Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHabib Gahbiche <zazizizou>2021-03-29 08:44:27 +0300
committerJeroen Bakker <jeroen@blender.org>2021-03-29 08:56:58 +0300
commit805d9478109e76ca221f202ff152bae685f77ff4 (patch)
tree61b5b35de39fcdae1f31da98be39155f6d215386 /source/blender/compositor/operations
parent6af4163a3f190ed8b33a622ac038d9df88757a20 (diff)
Compositor: Add Anti-Aliasing node
This is an implementation of Enhanced Subpixel Morphological Antialiasing (SMAA) The algorithm was proposed by: Jorge Jimenez, Jose I. Echevarria, Tiago Sousa, Diego Gutierrez This node provides only SMAA 1x mode, so the operation will be done with no spatial multisampling nor temporal supersampling. See Patch for comparisons. The existing AA operation seems to be used only for binary images by some other nodes. Using SMAA for binary images needs no important parameter such as "threshold", so we perhaps can switch the operation to SMAA, though that changes existing behavior. Notes: 1. The program code assumes the screen coordinates are DirectX style that the vertical direction is upside-down, so "top" and "bottom" actually represent bottom and top, respectively. Thanks for Habib Gahbiche (zazizizou) to polish and finalize this patch. Reviewed By: jbakker Differential Revision: https://developer.blender.org/D2411
Diffstat (limited to 'source/blender/compositor/operations')
-rw-r--r--source/blender/compositor/operations/COM_SMAAOperation.cc865
-rw-r--r--source/blender/compositor/operations/COM_SMAAOperation.h147
2 files changed, 1012 insertions, 0 deletions
diff --git a/source/blender/compositor/operations/COM_SMAAOperation.cc b/source/blender/compositor/operations/COM_SMAAOperation.cc
new file mode 100644
index 00000000000..415a80f1d63
--- /dev/null
+++ b/source/blender/compositor/operations/COM_SMAAOperation.cc
@@ -0,0 +1,865 @@
+/*
+ * Copyright 2017, Blender Foundation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * Contributor: IRIE Shinsuke
+ */
+
+#include "COM_SMAAOperation.h"
+#include "BLI_math.h"
+#include "COM_SMAAAreaTexture.h"
+
+extern "C" {
+#include "IMB_colormanagement.h"
+}
+
+/*
+ * An implementation of Enhanced Subpixel Morphological Antialiasing (SMAA)
+ *
+ * The algorithm was proposed by:
+ * Jorge Jimenez, Jose I. Echevarria, Tiago Sousa, Diego Gutierrez
+ *
+ * http://www.iryoku.com/smaa/
+ *
+ * This file is based on smaa-cpp:
+ *
+ * https://github.com/iRi-E/smaa-cpp
+ *
+ * Currently only SMAA 1x mode is provided, so the operation will be done
+ * with no spatial multisampling nor temporal supersampling.
+ *
+ * Note: This program assumes the screen coordinates are DirectX style, so
+ * the vertical direction is upside-down. "top" and "bottom" actually mean
+ * bottom and top, respectively.
+ */
+
+/*-----------------------------------------------------------------------------*/
+/* Non-Configurable Defines */
+
+#define SMAA_AREATEX_SIZE 80
+#define SMAA_AREATEX_MAX_DISTANCE 20
+#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
+#define SMAA_MAX_SEARCH_STEPS 362 /* 362 - 1 = 19^2 */
+#define SMAA_MAX_SEARCH_STEPS_DIAG 19
+
+/*-----------------------------------------------------------------------------*/
+/* Internal Functions to Sample Pixel Color from Image */
+
+static inline void sample(SocketReader *reader, int x, int y, float color[4])
+{
+ if (x < 0 || x >= reader->getWidth() || y < 0 || y >= reader->getHeight()) {
+ color[0] = color[1] = color[2] = color[3] = 0.0;
+ return;
+ }
+
+ reader->read(color, x, y, nullptr);
+}
+
+static void sample_bilinear_vertical(
+ SocketReader *reader, int x, int y, float yoffset, float color[4])
+{
+ float iy = floorf(yoffset);
+ float fy = yoffset - iy;
+ y += (int)iy;
+
+ float color00[4], color01[4];
+
+ sample(reader, x + 0, y + 0, color00);
+ sample(reader, x + 0, y + 1, color01);
+
+ color[0] = interpf(color01[0], color00[0], fy);
+ color[1] = interpf(color01[1], color00[1], fy);
+ color[2] = interpf(color01[2], color00[2], fy);
+ color[3] = interpf(color01[3], color00[3], fy);
+}
+
+static void sample_bilinear_horizontal(
+ SocketReader *reader, int x, int y, float xoffset, float color[4])
+{
+ float ix = floorf(xoffset);
+ float fx = xoffset - ix;
+ x += (int)ix;
+
+ float color00[4], color10[4];
+
+ sample(reader, x + 0, y + 0, color00);
+ sample(reader, x + 1, y + 0, color10);
+
+ color[0] = interpf(color10[0], color00[0], fx);
+ color[1] = interpf(color10[1], color00[1], fx);
+ color[2] = interpf(color10[2], color00[2], fx);
+ color[3] = interpf(color10[3], color00[3], fx);
+}
+
+/*-----------------------------------------------------------------------------*/
+/* Internal Functions to Sample Blending Weights from AreaTex */
+
+static inline const float *areatex_sample_internal(const float *areatex, int x, int y)
+{
+ return &areatex[(CLAMPIS(x, 0, SMAA_AREATEX_SIZE - 1) +
+ CLAMPIS(y, 0, SMAA_AREATEX_SIZE - 1) * SMAA_AREATEX_SIZE) *
+ 2];
+}
+
+/**
+ * We have the distance and both crossing edges. So, what are the areas
+ * at each side of current edge?
