
- osz = 18 (18 "o" pixels above)
-
-
- The memory in gbuf[] after filling will look like this:
-
- gradientFillOffset (0 pixels) innerEdgeOffset (18 pixels) outerEdgeOffset (22 pixels)
- / / /
- / / /
- |X Y X Y X Y X Y > <X Y X Y > <X Y X Y X Y > <X Y X Y | <- (x,y)
- +--------------------------------> <----------------> <------------------------> <----------------+
- |0 2 4 6 8 10 12 14 > ... <68 70 72 74 > ... <80 82 84 86 88 90 > ... <152 154 156 158 | <- bytes
- +--------------------------------> <----------------> <------------------------> <----------------+
- |g0 g0 g1 g1 g2 g2 g3 g3 > <g17 g17 i0 i0 > <i2 i2 i3 i3 o0 o0 > <o16 o16 o17 o17 | <- pixel
- / / /
- / / /
- / / /
- +---------- gradientAccum (18) ---------+ +--- innerAccum (22) ---+ +--- outerAccum (40) ---+
-
-
- Ultimately we do need the pixel's memory buffer index to set the output
- pixel color, but it's faster to reconstruct the memory buffer location
- each iteration of the final gradient calculation than it is to deconstruct
- a memory location into x,y pairs each round.
-*/
-
-
- gradientFillOffset=0; // since there are likely "more" of these, put it first. :)
- *innerEdgeOffset=gradientFillOffset+gsz; // set start of inner edge indexes
- *outerEdgeOffset=(*innerEdgeOffset)+isz; // set start of outer edge indexes
+ Here we compute the size of buffer needed to hold (row,col) coordinates
+ for each pixel previously determined to be either gradient, inner edge,
+ or outer edge.
+
+ Allocation is done by requesting 4 bytes "sizeof(int)" per pixel, even
+ though gbuf[] is declared as unsigned short* (2 bytes) because we don't
+ store the pixel indexes, we only store x,y location of pixel in buffer.
+
+ This does make the assumption that x and y can fit in 16 unsigned bits
+ so if Blender starts doing renders greater than 65536 in either direction
+ this will need to allocate gbuf[] as unsigned int *and allocate 8 bytes
+ per flagged pixel.
+
+ In general, the buffer on-screen:
+
+ Example: 9 by 9 pixel block
+
+ . = pixel non-white in both outer and inner mask
+ o = pixel white in outer, but not inner mask, adjacent to "." pixel
+ g = pixel white in outer, but not inner mask, not adjacent to "." pixel
+ i = pixel white in inner mask, adjacent to "g" or "." pixel
+ F = pixel white in inner mask, only adjacent to other pixels white in the inner mask
+
+
+ ......... <----- pixel #80
+ ..oooo...
+ .oggggo..
+ .oggiggo.
+ .ogiFigo.
+ .oggiggo.
+ .oggggo..
+ ..oooo...
+ pixel #00 -----> .........
+
+ gsz = 18 (18 "g" pixels above)
+ isz = 4 (4 "i" pixels above)
+ osz = 18 (18 "o" pixels above)
+
+
+ The memory in gbuf[] after filling will look like this:
+
+ gradientFillOffset (0 pixels) innerEdgeOffset (18 pixels) outerEdgeOffset (22 pixels)
+ / / /
+ / / /
+ |X Y X Y X Y X Y > <X Y X Y > <X Y X Y X Y > <X Y X Y | <- (x,y)
+ +--------------------------------> <----------------> <------------------------> <----------------+
+ |0 2 4 6 8 10 12 14 > ... <68 70 72 74 > ... <80 82 84 86 88 90 > ... <152 154 156 158 | <- bytes
+ +--------------------------------> <----------------> <------------------------> <----------------+
+ |g0 g0 g1 g1 g2 g2 g3 g3 > <g17 g17 i0 i0 > <i2 i2 i3 i3 o0 o0 > <o16 o16 o17 o17 | <- pixel
+ / / /
+ / / /
+ / / /
+ +---------- gradientAccum (18) ---------+ +--- innerAccum (22) ---+ +--- outerAccum (40) ---+
+
+
+ Ultimately we do need the pixel's memory buffer index to set the output
+ pixel color, but it's faster to reconstruct the memory buffer location
+ each iteration of the final gradient calculation than it is to deconstruct
+ a memory location into x,y pairs each round.
