Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorClément Foucault <foucault.clem@gmail.com>2018-01-18 23:00:24 +0300
committerClément Foucault <foucault.clem@gmail.com>2018-01-18 23:52:36 +0300
commit0cec092eca46fbad49583c08ea6ef86d1c08b92c (patch)
tree78ccecab533a4591c93bc5e3728e2bdcde55f76e /source/blender/draw/engines/eevee/shaders/ltc_lib.glsl
parent220f1ad67ec67886704a06be08ef4da7f34ef224 (diff)
Eevee: Optimize rectangle area light.
Use the latest LTC optimisation techniques. That said, the final output is a bit more biased (and a bit further away from cycles).
Diffstat (limited to 'source/blender/draw/engines/eevee/shaders/ltc_lib.glsl')
-rw-r--r--source/blender/draw/engines/eevee/shaders/ltc_lib.glsl236
1 files changed, 62 insertions, 174 deletions
diff --git a/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl b/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl
index 436904bbd28..915e6a5cebc 100644
--- a/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl
@@ -14,6 +14,20 @@ uniform sampler2DArray utilTex;
#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */
+/* Diffuse *clipped* sphere integral. */
+float diffuse_sphere_integral_lut(vec3 avg_dir, float form_factor)
+{
+ vec2 uv = vec2(avg_dir.z * 0.5 + 0.5, form_factor);
+ uv = uv * (LUT_SIZE - 1.0) / LUT_SIZE + 0.5 / LUT_SIZE;
+
+ return texture(utilTex, vec3(uv, 1.0)).w;
+}
+
+float diffuse_sphere_integral_cheap(vec3 avg_dir, float form_factor)
+{
+ return max((form_factor * form_factor + avg_dir.z) / (form_factor + 1.0), 0.0);
+}
+
/**
* An extended version of the implementation from
* "How to solve a cubic equation, revisited"
@@ -109,142 +123,18 @@ vec3 solve_cubic(vec4 coefs)
/* from Real-Time Area Lighting: a Journey from Research to Production
* Stephen Hill and Eric Heitz */
-float edge_integral(vec3 p1, vec3 p2)
+vec3 edge_integral_vec(vec3 v1, vec3 v2)
{
-#if 0
- /* more accurate replacement of acos */
- float x = dot(p1, p2);
+ float x = dot(v1, v2);
float y = abs(x);
- float a = 5.42031 + (3.12829 + 0.0902326 * y) * y;
- float b = 3.45068 + (4.18814 + y) * y;
- float theta_sintheta = a / b;
-
- if (x < 0.0) {
- theta_sintheta = (M_PI / sqrt(1.0 - x * x)) - theta_sintheta;
- }
- vec3 u = cross(p1, p2);
- return theta_sintheta * dot(u, N);
-#endif
- float cos_theta = dot(p1, p2);
- cos_theta = clamp(cos_theta, -0.9999, 0.9999);
-
- float theta = acos(cos_theta);
- vec3 u = normalize(cross(p1, p2));
- return theta * cross(p1, p2).z / sin(theta);
-}
-
-int clip_quad_to_horizon(inout vec3 L[5])
-{
- /* detect clipping config */
- int config = 0;
- if (L[0].z > 0.0) config += 1;
- if (L[1].z > 0.0) config += 2;
- if (L[2].z > 0.0) config += 4;
- if (L[3].z > 0.0) config += 8;
-
- /* clip */
- int n = 0;
-
- if (config == 0)
- {
- /* clip all */
- }
- else if (config == 1) /* V1 clip V2 V3 V4 */
- {
- n = 3;
- L[1] = -L[1].z * L[0] + L[0].z * L[1];
- L[2] = -L[3].z * L[0] + L[0].z * L[3];
- }
- else if (config == 2) /* V2 clip V1 V3 V4 */
- {
- n = 3;
- L[0] = -L[0].z * L[1] + L[1].z * L[0];
- L[2] = -L[2].z * L[1] + L[1].z * L[2];
- }
- else if (config == 3) /* V1 V2 clip V3 V4 */
- {
- n = 4;
- L[2] = -L[2].z * L[1] + L[1].z * L[2];
- L[3] = -L[3].z * L[0] + L[0].z * L[3];
- }
- else if (config == 4) /* V3 clip V1 V2 V4 */
- {
- n = 3;