+ */
+static void area(int d1, int d2, int e1, int e2, float weights[2])
+{
+ /* The areas texture is compressed quadratically: */
+ float x = (float)(SMAA_AREATEX_MAX_DISTANCE * e1) + sqrtf((float)d1);
+ float y = (float)(SMAA_AREATEX_MAX_DISTANCE * e2) + sqrtf((float)d2);
+
+ float ix = floorf(x), iy = floorf(y);
+ float fx = x - ix, fy = y - iy;
+ int X = (int)ix, Y = (int)iy;
+
+ const float *weights00 = areatex_sample_internal(areatex, X + 0, Y + 0);
+ const float *weights10 = areatex_sample_internal(areatex, X + 1, Y + 0);
+ const float *weights01 = areatex_sample_internal(areatex, X + 0, Y + 1);
+ const float *weights11 = areatex_sample_internal(areatex, X + 1, Y + 1);
+
+ weights[0] = interpf(
+ interpf(weights11[0], weights01[0], fx), interpf(weights10[0], weights00[0], fx), fy);
+ weights[1] = interpf(
+ interpf(weights11[1], weights01[1], fx), interpf(weights10[1], weights00[1], fx), fy);
+}
+
+/**
+ * Similar to area(), this calculates the area corresponding to a certain
+ * diagonal distance and crossing edges 'e'.
+ */
+static void area_diag(int d1, int d2, int e1, int e2, float weights[2])
+{
+ int x = SMAA_AREATEX_MAX_DISTANCE_DIAG * e1 + d1;
+ int y = SMAA_AREATEX_MAX_DISTANCE_DIAG * e2 + d2;
+
+ const float *w = areatex_sample_internal(areatex_diag, x, y);
+ copy_v2_v2(weights, w);
+}
+
+/*-----------------------------------------------------------------------------*/
+/* Edge Detection (First Pass) */
+/*-----------------------------------------------------------------------------*/
+
+SMAAEdgeDetectionOperation::SMAAEdgeDetectionOperation()
+{
+ this->addInputSocket(DataType::Color); /* image */
+ this->addInputSocket(DataType::Value); /* depth, material ID, etc. */
+ this->addOutputSocket(DataType::Color);
+ this->setComplex(true);
+ this->m_imageReader = nullptr;
+ this->m_valueReader = nullptr;
+ this->m_threshold = 0.1f;
+ this->m_contrast_limit = 2.0f;
+}
+
+void SMAAEdgeDetectionOperation::initExecution()
+{
+ this->m_imageReader = this->getInputSocketReader(0);
+ this->m_valueReader = this->getInputSocketReader(1);
+}
+
+void SMAAEdgeDetectionOperation::deinitExecution()
+{
+ this->m_imageReader = nullptr;
+ this->m_valueReader = nullptr;
+}
+
+void SMAAEdgeDetectionOperation::setThreshold(float threshold)
+{
+ /* UI values are between 0 and 1 for simplicity but algorithm expects values between 0 and 0.5 */
+ m_threshold = scalenorm(0, 0.5, threshold);
+}
+
+void SMAAEdgeDetectionOperation::setLocalContrastAdaptationFactor(float factor)
+{
+ /* UI values are between 0 and 1 for simplicity but algorithm expects values between 1 and 10 */
+ m_contrast_limit = scalenorm(1, 10, factor);
+}
+
+bool SMAAEdgeDetectionOperation::determineDependingAreaOfInterest(
+ rcti *input, ReadBufferOperation *readOperation, rcti *output)
+{
+ rcti newInput;
+ newInput.xmax = input->xmax + 1;
+ newInput.xmin = input->xmin - 2;
+ newInput.ymax = input->ymax + 1;
+ newInput.ymin = input->ymin - 2;
+
+ return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
+}
+
+void SMAAEdgeDetectionOperation::executePixel(float output[4], int x, int y, void * /*data*/)
+{
+ float color[4];
+
+ /* Calculate luma deltas: */
+ sample(m_imageReader, x, y, color);
+ float L = IMB_colormanagement_get_luminance(color);
+ sample(m_imageReader, x - 1, y, color);
+ float Lleft = IMB_colormanagement_get_luminance(color);