+ */
+
+
+ gradientFillOffset = 0; // since there are likely "more" of these, put it first. :)
+ *innerEdgeOffset = gradientFillOffset + gsz; // set start of inner edge indexes
+ *outerEdgeOffset = (*innerEdgeOffset) + isz; // set start of outer edge indexes
/* set the accumulators to correct positions */ // set up some accumulator variables for loops
gradientAccum = gradientFillOffset; // each accumulator variable starts at its respective
innerAccum = *innerEdgeOffset; // section's offset so when we start filling, each
outerAccum = *outerEdgeOffset; // section fills up it's allocated space in gbuf
//uses dmin=row, rsl=col
- for (x=0,dmin=0; x<t; x+=rw,dmin++) {
- for (rsl=0; rsl<rw; rsl++) {
- a=x+rsl;
- if (lres[a]==2) { // it is a gradient pixel flagged by 2
- ud=gradientAccum<<1; // double the index to reach correct unsigned short location
- gbuf[ud]=dmin; // insert pixel's row into gradient pixel location buffer
- gbuf[ud+1]=rsl; // insert pixel's column into gradient pixel location buffer
- gradientAccum++; // increment gradient index buffer pointer
+ for (x = 0, dmin = 0; x < t; x += rw, dmin++) {
+ for (rsl = 0; rsl < rw; rsl++) {
+ a = x + rsl;
+ if (lres[a] == 2) { // it is a gradient pixel flagged by 2
+ ud = gradientAccum << 1; // double the index to reach correct unsigned short location
+ gbuf[ud] = dmin; // insert pixel's row into gradient pixel location buffer
+ gbuf[ud + 1] = rsl; // insert pixel's column into gradient pixel location buffer
+ gradientAccum++; // increment gradient index buffer pointer
}
- else if (lres[a]==3) { // it is an outer edge pixel flagged by 3
- ud=outerAccum<<1; // double the index to reach correct unsigned short location
- gbuf[ud]=dmin; // insert pixel's row into outer edge pixel location buffer
- gbuf[ud+1]=rsl; // insert pixel's column into outer edge pixel location buffer
- outerAccum++; // increment outer edge index buffer pointer
- res[a]=0.0f; // set output pixel intensity now since it won't change later
+ else if (lres[a] == 3) { // it is an outer edge pixel flagged by 3
+ ud = outerAccum << 1; // double the index to reach correct unsigned short location
+ gbuf[ud] = dmin; // insert pixel's row into outer edge pixel location buffer
+ gbuf[ud + 1] = rsl; // insert pixel's column into outer edge pixel location buffer
+ outerAccum++; // increment outer edge index buffer pointer
+ res[a] = 0.0f; // set output pixel intensity now since it won't change later
}
- else if (lres[a]==4) { // it is an inner edge pixel flagged by 4
- ud=innerAccum<<1; // double int index to reach correct unsigned short location
- gbuf[ud]=dmin; // insert pixel's row into inner edge pixel location buffer
- gbuf[ud+1]=rsl; // insert pixel's column into inner edge pixel location buffer
- innerAccum++; // increment inner edge index buffer pointer
- res[a]=1.0f; // set output pixel intensity now since it won't change later
+ else if (lres[a] == 4) { // it is an inner edge pixel flagged by 4
+ ud = innerAccum << 1; // double int index to reach correct unsigned short location
+ gbuf[ud] = dmin; // insert pixel's row into inner edge pixel location buffer
+ gbuf[ud + 1] = rsl; // insert pixel's column into inner edge pixel location buffer
+ innerAccum++; // increment inner edge index buffer pointer
+ res[a] = 1.0f; // set output pixel intensity now since it won't change later
}
}
}
@@ -1019,111 +1019,111 @@ static void do_fillGradientBuffer(unsigned int rw, float *res, unsigned short *g
int dy; // dy = Y-delta (used for distance proportion calculation)
/*
- The general algorithm used to color each gradient pixel is:
-
- 1.) Loop through all gradient pixels.