- L[0] = -L[3].z * L[2] + L[2].z * L[3];
- L[1] = -L[1].z * L[2] + L[2].z * L[1];
- }
- else if (config == 5) /* V1 V3 clip V2 V4) impossible */
- {
- n = 0;
- }
- else if (config == 6) /* V2 V3 clip V1 V4 */
- {
- n = 4;
- L[0] = -L[0].z * L[1] + L[1].z * L[0];
- L[3] = -L[3].z * L[2] + L[2].z * L[3];
- }
- else if (config == 7) /* V1 V2 V3 clip V4 */
- {
- n = 5;
- L[4] = -L[3].z * L[0] + L[0].z * L[3];
- L[3] = -L[3].z * L[2] + L[2].z * L[3];
- }
- else if (config == 8) /* V4 clip V1 V2 V3 */
- {
- n = 3;
- L[0] = -L[0].z * L[3] + L[3].z * L[0];
- L[1] = -L[2].z * L[3] + L[3].z * L[2];
- L[2] = L[3];
- }
- else if (config == 9) /* V1 V4 clip V2 V3 */
- {
- n = 4;
- L[1] = -L[1].z * L[0] + L[0].z * L[1];
- L[2] = -L[2].z * L[3] + L[3].z * L[2];
- }
- else if (config == 10) /* V2 V4 clip V1 V3) impossible */
- {
- n = 0;
- }
- else if (config == 11) /* V1 V2 V4 clip V3 */
- {
- n = 5;
- L[4] = L[3];
- L[3] = -L[2].z * L[3] + L[3].z * L[2];
- L[2] = -L[2].z * L[1] + L[1].z * L[2];
- }
- else if (config == 12) /* V3 V4 clip V1 V2 */
- {
- n = 4;
- L[1] = -L[1].z * L[2] + L[2].z * L[1];
- L[0] = -L[0].z * L[3] + L[3].z * L[0];
- }
- else if (config == 13) /* V1 V3 V4 clip V2 */
- {
- n = 5;
- L[4] = L[3];
- L[3] = L[2];
- L[2] = -L[1].z * L[2] + L[2].z * L[1];
- L[1] = -L[1].z * L[0] + L[0].z * L[1];
- }
- else if (config == 14) /* V2 V3 V4 clip V1 */
- {
- n = 5;
- L[4] = -L[0].z * L[3] + L[3].z * L[0];
- L[0] = -L[0].z * L[1] + L[1].z * L[0];
- }
- else if (config == 15) /* V1 V2 V3 V4 */
- {
- n = 4;
- }
+ float a = 0.8543985 + (0.4965155 + 0.0145206 * y) * y;
+ float b = 3.4175940 + (4.1616724 + y) * y;
+ float v = a / b;
- if (n == 3)
- L[3] = L[0];
- if (n == 4)
- L[4] = L[0];
+ float theta_sintheta = (x > 0.0) ? v : 0.5 * inversesqrt(max(1.0 - x * x, 1e-7)) - v;
- return n;
+ return cross(v1, v2) * theta_sintheta;
}
mat3 ltc_matrix(vec4 lut)
@@ -259,7 +149,7 @@ mat3 ltc_matrix(vec4 lut)
return Minv;
}
-float ltc_evaluate(vec3 N, vec3 V, mat3 Minv, vec3 corners[4])
+float ltc_evaluate_quad(vec3 N, vec3 V, mat3 Minv, vec3 corners[4])
{
/* Avoid dot(N, V) == 1 in ortho mode, leading T1 normalize to fail. */
V = normalize(V + 1e-8);
@@ -272,42 +162,43 @@ float ltc_evaluate(vec3 N, vec3 V, mat3 Minv, vec3 corners[4])
/* rotate area light in (T1, T2, R) basis */
Minv = Minv * transpose(mat3(T1, T2, N));
- /* polygon (allocate 5 vertices for clipping) */
- vec3 L[5];
- L[0] = Minv * corners[0];
- L[1] = Minv * corners[1];
- L[2] = Minv * corners[2];
- L[3] = Minv * corners[3];
-
- int n = clip_quad_to_horizon(L);
-
- if (n == 0)
- return 0.0;
-
- /* project onto sphere */
- L[0] = normalize(L[0]);
- L[1] = normalize(L[1]);
- L[2] = normalize(L[2]);
- L[3] = normalize(L[3]);
- L[4] = normalize(L[4]);
-
- /* integrate */
- float sum = 0.0;
-
- sum += edge_integral(L[0], L[1]);
- sum += edge_integral(L[1], L[2]);
- sum += edge_integral(L[2], L[3]);
- if (n >= 4)
- sum += edge_integral(L[3], L[4]);
- if (n == 5)
- sum += edge_integral(L[4], L[0]);
-
- return abs(sum);
+ /* Apply LTC inverse matrix. */
+ corners[0] = normalize(Minv * corners[0]);
+ corners[1] = normalize(Minv * corners[1]);
+ corners[2] = normalize(Minv * corners[2]);
+ corners[3] = normalize(Minv * corners[3]);
+
+ /* Approximation using a sphere of the same solid angle than the quad.