+ sample(m_imageReader, x, y - 1, color);
+ float Ltop = IMB_colormanagement_get_luminance(color);
+ float Dleft = fabsf(L - Lleft);
+ float Dtop = fabsf(L - Ltop);
+
+ /* We do the usual threshold: */
+ output[0] = (x > 0 && Dleft >= m_threshold) ? 1.0f : 0.0f;
+ output[1] = (y > 0 && Dtop >= m_threshold) ? 1.0f : 0.0f;
+ output[2] = 0.0f;
+ output[3] = 1.0f;
+
+ /* Then discard if there is no edge: */
+ if (is_zero_v2(output)) {
+ return;
+ }
+
+ /* Calculate right and bottom deltas: */
+ sample(m_imageReader, x + 1, y, color);
+ float Lright = IMB_colormanagement_get_luminance(color);
+ sample(m_imageReader, x, y + 1, color);
+ float Lbottom = IMB_colormanagement_get_luminance(color);
+ float Dright = fabsf(L - Lright);
+ float Dbottom = fabsf(L - Lbottom);
+
+ /* Calculate the maximum delta in the direct neighborhood: */
+ float maxDelta = fmaxf(fmaxf(Dleft, Dright), fmaxf(Dtop, Dbottom));
+
+ /* Calculate luma used for both left and top edges: */
+ sample(m_imageReader, x - 1, y - 1, color);
+ float Llefttop = IMB_colormanagement_get_luminance(color);
+
+ /* Left edge */
+ if (output[0] != 0.0f) {
+ /* Calculate deltas around the left pixel: */
+ sample(m_imageReader, x - 2, y, color);
+ float Lleftleft = IMB_colormanagement_get_luminance(color);
+ sample(m_imageReader, x - 1, y + 1, color);
+ float Lleftbottom = IMB_colormanagement_get_luminance(color);
+ float Dleftleft = fabsf(Lleft - Lleftleft);
+ float Dlefttop = fabsf(Lleft - Llefttop);
+ float Dleftbottom = fabsf(Lleft - Lleftbottom);
+
+ /* Calculate the final maximum delta: */
+ maxDelta = fmaxf(maxDelta, fmaxf(Dleftleft, fmaxf(Dlefttop, Dleftbottom)));
+
+ /* Local contrast adaptation: */
+ if (maxDelta > m_contrast_limit * Dleft) {
+ output[0] = 0.0f;
+ }
+ }
+
+ /* Top edge */
+ if (output[1] != 0.0f) {
+ /* Calculate top-top delta: */
+ sample(m_imageReader, x, y - 2, color);
+ float Ltoptop = IMB_colormanagement_get_luminance(color);
+ sample(m_imageReader, x + 1, y - 1, color);
+ float Ltopright = IMB_colormanagement_get_luminance(color);
+ float Dtoptop = fabsf(Ltop - Ltoptop);
+ float Dtopleft = fabsf(Ltop - Llefttop);
+ float Dtopright = fabsf(Ltop - Ltopright);
+
+ /* Calculate the final maximum delta: */
+ maxDelta = fmaxf(maxDelta, fmaxf(Dtoptop, fmaxf(Dtopleft, Dtopright)));
+
+ /* Local contrast adaptation: */
+ if (maxDelta > m_contrast_limit * Dtop) {
+ output[1] = 0.0f;
+ }
+ }
+
+}
+
+/*-----------------------------------------------------------------------------*/
+/* Blending Weight Calculation (Second Pass) */
+/*-----------------------------------------------------------------------------*/
+
+SMAABlendingWeightCalculationOperation::SMAABlendingWeightCalculationOperation()
+{
+ this->addInputSocket(DataType::Color); /* edges */
+ this->addOutputSocket(DataType::Color);
+ this->setComplex(true);
+ this->m_imageReader = nullptr;
+ this->m_corner_rounding = 25;
+}
+
+void *SMAABlendingWeightCalculationOperation::initializeTileData(rcti *rect)
+{
+ return getInputOperation(0)->initializeTileData(rect);
+}
+
+void SMAABlendingWeightCalculationOperation::initExecution()
+{
+ this->m_imageReader = this->getInputSocketReader(0);
+}
+
+void SMAABlendingWeightCalculationOperation::setCornerRounding(float rounding)
+{
+ /* UI values are between 0 and 1 for simplicity but algorithm expects values between 0 and 100 */