- A.) For each gradient pixel:
- a.) Loop though all outside edge pixels, looking for closest one
- to the gradient pixel we are in.
- b.) Loop through all inside edge pixels, looking for closest one
- to the gradient pixel we are in.
- c.) Find proportion of distance from gradient pixel to inside edge
- pixel compared to sum of distance to inside edge and distance to
- outside edge.
-
- In an image where:
- . = blank (black) pixels, not covered by inner mask or outer mask
- + = desired gradient pixels, covered only by outer mask
- * = white full mask pixels, covered by at least inner mask
-
- ...............................
- ...............+++++++++++.....
- ...+O++++++..++++++++++++++....
- ..+++\++++++++++++++++++++.....
- .+++++G+++++++++*******+++.....
- .+++++|+++++++*********+++.....
- .++***I****************+++.....
- .++*******************+++......
- .+++*****************+++.......
- ..+++***************+++........
- ....+++**********+++...........
- ......++++++++++++.............
- ...............................
-
- O = outside edge pixel
- \
- G = gradient pixel
- |
- I = inside edge pixel
-
- __
- *note that IO does not need to be a straight line, in fact
- many cases can arise where straight lines do not work
- correctly.
-
- __ __ __
- d.) Pixel color is assigned as |GO| / ( |GI| + |GO| )
-
- The implementation does not compute distance, but the reciprocal of the
- distance. This is done to avoid having to compute a square root, as a
- reciprocal square root can be computed faster. Therefore, the code computes
- pixel color as |GI| / (|GI| + |GO|). Since these are reciprocals, GI serves the
- purpose of GO for the proportion calculation.
-
- For the purposes of the minimun distance comparisons, we only check
- the sums-of-squares against eachother, since they are in the same
- mathematical sort-order as if we did go ahead and take square roots
-
- Loop through all gradient pixels.
- */
-
- for (x = gsz-1; x>=0; x--) {
- gradientFillOffset=x<<1;
- t=gbuf[gradientFillOffset]; // calculate column of pixel indexed by gbuf[x]
- fsz=gbuf[gradientFillOffset+1]; // calculate row of pixel indexed by gbuf[x]
- dmin=0xffffffff; // reset min distance to edge pixel
- for (a=outerEdgeOffset+osz-1; a>=outerEdgeOffset; a--) { // loop through all outer edge buffer pixels
- ud=a<<1;
- dy=t-gbuf[ud]; // set dx to gradient pixel column - outer edge pixel row
- dx=fsz-gbuf[ud+1]; // set dy to gradient pixel row - outer edge pixel column
- ud=dx*dx+dy*dy; // compute sum of squares
- if (ud<dmin) { // if our new sum of squares is less than the current minimum
- dmin=ud; // set a new minimum equal to the new lower value
+ * The general algorithm used to color each gradient pixel is:
+ *
+ * 1.) Loop through all gradient pixels.
+ * A.) For each gradient pixel:
+ * a.) Loop though all outside edge pixels, looking for closest one
+ * to the gradient pixel we are in.
+ * b.) Loop through all inside edge pixels, looking for closest one
+ * to the gradient pixel we are in.
+ * c.) Find proportion of distance from gradient pixel to inside edge
+ * pixel compared to sum of distance to inside edge and distance to
+ * outside edge.
+ *
+ * In an image where:
+ * . = blank (black) pixels, not covered by inner mask or outer mask
+ * + = desired gradient pixels, covered only by outer mask
+ * * = white full mask pixels, covered by at least inner mask
+ *
+ * ...............................
+ * ...............+++++++++++.....
+ * ...+O++++++..++++++++++++++....
+ * ..+++\++++++++++++++++++++.....
+ * .+++++G+++++++++*******+++.....
+ * .+++++|+++++++*********+++.....
+ * .++***I****************+++.....
+ * .++*******************+++......
+ * .+++*****************+++.......
