Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJeroen Bakker <j.bakker@atmind.nl>2012-06-14 05:32:45 +0400
committerJeroen Bakker <j.bakker@atmind.nl>2012-06-14 05:32:45 +0400
commitcc82653b728408d5e30524549a419fe20fa6a967 (patch)
tree2387c47096e61341e318911b3a401cca62696ef0 /source/blender/compositor/operations/COM_GlareFogGlowOperation.cpp
parentbde7e6c96b9e180b293ee6e49ab813a30fac0635 (diff)
Matched FogGlow with old implementation
Diffstat (limited to 'source/blender/compositor/operations/COM_GlareFogGlowOperation.cpp')
-rw-r--r--source/blender/compositor/operations/COM_GlareFogGlowOperation.cpp405
1 files changed, 405 insertions, 0 deletions
diff --git a/source/blender/compositor/operations/COM_GlareFogGlowOperation.cpp b/source/blender/compositor/operations/COM_GlareFogGlowOperation.cpp
new file mode 100644
index 00000000000..4acc8aa17f0
--- /dev/null
+++ b/source/blender/compositor/operations/COM_GlareFogGlowOperation.cpp
@@ -0,0 +1,405 @@
+/*
+ * Copyright 2011, Blender Foundation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * Contributor:
+ * Jeroen Bakker
+ * Monique Dewanchand
+ */
+
+#include "COM_GlareFogGlowOperation.h"
+#include "MEM_guardedalloc.h"
+
+/*
+ * 2D Fast Hartley Transform, used for convolution
+ */
+
+typedef float fREAL;
+
+// returns next highest power of 2 of x, as well it's log2 in L2
+static unsigned int nextPow2(unsigned int x, unsigned int* L2)
+{
+ unsigned int pw, x_notpow2 = x & (x-1);
+ *L2 = 0;
+ while (x>>=1) ++(*L2);
+ pw = 1 << (*L2);
+ if (x_notpow2) { (*L2)++; pw<<=1; }
+ return pw;
+}
+
+//------------------------------------------------------------------------------
+
+// from FXT library by Joerg Arndt, faster in order bitreversal
+// use: r = revbin_upd(r, h) where h = N>>1
+static unsigned int revbin_upd(unsigned int r, unsigned int h)
+{
+ while (!((r^=h)&h)) h >>= 1;
+ return r;
+}
+//------------------------------------------------------------------------------
+static void FHT(fREAL* data, unsigned int M, unsigned int inverse)
+{
+ double tt, fc, dc, fs, ds, a = M_PI;
+ fREAL t1, t2;
+ int n2, bd, bl, istep, k, len = 1 << M, n = 1;
+
+ int i, j = 0;
+ unsigned int Nh = len >> 1;
+ for (i=1;i<(len-1);++i) {
+ j = revbin_upd(j, Nh);
+ if (j>i) {
+ t1 = data[i];
+ data[i] = data[j];
+ data[j] = t1;
+ }
+ }
+
+ do {
+ fREAL* data_n = &data[n];
+
+ istep = n << 1;
+ for (k=0; k<len; k+=istep) {
+ t1 = data_n[k];
+ data_n[k] = data[k] - t1;
+ data[k] += t1;
+ }
+
+ n2 = n >> 1;
+ if (n>2) {
+ fc = dc = cos(a);
+ fs = ds = sqrt(1.0 - fc*fc); //sin(a);
+ bd = n-2;
+ for (bl=1; bl<n2; bl++) {
+ fREAL* data_nbd = &data_n[bd];
+ fREAL* data_bd = &data[bd];
+ for (k=bl; k<len; k+=istep) {
+ t1 = fc*data_n[k] + fs*data_nbd[k];
+ t2 = fs*data_n[k] - fc*data_nbd[k];
+ data_n[k] = data[k] - t1;
+ data_nbd[k] = data_bd[k] - t2;
+ data[k] += t1;
+ data_bd[k] += t2;
+ }
+ tt = fc*dc - fs*ds;