+ m_corner_rounding = static_cast<int>(scalenorm(0, 100, rounding));
+}
+
+void SMAABlendingWeightCalculationOperation::executePixel(float output[4],
+ int x,
+ int y,
+ void * /*data*/)
+{
+ float edges[4], c[4];
+
+ zero_v4(output);
+ sample(m_imageReader, x, y, edges);
+
+ /* Edge at north */
+ if (edges[1] > 0.0f) {
+ /* Diagonals have both north and west edges, so calculating weights for them */
+ /* in one of the boundaries is enough. */
+ calculateDiagWeights(x, y, edges, output);
+
+ /* We give priority to diagonals, so if we find a diagonal we skip */
+ /* horizontal/vertical processing. */
+ if (!is_zero_v2(output)) {
+ return;
+ }
+
+ /* Find the distance to the left and the right: */
+ int left = searchXLeft(x, y);
+ int right = searchXRight(x, y);
+ int d1 = x - left, d2 = right - x;
+
+ /* Fetch the left and right crossing edges: */
+ int e1 = 0, e2 = 0;
+ sample(m_imageReader, left, y - 1, c);
+ if (c[0] > 0.0) {
+ e1 += 1;
+ }
+ sample(m_imageReader, left, y, c);
+ if (c[0] > 0.0) {
+ e1 += 2;
+ }
+ sample(m_imageReader, right + 1, y - 1, c);
+ if (c[0] > 0.0) {
+ e2 += 1;
+ }
+ sample(m_imageReader, right + 1, y, c);
+ if (c[0] > 0.0) {
+ e2 += 2;
+ }
+
+ /* Ok, we know how this pattern looks like, now it is time for getting */
+ /* the actual area: */
+ area(d1, d2, e1, e2, output); /* R, G */
+
+ /* Fix corners: */
+ if (m_corner_rounding) {
+ detectHorizontalCornerPattern(output, left, right, y, d1, d2);
+ }
+ }
+
+ /* Edge at west */
+ if (edges[0] > 0.0f) {
+ /* Did we already do diagonal search for this west edge from the left neighboring pixel? */
+ if (isVerticalSearchUnneeded(x, y)) {
+ return;
+ }
+
+ /* Find the distance to the top and the bottom: */
+ int top = searchYUp(x, y);
+ int bottom = searchYDown(x, y);
+ int d1 = y - top, d2 = bottom - y;
+
+ /* Fetch the top ang bottom crossing edges: */
+ int e1 = 0, e2 = 0;
+ sample(m_imageReader, x - 1, top, c);
+ if (c[1] > 0.0) {
+ e1 += 1;
+ }
+ sample(m_imageReader, x, top, c);
+ if (c[1] > 0.0) {
+ e1 += 2;
+ }
+ sample(m_imageReader, x - 1, bottom + 1, c);
+ if (c[1] > 0.0) {
+ e2 += 1;
+ }
+ sample(m_imageReader, x, bottom + 1, c);
+ if (c[1] > 0.0) {
+ e2 += 2;
+ }
+
+ /* Get the area for this direction: */
+ area(d1, d2, e1, e2, output + 2); /* B, A */
+
+ /* Fix corners: */
+ if (m_corner_rounding) {
+ detectVerticalCornerPattern(output + 2, x, top, bottom, d1, d2);
+ }
+ }
+}
+
+void SMAABlendingWeightCalculationOperation::deinitExecution()
+{
+ this->m_imageReader = nullptr;
+}
+
+bool SMAABlendingWeightCalculationOperation::determineDependingAreaOfInterest(
+ rcti *input, ReadBufferOperation *readOperation, rcti *output)
+{
+ rcti newInput;
+
+ newInput.xmax = input->xmax + fmax(SMAA_MAX_SEARCH_STEPS, SMAA_MAX_SEARCH_STEPS_DIAG + 1);
+ newInput.xmin = input->xmin -
+ fmax(fmax(SMAA_MAX_SEARCH_STEPS - 1, 1), SMAA_MAX_SEARCH_STEPS_DIAG + 1);
+ newInput.ymax = input->ymax + fmax(SMAA_MAX_SEARCH_STEPS, SMAA_MAX_SEARCH_STEPS_DIAG);
+ newInput.ymin = input->ymin -
+ fmax(fmax(SMAA_MAX_SEARCH_STEPS - 1, 1), SMAA_MAX_SEARCH_STEPS_DIAG);
+
+ return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
+}
+
+/*-----------------------------------------------------------------------------*/
+/* Diagonal Search Functions */
+
+/**
+ * These functions allows to perform diagonal pattern searches.