+ * ..+++***************+++........
+ * ....+++**********+++...........
+ * ......++++++++++++.............
+ * ...............................
+ *
+ * O = outside edge pixel
+ * \
+ * G = gradient pixel
+ * |
+ * I = inside edge pixel
+ *
+ * __
+ * *note that IO does not need to be a straight line, in fact
+ * many cases can arise where straight lines do not work
+ * correctly.
+ *
+ * __ __ __
+ * d.) Pixel color is assigned as |GO| / ( |GI| + |GO| )
+ *
+ * The implementation does not compute distance, but the reciprocal of the
+ * distance. This is done to avoid having to compute a square root, as a
+ * reciprocal square root can be computed faster. Therefore, the code computes
+ * pixel color as |GI| / (|GI| + |GO|). Since these are reciprocals, GI serves the
+ * purpose of GO for the proportion calculation.
+ *
+ * For the purposes of the minimun distance comparisons, we only check
+ * the sums-of-squares against eachother, since they are in the same
+ * mathematical sort-order as if we did go ahead and take square roots
+ *
+ * Loop through all gradient pixels.
+ */
+
+ for (x = gsz - 1; x >= 0; x--) {
+ gradientFillOffset = x << 1;
+ t = gbuf[gradientFillOffset]; // calculate column of pixel indexed by gbuf[x]
+ fsz = gbuf[gradientFillOffset + 1]; // calculate row of pixel indexed by gbuf[x]
+ dmin = 0xffffffff; // reset min distance to edge pixel
+ for (a = outerEdgeOffset + osz - 1; a >= outerEdgeOffset; a--) { // loop through all outer edge buffer pixels
+ ud = a << 1;
+ dy = t - gbuf[ud]; // set dx to gradient pixel column - outer edge pixel row
+ dx = fsz - gbuf[ud + 1]; // set dy to gradient pixel row - outer edge pixel column
+ ud = dx * dx + dy * dy; // compute sum of squares
+ if (ud < dmin) { // if our new sum of squares is less than the current minimum
+ dmin = ud; // set a new minimum equal to the new lower value
}
}
- odist=(float)(dmin); // cast outer min to a float
- rsf=odist*0.5f; //
- rsl=*(unsigned int*)&odist; // use some peculiar properties of the way bits are stored
- rsl=0x5f3759df-(rsl>>1); // in floats vs. unsigned ints to compute an approximate
- odist=*(float*)&rsl; // reciprocal square root
- odist=odist*(rsopf-(rsf*odist*odist)); // -- ** this line can be iterated for more accuracy ** --
- dmin=0xffffffff; // reset min distance to edge pixel
- for (a = innerEdgeOffset+isz-1; a>=innerEdgeOffset; a--) { // loop through all inside edge pixels
- ud=a<<1;
- dy=t-gbuf[ud]; // compute delta in Y from gradient pixel to inside edge pixel
- dx=fsz-gbuf[ud+1]; // compute delta in X from gradient pixel to inside edge pixel
- ud=dx*dx+dy*dy; // compute sum of squares
- if (ud<dmin) { // if our new sum of squares is less than the current minimum we've found
- dmin=ud; // set a new minimum equal to the new lower value
+ odist = (float)(dmin); // cast outer min to a float
+ rsf = odist * 0.5f; //
+ rsl = *(unsigned int *)&odist; // use some peculiar properties of the way bits are stored
+ rsl = 0x5f3759df - (rsl >> 1); // in floats vs. unsigned ints to compute an approximate
+ odist = *(float *)&rsl; // reciprocal square root
+ odist = odist * (rsopf - (rsf * odist * odist)); // -- ** this line can be iterated for more accuracy ** --
+ dmin = 0xffffffff; // reset min distance to edge pixel
+ for (a = innerEdgeOffset + isz - 1; a >= innerEdgeOffset; a--) { // loop through all inside edge pixels
+ ud = a << 1;
+ dy = t - gbuf[ud]; // compute delta in Y from gradient pixel to inside edge pixel
+ dx = fsz - gbuf[ud + 1]; // compute delta in X from gradient pixel to inside edge pixel
+ ud = dx * dx + dy * dy; // compute sum of squares
+ if (ud < dmin) { // if our new sum of squares is less than the current minimum we've found
+ dmin = ud; // set a new minimum equal to the new lower value
}
}
- idist=(float)(dmin); // cast inner min to a float
- rsf=idist*0.5f; //
- rsl=*(unsigned int*)&idist; //
- rsl=0x5f3759df-(rsl>>1); // see notes above
- idist=*(float*)&rsl; //
- idist=idist*(rsopf-(rsf*idist*idist)); //
+ idist = (float)(dmin); // cast inner min to a float
+ rsf = idist * 0.5f; //
+ rsl = *(unsigned int *)&idist; //
+ rsl = 0x5f3759df - (rsl >> 1); // see notes above
+ idist = *(float *)&rsl; //
+ idist = idist * (rsopf - (rsf * idist * idist)); //
/*
- Note once again that since we are using reciprocals of distance values our
- proportion is already the correct intensity, and does not need to be
- subracted from 1.0 like it would have if we used real distances.