+ fs = fs*dc + fc*ds;
+ fc = tt;
+ bd -= 2;
+ }
+ }
+
+ if (n>1) {
+ for (k=n2; k<len; k+=istep) {
+ t1 = data_n[k];
+ data_n[k] = data[k] - t1;
+ data[k] += t1;
+ }
+ }
+
+ n = istep;
+ a *= 0.5;
+ } while (n<len);
+
+ if (inverse) {
+ fREAL sc = (fREAL)1 / (fREAL)len;
+ for (k=0; k<len; ++k)
+ data[k] *= sc;
+ }
+}
+//------------------------------------------------------------------------------
+/* 2D Fast Hartley Transform, Mx/My -> log2 of width/height,
+ nzp -> the row where zero pad data starts,
+ inverse -> see above */
+static void FHT2D(fREAL *data, unsigned int Mx, unsigned int My,
+ unsigned int nzp, unsigned int inverse)
+{
+ unsigned int i, j, Nx, Ny, maxy;
+ fREAL t;
+
+ Nx = 1 << Mx;
+ Ny = 1 << My;
+
+ // rows (forward transform skips 0 pad data)
+ maxy = inverse ? Ny : nzp;
+ for (j=0; j<maxy; ++j)
+ FHT(&data[Nx*j], Mx, inverse);
+
+ // transpose data
+ if (Nx==Ny) { // square
+ for (j=0; j<Ny; ++j)
+ for (i=j+1; i<Nx; ++i) {
+ unsigned int op = i + (j << Mx), np = j + (i << My);
+ t=data[op], data[op]=data[np], data[np]=t;
+ }
+ }
+ else { // rectangular
+ unsigned int k, Nym = Ny-1, stm = 1 << (Mx + My);
+ for (i=0; stm>0; i++) {
+ #define PRED(k) (((k & Nym) << Mx) + (k >> My))
+ for (j=PRED(i); j>i; j=PRED(j));
+ if (j < i) continue;
+ for (k=i, j=PRED(i); j!=i; k=j, j=PRED(j), stm--) {
+ t=data[j], data[j]=data[k], data[k]=t;
+ }
+ #undef PRED
+ stm--;
+ }
+ }
+ // swap Mx/My & Nx/Ny
+ i = Nx, Nx = Ny, Ny = i;
+ i = Mx, Mx = My, My = i;
+
+ // now columns == transposed rows
+ for (j=0; j<Ny; ++j)
+ FHT(&data[Nx*j], Mx, inverse);
+
+ // finalize
+ for (j=0; j<=(Ny >> 1); j++) {
+ unsigned int jm = (Ny - j) & (Ny-1);
+ unsigned int ji = j << Mx;
+ unsigned int jmi = jm << Mx;
+ for (i=0; i<=(Nx >> 1); i++) {
+ unsigned int im = (Nx - i) & (Nx-1);
+ fREAL A = data[ji + i];
+ fREAL B = data[jmi + i];
+ fREAL C = data[ji + im];
+ fREAL D = data[jmi + im];
+ fREAL E = (fREAL)0.5*((A + D) - (B + C));
+ data[ji + i] = A - E;
+ data[jmi + i] = B + E;
+ data[ji + im] = C + E;
+ data[jmi + im] = D - E;
+ }
+ }
+
+}
+
+//------------------------------------------------------------------------------
+
+/* 2D convolution calc, d1 *= d2, M/N - > log2 of width/height */
+static void fht_convolve(fREAL* d1, fREAL* d2, unsigned int M, unsigned int N)
+{
+ fREAL a, b;
+ unsigned int i, j, k, L, mj, mL;
+ unsigned int m = 1 << M, n = 1 << N;
+ unsigned int m2 = 1 << (M-1), n2 = 1 << (N-1);
+ unsigned int mn2 = m << (N-1);
+
+ d1[0] *= d2[0];
+ d1[mn2] *= d2[mn2];
+ d1[m2] *= d2[m2];
+ d1[m2 + mn2] *= d2[m2 + mn2];
+ for (i=1; i<m2; i++) {
+ k = m - i;
+ a = d1[i]*d2[i] - d1[k]*d2[k];
+ b = d1[k]*d2[i] + d1[i]*d2[k];
+ d1[i] = (b + a)*(fREAL)0.5;
+ d1[k] = (b - a)*(fREAL)0.5;
+ a = d1[i + mn2]*d2[i + mn2] - d1[k + mn2]*d2[k + mn2];
+ b = d1[k + mn2]*d2[i + mn2] + d1[i + mn2]*d2[k + mn2];
+ d1[i + mn2] = (b + a)*(fREAL)0.5;