+ */
+int SMAABlendingWeightCalculationOperation::searchDiag1(int x, int y, int dir, bool *found)
+{
+ float e[4];
+ int end = x + SMAA_MAX_SEARCH_STEPS_DIAG * dir;
+ *found = false;
+
+ while (x != end) {
+ x += dir;
+ y -= dir;
+ sample(m_imageReader, x, y, e);
+ if (e[1] == 0.0f) {
+ *found = true;
+ break;
+ }
+ if (e[0] == 0.0f) {
+ *found = true;
+ return (dir < 0) ? x : x - dir;
+ }
+ }
+
+ return x - dir;
+}
+
+int SMAABlendingWeightCalculationOperation::searchDiag2(int x, int y, int dir, bool *found)
+{
+ float e[4];
+ int end = x + SMAA_MAX_SEARCH_STEPS_DIAG * dir;
+ *found = false;
+
+ while (x != end) {
+ x += dir;
+ y += dir;
+ sample(m_imageReader, x, y, e);
+ if (e[1] == 0.0f) {
+ *found = true;
+ break;
+ }
+ sample(m_imageReader, x + 1, y, e);
+ if (e[0] == 0.0f) {
+ *found = true;
+ return (dir > 0) ? x : x - dir;
+ }
+ }
+
+ return x - dir;
+}
+
+/**
+ * This searches for diagonal patterns and returns the corresponding weights.
+ */
+void SMAABlendingWeightCalculationOperation::calculateDiagWeights(int x,
+ int y,
+ const float edges[2],
+ float weights[2])
+{
+ int d1, d2;
+ bool d1_found, d2_found;
+ float e[4], c[4];
+
+ zero_v2(weights);
+
+ if (SMAA_MAX_SEARCH_STEPS_DIAG <= 0) {
+ return;
+ }
+
+ /* Search for the line ends: */
+ if (edges[0] > 0.0f) {
+ d1 = x - searchDiag1(x, y, -1, &d1_found);
+ }
+ else {
+ d1 = 0;
+ d1_found = true;
+ }
+ d2 = searchDiag1(x, y, 1, &d2_found) - x;
+
+ if (d1 + d2 > 2) { /* d1 + d2 + 1 > 3 */
+ int e1 = 0, e2 = 0;
+
+ if (d1_found) {
+ /* Fetch the crossing edges: */
+ int left = x - d1, bottom = y + d1;
+
+ sample(m_imageReader, left - 1, bottom, c);
+ if (c[1] > 0.0) {
+ e1 += 2;
+ }
+ sample(m_imageReader, left, bottom, c);
+ if (c[0] > 0.0) {
+ e1 += 1;
+ }
+ }
+
+ if (d2_found) {
+ /* Fetch the crossing edges: */
+ int right = x + d2, top = y - d2;
+
+ sample(m_imageReader, right + 1, top, c);
+ if (c[1] > 0.0) {
+ e2 += 2;
+ }
+ sample(m_imageReader, right + 1, top - 1, c);
+ if (c[0] > 0.0) {
+ e2 += 1;
+ }
+ }
+
+ /* Fetch the areas for this line: */
+ area_diag(d1, d2, e1, e2, weights);
+ }
+
+ /* Search for the line ends: */
+ d1 = x - searchDiag2(x, y, -1, &d1_found);
+ sample(m_imageReader, x + 1, y, e);
+ if (e[0] > 0.0f) {
+ d2 = searchDiag2(x, y, 1, &d2_found) - x;
+ }
+ else {
+ d2 = 0;
+ d2_found = true;
+ }
+
+ if (d1 + d2 > 2) { /* d1 + d2 + 1 > 3 */
+ int e1 = 0, e2 = 0;
+
+ if (d1_found) {
+ /* Fetch the crossing edges: */
+ int left = x - d1, top = y - d1;
+
+ sample(m_imageReader, left - 1, top, c);
+ if (c[1] > 0.0) {
+ e1 += 2;
+ }
+ sample(m_imageReader, left, top - 1, c);
+ if (c[0] > 0.0) {
+ e1 += 1;
+ }
+ }
+
+ if (d2_found) {
+ /* Fetch the crossing edges: */
+ int right = x + d2, bottom = y + d2;
+
+ sample(m_imageReader, right + 1, bottom, c);
+ if (c[1] > 0.0) {
+ e2 += 2;
+ }
+ if (c[0] > 0.0) {
+ e2 += 1;
+ }
+ }
+
+ /* Fetch the areas for this line: */
+ float w[2];
+ area_diag(d1, d2, e1, e2, w);
+ weights[0] += w[1];
+ weights[1] += w[0];
+ }
+}
+
+bool SMAABlendingWeightCalculationOperation::isVerticalSearchUnneeded(int x, int y)
+{
+ int d1, d2;
+ bool found;
+ float e[4];
+
+ if (SMAA_MAX_SEARCH_STEPS_DIAG <= 0) {
+ return false;
+ }
+
+ /* Search for the line ends: */
+ sample(m_imageReader, x - 1, y, e);
+ if (e[1] > 0.0f) {
+ d1 = x - searchDiag2(x - 1, y, -1, &found);
+ }
+ else {
+ d1 = 0;
+ }
+ d2 = searchDiag2(x - 1, y, 1, &found) - x;
+