- */
+ * Note once again that since we are using reciprocals of distance values our
+ * proportion is already the correct intensity, and does not need to be
+ * subracted from 1.0 like it would have if we used real distances.
+ */
/*
- Here we reconstruct the pixel's memory location in the CompBuf by
- Pixel Index = Pixel Column + ( Pixel Row * Row Width )
- */
- res[gbuf[gradientFillOffset+1]+(gbuf[gradientFillOffset]*rw)]=(idist/(idist+odist)); //set intensity
+ * Here we reconstruct the pixel's memory location in the CompBuf by
+ * Pixel Index = Pixel Column + ( Pixel Row * Row Width )
+ */
+ res[gbuf[gradientFillOffset + 1] + (gbuf[gradientFillOffset] * rw)] = (idist / (idist + odist)); //set intensity
}
}
@@ -1140,92 +1140,92 @@ void DoubleEdgeMaskOperation::doDoubleEdgeMask(float *imask, float *omask, float
int t; // t = total number of pixels in buffer - 1 (used for loop starts)
int fsz; // size of the frame
- unsigned int isz=0; // size (in pixels) of inside edge pixel index buffer
- unsigned int osz=0; // size (in pixels) of outside edge pixel index buffer
- unsigned int gsz=0; // size (in pixels) of gradient pixel index buffer
- unsigned int rsize[3]; // size storage to pass to helper functions
- unsigned int innerEdgeOffset=0; // offset into final buffer where inner edge pixel indexes start
- unsigned int outerEdgeOffset=0; // offset into final buffer where outer edge pixel indexes start
+ unsigned int isz = 0; // size (in pixels) of inside edge pixel index buffer
+ unsigned int osz = 0; // size (in pixels) of outside edge pixel index buffer
+ unsigned int gsz = 0; // size (in pixels) of gradient pixel index buffer
+ unsigned int rsize[3]; // size storage to pass to helper functions
+ unsigned int innerEdgeOffset = 0; // offset into final buffer where inner edge pixel indexes start
+ unsigned int outerEdgeOffset = 0; // offset into final buffer where outer edge pixel indexes start
unsigned short *gbuf; // gradient/inner/outer pixel location index buffer
if (true) { // if both input sockets have some data coming in...
- t=(this->getWidth()*this->getHeight())-1; // determine size of the frame
+ t = (this->getWidth() * this->getHeight()) - 1; // determine size of the frame
- lres = (unsigned int*)res; // unsigned int pointer to output buffer (for bit level ops)
- limask=(unsigned int*)imask; // unsigned int pointer to input mask (for bit level ops)
- lomask=(unsigned int*)omask; // unsigned int pointer to output mask (for bit level ops)
+ lres = (unsigned int *)res; // unsigned int pointer to output buffer (for bit level ops)
+ limask = (unsigned int *)imask; // unsigned int pointer to input mask (for bit level ops)
+ lomask = (unsigned int *)omask; // unsigned int pointer to output mask (for bit level ops)
rw = this->getWidth(); // width of a row of pixels
/*
- The whole buffer is broken up into 4 parts. The four CORNERS, the FIRST and LAST rows, the
- LEFT and RIGHT edges (excluding the corner pixels), and all OTHER rows.