+ * Finding the clipped sphere diffuse integral is easier than clipping the quad. */
+ vec3 avg_dir;
+ avg_dir = edge_integral_vec(corners[0], corners[1]);
+ avg_dir += edge_integral_vec(corners[1], corners[2]);
+ avg_dir += edge_integral_vec(corners[2], corners[3]);
+ avg_dir += edge_integral_vec(corners[3], corners[0]);
+
+ float form_factor = length(avg_dir);
+
+ float sphere_cosine_integral = form_factor * diffuse_sphere_integral_lut(avg_dir, form_factor);
+
+ return abs(sphere_cosine_integral);
}
-float diffuseSphereIntegralCheap(vec3 F, float l)
+/* Same as above but without the matrix transform. */
+float ltc_evaluate_quad_diffuse(vec3 corners[4])
{
- return max((l*l + F.z) / (l+1.0), 0.0);
+ /* Approximation using a sphere of the same solid angle than the quad.
+ * Finding the clipped sphere diffuse integral is easier than clipping the quad. */
+ vec3 avg_dir;
+ avg_dir = edge_integral_vec(corners[0], corners[1]);
+ avg_dir += edge_integral_vec(corners[1], corners[2]);
+ avg_dir += edge_integral_vec(corners[2], corners[3]);
+ avg_dir += edge_integral_vec(corners[3], corners[0]);
+
+ float form_factor = length(avg_dir);
+
+ float sphere_cosine_integral = form_factor * diffuse_sphere_integral_lut(avg_dir, form_factor);
+
+ return abs(sphere_cosine_integral);
}
/* disk_points are WS vectors from the shading point to the disk "bounding domain" */
@@ -404,27 +295,24 @@ float ltc_evaluate_disk(vec3 N, vec3 V, mat3 Minv, vec3 disk_points[3])
float e2 = roots.y;
float e3 = roots.z;
- vec3 avgDir = vec3(a * x0 / (a - e2), b * y0 / (b - e2), 1.0);
+ vec3 avg_dir = vec3(a * x0 / (a - e2), b * y0 / (b - e2), 1.0);
mat3 rotate = mat3(V1, V2, V3);
- avgDir = rotate * avgDir;
- avgDir = normalize(avgDir);
+ avg_dir = rotate * avg_dir;
+ avg_dir = normalize(avg_dir);
/* L1, L2 are the extends of the front facing ellipse. */
float L1 = sqrt(-e2/e3);
float L2 = sqrt(-e2/e1);
/* Find the sphere and compute lighting. */
- float formFactor = L1 * L2 * inversesqrt((1.0 + L1 * L1) * (1.0 + L2 * L2));
+ float form_factor = L1 * L2 * inversesqrt((1.0 + L1 * L1) * (1.0 + L2 * L2));
/* use tabulated horizon-clipped sphere */
- vec2 uv = vec2(avgDir.z * 0.5 + 0.5, formFactor);
- uv = uv * (64.0 - 1.0) / 64.0 + 0.5 / 64.0;
-
- float sphere_cosine_integral = formFactor * texture(utilTex, vec3(uv, 1.0)).w;
+ float sphere_cosine_integral = form_factor * diffuse_sphere_integral_lut(avg_dir, form_factor);
/* Less accurate version, a bit cheaper. */
- //float sphere_cosine_integral = formFactor * diffuseSphereIntegralCheap(avgDir, formFactor);
+ //float sphere_cosine_integral = form_factor * diffuse_sphere_integral_cheap(avg_dir, form_factor);
return max(0.0, sphere_cosine_integral);
}