+ return (d1 + d2 > 2); /* d1 + d2 + 1 > 3 */
+}
+
+/*-----------------------------------------------------------------------------*/
+/* Horizontal/Vertical Search Functions */
+
+int SMAABlendingWeightCalculationOperation::searchXLeft(int x, int y)
+{
+ int end = x - SMAA_MAX_SEARCH_STEPS;
+ float e[4];
+
+ while (x > end) {
+ sample(m_imageReader, x, y, e);
+ if (e[1] == 0.0f) { /* Is the edge not activated? */
+ break;
+ }
+ if (e[0] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ return x;
+ }
+ sample(m_imageReader, x, y - 1, e);
+ if (e[0] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ return x;
+ }
+ x--;
+ }
+
+ return x + 1;
+}
+
+int SMAABlendingWeightCalculationOperation::searchXRight(int x, int y)
+{
+ int end = x + SMAA_MAX_SEARCH_STEPS;
+ float e[4];
+
+ while (x < end) {
+ x++;
+ sample(m_imageReader, x, y, e);
+ if (e[1] == 0.0f || /* Is the edge not activated? */
+ e[0] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ break;
+ }
+ sample(m_imageReader, x, y - 1, e);
+ if (e[0] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ break;
+ }
+ }
+
+ return x - 1;
+}
+
+int SMAABlendingWeightCalculationOperation::searchYUp(int x, int y)
+{
+ int end = y - SMAA_MAX_SEARCH_STEPS;
+ float e[4];
+
+ while (y > end) {
+ sample(m_imageReader, x, y, e);
+ if (e[0] == 0.0f) { /* Is the edge not activated? */
+ break;
+ }
+ if (e[1] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ return y;
+ }
+ sample(m_imageReader, x - 1, y, e);
+ if (e[1] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ return y;
+ }
+ y--;
+ }
+
+ return y + 1;
+}
+
+int SMAABlendingWeightCalculationOperation::searchYDown(int x, int y)
+{
+ int end = y + SMAA_MAX_SEARCH_STEPS;
+ float e[4];
+
+ while (y < end) {
+ y++;
+ sample(m_imageReader, x, y, e);
+ if (e[0] == 0.0f || /* Is the edge not activated? */
+ e[1] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ break;
+ }
+ sample(m_imageReader, x - 1, y, e);
+ if (e[1] != 0.0f) { /* Or is there a crossing edge that breaks the line? */
+ break;
+ }
+ }
+
+ return y - 1;
+}
+
+/*-----------------------------------------------------------------------------*/
+/* Corner Detection Functions */
+
+void SMAABlendingWeightCalculationOperation::detectHorizontalCornerPattern(
+ float weights[2], int left, int right, int y, int d1, int d2)
+{
+ float factor[2] = {1.0f, 1.0f};
+ float rounding = m_corner_rounding / 100.0f;
+ float e[4];
+
+ /* Reduce blending for pixels in the center of a line. */
+ rounding *= (d1 == d2) ? 0.5f : 1.0f;
+
+ /* Near the left corner */
+ if (d1 <= d2) {
+ sample(m_imageReader, left, y + 1, e);
+ factor[0] -= rounding * e[0];
+ sample(m_imageReader, left, y - 2, e);
+ factor[1] -= rounding * e[0];
+ }
+ /* Near the right corner */
+ if (d1 >= d2) {
+ sample(m_imageReader, right + 1, y + 1, e);
+ factor[0] -= rounding * e[0];
+ sample(m_imageReader, right + 1, y - 2, e);
+ factor[1] -= rounding * e[0];
+ }
+
+ weights[0] *= CLAMPIS(factor[0], 0.0f, 1.0f);
+ weights[1] *= CLAMPIS(factor[1], 0.0f, 1.0f);
+}
+
+void SMAABlendingWeightCalculationOperation::detectVerticalCornerPattern(
+ float weights[2], int x, int top, int bottom, int d1, int d2)
+{
+ float factor[2] = {1.0f, 1.0f};
+ float rounding = m_corner_rounding / 100.0f;
+ float e[4];
+
+ /* Reduce blending for pixels in the center of a line. */
+ rounding *= (d1 == d2) ? 0.5f : 1.0f;
+
+ /* Near the top corner */