+ d1[k + mn2] = (b - a)*(fREAL)0.5;
+ }
+ for (j=1; j<n2; j++) {
+ L = n - j;
+ mj = j << M;
+ mL = L << M;
+ a = d1[mj]*d2[mj] - d1[mL]*d2[mL];
+ b = d1[mL]*d2[mj] + d1[mj]*d2[mL];
+ d1[mj] = (b + a)*(fREAL)0.5;
+ d1[mL] = (b - a)*(fREAL)0.5;
+ a = d1[m2 + mj]*d2[m2 + mj] - d1[m2 + mL]*d2[m2 + mL];
+ b = d1[m2 + mL]*d2[m2 + mj] + d1[m2 + mj]*d2[m2 + mL];
+ d1[m2 + mj] = (b + a)*(fREAL)0.5;
+ d1[m2 + mL] = (b - a)*(fREAL)0.5;
+ }
+ for (i=1; i<m2; i++) {
+ k = m - i;
+ for (j=1; j<n2; j++) {
+ L = n - j;
+ mj = j << M;
+ mL = L << M;
+ a = d1[i + mj]*d2[i + mj] - d1[k + mL]*d2[k + mL];
+ b = d1[k + mL]*d2[i + mj] + d1[i + mj]*d2[k + mL];
+ d1[i + mj] = (b + a)*(fREAL)0.5;
+ d1[k + mL] = (b - a)*(fREAL)0.5;
+ a = d1[i + mL]*d2[i + mL] - d1[k + mj]*d2[k + mj];
+ b = d1[k + mj]*d2[i + mL] + d1[i + mL]*d2[k + mj];
+ d1[i + mL] = (b + a)*(fREAL)0.5;
+ d1[k + mj] = (b - a)*(fREAL)0.5;
+ }
+ }
+}
+//------------------------------------------------------------------------------
+
+void convolve(float* dst, MemoryBuffer* in1, MemoryBuffer* in2)
+{
+ fREAL *data1, *data2, *fp;
+ unsigned int w2, h2, hw, hh, log2_w, log2_h;
+ fRGB wt, *colp;
+ int x, y, ch;
+ int xbl, ybl, nxb, nyb, xbsz, ybsz;
+ int in2done = FALSE;
+ const unsigned int kernelWidth = in2->getWidth();
+ const unsigned int kernelHeight = in2->getHeight();
+ const unsigned int imageWidth = in1->getWidth();
+ const unsigned int imageHeight = in1->getHeight();
+ float * kernelBuffer = in2->getBuffer();
+ float * imageBuffer = in1->getBuffer();
+
+ MemoryBuffer* rdst = new MemoryBuffer(NULL, in1->getRect());
+
+ // convolution result width & height
+ w2 = 2*kernelWidth - 1;
+ h2 = 2*kernelHeight - 1;
+ // FFT pow2 required size & log2
+ w2 = nextPow2(w2, &log2_w);
+ h2 = nextPow2(h2, &log2_h);
+
+ // alloc space
+ data1 = (fREAL*)MEM_callocN(3*w2*h2*sizeof(fREAL), "convolve_fast FHT data1");
+ data2 = (fREAL*)MEM_callocN(w2*h2*sizeof(fREAL), "convolve_fast FHT data2");
+
+ // normalize convolutor
+ wt[0] = wt[1] = wt[2] = 0.f;
+ for (y=0; y<kernelHeight; y++) {
+ colp = (fRGB*)&kernelBuffer[y*kernelWidth*COM_NUMBER_OF_CHANNELS];
+ for (x=0; x<kernelWidth; x++)
+ fRGB_add(wt, colp[x]);
+ }
+ if (wt[0] != 0.f) wt[0] = 1.f/wt[0];
+ if (wt[1] != 0.f) wt[1] = 1.f/wt[1];
+ if (wt[2] != 0.f) wt[2] = 1.f/wt[2];
+ for (y=0; y<kernelHeight; y++) {
+ colp = (fRGB*)&kernelBuffer[y*kernelWidth*COM_NUMBER_OF_CHANNELS];
+ for (x=0; x<kernelWidth; x++)
+ fRGB_colormult(colp[x], wt);
+ }
+
+ // copy image data, unpacking interleaved RGBA into separate channels
+ // only need to calc data1 once
+
+ // block add-overlap
+ hw = kernelWidth >> 1;
+ hh = kernelHeight >> 1;
+ xbsz = (w2 + 1) - kernelWidth;
+ ybsz = (h2 + 1) - kernelHeight;
+ nxb = imageWidth / xbsz;
+ if (imageWidth % xbsz) nxb++;
+ nyb = imageHeight / ybsz;
+ if (imageHeight % ybsz) nyb++;
+ for (ybl=0; ybl<nyb; ybl++) {