- This allows for quick computation of outer edge pixels where
- a screen edge pixel is marked to be gradient.
-
- The pixel type (gradient vs inner-edge vs outer-edge) tests change
- depending on the user selected "Inner Edge Mode" and the user selected
- "Buffer Edge Mode" on the node's GUI. There are 4 sets of basically the
- same algorithm:
-
- 1.) Inner Edge -> Adjacent Only
- Buffer Edge -> Keep Inside
-
- 2.) Inner Edge -> Adjacent Only
- Buffer Edge -> Bleed Out
-
- 3.) Inner Edge -> All
- Buffer Edge -> Keep Inside
-
- 4.) Inner Edge -> All
- Buffer Edge -> Bleed Out
-
- Each version has slightly different criteria for detecting an edge pixel.
+ * The whole buffer is broken up into 4 parts. The four CORNERS, the FIRST and LAST rows, the
+ * LEFT and RIGHT edges (excluding the corner pixels), and all OTHER rows.
+ * This allows for quick computation of outer edge pixels where
+ * a screen edge pixel is marked to be gradient.
+ *
+ * The pixel type (gradient vs inner-edge vs outer-edge) tests change
+ * depending on the user selected "Inner Edge Mode" and the user selected
+ * "Buffer Edge Mode" on the node's GUI. There are 4 sets of basically the
+ * same algorithm:
+ *
+ * 1.) Inner Edge -> Adjacent Only
+ * Buffer Edge -> Keep Inside
+ *
+ * 2.) Inner Edge -> Adjacent Only
+ * Buffer Edge -> Bleed Out
+ *
+ * 3.) Inner Edge -> All
+ * Buffer Edge -> Keep Inside
+ *
+ * 4.) Inner Edge -> All
+ * Buffer Edge -> Bleed Out
+ *
+ * Each version has slightly different criteria for detecting an edge pixel.
*/
- if (this->adjecentOnly) { // if "adjacent only" inner edge mode is turned on
- if (this->keepInside) { // if "keep inside" buffer edge mode is turned on
- do_adjacentKeepBorders(t,rw,limask,lomask,lres,res,rsize);
+ if (this->adjecentOnly) { // if "adjacent only" inner edge mode is turned on
+ if (this->keepInside) { // if "keep inside" buffer edge mode is turned on
+ do_adjacentKeepBorders(t, rw, limask, lomask, lres, res, rsize);
}
- else { // "bleed out" buffer edge mode is turned on
- do_adjacentBleedBorders(t,rw,limask,lomask,lres,res,rsize);
+ else { // "bleed out" buffer edge mode is turned on
+ do_adjacentBleedBorders(t, rw, limask, lomask, lres, res, rsize);
}
- isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
- osz=rsize[1];
- gsz=rsize[2];
+ isz = rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
+ osz = rsize[1];
+ gsz = rsize[2];
// detect edges in all non-border pixels in the buffer
- do_adjacentEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
+ do_adjacentEdgeDetection(t, rw, limask, lomask, lres, res, rsize, isz, osz, gsz);
}
- else { // "all" inner edge mode is turned on
- if (this->keepInside) { // if "keep inside" buffer edge mode is turned on
- do_allKeepBorders(t,rw,limask,lomask,lres,res,rsize);
+ else { // "all" inner edge mode is turned on
+ if (this->keepInside) { // if "keep inside" buffer edge mode is turned on
+ do_allKeepBorders(t, rw, limask, lomask, lres, res, rsize);
}
- else { // "bleed out" buffer edge mode is turned on
- do_allBleedBorders(t,rw,limask,lomask,lres,res,rsize);
+ else { // "bleed out" buffer edge mode is turned on
+ do_allBleedBorders(t, rw, limask, lomask, lres, res, rsize);
}
- isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
- osz=rsize[1];
- gsz=rsize[2];
+ isz = rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
+ osz = rsize[1];
+ gsz = rsize[2];
// detect edges in all non-border pixels in the buffer
- do_allEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
+ do_allEdgeDetection(t, rw, limask, lomask, lres, res, rsize, isz, osz, gsz);
}
- isz=rsize[0]; // set edge and gradient buffer sizes once again...