+ if (d1 <= d2) {
+ sample(m_imageReader, x + 1, top, e);
+ factor[0] -= rounding * e[1];
+ sample(m_imageReader, x - 2, top, e);
+ factor[1] -= rounding * e[1];
+ }
+ /* Near the bottom corner */
+ if (d1 >= d2) {
+ sample(m_imageReader, x + 1, bottom + 1, e);
+ factor[0] -= rounding * e[1];
+ sample(m_imageReader, x - 2, bottom + 1, e);
+ factor[1] -= rounding * e[1];
+ }
+
+ weights[0] *= CLAMPIS(factor[0], 0.0f, 1.0f);
+ weights[1] *= CLAMPIS(factor[1], 0.0f, 1.0f);
+}
+
+/*-----------------------------------------------------------------------------*/
+/* Neighborhood Blending (Third Pass) */
+/*-----------------------------------------------------------------------------*/
+
+SMAANeighborhoodBlendingOperation::SMAANeighborhoodBlendingOperation()
+{
+ this->addInputSocket(DataType::Color); /* image */
+ this->addInputSocket(DataType::Color); /* blend */
+ this->addOutputSocket(DataType::Color);
+ this->setComplex(true);
+ this->m_image1Reader = nullptr;
+ this->m_image2Reader = nullptr;
+}
+
+void *SMAANeighborhoodBlendingOperation::initializeTileData(rcti *rect)
+{
+ return getInputOperation(0)->initializeTileData(rect);
+}
+
+void SMAANeighborhoodBlendingOperation::initExecution()
+{
+ this->m_image1Reader = this->getInputSocketReader(0);
+ this->m_image2Reader = this->getInputSocketReader(1);
+}
+
+void SMAANeighborhoodBlendingOperation::executePixel(float output[4],
+ int x,
+ int y,
+ void * /*data*/)
+{
+ float w[4];
+
+ /* Fetch the blending weights for current pixel: */
+ sample(m_image2Reader, x, y, w);
+ float left = w[2], top = w[0];
+ sample(m_image2Reader, x + 1, y, w);
+ float right = w[3];
+ sample(m_image2Reader, x, y + 1, w);
+ float bottom = w[1];
+
+ /* Is there any blending weight with a value greater than 0.0? */
+ if (right + bottom + left + top < 1e-5f) {
+ sample(m_image1Reader, x, y, output);
+ return;
+ }
+
+ /* Calculate the blending offsets: */
+ void (*samplefunc)(SocketReader * reader, int x, int y, float xoffset, float color[4]);
+ float offset1, offset2, weight1, weight2, color1[4], color2[4];
+
+ if (fmaxf(right, left) > fmaxf(bottom, top)) { /* max(horizontal) > max(vertical) */
+ samplefunc = sample_bilinear_horizontal;
+ offset1 = right;
+ offset2 = -left;
+ weight1 = right / (right + left);
+ weight2 = left / (right + left);
+ }
+ else {
+ samplefunc = sample_bilinear_vertical;
+ offset1 = bottom;
+ offset2 = -top;
+ weight1 = bottom / (bottom + top);
+ weight2 = top / (bottom + top);
+ }
+
+ /* We exploit bilinear filtering to mix current pixel with the chosen neighbor: */
+ samplefunc(m_image1Reader, x, y, offset1, color1);
+ samplefunc(m_image1Reader, x, y, offset2, color2);
+
+ mul_v4_v4fl(output, color1, weight1);
+ madd_v4_v4fl(output, color2, weight2);
+}
+
+void SMAANeighborhoodBlendingOperation::deinitExecution()
+{
+ this->m_image1Reader = nullptr;
+ this->m_image2Reader = nullptr;
+}
+
+bool SMAANeighborhoodBlendingOperation::determineDependingAreaOfInterest(
+ rcti *input, ReadBufferOperation *readOperation, rcti *output)
+{
+ rcti newInput;
+
+ newInput.xmax = input->xmax + 1;
+ newInput.xmin = input->xmin - 1;
+ newInput.ymax = input->ymax + 1;
+ newInput.ymin = input->ymin - 1;
+
+ return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
+}
diff --git a/source/blender/compositor/operations/COM_SMAAOperation.h b/source/blender/compositor/operations/COM_SMAAOperation.h
new file mode 100644