+ for (xbl=0; xbl<nxb; xbl++) {
+
+ // each channel one by one
+ for (ch=0; ch<3; ch++) {
+ fREAL* data1ch = &data1[ch*w2*h2];
+
+ // only need to calc fht data from in2 once, can re-use for every block
+ if (!in2done) {
+ // in2, channel ch -> data1
+ for (y=0; y<kernelHeight; y++) {
+ fp = &data1ch[y*w2];
+ colp = (fRGB*)&kernelBuffer[y*kernelWidth*COM_NUMBER_OF_CHANNELS];
+ for (x=0; x<kernelWidth; x++)
+ fp[x] = colp[x][ch];
+ }
+ }
+
+ // in1, channel ch -> data2
+ memset(data2, 0, w2*h2*sizeof(fREAL));
+ for (y=0; y<ybsz; y++) {
+ int yy = ybl*ybsz + y;
+ if (yy >= kernelHeight) continue;
+ fp = &data2[y*w2];
+ colp = (fRGB*)&imageBuffer[yy*imageWidth*COM_NUMBER_OF_CHANNELS];
+ for (x=0; x<xbsz; x++) {
+ int xx = xbl*xbsz + x;
+ if (xx >= imageWidth) continue;
+ fp[x] = colp[xx][ch];
+ }
+ }
+
+ // forward FHT
+ // zero pad data start is different for each == height+1
+ if (!in2done) FHT2D(data1ch, log2_w, log2_h, kernelHeight+1, 0);
+ FHT2D(data2, log2_w, log2_h, kernelHeight+1, 0);
+
+ // FHT2D transposed data, row/col now swapped
+ // convolve & inverse FHT
+ fht_convolve(data2, data1ch, log2_h, log2_w);
+ FHT2D(data2, log2_h, log2_w, 0, 1);
+ // data again transposed, so in order again
+
+ // overlap-add result
+ for (y=0; y<(int)h2; y++) {
+ const int yy = ybl*ybsz + y - hh;
+ if ((yy < 0) || (yy >= imageHeight)) continue;
+ fp = &data2[y*w2];
+ colp = (fRGB*)&rdst->getBuffer()[yy*imageWidth*COM_NUMBER_OF_CHANNELS];
+ for (x=0; x<(int)w2; x++) {
+ const int xx = xbl*xbsz + x - hw;
+ if ((xx < 0) || (xx >= imageWidth)) continue;
+ colp[xx][ch] += fp[x];
+ }
+ }
+
+ }
+ in2done = TRUE;
+ }
+ }
+
+ MEM_freeN(data2);
+ MEM_freeN(data1);
+ memcpy(dst, rdst->getBuffer(), sizeof(float)*imageWidth*imageHeight*COM_NUMBER_OF_CHANNELS);
+ delete(rdst);
+}
+
+void GlareFogGlowOperation::generateGlare(float *data, MemoryBuffer *inputTile, NodeGlare *settings)
+{
+ int x, y;
+ float scale, u, v, r, w, d;
+ fRGB fcol;
+ MemoryBuffer *ckrn;
+ unsigned int sz = 1 << settings->size;
+ const float cs_r = 1.f, cs_g = 1.f, cs_b = 1.f;
+
+ // temp. src image
+ // make the convolution kernel
+ rcti kernelRect;
+ BLI_init_rcti(&kernelRect, 0, sz, 0, sz);
+ ckrn = new MemoryBuffer(NULL, &kernelRect);
+
+ scale = 0.25f*sqrtf(sz*sz);
+
+ for (y=0; y<sz; ++y) {
+ v = 2.f*(y / (float)sz) - 1.f;
+ for (x=0; x<sz; ++x) {
+ u = 2.f*(x / (float)sz) - 1.f;
+ r = (u*u + v*v)*scale;
+ d = -sqrtf(sqrtf(sqrtf(r)))*9.f;
+ fcol[0] = expf(d*cs_r), fcol[1] = expf(d*cs_g), fcol[2] = expf(d*cs_b);
+ // linear window good enough here, visual result counts, not scientific analysis
+ //w = (1.f-fabs(u))*(1.f-fabs(v));
+ // actually, Hanning window is ok, cos^2 for some reason is slower
+ w = (0.5f + 0.5f*cos((double)u*M_PI))*(0.5f + 0.5f*cos((double)v*M_PI));
+ fRGB_mult(fcol, w);
+ ckrn->writePixel(x, y, fcol);
+ }
+ }
+
+ convolve(data, inputTile, ckrn);
+ delete ckrn;
+}