- osz=rsize[1]; // the sizes in rsize[] may have been modified
- gsz=rsize[2]; // by the do_*EdgeDetection() function.
+ isz = rsize[0]; // set edge and gradient buffer sizes once again...
+ osz = rsize[1]; // the sizes in rsize[] may have been modified
+ gsz = rsize[2]; // by the do_*EdgeDetection() function.
- fsz=gsz+isz+osz; // calculate size of pixel index buffer needed
- gbuf = (unsigned short*)MEM_callocN(sizeof (unsigned short)*fsz*2, "DEM"); // allocate edge/gradient pixel index buffer
+ fsz = gsz + isz + osz; // calculate size of pixel index buffer needed
+ gbuf = (unsigned short *)MEM_callocN(sizeof (unsigned short) * fsz * 2, "DEM"); // allocate edge/gradient pixel index buffer
- do_createEdgeLocationBuffer(t,rw,lres,res,gbuf,&innerEdgeOffset,&outerEdgeOffset,isz,gsz);
- do_fillGradientBuffer(rw,res,gbuf,isz,osz,gsz,innerEdgeOffset,outerEdgeOffset);
+ do_createEdgeLocationBuffer(t, rw, lres, res, gbuf, &innerEdgeOffset, &outerEdgeOffset, isz, gsz);
+ do_fillGradientBuffer(rw, res, gbuf, isz, osz, gsz, innerEdgeOffset, outerEdgeOffset);
- MEM_freeN(gbuf); // free the gradient index buffer
+ MEM_freeN(gbuf); // free the gradient index buffer
}
}
-DoubleEdgeMaskOperation::DoubleEdgeMaskOperation(): NodeOperation()
+DoubleEdgeMaskOperation::DoubleEdgeMaskOperation() : NodeOperation()
{
this->addInputSocket(COM_DT_VALUE);
this->addInputSocket(COM_DT_VALUE);
@@ -1266,9 +1266,9 @@ void *DoubleEdgeMaskOperation::initializeTileData(rcti *rect, MemoryBuffer **mem
lockMutex();
if (this->cachedInstance == NULL) {
- MemoryBuffer *innerMask = (MemoryBuffer*)inputInnerMask->initializeTileData(rect, memoryBuffers);
- MemoryBuffer *outerMask = (MemoryBuffer*)inputOuterMask->initializeTileData(rect, memoryBuffers);
- float *data = new float[this->getWidth()*this->getHeight()];
+ MemoryBuffer *innerMask = (MemoryBuffer *)inputInnerMask->initializeTileData(rect, memoryBuffers);
+ MemoryBuffer *outerMask = (MemoryBuffer *)inputOuterMask->initializeTileData(rect, memoryBuffers);
+ float *data = new float[this->getWidth() * this->getHeight()];
float *imask = innerMask->convertToValueBuffer();
float *omask = outerMask->convertToValueBuffer();
doDoubleEdgeMask(imask, omask, data);
@@ -1281,12 +1281,12 @@ void *DoubleEdgeMaskOperation::initializeTileData(rcti *rect, MemoryBuffer **mem
}
void DoubleEdgeMaskOperation::executePixel(float *color, int x, int y, MemoryBuffer *inputBuffers[], void *data)
{
- float *buffer = (float*) data;
- int index = (y*this->getWidth() + x);
+ float *buffer = (float *) data;
+ int index = (y * this->getWidth() + x);
color[0] = buffer[index];
- color[1] = buffer[index+1];
- color[2] = buffer[index+2];
- color[3] = buffer[index+3];
+ color[1] = buffer[index + 1];
+ color[2] = buffer[index + 2];
+ color[3] = buffer[index + 3];
}
void DoubleEdgeMaskOperation::deinitExecution()