index 00000000000..8ac6fea6818
--- /dev/null
+++ b/source/blender/compositor/operations/COM_SMAAOperation.h
@@ -0,0 +1,147 @@
+/*
+ * Copyright 2017, Blender Foundation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * Contributor: IRIE Shinsuke
+ */
+
+#ifndef _COM_SMAAOperation_h
+#define _COM_SMAAOperation_h
+#include "COM_NodeOperation.h"
+
+/*-----------------------------------------------------------------------------*/
+/* Edge Detection (First Pass) */
+
+class SMAAEdgeDetectionOperation : public NodeOperation {
+ protected:
+ SocketReader *m_imageReader;
+ SocketReader *m_valueReader;
+
+ float m_threshold;
+ float m_contrast_limit;
+
+ public:
+ SMAAEdgeDetectionOperation();
+
+ /**
+ * the inner loop of this program
+ */
+ virtual void executePixel(float output[4], int x, int y, void *data) override;
+
+ /**
+ * Initialize the execution
+ */
+ void initExecution() override;
+
+ /**
+ * Deinitialize the execution
+ */
+ void deinitExecution() override;
+
+ void setThreshold(float threshold);
+
+ void setLocalContrastAdaptationFactor(float factor);
+
+ bool determineDependingAreaOfInterest(rcti *input,
+ ReadBufferOperation *readOperation,
+ rcti *output) override;
+};
+
+/*-----------------------------------------------------------------------------*/
+/* Blending Weight Calculation (Second Pass) */
+
+class SMAABlendingWeightCalculationOperation : public NodeOperation {
+ private:
+ SocketReader *m_imageReader;
+
+ int m_corner_rounding;
+
+ public:
+ SMAABlendingWeightCalculationOperation();
+
+ /**
+ * the inner loop of this program
+ */
+ void executePixel(float output[4], int x, int y, void *data);
+
+ /**
+ * Initialize the execution
+ */
+ void initExecution();
+ void *initializeTileData(rcti *rect);
+
+ /**
+ * Deinitialize the execution
+ */
+ void deinitExecution();
+
+ void setCornerRounding(float rounding);
+
+ bool determineDependingAreaOfInterest(rcti *input,
+ ReadBufferOperation *readOperation,
+ rcti *output);
+
+ private:
+ /* Diagonal Search Functions */
+ int searchDiag1(int x, int y, int dir, bool *found);
+ int searchDiag2(int x, int y, int dir, bool *found);
+ void calculateDiagWeights(int x, int y, const float edges[2], float weights[2]);
+ bool isVerticalSearchUnneeded(int x, int y);
+
+ /* Horizontal/Vertical Search Functions */
+ int searchXLeft(int x, int y);
+ int searchXRight(int x, int y);
+ int searchYUp(int x, int y);
+ int searchYDown(int x, int y);
+
+ /* Corner Detection Functions */
+ void detectHorizontalCornerPattern(float weights[2], int left, int right, int y, int d1, int d2);
+ void detectVerticalCornerPattern(float weights[2], int x, int top, int bottom, int d1, int d2);
+};
+
+/*-----------------------------------------------------------------------------*/
+/* Neighborhood Blending (Third Pass) */
+
+class SMAANeighborhoodBlendingOperation : public NodeOperation {
+ private:
+ SocketReader *m_image1Reader;
+ SocketReader *m_image2Reader;
+
+ public:
+ SMAANeighborhoodBlendingOperation();
+
+ /**
+ * the inner loop of this program
+ */
+ void executePixel(float output[4], int x, int y, void *data);
+
+ /**
+ * Initialize the execution
+ */
+ void initExecution();
+ void *initializeTileData(rcti *rect);
+
+ /**
+ * Deinitialize the execution
+ */
+ void deinitExecution();
+
+ bool determineDependingAreaOfInterest(rcti *input,
+ ReadBufferOperation *readOperation,
+ rcti *output);
+};
+
+#endif